本資料のうち, 枠囲みの内容	柏崎刈羽原子力発電	所第7号機 工事計画審査資料
は、機密事項に属しますので	資料番号	KK7添-3-013-9 改1
公開できません。	提出年月日	2020年 6月 日

Ⅴ-3-別添 1-4-6 建屋内防護壁の強度計算書

2020年 6月

東京電力ホールディングス株式会社

1.	概	要			• • • • • •	 	• • • • • •	 • • • • •	 	 	1
2.	基	本方針 ・				 		 	 	 	2
2.	1	位置 …				 		 	 	 	2
2.	2	構造概要				 		 	 	 	7
2.	3	評価方針				 	• • • • • •	 • • • • •	 	 • • • •	16
2.	4	適用規格				 	• • • • • •	 • • • • •	 	 	19
3.	強	度評価方法	÷			 	• • • • • •	 • • • • •	 	 	20
3.	1	記号の定義	· · · ·			 	• • • • • •	 • • • • •	 	 	20
3.	2	評価対象部	3位 ••			 	••••	 	 	 	21
3.	3	荷重及び荷	重の組	合せ		 	••••	 	 	 	<mark>28</mark>
3.	4	許容限界				 	• • • • • •	 	 	 	<mark>30</mark>
3.	5	評価方法				 	• • • • • •	 	 	 	<mark>34</mark>
4.	評	価条件 ·				 	• • • • • •	 • • • • •	 	 	<mark>45</mark>
4.	1	貫通評価				 	• • • • • •	 	 	 	<mark>45</mark>
4.	2	変形評価				 	• • • • • •	 • • • • •	 	 	<mark>46</mark>
5.	強	度評価結果	Ę			 	• • • • • •	 • • • • •	 	 	<mark>53</mark>
5.	1	貫通評価				 	• • • • • •	 • • • • •	 	 • • • •	<mark>53</mark>
5.	2	変形評価				 		 	 	 	<mark>56</mark>

1. 概要

本資料は、V-3-別添1-2「防護対策施設の強度計算の方針」のとおり、防護対策施設 のうち、原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁が、設計竜巻に よる設計飛来物の衝突に対し、竜巻時及び竜巻通過後においても、外部事象防護対象施 設に設計飛来物を衝突させず、また、機械的な波及的影響を与えず、外部事象防護対策 施設の安全機能を考慮して、原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防 護壁を構成する防護鋼板及び架構が構造健全性を有することを確認するものである。 2. 基本方針

V-3-別添 1-2「防護対策施設の強度計算の方針」を踏まえ、原子炉補機冷却海水系配
管防護壁及び換気空調系ダクト防護壁の「2.1 位置」、「2.2 構造概要」、「2.3 評価方
針」及び「2.4 適用規格」を示す。

- 2.1 位置
 - (1) 原子炉補機冷却海水系配管防護壁
 原子炉補機冷却海水系配管防護壁は、タービン建屋海水熱交換器区域に設置する。
 原子炉補機冷却海水系配管防護壁の設置位置を図 2-1 に示す。

図 2-1 原子炉補機冷却海水系配管防護壁の位置図

(2) 換気空調系ダクト防護壁

換気空調系ダクト防護壁は,原子炉建屋,タービン建屋及びコントロール建屋に 設置する。

換気空調系ダクト防護壁の設置位置を図 2-2 に示す。

図 2-2 (1/4) 換気空調系ダクト防護壁の位置図

図 2-2 (2/4) 換気空調系ダクト防護壁の位置図

図 2-2 (3/4) 換気空調系ダクト防護壁の位置図

図 2-2(4/4) 換気空調系ダクト防護壁の位置図

2.2 構造概要

(1) 原子炉補機冷却海水系配管防護壁

原子炉補機冷却海水系配管防護壁の構造は、V-3-別添 1-2「防護対策施設の強度 計算の方針」の「3.6.1 原子炉補機冷却海水系配管防護壁の構造設計」に示す構造 設計を踏まえ,設定する。

原子炉補機冷却海水系配管防護壁は,鋼板等で構成する鋼製構造物である。 原子炉補機冷却海水系配管防護壁の構造図を図 2-3 及び図 2-4 に示す。

図 2-3 原子炉補機冷却海水系配管防護壁(A)の構造図

図 2-4 原子炉補機冷却海水系配管防護壁(B)の構造図

(2) 換気空調系ダクト防護壁

換気空調系ダクト防護壁の構造は、V-3-別添 1-2「防護対策施設の強度計算の方 針」の「3.6.2 換気空調系ダクト防護壁の構造設計」に示す構造設計を踏まえ、設 定する。

