本資料のうち、枠囲みの内容
は、機密事項に属しますので
公開できません。

柏崎刈羽原子力発電所第	97号機 工事計画審査資料
資料番号	KK7 補足-025-4 改 5
提出年月日	2020年7月8日

廃棄物処理建屋の地震応答計算書に関する補足説明資料

2020年7月 東京電力ホールディングス株式会社

- 工事計画添付書類に係る補足説明資料 V-2-2-11「廃棄物処理建屋の地震応答計算書」の記載内容を補足するための資料を以下に示す。
- 別紙1 地震応答解析における今回工認の解析モデル及び手法の比較
- 別紙2 地震応答解析における耐震壁及び鉄骨部のせん断スケルトン曲線の設定
- 別紙3 地震応答解析における材料物性の不確かさに関する検討
- 別紙4 地盤3次元 FEM モデルによる地震応答解析に関する検討
- 別紙5 廃棄物処理建屋とタービン建屋間の相対変位について

下線:今回ご提示資料

別紙4 地盤3次元 FEM モデルによる地震応答解析に関する検討

目 次

1.	検討概要		別紙 4-1
2.	検討結果		別紙 4-4
3.	誘発上下動	にみられる既往文献との差異について ・・・・・・・・・・・・	別紙 4-13
4.	まとめ・		別紙 4-15

別紙 4-1 短周期の応答増幅について

1. 検討概要

廃棄物処理建屋の地震応答解析結果より算定した接地率は 35%を下回るケースがあ るため、接地率が 35%を下回る場合の地震応答解析の信頼性を確認する。具体的には、 廃棄物処理建屋の地盤 3 次元 FEM モデルの地震応答解析モデルを用いて入力地震動を係 数倍した地震応答解析を行い、最小接地率、入力地震動の倍率、水平応答加速度及び誘 発上下動による鉛直応答加速度の関係を整理し、入力地震動の大きさに応じて応答値が 連続的に変化し特異な応答値が生じないという JEAC4601-2015 において引用されている 「中村尚弘、他:Green 関数法と地盤 FEM モデルによる大地震時の建物の浮上り挙動の 評価、第 63 回理論応用力学講演会、GS04-02-01、2014年9月」(以下「既往文献」とい う。)と同様の傾向になることを確認することで、接地率が 35%を下回る場合の地震応 答解析の信頼性を確認する。

評価に用いる地震応答解析モデルは建屋部を線形モデルとし、入力地震動は既往文献 で用いている地震動と同様に、周期特性が比較的なだらかで特徴的なピークのない基準 地震動 Ss-3 を用いる。接地率は、基礎底面のジョイント要素の支配面積に基づく 接地 面積の総和を、基礎底面積で除して算出する。廃棄物処理建屋と既往文献の建屋の主な 諸元比較を表1-1に示す。また、地盤3次元 FEM モデルの地震応答解析モデルを図1-1に、Ss-3の加速度応答スペクトルを図1-2に示す。

項目	廃棄物処理建屋	既往文献	
基礎スラブ寸法	35.8m $ imes$ 73.0m	50.0m $ imes$ 50.0m	
基礎スラブ下から の建屋高さ	52.9m	40. Om	
建屋総重量	1012180kN	1961330kN	
支持地盤の せん断波速度 Vs	481m/s	2000m/s	
解析モデル	多質点系モデル	1 質点系モデル	

表 1-1 廃棄物処理建屋と既往文献の建屋の主な諸元比較

図 1-1 廃棄物処理建屋の地盤 3 次元 FEM モデルの地震応答解析モデル

図 1-2 基準地震動 S s の加速度応答スペクトル (NS 方向)

2. 検討結果

接地率が35%を下回る場合の地震応答解析の信頼性について,地盤3次元FEMモデルの地震応答解析モデルを用いて,基準地震動 Ss-3 を係数倍して入力した地震応答解析 結果と既往文献と比較した検討結果を図 2-1~図 2-3 に示す。なお,それぞれ(c)図 には,接地率35%時の加速度で規準化して,既往文献と比較したものを示す。

図 2-1 の最小接地率と入力地震動の関係をみると、<mark>廃棄物処理建屋と既往文献は、</mark> 入力地震動の大きさに応じて、接地率が連続的に変化し、低接地率になっても特異な応 答が生じていない。

図 2-2 の水平方向の最大応答加速度と最小接地率の関係をみると、<mark>廃棄物処理建屋</mark> と既往文献は,接地率に応じて最大応答加速度が連続的に変化し,低接地率になっても 特異な応答が生じていない。

