柏崎刈羽原子力発電所第	第7号機 工事計画審査資料
資料番号	KK7 補足−026−7 改 2
提出年月日	2020年6月10日

使用済燃料貯蔵プール及びキャスクピットの耐震性についての

計算書に関する補足説明資料

2020年6月 東京電力ホールディングス株式会社 1. 工事計画添付書類に係る補足説明資料

V-2-4-2-1「使用済燃料貯蔵プール及びキャスクピットの耐震性についての計算書」の記載内 容を補足するための資料を以下に示す。

- 別紙1 応力解析における既工認と今回工認の解析モデル及び手法の比較
- 別紙2 応力解析におけるモデル化,境界条件及び拘束条件の考え方
- 別紙3 地震荷重の入力方法
- 別紙4 応力解析における断面の評価部位の選定
- 別紙5 応力解析における応力平均化の考え方
- 別紙6 地震時動水圧荷重の算定方法
- 別紙7 原子炉格納容器コンクリート部の荷重組合せに対する影響検討
- 別紙8 壁の面内せん断力及び面外せん断力の許容値について
- 別紙9 鋼製ライナの検討
- 別紙 10 使用済燃料貯蔵ラックの地震時反力の検討

下線:今回ご提示資料

別紙5 応力解析における応力平均化の考え方

1.	概要	•••••			••••••••••	•••••	別紙 5-1
2.	応力平均化の考	考え方 ・・					別紙 5-2
2. 2	1 応力平均化を	と実施した	領域における	断面の評価要素	秦	•••••	別紙 5-2
2.2	2 応力平均化の)方法 ・・					別紙 5-4
2.3	3 応力平均化の	つ結果 ・・				••••	別紙 5-10
2.4	4 断面の評価編	吉果 ••••			••••••••••	••••	別紙 5-12

1. 概要

3次元 FEM モデルを用いた応力の算定において,FEM 要素に応力集中等が見られる場合 については,「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会, 2005)」(以下「RC-N 規準」という。)に基づき,応力の再配分等を考慮してある一定の 領域の応力を平均化したうえで断面の評価を行っている。この場合,当該要素における 応力度ではなく,周囲の複数の要素で平均化した応力度に対して断面の評価を実施して いることから,本資料では,使用済燃料貯蔵プール及びキャスクピット(以下「SFP」 という。)における複数の要素での応力平均化の考え方及びその結果を示す。

- 2. 応力平均化の考え方
- 2.1 応力平均化を実施した領域における断面の評価要素

断面の評価要素は、応力平均化を行うことによって応力が変わることから、応力平 均化前の断面力に対する検定値を元に選定している。

SFPの底面スラブでは、応力平均化前の応力分布において、局所的に大きな面外せん断力が発生している要素を断面の評価要素とし、応力平均化を行い、応力平均化後の値に対する断面の評価を実施した。

応力平均化を実施した要素を表 2-1,要素位置図を図 2-1 に示す。

部位	評価	項目	方向	要素番号	組合せ ケース	平均化前の検定値 (発生値/許容値)
			NS	1607	2-14 (Ss地震時)	1.06
底面	面外	面外 せん断 応力度	NS	1607	4-14 ((異常+Ss 地震)時)	1.05
スラブ	せん断力		NS	101607	2-14 (Ss地震時)	1.06
		NS	101607	4-14 ((異常+Ss 地震)時)	1.05	

表 2-1 応力平均化要素

		1601	1604	1605	1606	1607	1608	1609
		158	1583	1584	1585	1586	1587	1588
		1563	1564	1565	1566	1567	1568	1569
		1546	1547	1548	1549	1550	1551	1552
DN	T	101546	101547	101548	101549	101550	101551	101552
		10156	³ 101564	101565	101566	101567	101568	101569
Y		101581	101583 32	101584	101585	101586	101587	101588
	×	101602 101603 101601	101604	101605	101606	101607	101608	101609