換気空調系ダクト防護壁は,鋼板等で構成する鋼製構造物である。 換気空調系ダクト防護壁の構造図を図 2-5 から図 2-11 に示す。

図 2-5 換気空調系ダクト防護壁 (No. 25)の構造図

K7 ① V-3-別添 1-4-6 R0

図 2-6 換気空調系ダクト防護壁(No. 76)の構造図

図 2-7 換気空調系ダクト防護壁(No.74)の構造図

図 2-8 換気空調系ダクト防護壁(No.66)の構造図

図 2-9 換気空調系ダクト防護壁(No.67)の構造図

図 2-10 換気空調系ダクト防護壁(No.9)の構造図

図 2-11 換気空調系ダクト防護壁(No.10)の構造図

2.3 評価方針

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の強度評価は、V-3-別添1-2「防護対策施設の強度計算の方針」の「2.3 荷重及び荷重の組合せ」及び 「5.6 建屋内防護壁の許容限界」にて設定している荷重及び荷重の組合せ並びに許 容限界を踏まえ、原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の評 価対象部位に作用する変形等が、許容限界に収まることを「3. 強度評価方法」に示 す方法により、「4. 評価条件」に示す評価条件を用いて計算し、「5. 強度評価結果」 にて確認する。

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の評価フローを図 2 -12 及び図 2-13 に示す。

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の強度評価において は、その構造を踏まえ、設計竜巻荷重とこれに組み合わせる荷重(以下「設計荷重」 という。)の作用方向及び伝達過程を考慮し、評価対象部位を設定する。

具体的には,設計飛来物が外部事象防護対象施設に衝突する直接的な影響の評価と して,防護対策施設を構成する部材に対する衝突評価,及び,防護対策施設自体が外 部事象防護対象施設に衝突・接触する波及的な影響の評価として,防護対策施設を構 成する部位の転倒及び脱落に対する構造強度評価を行う。

(1) 衝突評価

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁(No.25, No.66, No.67, No.74 及びNo.76)については,設計荷重に対し,設計飛来物が施設を構成 する部材を貫通しない設計とするために,防護鋼板が設計飛来物の貫通を生じない 最小厚さ以上であることを計算により確認する。衝突評価には,V-3-別添 1-2「防 護対策施設の強度計算の方針」の「6.6 建屋内防護壁の強度評価」に示す評価式を 用いる。また,換気空調系ダクト防護壁(No.9 及び No.10)については,貫通評価と して,設計荷重に対し,防護鋼板に終局状態に至るようなひずみが生じないことを 確認する。(以下「貫通評価」という。)

(2) 構造強度評価

設計荷重に対し,施設を構成する部材自体の転倒及び脱落を生じない設計とする ために,防護鋼板及び架構に終局状態に至るようなひずみが生じないことを確認す る。(以下「変形評価」という。)

注記*:衝突解析については,解析コード「LS-DYNA」を用いて3次元 FEM モデル によりモデル化し,防護鋼板及び架構について評価を実施する。

図 2-12 原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁 (No. 25, No. 66, No. 67, No. 74 及び No. 76)の評価フロー

注記*: 衝突解析については,解析コード「LS-DYNA」を用いて3次元FEMモデル によりモデル化し,防護鋼板及び架構について評価を実施する。

図 2-13 換気空調系ダクト防護壁(No.9 及び No.10)の評価フロー

2.4 適用規格

適用する規格,規準等を以下に示す。

- ・建築基準法及び同施行令
- 「発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007」日本 機械学会
- ・ISE7607-3「軽水炉構造機器の衝撃荷重に関する調査 その3 ミサイルの衝突によ る構造壁の損傷に関する評価式の比較検討」(昭和 51 年 10 月高温構造安全技術研 究組合)
- ・タービンミサイル評価について(昭和52年7月20日原子炉安全専門審査会)
- U.S. NUCLEAR REGULATORY COMMISSION: REGULATORY GUIDE 1.76, DESIGN-BASIS TORNADO AND TORNADO MISSILES FOR NUCLEAR POWER PLANTS, Revision1, March 2007
- Methodology for Performing Aircraft Impact Assessments for New Plant Designs (Nuclear Energy Institute 2011 Rev8 (NEI 07-13))
- ・「建築物荷重指針・同解説」(日本建築学会, 2004 改定)
- ・日本工業規格(JIS)
- ・「鋼構造設計規準-許容応力度設計法-」(日本建築学会,2005改定)

3. 強度評価方法

3.1 記号の定義

強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
d	m	設計飛来物が衝突する衝突断面の等価直径
F _d	Ν	常時作用する荷重
К		鋼板の材質に関する係数
М	kg	設計飛来物の質量
Т	m	貫通限界厚さ
V	m/s	設計飛来物の飛来速度
W _M	N	設計飛来物による衝撃荷重

表 3-1 強度評価に用いる記号

3.2 評価対象部位

原子炉補機冷却海水系配管防護壁の評価対象部位は, V-3-別添 1-2「防護対策施設 の強度計算の方針」の「5.6 建屋内防護壁の許容限界」に示す評価対象部位を踏まえ, 設定する。

- (1) 原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁(No. 25, No. 66, No. 67, No. 74 及び No. 76)
 - a. 貫通評価