図 2-3 の誘発上下動による鉛直方向の最大応答加速度と最小接地率の関係をみると, 廃棄物処理建屋は既往文献と同様に, 接地率の低下に伴い誘発上下動による鉛直方向加 速度が緩やかに増えており,極端な応答変化は認められない。なお,接地率 30%~20% において見られる,廃棄物処理建屋と既往文献の誘発上下動の応答差については,「3. 誘発上下動にみられる既往文献との差異について」に考察を示す。

次に、入力レベルの違いが加速度時刻歴波形や応答スペクトルにどのような影響があ るかを確認するために、廃棄物処理建屋の加速度時刻歴波形、接地率時刻歴波形及び加 速度応答スペクトルを図 2-4~図 2-8 に、それぞれ重ねて示す。加速度時刻歴波形及 び接地率時刻歴波形 (図 2-4~図 2-6)をみると、入力地震動の倍率が大きくなるの に伴い、水平応答加速度及び誘発上下動応答加速度は徐々に大きくなっている。また、 水平応答加速度及び誘発上下動応答加速度の中でも特に振幅の大きいのは、35~38 秒 付近と 42~43 秒付近であるが、この時間帯は浮上りが生じて接地率が小さくなってい る時刻に一致している。加速度応答スペクトル(図 2-7 及び図 2-8)をみると、入力 地震動の倍率が大きくなるのに伴い、応答スペクトル振幅はほぼ全周期帯で徐々に大き くなっている。なお、2 階の短周期側での増幅割合がやや大きくみえるが、これは基礎 浮上りに伴う応答増幅と考えられる。

(a) 廃棄物処理建屋

図 2-1 最小接地率と入力地震動の関係

別紙 4-5

(a) 廃棄物処理建屋

別紙 4-6

(a) 廃棄物処理建屋

(c) 既往文献との比較(接地率 35%で規準化)

図 2-3 誘発上下動による鉛直方向の最大応答加速度と最小接地率の関係

図 2-4 廃棄物処理建屋の加速度時刻歴波形 (水平方向)

図 2-5 廃棄物処理建屋の加速度時刻歴波形(鉛直方向)

図 2-6 廃棄物処理建屋の接地率時刻歴波形

図 2-7 水平方向の加速度応答スペクトル

別紙 4-11

(c) 既往文献 図 2-8 誘発上下動による鉛直方向の加速度応答スペクトル

別紙 4-12

3. 誘発上下動にみられる既往文献との差異について

「2. 検討結果」の図 2-3 誘発上下動による鉛直方向の最大応答加速度と最小接地 率の関係より,接地率 30%~20%においては,廃棄物処理建屋と既往文献の誘発上下動 の応答に差がみられている。この要因と一つとして,支持地盤のせん断波速度の相違が 考えられるため,表 3-1 に示すように,廃棄物処理建屋の支持地盤のせん断波速度 Vs を 2000m/s として既往文献の解析条件に近づけた検討を実施する。

	廃棄物処		
		「3. 誘発上下動に	
項目	「2. 検討結果」	みられる既往文献と	既往文献
	での検討	の差異について」	
		での検討	
基礎スラブ寸法	35.8m×73.0m	同左	50.0m×50.0m
基礎スラブ下から の建屋高さ 52.9m		同左	40. Om
建屋総重量 1012180kN		同左	1961330kN
支持地盤の せん断波速度 Vs	支持地盤の 481m/s せん断波速度 Vs		2000m/s
解析モデル 多質点系モデル		同左	1 質点系モデル

表 3-1 廃棄物処理建屋と既往文献の建屋の主な諸元比較

検討結果を図 3-1 に示す。支持地盤のせん断波速度 Vs を 2000m/s とすることによ り,誘発上下動と接地率の関係は,既往文献と同様の傾向を示す結果となった。これは 支持地盤の剛性が大きいほど,低接地率時の誘発上下動の増加割合が大きくなることを 示すものである。

誘発上下動による鉛直方向の最大応答加速度と最小接地率の関係

4. まとめ

接地率が35%を下回る場合の地震応答解析において,地盤3次元FEMモデルの地震応 答解析モデルを用いて,基準地震動 Ss-3 を係数倍して入力した地震応答解析結果と既 往文献と比較した結果,同様の傾向が見られることを確認した。

また,加速度時刻歴波形及び加速度応答スペクトルより,入力動の倍率(接地率)と 水平方向加速度と誘発上下動の加速度が対応していることを確認した。

以上により,接地率が 35%を下回る場合であっても今回の解析範囲である接地率 20% 程度までは,廃棄物処理建屋の地盤 3 次元 FEM 解析は信頼性があるものと判断できる。 別紙 4-1 短周期の応答増幅について