図 2-1 要素位置図

2.2 応力平均化の方法

3 次元 FEM モデルを用いた応力解析においては、部材断面やモデル形状が大きく変化して不連続になっている箇所は、局部的な応力集中が発生しやすい。

図 2-2 に SFP の 3 次元 FEM モデルを示す。図 2-2 に示すように,当該部は北側壁 又は南側壁との接続部分であり,応力が集中しやすい。図 2-3 に示す面外せん断力の コンター図を見ると,当該要素周辺では大きな面外せん断力が発生していることが分 かる。

そこで、今回の SFP の応力解析においては、RC-N 規準を参考に、コンクリートのひ び割れによる応力の再配分を考慮し、応力の平均化を行った。なお、今回の SFP の応 力解析には弾塑性解析を採用し、材料の非線形特性を設定しているが、面外せん断力 に対しては非線形特性を考慮できないことから、算出された応力に対して平均化を行 った。

RC-N 規準においては、「線材では、部材端に生じる斜めせん断ひび割れによって部 材有効せい程度離れた断面の引張鉄筋の応力度が部材端と同じ大きさまで増大する現 象(テンションシフト)が生じるが、面材では、斜めひび割れが発生した場合におい ても、材軸直交方向への応力再配分によって、線材におけるテンションシフトのよう な現象は生じにくいと考えられる。」とされており、耐震壁の面外せん断力について、 「面材であるため、局部的に応力の集中があったとしても、応力の再配分を生じ、破 壊に至ることはない。」とされている。また、基礎スラブのような大断面を有する面 材の面外せん断力について、「通常の場合、FEM 解析の要素サイズは、基礎スラブ版厚 より小さいため、付図 2.2 に模式的に示されるように設計用面外せん断力は想定され るひび割れ領域での平均面外せん断力に対して大きめの評価となっているといえる。 また、基礎スラブにおいても、耐震壁と同様、面材における面外せん断力の再配分も 期待できる。」とされている。RC-N規準の付図 2.2 を図 2-4 に示す。

壁,床スラブ,基礎スラブのような面材については,RC-N規準に示されるように, 面材に荷重を作用させる直交部材からせん断破壊面が45度の角度で進展すると考えら れることから,せん断破壊面が面材の表面から裏面まで貫通する範囲,すなわち部材 厚の範囲に応力が再配分されると考えられる。SFPの底面スラブにおける面外せん断 力に対する応力平均化の考え方を図2-5に示す。

以上より,応力の平均化は,当該要素の壁から離れる側の応力方向に位置する 隣接 要素に対して,壁面から底面スラブの部材厚である 2.3m 分の範囲で行った。

各要素について応力平均化範囲を図 2-6 に示す。

図 2-2 SFP の 3 次元 FEM モデル

底面スラブ

(a) 組合せケース 2-14 (NS 方向)

(b) 組合せケース 4-14 (NS 方向)

図 2-3 面外せん断力のコンター図

平均化実施に用いた周辺要素

(a) 要素番号 1607図 2-6 応力平均化範囲(1/2)

101566	101567	101568
101585	101586	101587
101606	101607	101608

応力平均化実施要素
 平均化実施に用いた周辺要素
 壁直下の範囲(平均化対象外)

(b) 要素番号 101607図 2-6 応力平均化範囲(2/2)

2.3 応力平均化の結果

応力平均化の手法として、下式のとおり、要素面積を考慮した重み付け平均で平均 化を行っている。応力平均化に用いる各要素の発生値,面積及び重み付け値を表2-2 に示す。また、応力平均化の結果を表2-3に示す。