設計荷重に対し,設計飛来物が施設を構成する部材を貫通しない設計とするた めに,防護鋼板に設計飛来物の貫通を生じない最小厚さ以上であることを計算に より確認する。

施設を構成する部材が設計飛来物を貫通させないことの確認においては、外殻を構成する防護鋼板を評価対象部位として設定する。

b. 変形評価

設計荷重に対し,施設を構成する部材自体が,転倒及び脱落により外部事象防 護対象施設へ接触等の影響を与えない設計とするために,防護鋼板及び架構に終 局状態に至るようなひずみが生じないことを解析により確認する。

設計飛来物の衝突を考慮する場合,建屋開口部の位置から設計飛来物の衝突方 向を考慮し,運動エネルギが最大となる水平方向衝突の鋼製足場板を設定する。 また,被衝突物の支持間隔が長く,厚さが薄いほどたわみ量が大きくなる傾向に ある。したがって,変形評価としては,評価対象となる防護鋼板の支持間隔が長 く,厚さが薄い箇所を選定する。なお,防護鋼板の設計においては,厚さを設備 毎に一律とすることから,支持間隔が最長となる箇所が代表となる。 衝突位置に ついては,たわみ量が大きくなるよう部材の中央とする。

評価対象部位を図 3-1 から図 3-<mark>7</mark>に示す。

図 3-1 原子炉補機冷却海水系配管防護壁(A)の評価位置図

図 3-2 原子炉補機冷却海水系配管防護壁(B)の評価位置図

図 3-<mark>3</mark> 換気空調系ダクト防護壁(No.25)の評価位置図

図 3-<mark>4</mark> 換気空調系ダクト防護壁(No.66)の評価位置図

図 3-6 換気空調系ダクト防護壁(No. 74)の評価位置図

図 3-7 換気空調系ダクト防護壁(No. 76)の評価位置図

- (2) 換気空調系ダクト防護壁(No.9及び No.10)
 - a. 貫通評価

設計荷重に対し,設計飛来物が施設を構成する部材を貫通しない設計とするために,防護鋼板に終局状態に至るようなひずみが生じないことを解析により確認 する。

設計飛来物の衝突を考慮する場合,建屋開口部の位置から設計飛来物の衝突方 向は鉛直方向とし,運動エネルギが最大となる足場パイプを設定する。また,被 衝突物の支持間隔が長く,厚さが薄いほどたわみ量が大きくなる傾向にある。し たがって,貫通評価としては,評価対象となる防護鋼板の支持間隔が長く,厚さ が薄い箇所を選定する。なお,防護鋼板の設計においては,厚さを設備毎に一律 とすることから,支持間隔が最長となる箇所が代表となる。衝突位置につい

ては、たわみ量が大きくなるよう部材の中央とする。

評価対象部位を図 3-8及び図 3-9に示す。

b. 変形評価

設計荷重に対し,施設を構成する部材自体が,転倒及び脱落により外部事象防 護対象施設へ接触等の影響を与えない設計とするために,防護鋼板及び架構に終 局状態に至るようなひずみが生じないことを解析により確認する。

変形評価の評価対象部位は貫通評価と同じである。

図 3-8 換気空調系ダクト防護壁(No.9)の評価位置図

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、V-3-別添 1-2「防護対策施設の強度計 算の方針」の「2.3 荷重及び荷重の組合せ」を踏まえて設定する。

(1) 荷重の設定

強度評価に用いる荷重は以下の荷重を用いる。

a. 設計飛来物による衝撃荷重(W_M)

設計飛来物による衝撃荷重(W_M)については,表 3-2に諸元を示す設計飛来物の衝突に伴う荷重とする。また,設計飛来物の材料定数を表 3-3に示す。

貫通評価においては、考慮する設計飛来物として衝突断面積あたりの運動エネ ルギが最大となる足場パイプを設定し、足場パイプの衝撃荷重を考慮する。

変形評価においては、考慮する設計飛来物として運動エネルギが最大となるように設定し、衝撃荷重を考慮する。運動エネルギは、水平方向衝突の場合は鋼製 足場板が最大であり、鉛直方向衝突の場合は足場パイプが最大となる。

設計 飛来物	寸法 長さ×幅×奥行き (m)	質量 (kg)	水平方向の 飛来速度 (m/s)	鉛直方向の 飛来速度 (m(a)	運動エネルギ <mark>(kJ)</mark>		衝突断面積あたりの <mark>運動エネルギ</mark> <mark>(kJ/mm²)</mark>	
	(m)		(111/5)	(11/5)	<mark>水平方向</mark>	<mark>鉛直方向</mark>	<mark>水平方向</mark>	<mark>鉛直方向</mark>
足場 パイプ	$4 \times 0.05 \times 0.05$	11	42	38	<mark>42</mark>	<mark>38</mark>	<mark>0. 0279</mark>	<mark>0. 0223</mark>
鋼製 足場板	$4 \times 0.25 \times 0.04$	14	55	18	55	18	<mark>0. 0021</mark>	<mark>0. 0003</mark>