目	次
---	---

1.	検	討概要	別紙 4-1-1
2.	検	討内容	別紙 4-1-2
2.	1	増幅率と固有周期の関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-1-2
2.	2	基礎浮上りに伴う応答増幅 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-1-4
3.	ま	ことめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-1-9

1. 検討概要

「別紙4 地盤3次元 FEM モデルによる地震応答解析に関する検討」において,入力 地震動を増大させて建屋の応答変化を加速度応答スペクトルで比較した結果,図 1-1 に示すように 0.05~0.2 秒程度の短周期域で地上2階(T.M.S.L.20.4m)の増幅割合が 大きい結果となった。本資料は,この原因について考察したものである。

図 1-1 地上 2 階(T.M.S.L. 20.4m)の加速度応答スペクトル

2. 検討内容

2.1 増幅率と固有周期の関係

基礎浮上りに伴う周期毎の応答増幅の傾向を把握するために,比較対象として「基礎浮上り線形モデル」による入力地震動を 0.8 倍,1.0 倍,1.2 倍とした地震応答解析を実施した。基礎浮上り非線形モデルと基礎浮上り線形モデルの基礎上(T.M.S.L.-6.1m)及び2階(T.M.S.L.20.4m)の加速度応答スペクトルと固有周期の関係を図 2-1 に示す。加速度応答スペクトルには,表 2-1 に示す SR モデルにおける 1 次~6 次の固有周期の位置を示してある。

この加速度応答スペクトルによると、基礎上の応答には有意な差は見られないもの の、2 階の応答は基礎浮上り非線形モデルを採用したことにより短周期域で増幅割合 が大きくなり、特に接地率が小さくなる 1.2 倍のケースでその傾向が顕著になること が分かる。また、この増幅割合が大きい周期帯は、概ね 3 次~6 次の固有周期に一致 している。すなわち、接地率の低下(基礎浮上りが増大)に伴い、高次モードの影響 が大きくなったと考えられる。

(a) 基礎浮上り非線形モデル

(b) 基礎浮上り線形モデル

図 2-1 加速度応答スペクトルと固有周期の関係

表 2-1 固有值解析結果(Ss-3, NS 方向)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.395	2.53	2.341	建屋-地盤連成1次
2	0.212	4.71	-2.116	
3	0.160	6.25	-1.440	
4	0.136	7.34	1.113	
5	0.090	11.10	0.208	
6	0.059	16.91	0.081	

2.2 基礎浮上りに伴う応答増幅

「2.1 増幅率と固有周期の関係」において、短周期域の増幅割合が変化する原因 は、接地率の低下(基礎浮上りの増大)に伴い高次モードの影響が大きくなったもの と推察したが、ここでは接地率の低下によりこのような現象が起きる理由について考 察する。

基礎の浮上りに伴う現象としては,基礎の回転により生じる幾何学的な水平変位の 増大が考えられる。具体的には,図 2-2(a)に示すように浮上り線形時には基礎が浮 き上がることにより,回転角 θ_0 が生じ,この回転角 θ_0 に伴い上部では高さに応じて x₀の水平変位が生じる。また,さらに浮上りが進むと地盤ばねの引張抵抗力が無くな り,図 2-2(b)に示すように地盤ばねが切り離されて非線形状態での回転角 θ_1 が加 算される。したがって,地震応答解析では,図 2-2(c)のような応答変位として計算 される。なお,通常の固有値解析では前者の線形的な回転角 θ_0 による水平変位 x₀は 考慮されるが,後者のような非線形時の浮上りに伴う回転角 θ_1 による水平変位 x₁は 考慮されない。

(a) 浮上り線形時の回転角θ。(固有値解析で考慮される挙動)

(b) 浮上り非線形時の回転角 θ₁(固有値解析では考慮されない挙動)

(c) 地震応答解析における変位

図 2-2 基礎の回転に伴う応答変位の概念図

以上のことが周期 0.2 秒以下の増幅においてどの程度影響しているかを確認するた めに,図2-1(a)の3次と4次の間のピークに着目して,基礎浮上り非線形モデル の基礎上と2階の応答加速度波形の周期 0.160~0.145秒(6.25Hz~6.90Hz)のバン ドパスフィルター波形(以下「バンドパス波形」という。)を算定した。算定結果を 比較して図 2-3(a)に示す。なお、図 2-3(a)の最下段には、基礎の応答回転角 加速度波形(バンドパス処理をしたもの)も記載してある。これによると、基礎の回 転角が大きい時に 2 階の応答が大きくなっており,特に入力が 1. 2 倍のケースで応答 増幅が大きい。また,図 2-3(b)に 1.2 倍のケースで基礎の応答回転角加速度波形 が大きくなっている 13~17 秒間を拡大した各ケースのバンドパス波形及び波形の重 ね書きを示す。なお、図 2-3(b)の最下段には、2 階のバンドパス波形と基礎の回 転角θのバンドパス波形に基礎上から 2 階までの高さ H(26.5m)を乗じた波形の重 ね書きを示す。図 2-3 (b)の波形の重ね書きより、2 階と基礎上のバンドパス波形 の位相は一致しておらず,建屋のモードに起因した帯域ではないことが分かる。一方, 2 階のバンドパス波形と基礎の回転角のバンドパス波形に基礎上から 2 階までの高さ (26.5m)を乗じた波形の位相は一致しており、2 階の応答が大きくなるのは、基礎 の回転角に起因していることが分かる。

次に,絶対変位 X は, $X = x_E + x_0 + x_1 + x_2$ であることから, $x_E + x_2 = X - x_0 - x_1 \epsilon x$ め て,回転挙動による変位を差し引いた応答変位を比較する。なお,本来は変位波形で 計算すべきだが,図 2-3 は加速度波形に対する狭帯域のバンドパス波形であり, ω^2 で割っても波形形状が変わらないため,加速度波形のままで上式に代入して算定する。 また, $x_1 = H \cdot \theta$ であり,Hは基礎上から2階までの高さ(26.5m)を用いる。

算定結果を図 2-4 に示す。基礎の回転角 θ による変位を除くことにより、どの入 力動倍率に対しても、ほぼ同程度の応答倍率になることが分かる。多少の差異が生じ る理由は、非線形時の回転角 θ_1 だけを取り除くべきところを、線形時の回転角 θ_0 も 一緒に取り除いたことが一因と考えられるが、概ねの傾向は説明できていることから、 非線形時の回転角 θ_1 の影響で 2 階の応答が大きくなったものと判断できる。

以上のことから,図 2-1 の応答スペクトルの短周期域で 2 階の応答倍率が大きい 理由は,建屋の高次モードによる応答に加えて,基礎の浮上り非線形により生じた基 礎の回転角 θ₁ に伴う幾何学的な建屋上部の応答増幅が重なって生じたものと考えら れる。

注記*:Hは基礎上から2階までの高さ(26.5m)とする。

図 2-3 バンドパス波形の比較(6.25Hz~6.90Hz)(2/2)

別紙 4-1-7

	0.8倍入力	1.0 倍入力	1.2倍入力		
2 階 補正波	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
最大値の比 2階/基礎上	$0.2357 \neq 0.2510 = 0.94$	$0.2902 \neq 0.3010 = 0.96$	$0.3206 \neq 0.4126 = 0.78$		

図 2-4 2 階の水平動から回転による水平動を除いた結果

3. まとめ

「別紙4 地盤3次元FEMモデルによる地震応答解析に関する検討」において,入力 地震動を増大させて建屋の応答変化を加速度応答スペクトルで比較した結果,2 階 (T.M.S.L.20.4m)の短周期域で増幅割合が大きい結果となった。

そこで基礎浮上り線形モデルの地震応答解析を行って加速度応答スペクトルを比較し た結果,基礎浮上り非線形を考慮したことにより短周期域で増幅割合が大きくなり,特 に接地率が小さくなる 1.2 倍のケースでその傾向が顕著になることが確認できた。

また,基礎浮上り非線形時の応答増幅の原因としては,基礎の浮上り非線形により生 じた基礎の回転角に伴う幾何学的な建屋上部の変形が追加されたことによるものと考え られた。

以上より,短周期域での応答増幅は,基礎浮上り非線形による基礎の回転に伴う応答 増幅が原因であるものと考えらえる。 別紙5 廃棄物処理建屋とタービン建屋間の相対変位について