表 3-2 設計飛来物の諸元

表 3-3 設計飛来物の材料定数

	降伏応力	縦弾性係数	
設計飛来物	$\sigma_{\rm y}$ (MPa)	E (MPa)	ポアソン比
足場パイプ	355	201667	0.3
鋼製足場板	245	201667	0.3

b. 常時作用する荷重 (F_d)

常時作用する荷重(Fd)は、部材の自重とする。

(2) 荷重の組合せ

強度評価に用いる荷重の組合せについては、V-3-別添 1-2「防護対策施設の強度 計算の方針」の「2.3 荷重及び荷重の組合せ」のとおり,設計飛来物による衝撃荷 重及び常時作用する荷重を組み合わせる。

荷重の組合せを表 3-4 及び表 3-5 に示す。

表 3-4 荷重の組合せ(原子炉補機冷却海水系配管防護^{壁及び}換気空調系ダクト防護壁(No. 25, No. 66, No. 67, No. 74 及び No. 76))

評価内容	設計飛来物による 衝撃荷重 (W _M)	常時作用する荷重 (F _d)	荷重の組合せ
貫通評価	\bigcirc	—	W_{M}
変形評価	0	0	$W_M + F_d$

表 3-5 荷重の組合せ(換気空調系ダクト防護壁(No.9 及び No.10))

評価内容	設計飛来物による 衝撃荷重 (W _M)	常時作用する荷重 (F _d)	荷重の組合せ
貫通評価及び 変形評価	0	0	$W_M + F_d$

3.4 許容限界

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の許容限界は、V-3-別添1-2「防護対策施設の強度計算の方針」の「5.6 建屋内防護壁の許容限界」に て設定している許容限界を踏まえて、「3.2 評価対象部位」にて設定した評価対象部 位の機能損傷モードを考慮して設定する。

(1) 評価対象部位の材料仕様

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の材料仕様を表 3 -6から表 3-8に示す。

<u> 表 3 - 6</u> 評価対象部位の材料仕様(原于炉桶機行却海水糸配官防護壁)					
分類		仕様	材質		
防護鋼板			SS400		
	A		STKR400		
架構	B		STKR400		

表 3-6 評価対象部位の材料仕様(原子炉補機冷却海水系配管防護壁)

表 3-7 評価対象部位の材料仕様

(換気空調系ダクト防護壁(No. 25, No. 66, No. 67, No. 74 及び No. 76))

分類	仕様	材質
防護鋼板		SS400
架構		SS400

表 3-8 評価対象部位の材料仕様(換気空調系ダクト防護壁(No.9 及び No.10))

分類	仕様	材質
防護鋼板		SUS304
架構		SUS304

(2) 評価対象部位の材料定数

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の材料定数を表 3 -9に示す。

11 66	厚さ		厚さ 降伏応力		縦弾性係数	塑性硬化係数	ポアソン
材質	(mm)	σ _y (MPa)	E (MPa)	E'(MPa)	比		
55400		245			0.3		
33400		235			0.3		
STKR400	—	245			0.3		
SUS304	_	205			0.3		

表 3-9 材料定数

(3) 許容限界

a. 貫通評価

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁を構成する防護 鋼板の貫通評価の許容限界を表 3-10 から表 3-12 に示す。

ここで、換気空調系ダクト防護壁(No.9 及び No.10)の許容限界は、鋼材の破断 ひずみとする。破断ひずみについては、「3.5(2)e.(c) 破断ひずみ」に示すとお り、JISに規定されている伸びの下限値を基に設定するが、「NEI07-13: Methodology for Performing Aircraft Impact Assessments for New Plant Designs」(以下「NEI07-13」という。)においてTF(多軸性係数)を ことが推奨されていることを踏まえ、安全余裕としてTF= を考慮して設定 する。

評価対象部位	設置方向	厚さ (mm)	材質	
原子炉補機冷却海水系配管防護 <mark>壁</mark>	防護	側面		SS400
	鋼板	上面		SS400

表 3-10 貫通限界の許容限界(原子炉補機冷却海水系配管防護壁)

表 3-11 貫通限界の許容限界

評価対象部位		設置方向	厚さ (mm)	材質
換気空調系ダクト防護壁	忙輩	側面		SS400
(No.25, No.66, No.67, No.74及び No.76)	鋼板	上面		SS400

(換気空調系ダクト防護壁(No.25, No.66, No.67, No.74 及び No.76))

表 3-12 貫通限界の許容限界(換気空調系ダクト防護壁(No.9))