目	次	

1.	概要	別紙 5-2
2.	評価方針	別紙 5-3
3.	最大相対変位の評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-4
3.1	↓ 絶対値和による最大相対変位の検討 ・・・・・・・・・・・・・・・・・・・・・	別紙 5-4
3.2	2 時刻歴変位による最大相対変位の検討 ・・・・・・・・・・・・・・・・	別紙 5-4
4.	最大相対変位の評価結果	別紙 5-6
4. 1	↓ 絶対値和よる最大相対変位の評価結果 ・・・・・・・・・・・・・・・・・・・・・	別紙 5-6
4.2	2 時刻歴和による最大相対変位の評価結果 ・・・・・・・・・・・・・・・	別紙 5-7
5.	衝突時の影響確認	別紙 5−14
<mark>5.</mark>]	L 評価方法 ····································	別紙 5−14
<mark>5.</mark> 2	<mark>2 評価結果</mark> ····································	別紙 5−18
6.	まとめ	別紙 5-20

1. 概要

廃棄物処理建屋とタービン建屋との建屋間の相対変位を求め、その影響を確認するものである。

2. 評価方針

V-2-2-5「タービン建屋の地震応答計算書」及びV-2-2-11「廃棄物処理建屋の地震応 答計算書」より、タービン建屋と廃棄物処理建屋との建屋間の最大相対変位が建屋間の クリアランスを超えるか確認を行う。

建屋間のクリアランスを超えた場合には、衝突範囲がどの部分か確認し、影響を確認 する。

タービン建屋と廃棄物処理建屋のクリアランスを図2-1に示す。

図2-1 建屋配置図(概略図)

- 3. 最大相対変位の評価方法
- 3.1 絶対値和による最大相対変位の検討

タービン建屋と廃棄物処理建屋のNS方向の地震応答解析モデルの高さ関係を図3-1 に示す。タービン建屋と廃棄物処理建屋の応答変位から算出した各質点位置における 最大相対変位の和(絶対値和)を求め,建屋間のクリアランス(100mm)以内である ことを確認する。

3.2 時刻歴変位による最大相対変位の検討

「3.1 絶対値和による最大相対変位の検討」で検討した絶対値和による最大相対 変位が建屋間のクリアランス(100mm)を超える場合は、時刻歴変位の和(時刻歴和) を求め、建屋間のクリアランス(100mm)以内であることを確認する。

図 3-1 タービン建屋と廃棄物処理建屋の NS 方向の地震応答解析モデルの高さ関係

- 4. 最大相対変位の評価結果
- 4.1 絶対値和よる最大相対変位の評価結果

タービン建屋と廃棄物処理建屋のケース1の応答変位から算出した各質点位置にお ける絶対値和による最大相対変位を表4-1に示す。

表4-1よりSs-1,2,3,8においては上層部の最大相対変位がクリアランス(100mm) を超えることが、Ss-4~7においては最大相対変位がクリアランス(100mm)以下にな ることが確認できる。

表 4-1 タービン建屋と廃棄物処理建屋間の絶対値和による最大相対変位

(基準地震動 S s, ケース 1)

тист	質点番号		最大相対変位(絶対値和)							
1. M. S. L.	タービン	廃棄物		(mm)						
(III)	建屋	処理建屋	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8
44 3	1	10	213.5	158.4	160.8	68.2	73.4	73.0	63.1	164.1
44. 5	2	11	121.9	96.1	112.3	48.9	53.8	52.0	46.5	127.2
38.6	3	- *1	166.7	119.2	126.7	50.3	56.9	54.2	48.3	137.4
36.7	- *1	9	144.7	104.6	114.1	43.2	50.5	46.7	42.6	126.7
20.0	4	7	75.3	60.8	75.1	22.6	32.1	25.0	26.8	91.7
30.9	5, 6^{*2}	- *1	79.6	59.0	74.4	28.8	40.4	31.9	36.5	83.8
30.4	- *1	8	77.2	56.6	72.1	27.9	39.4	31.0	35.4	82.2
25.8	7, 8^{*2}	- *1	61.3	42.9	56.9	23.1	32.4	25.7	28.4	72.6
20.4	9, 10 ^{*2}	6	49.6	34.2	46.6	16.4	23.2	18.0	19.7	61.8

注記*1:建屋質点間の変位は上下質点の変位を線形補間する

*2:最大相対変位が大きい質点番号の値を採用する

4.2 時刻歴和による最大相対変位の評価結果

「4.1 絶対値和よる最大相対変位の評価結果」の表4-1より最大相対変位がクリ アランス(100mm)を超えるSs-1, Ss-2, Ss-3及びSs-8のケース1~5について,時刻 歴和による最大相対変位を表4-2に示す。なお,時刻歴和による相対変位は,タービ ン建屋の応答変位から廃棄物処理建屋の応答変位を減じて算出しており,相対変位の 値が正となる側がタービン建屋と廃棄物処理建屋が近づく側である。

表4-2よりSs-1ケース2, Ss-2ケース2, Ss-3ケース2, 3, 4, Ss-8ケース1, 2, 4, 5にお いては,最大相対変位がクリアランス(100mm)以下になることが確認できる。

また、Ss-1ケース1,3,4,5、Ss-2ケース1,3,4,5、Ss-3ケース1,5、Ss-8ケース3にお いては、最大相対変位がクリアランス(100mm)を超え、衝突する結果となっている ことが確認できる。なお、T.M.S.L.44.3m位置での最大相対変位は、Ss-8ケース3で、 137.0mmとなる。

時刻歴和による最大相対変位が最大となるSs-8ケース3のT.M.S.L.44.3m (タービン 建屋の質点1と廃棄物処理建屋の質点10)の相対変位を図4-1に示す。

なお, T.M.S.L.38.6mの相対変位が100mmを超えているSs-1ケース3及びSs-8ケース3 について, T.M.S.L.36.7m及びクレーンガーダ支持部(T.M.S.L.31.935m)の相対変位 を表4-3に示す。表4-3よりT.M.S.L.36.7m及びクレーンガーダ支持部の相対変位は クリアランス(100mm)以下であり, 衝突しない。

建屋断面図を図4-2に、建屋平面図を図4-3に、建屋間納り図を図4-4に示す。
 図4-4より、T.M.S.L.44.3mにおける建屋間のクリアランス(100mm)は、タービン
 建屋のもや(鋼材)と廃棄物処理建屋のもや(鋼材)の間隔であること、
 T.M.S.L.38.6mにおける建屋間のクリアランス(100mm)は、外壁と外壁の間隔であることが確認できる。タービン建屋の質点1と廃棄物処理建屋の質点10が衝突する
 ため、衝突範囲としては、T.M.S.L.44.3mのトラスの東側部分となるが、ここでは保
 守的にT.M.S.L.44.3mのトラス全体が衝突することを想定する。

表 4-2 タービン建屋と廃棄物処理建屋間の時刻歴和による最大相対変位

тмст	質点番号		最大相対変位(時刻歴和)			
1. M. S. L.	タービン	廃棄物		(m	m)	
	建屋	処理建屋	Ss-1	Ss-2	Ss-3	Ss-8
44.9	1	10	101.3	108.3	101.6	90.8
44. 5	2	11	46.3	51.3	60.2	64.7
38.6	3	— *1	86.7	80.5	80.1	68.1

(a) ケース 1

注記*1:建屋質点間の変位は上下質点の変位を線形補間する

(b) ケース 2

тист	質点番号		最大相対変位(時刻歴和)			
1. M. S. L.	タービン	廃棄物		(m	m)	
	建屋	処理建屋	Ss-1	Ss-2	Ss-3	Ss-8
44.9	1	10	92.3	86.0	82.0	62.6
44. 5	2	11	39.2	47.3	48.1	42.7
38.6	3	_ *1	68.8	64.8	60.0	44.0
注:1、1、	冲日所占	旧の亦伝い	して所占/	の亦伝た始	形 / 相 十 、	Z

注記*1:建屋質点間の変位は上下質点の変位を線形補間する

(c) ケース 3

тист	質点番号		最大相対変位(時刻歴和)			
1. M. S. L.	タービン	廃棄物		(m	m)	
	建屋	処理建屋	Ss-1	Ss-2	Ss-3	Ss-8
44.9	1	10	132.5	109.1	97.3	137.0
44. 5	2	11	73.2	64.7	78.1	79.3
38.6	3	_ *1	107.5	86.7	82.0	105.9
注記×1・建屋質占問の恋位け上下質占の恋位を線形補問する						

注記*1:建屋質点間の変位は上下質点の変位を線形補間する

(d) ケース 4

質点番号		最大相対変位(時刻歴和)			
タービン	廃棄物		(m	m)	
建屋	処理建屋	Ss-1	Ss-2	Ss-3	Ss-8
1	10	111.8	103.6	97.6	84.0
2	11	64.6	61.2	63.2	62.0
3	- *1	93.8	79.8	73.1	62.4
/ .	タービン 建屋 1 2 3	夏気(留う) タービン 廃棄物 建屋 処理建屋 1 10 2 11 3 -*1	夏気帯ち取りタービン 廃棄物産量建屋処理建屋11011.821164.63 $-^{*1}$ 93.8	夏気(m) 夏気(m) 取人怕外夏位(m) タービン 廃棄物 (m) 建屋 処理建屋 Ss-1 Ss-2 1 10 111.8 103.6 2 11 64.6 61.2 3 -*1 93.8 79.8	夏気留う取入相対复位 (時刻進生)タービン 建屋廃棄物 (mm)建屋処理建屋Ss-1Ss-2Ss-3110111.8103.697.621164.661.263.23 $-^{*1}$ 93.879.873.1