評価対象部位		材質	破断ひずみ*
換気空調系ダクト防護壁 (No.9 <mark>及び No.10</mark>)	防護鋼板	SUS304	

注記*:真ひずみ換算値

b. 変形評価

設計飛来物が防護鋼板へ直接衝突する場合の変形評価における許容限界は,鋼材の破断ひずみとする。破断ひずみについては,「3.5(2)e.(c) 破断ひずみ」に示すとおり,JISに規定されている伸びの下限値を基に設定するが,「NEI07-13」においてTF(多軸性係数)をとすることが推奨されていることを踏まえ,安全余裕としてTF=を考慮して設定する。

設定した許容限界を表 3-13 から表 3-15 に示す。

表 3-13 変形評価の許容限界(原子炉補機冷却海水系配管防護壁)

評価対象部位		材質	破断ひずみ*
原子炉補機冷却海水系配管防護 <mark>壁</mark>	防護鋼板	SS400	
	架構	STKR400	

注記*:真ひずみ換算値

表 3-14 変形評価の許容限界

(換気空調系ダクト防護壁(No. 25, No. 66, No. 67, No. 74 及び No. 76))

評価対象部位		材質	破断ひずみ*
換気空調系ダクト防護壁	防護鋼板	SS400	
(No.25, No.66, No.67, No.74及び	架構	SS400	
No. 76)		55100	

注記*:真ひずみ換算値

評価対象部位		材質	破断ひずみ*
換気空調系ダクト防護壁	防護鋼板	SUS304	
(No.9 <mark>及び No.10</mark>)	架構	SUS304	

表 3-15 変形評価の許容限界(換気空調系ダクト防護壁(No.9 及び No.10))

注記*:真ひずみ換算値

3.5 評価方法

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の強度評価は、V-3-別添1-2「防護対策施設の強度計算の方針」の「4.6 建屋内防護壁の評価方針」を 踏まえて、衝突評価として貫通評価を実施する。また、構造強度評価として変形評価 を実施する。

(1) 貫通評価

設計飛来物が原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁 (No. 25, No. 66, No. 67, No. 74 及び No. 76)の防護鋼板へ直接衝突する場合の貫通 限界厚さを,「タービンミサイル評価について(昭和 52 年 7 月 20 日原子炉安全専 門審査会)」で用いられる BRL 式を用いて算出する。

$$T^{\frac{3}{2}} = \frac{0.5 \cdot M \cdot V^{2}}{1.4396 \times 10^{9} \cdot K^{2} \cdot d^{\frac{3}{2}}}$$

設計飛来物が換気空調系ダクト防護壁(No.9 及びNo.10)の防護鋼板へ直接衝突 する場合の貫通評価は、「3.5(2) 変形評価」に示す方法により評価する。

(2) 変形評価

変形評価に用いる評価対象部位に生じるひずみは,解析モデル及び材料の非線形 特性を用いた衝突解析により評価する。

- a. 解析モデル及び諸元
- (a) 原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁 原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の解析モデル 化の範囲は、想定する荷重の伝達を考慮し、原子炉補機冷却海水系配管防護壁 及び換気空調系ダクト防護壁を構成する防護鋼板及び架構とする。防護鋼板及 び架構は、シェル要素でモデル化する。原子炉補機冷却海水系配管防護壁及び 換気空調系ダクト防護壁の解析モデルの境界条件を表 3-16 及び表 3-17 に、 解析モデル図を図 3-10 から図 3-18 に示す。
| | (加口》而因中国际化品目的设立) |
|------------------|------------------|
| 項目 | 境界条件 |
| 原子炉補機冷却海水系配管防護壁と | X,Y,Z方向並進拘束 |
| タービン建屋壁・床 | |

表 3-16 解析モデルの境界条件(原子炉補機冷却海水系配管防護壁)

表 3-17 解析モデルの境界条件(換気空調系ダクト防護壁)

項目	境界条件	
換気空調系ダクト防護壁と		
原子炉建屋又はタービン建屋又は	X,Y,Z方向並進拘束	
コントロール建屋の壁・床		

図 3-11 原子炉補機冷却海水系配管防護壁(B)の解析モデル図

図 3-13 換気空調系ダクト防護壁(No. 66)の解析モデル図

図 3-17 換気空調系ダクト防護壁(No.9)の解析モデル図

図 3-18 換気空調系ダクト防護壁(No.10)の解析モデル図

(b) 設計飛来物

設計飛来物である足場パイプ及び鋼製足場板は,シェル要素でモデル化する。 設計飛来物の解析モデル図を図 3-19 に示す。

b. 解析コード

衝突解析には,解析コード「LS-DYNA」を用いる。解析コードの検証及 び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概 要」に示す。

c. 使用材料

構成する材料仕様については、「3.4(1) 評価対象部位の材料仕様」に示すとお り設定する。

d. 材料定数

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁に使用する鋼材の材料定数については、「3.4(2) 評価対象部位の材料定数」に示すとおり設定する。

e. 材料の非線形特性

(a) 材料の応力-ひずみ関係

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁の材料モデル では、鋼材の破断ひずみを設定し、破断ひずみを超えた要素が荷重を負担しな いことを考慮する。