注記*1:建屋質点間の変位は上下質点の変位を線形補間する

(e) ケース 5

тмст	質点番号		最大相対変位(時刻歴和)			
1. M. S. L.	タービン	廃棄物		(m	m)	
	建屋	処理建屋	Ss-1	Ss-2	Ss-3	Ss-8
44.9	1	10	104.0	107.4	105.3	92.0
44. 5	2	11	43.9	47.0	62.0	64.3
38.6	3	- *1	88.7	79.6	83.2	68.7
注記*1:建屋質点間の変位は上下質点の変位を線形補間する						

相対変位の時刻歴和(Ss-8, ケース 3)

表 4-3 タービン建屋と廃棄物処理建屋間の時刻歴和による最大相対変位

	質点	番号	最大相対変位	〔(時刻歴和)
T.M.S.L.	カードン 成五冊		(mm)	
(m)	ターヒン 建屋	^{廃乗物} 処理建屋	Ss-1 ケース 3	Ss-8 ケース 3
36.7	3-4 間	9	91.8	95.3

(a) T. M. S. L. 36.7m

注記:建屋質点間の変位は上下質点の変位を線形補間する

(b) クレーンガーダ支持部 (T.M.S.L. 31.935m)

	質点	番号	最大相対変位	(時刻歴和)
T.M.S.L.		its to the	(mm)	
(m)	タービン 建屋	^廃 莱物 処理建屋	Ss-1 ケース 3	Ss-8 ケース 3
31.935	3-4 間	7-9 間	69.1	67.1

注記:建屋質点間の変位は上下質点の変位を線形補間する

□:衝突範囲

(a) タービン建屋の断面図

(b) 廃棄物処理建屋の断面図

図 4-2 建屋断面図

(a) T.M.S.L.44.3m

別紙 5-11

(a) T.M.S.L.44.3mの建屋間納り断面図(A-A 断面)

図 4-4 建屋間納り図(1/2)

(c) T. M. S. L. 31.935m (クレーンガーダ支持部)の建屋間納り図
 図 4-4 建屋間納り図(2/2)

5. 衝突時の影響確認

廃棄物処理建屋とタービン建屋との時刻歴相対変位がクリアランス(100mm)を超え 衝突する場合があるため、衝突時の局部評価を行う。

5.1 評価方法

評価は質点位置において行う。評価に用いる衝撃力は慣性力から求め、衝撃力がも やの許容限界を超えないことを確認する。また、もやより下部については、もやにお ける衝突を考慮した上で、衝突の有無を判断する。

- 5.1.1 T.M.S.L.44.3mの評価
- (1) 衝撃力の算定

衝撃力として考慮する荷重は、弾性衝突を仮定した運動量保存の法則から求める。

 $m_{\mathrm{T}} \cdot v_{\mathrm{T}} + m_{\mathrm{R}} \cdot v_{\mathrm{R}} = m_{\mathrm{T}} \cdot v_{\mathrm{T}}' + m_{\mathrm{R}} \cdot v_{\mathrm{R}}' \qquad \cdots \qquad (1)$

- **m**_T:タービン建屋衝突時の評価に用いる質量
- m_R:廃棄物処理建屋衝突時の評価に用いる質量
- vr : タービン建屋の質点1の衝突前速度
- **v**_R:廃棄物処理建屋の質点10の衝突前速度
- vr':タービン建屋の質点1の衝突後速度
- v_R':廃棄物処理建屋の質点10の衝突後速度

$$\mathbf{F} = \frac{m \cdot v' - m \cdot v}{t} \quad \cdot \quad \cdot \quad \cdot \quad (2)$$

- F:物体が受ける外力(衝撃力) m:物体の質量
- v:物体の衝突前速度 v':物体の衝突後速度
- *t* : 単位時間
- $\mathbf{F} = \frac{2 \cdot m_T \cdot m_R}{m_T + m_R} \cdot \frac{\nu_T \nu_R}{\mathbf{t}} = \frac{2 \cdot m_T \cdot m_R}{m_T + m_R} \cdot (a_T a_R) \quad \cdots \quad \cdots \quad (3)$
 - a_T:タービン建屋の質点1の衝突時の加速度
 - a_R : 廃棄物処理建屋の質点 10 の衝突時の加速度