材料の応力-ひずみ関係はバイリニア型とし,降伏後の塑性硬化係数(2次 勾配E')は,表 3-9に示す値とする。

材料に適用する応力--ひずみ関係の概念図を図 3-20 に示す。

(b) ひずみ速度効果

竜巻による設計飛来物に対する解析は、衝撃問題で変形速度が大きいため、 ひずみ速度効果を考慮することとし、以下に示す Cowper-Symonds の式を適用 する。

$$\sigma_{\rm D} = \sigma_{\rm S} \cdot \left(1 + \left(\frac{\dot{\epsilon}}{C} \right)^{\frac{1}{\rm P}} \right)$$

ここで、 σ_D は動的応力、 σ_S は静的応力、 ϵ はひずみ速度、C及びPはひずみ速度依存性パラメータを表す。

ひずみ速度依存性パラメータを表 3-18 から表 3-20 に示す。

表 3-18 ひずみ速度依存性パラメータ(原子炉補機冷却海水系配管防護壁)

	密制只把指	原子炉補機冷却海水系配管防護壁		
		防護鋼板	架構	
材料	SS400	SS400	STKR400	
C (s ⁻¹)				
Р		I.		

表 3-19 ひずみ速度依存性パラメータ

(換気空調系ダクト防護壁 (No. 25, No. 66, No. 67, No. 74 及び No. 76))

		換気空調系ダクト防護壁		
	鋼製足場板	(No.25, No.66, No.67, No.74及び		
		No. 76)		
		防護鋼板	架構	
材料	SS400	SS400	SS400	
C (s ⁻¹)				
Р				

表 3-20 ひずみ速度依存性パラメータ(換気空調系ダクト防護壁(No.9 及び No.10))

日相ぷく	日世パイプ	換気空調系ダクト防	護壁(No.9 <mark>及び No.10</mark>)
	足場ハイノ	防護鋼板	架構
材料	STK500	SUS304	SUS304
C (s ⁻¹)			
Р			

(c) 破断ひずみ

破断ひずみは、JISに規定されている伸びの下限値を基に設定する。また、 「NEI07-13」においてTF(多軸性係数)を とすることが推奨されている ことを踏まえ、安全余裕としてTF= を考慮する。TFについては、原子 炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁のみ とする。足 場パイプ及び鋼製足場板は保守的に破断ひずみを超えても荷重を負担するもの とする。

材料モデルにおける破断ひずみを表 3-21 から表 3-23 に示す。

表 3-21 材料モデルにおける破断ひずみ(原子炉補機冷却海水系配管防護壁)

種別	材質	J I S 規格値 (下限値)	ΤF	破断ひずみ*
防護鋼板	SS400			
架構	STKR400	0.23		

注記*:真ひずみ換算値

表 3-22 材料モデルにおける破断ひずみ

(換気空調系ダクト防護壁 (No. 25, No. 66, No. 67, No. 74 及び No. 76))

種別	材質	J I S 規格値 (下限値)	ΤF	破断ひずみ*
防護鋼板	SS400			
架構	SS400			

注記*:真ひずみ換算値

表 3-23 材料モデルにおける破断ひずみ

(換気空調系ダクト防護壁 (No.9 及び No.10))

種別	材質	J I S 規格値 (下限値)	ΤF	破断ひずみ*
防護鋼板	SUS304	0.40		
架構	SUS304	0.40		

注記*:真ひずみ換算値

4. 評価条件

4.1 貫通評価

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁(No. 25, No. 66, No. 67, No. 74 及び No. 76)の貫通評価において,防護鋼板の貫通評価式に用いる評価条件を表 4-1 に示す。

なお,換気空調系ダクト防護壁(No.9 及びNo.10)の貫通評価の評価条件は,「4.2 変形評価」に示す。

評価条件		数值	
d (n	1)	0.021	
К		1.0	
M (kg)		11	
V	水平方向	42	
(m/s)	鉛直方向	38	

表 4-1 防護鋼板の貫通評価式に用いる評価条件

- 4.2 変形評価
 - (1) 原子炉補機冷却海水系配管防護壁

原子炉補機冷却海水系配管防護壁の変形評価は、図 3-1 及び図 3-2 に示す原子 炉補機冷却海水系配管防護壁の最大変形が生じると想定される鋼板中央部に衝突す るケースを設定する。

解析ケースを表 4-2及び図 4-1から図 4-2に示す。

表 4-2 解析ケース(原子炉補機冷却海水系配管防護壁の変形評価)

評価箇所		衝突箇所	飛来物の 衝突方向	対象部材
百乙后诸楼公却海水交			水平	
原于炉桶機石却做水系 配管防護 <mark>壁</mark>	B	<mark>防護鋼板</mark>	<mark>水 平</mark>	

図 4-1 解析ケース (原子炉補機冷却海水系配管防護壁(A))

図 4-2 解析ケース(原子炉補機冷却海水系配管防護壁(B))

(2) 換気空調系ダクト防護壁

換気空調系ダクト防護壁の変形評価は、図 3-3から図 3-9に示す換気空調系ダクト防護壁の最大変形が生じると想定される鋼板中央部に衝突するケースを設定する。

解析ケースを表 4-3 及び図 4-3 から図 4-9 に示す。

評価箇所	衝突箇所	飛来物の 衝突方向	対象部材
換気空調系ダクト防護 壁(No.25, No.66, No.67, No.74及び No.76)	防護鋼板	水平	
換気空調系ダクト防護 壁(No.9 <mark>及び No.10</mark>)	防護鋼板	鉛直	

表 4-3 解析ケース(換気空調系ダクト防護壁の変形評価)

図 4-8 解析ケース(換気空調系ダクト防護壁(No.9))

図 4-9 解析ケース(換気空調系ダクト防護壁(No.10))

5. 強度評価結果

5.1 貫通評価

防護鋼板の貫通限界厚さを表 5-1 に示す。

		貫通限界厚さ(mm)
貫通限界厚さ	水平方向	17
	鉛直方向	15

表 5-1 足場パイプの貫通限界厚さ

原子炉補機冷却海水系配管防護壁及び換気空調系ダクト防護壁(No. 25, No. 66, No. 67, No. 74 及び No. 76)の貫通評価結果として,貫通限界厚さと許容限界の比較を表 5 -2 に示す。

許容限界は,設計飛来物による貫通を生じない貫通限界厚さを上回っており,貫通 しない。

評価対象部位		設置	評価結果	許容限界
		方向	(mm)	(mm)
原子炉補機冷却海水系	防護	側面	17	
配管防護壁	鋼板	上面	15	
換気空調系ダクト防護壁		側面	17	
(No.25, No.66,	防護			┝┨ ┣
No.67, No.74及び	鋼板	上面	15	
No.76)]

表 5-2 防護鋼板の板厚と貫通限界厚さの比較

また,換気空調系ダクト防護壁(No.9)の評価結果を表 5-3 <mark>並びに</mark>図 5-1 <mark>及び図 5</mark> <mark>-2</mark>に示す。

換気空調系ダクト防護壁(No.9 及びNo.10)に生じるひずみは許容限界を超えないため、貫通しない。

表 5-3 衝突	解析結果	(換気空調系)	ダクト防護壁(No.9)及び No.10))
評価項目	評価	対象部位	評価結果	許容限界*
マレザフ	No. 9	防護鋼板		
$\bigcirc g \not\rightarrow$	No. 10	<mark>防護鋼板</mark>		

注記*:真ひずみ換算値

図 5-1 防護鋼板のひずみ分布図(換気空調系ダクト防護壁(No.9))

図 5-2 防護鋼板のひずみ分布図 (換気空調系ダクト防護壁(No.10))

- 5.2 変形評価
 - (1) 原子炉補機冷却海水系配管防護壁
 評価結果を表 5-4 並びに図 5-3 から図 5-6 に示す。
 原子炉補機冷却海水系配管防護壁に生じるひずみは許容限界を超えない。

表 5-4 衝突解析結果(原子炉補機冷却海水系配管防護壁)

評価項目	評価対象部位		評価結果	許容限界*
		防護鋼板		
フレーギフ、	A	架構		
$0, 9 \neq$	n	防護鋼板		
	<mark>В</mark>	<mark>架構</mark>		

注記*:真ひずみ換算値

図 5-4 架構のひずみ分布図(原子炉補機冷却海水系配管防護壁(A))

(2) 換気空調系ダクト防護壁

評価結果を表 5-5 並びに図 5-<mark>7</mark>から図 5-<mark>20</mark>に示す。 換気空調系ダクト防護壁に生じるひずみは許容限界を超えない。

<u>^</u>				/
評価項目	評価対象部位		評価結果	許容限界*
	N 05	防護鋼板		
	NO.25	架構		
	No. 66	防護鋼板		
	NO. 00	架構		
	No. 67	防護鋼板		
	NO. 67	架構		
ひずひ	N 74	防護鋼板		
U 9 7	NO. 74	架構		
No.	No.76	防護鋼板		
		架構		
	N- O	防護鋼板		
	No. 9	架構		
	No. 10	<mark>防護鋼板</mark>		
		架構		

表 5-5 衝突解析結果(換気空調系ダクト防護壁)

注記*:真ひずみ換算値

図 5-<mark>8</mark> 架構のひずみ分布図(換気空調系ダクト防護壁(No.25))

図 5-10 架構のひずみ分布図(換気空調系ダクト防護壁(No. 66))

K7 ① V-3-別添 1-4-6 R0

図 5-16 架構のひずみ分布図(換気空調系ダクト防護壁(No. 76))

図 5-19 防護鋼板のひずみ分布図 (換気空調系ダクト防護壁(No.10))

図 5-20 架構のひずみ分布図(換気空調系ダクト防護壁(No.10))