(2)解析モデルの設定

時刻歴和による相対変位が大きい Ss-8 ケース 3 において検討を行う。相対変位 が 100mm を超える時の相対加速度が最大となる時刻の加速度を用いて衝撃力を算定 する。最大相対加速度を表 5-1 に示す。

評価に用いる質量は、衝突部位に近い通り芯の柱、梁の支配面積分を基本と考えるが、ここでは保守的に1スパン分を用いることにする。評価に用いる質量を表 5 -2に、評価に用いる質量として考慮している範囲を図 5-1に示す。

表 5-1 T.M.S.L.44.3mの評価に用いる最大相対加速度

ケース	最大相対加速度(m/s ²)
Ss-8 ケース 3	16.6

<u>表 5-2 T.M.S.L.44.3m の評価に用いる質量</u>

建屋	質量(t)
タービン建屋 m _T	724.6
廃棄物処理建屋 m _R	413.8

□: 質量として考慮している範囲

図 5-1 評価に用いる質量として考慮している範囲

(3)許容限界

衝突により,もやは材軸方向に力を受けるため,弾性限強度に基づく圧縮力を許 容限界とする。鋼材の弾性限強度を表 5-3 に示す。

表5-3 鋼材の弾性限強度

(単位:N/mm²)

		工 淮 础 由	弾性限強度		
材料	板厚	玉华强度 F値	圧縮* 引張	曲げ*	せん断
SS41(SS400相当)	t \leq 40mm	235	258	258	135

注記*:2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合 研究所・国立研究開発法人建築研究所)に基づき, F値に1.1倍の割増しを 考慮する。

(4) もやの変形量の算定方法

衝撃力から下式を用いて,もやの変形量を算出する。各建屋のもやの部材長さは, 通り芯からの跳ね出し長さとする。もやの断面積は,廃棄物処理建屋の断面積の方 が小さいため,廃棄物処理建屋の断面積の合計を評価に用いる。

$$\Delta L = \frac{F \cdot L}{E \cdot A}$$

$$\Delta L : 6 \text{ ϕ} o \infty \ \mathbb{R}^{\pm} (mm)$$

$$F : 衝撃力$$

$$L : 6 \text{ ϕ} o \ \mathbb{R}^{\pm} b \ \mathbb{R}^{\pm}$$

5.1.2 T.M.S.L.38.6mの評価

もやが衝突した時の T.M.S.L.38.6m における廃棄物処理建屋とタービン建屋の間 隔を求め,衝突の有無を確認する。その評価においては,もやの衝突時の変形も考 慮する。

5.2 評価結果

5.2.1 T.M.S.L.44.3mの評価結果

(1)もやの耐力

T.M.S.L.44.3m におけるもやの評価結果を表 5-4 に示す。衝撃力が許容限界を 超えないことを確認した。

	<u>表 5-4 もやの評価結果</u>	
①衝撃力	②許容限界	検定値
(kN)	(kN)	1/2
8735	21720	0.403

(2) もやの変形量

衝突時のもやの変形量を表 5-5 に示す。

	X 0 0		
冻酸土	廃棄物処理建屋の	タービン建屋の	もやの変形量
倒拿刀 (1-N)	もやの変形量	もやの変形量	の合計
(KN)	(mm)	(mm)	(mm)
8735	0.304	0.329	0.633

表 5-5 もやの変形量

5.2.2 T.M.S.L.38.6mの評価結果

T.M.S.L.38.6m における廃棄物処理建屋とタービン建屋の建屋間隔を表 5-6 に 示す。もやの変形を考慮しない場合の建屋間隔を図 5-2 に,もやの変形を考慮し た場合の建屋間隔を図 5-3 に示す。もや衝突時の建屋間隔は 10.1mm となるため, T.M.S.L.38.6m において,建屋は衝突しない。

6. まとめ

タービン建屋と廃棄物処理建屋間の相対変位について評価した。評価の結果,建屋間 クリアランス(100mm)を, T. M. S. L. 44. 3m において最大で 37. 0mm, T. M. S. L. 38. 6m に おいて最大で 7. 5mm 超え, 衝突することを確認した。

衝突時の影響評価として, T.M.S.L.44.3m においては, 衝突時の衝撃力が部材に与え る影響を評価し, 衝撃力がもやの許容限界を超えないことを確認し, T.M.S.L.38.6m に おいては, もや衝突時における建屋間隔を評価し, 衝突しないことを確認した。