計算機プログラム (解析コード)の概要

Ŕ

別紙

別紙6 LS-DYNA

1. 使用状況一覧

	使用添付書類	バージョン
-3-別添 1	竜巻への配慮が必要な施設の強度に関する説明	Ver.971
	書	Ver.R8.0.0
		Ver.R8.1.0

۲7

2. 解析コードの概要

2.1 L S - D Y N A Ver.971

コード名 項目	LS-DYNA
使用目的	3次元有限要素法による衝突解析(竜巻飛来物影響評価)
開発機関	Livemore Software Technology Corporation
開発時期	1987 年
使用したバージョン	Ver.971
コードの概要	本解析コードは, Lawrence Livemore 研究所により開発・ 公開された陽解法有限要素法DYNA3Dを基に開発され た構造解析用の汎用市販コードである。 機械・土木建築その他広範な分野に及ぶ要素群,非線形モ デルを多数サポートしており,国内外の宇宙航空,自動車, 機械,建築,土木等の様々な分野において多くの利用実績が あり,陽的時間積分を用いていることから,衝突問題等短時 間の動的現象のシミュレーションに適している。また,大変 形の非線形問題への適用が容易である点に特徴がある。 衝突問題や動的荷重を受ける構造物の応力,ひずみや加速 度応答等を算出する。
検証(Verification) 及び 妥当性確認(Validation)	【検証(Verification)】 本解析コードの検証内容は以下のとおりである。 ・開発機構マニュアルにおいて提示している 3 次元有限 要素法による衝突解析に関する例題解析を実施し,解析 結果がマニュアルに記載された結果と一致することを 確認している。 ・Norwegian University of Science and Technology に より,シェル要素およびソリッド要素を用いた薄肉交換 の軸方向圧縮破壊試験のシミュレーション解析が行な われており,解析結果と実験結果が概ね一致することを 確認している。 ・本解析コードの運用環境について,開発機関から提示 された要件を満足していることを確認している。 【妥当性確認(Validation)】 本解析コードの妥当性確認内容は以下のとおりである。

۲7

・本解析コードは,国内外の宇宙航空,自動車,機械,建
築,土木等の様々な分野における使用実績を有してお
り,妥当性は十分に確認されている。
・開発機関が提示するマニュアルにより ,本解析コードの
適正な用途,適用範囲を確認している。
・今回の工事計画認可申請で行う3次元有限要素法(シェ
ル要素)による動的解析(衝突解析)の用途,適用範囲
が上述の妥当性確認範囲内にあることを確認している。
・今回の工事計画認可申請において使用する Ver.971 は,
他プラントの既工事計画において使用されているもの
と同じであることを確認している。
・今回の工事計画認可申請における構造に対し使用する
要素,3 次元有限要素法による衝突解析(竜巻飛来物
影響評価)の使用目的に対し,使用用途及び使用方法
に関する適用範囲が上述の妥当性確認の範囲内である
ことを確認している。

-3 別紙 RO

K7
	2.2	LS-	DYNA	Ver.R8.0.0
--	-----	-----	------	------------

コード名 項目	L S - D Y N A	
使用目的	3次元有限要素法による衝突解析(竜巻飛来物影響評価)	
開発機関	Livemore Software Technology Corporation	
開発時期	1987 年	
使用したバージョン	Ver.R8.0.0	
コードの概要	本解析コードは,Lawrence Livemore 研究所により開発 公開された陽解法有限要素法DYNA3Dを基に開発さた構造解析用の汎用市販コードである。 機械・土木建築その他広範な分野に及ぶ要素群,非線研 デルを多数サポートしており,国内外の宇宙航空,自動 機械,建築,土木等の様々な分野において多くの利用実能 あり,陽的時間積分を用いていることから,衝突問題等 間の動的現象のシミュレーションに適している。また,元 形の非線形問題への適用が容易である点に特徴がある。 衝突問題や動的荷重を受ける構造物の応力,ひずみやが 度応答等を算出する。	

K7

築,土木等の様々な分野における使用実績を有してお
り,妥当性は十分に確認されている。
・開発機関が提示するマニュアルにより ,本解析コードの
適正な用途,適用範囲を確認している。
・今回の工事計画認可申請で行う3次元有限要素法(はり
要素,シェル要素)による動的解析(衝突解析)の用途,
適用範囲が上述の妥当性確認範囲内にあることを確認
している。
・今回の工事計画認可申請において使用するバージョン
Ver.R8.0.0 は,他プラントの既工事計画において使用
されているものと異なるが ,バージョンの変更において
解析機能に影響のある変更が行われていないことを確
認している。
・今回の工事計画認可申請における構造に対し使用する
要素,3 次元有限要素法による衝突解析(竜巻飛来物
影響評価)の使用目的に対し,使用用途及び使用方法
に関する適用範囲が上述の妥当性確認の範囲内である
ことを確認している。

-3 別紙 RO

K7