$\tau_{\rm a v e} = \Sigma (\tau_{\rm i} \times A_{\rm i}) / \Sigma A_{\rm i}$

ここで、

- τ_{аνе}:平均化後の面外せん断応力度
- τ_i : 平均化前の各要素の面外せん断応力度(発生値)
- A_i :応力平均化範囲における各要素の面積

応力平均化 対象要素	方向	<mark>組合せ</mark> ケース	要素番号	発生値 _{てi} (N/mm ²)	要素面積 <mark>A i</mark> (m ²)	重み付け値 _{τ i} ×Α _i (×10 ⁶ N)
1607	NC	9 - 14	1586	<mark>0. 831</mark>	<mark>2.24</mark>	<mark>1. 86</mark>
1007	IND	<u>2-14</u>	1607	<mark>1.28</mark>	<mark>1.72</mark>	<mark>2.20</mark>
				<mark>合計</mark>	<mark>3.96</mark>	<mark>4. 05</mark>
1607	NC	4 1 4	<mark>1586</mark>	<mark>0. 823</mark>	<mark>2. 24</mark>	<mark>1. 84</mark>
1007	<u>19</u>	<mark>4-14</mark>	<mark>1607</mark>	<mark>1.27</mark>	<mark>1.72</mark>	<mark>2.18</mark>
				<mark>合計</mark>	<mark>3.96</mark>	<mark>4. 03</mark>
101607	NS	9 - 1.4	101586	<mark>0. 831</mark>	<mark>2.24</mark>	<mark>1.86</mark>
101007	NS	<u>2-14</u>	101607	<mark>1.28</mark>	<mark>1.72</mark>	<mark>2.20</mark>
				<mark>合計</mark>	<mark>3.96</mark>	<mark>4.06</mark>
101607	NC	4-14	<mark>101586</mark>	<mark>0. 824</mark>	<mark>2. 24</mark>	<mark>1. 84</mark>
	GN	4-14	<mark>101607</mark>	<mark>1.27</mark>	<mark>1.72</mark>	<mark>2.18</mark>
				<mark>合計</mark>	<mark>3. 96</mark>	<mark>4. 03</mark>

表2-2 応力平均化に用いる各要素の<mark>発生値、</mark>面積及び重み付け値

要素番号	方向	組合せケース	面外せん断応力度 (N/mm ²)		
又小田 7	64.64		平均化前	平均化後	
1607	NS	2-14	1.28	1.03	
1607 NS	4-14	1.27	1.02		
101607 NS	NC	2-14	1.28	1.03	
	NS	4-14	1.27	1.02	

表2-3 応力平均化結果

- 2.4 断面の評価結果
 - 2.4.1 断面の評価方法

Ss地震時及び(異常+Ss地震)時の面外せん断応力度について,発生値が 許容値を超えないことを確認する。許容値は,「発電用原子力設備規格 コンク リート製原子炉格納容器規格((社)日本機械学会,2003)」に基づき算出する。

2.4.2 断面の評価結果

応力平均化後の評価結果を表 2-4 に示す。表 2-4 より、応力平均化後の面外 せん断応力度の発生値が許容値を超えないことを確認した。

要素番号 方向		組合せ	面外せん断応力度 (N/mm ²)		平均化後の検定値	
			発生値	許容値	(発生値/許容値)	
1607	NG	2-14	1.03	1.21	0.852	
1607 NS	4-14	1.02	1.21	0.843		
101607 NS	2-14	1.03	1.21	0.852		
	112	4-14	1.02	1.21	0.843	

表 2-4 応力平均化後の評価結果

別紙6 地震時動水圧荷重の算定方法

目	次
---	---

1.	概要	別紙 6-1
2.	地震時動水圧荷重の算定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-1
3.	地震時動水圧荷重の算定諸元	別紙 6-2
3. 2	1 単位長さ当たり液体の質量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-2
3.2	2 寸法及び固有周期 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-2
3.3	3 応答最大加速度	別紙 6-3
3.4	4 床応答スペクトラム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 6-4
4.	地震時動水圧荷重の算定結果	別紙 6-5

1. 概要

本資料は,使用済燃料貯蔵プール及びキャスクピットの応力解析における地震時動水 圧荷重の算定方法について示すものである。

2. 地震時動水圧荷重の算定方法

地震時動水圧荷重は、「原子力発電所耐震設計技術指針 JEAG4601-1987((社) 日本電気協会)」(以下「JEAG4601-1987」という。)における Housner 理論に基 づき、衝撃圧と揺動圧に分けて考える。表 2-1にJEAG4601-1987における動水 圧算定式を示す。

	倒 壁	底版
衝撃圧	${}_{I}P_{W} = \rho L \ddot{X} \frac{\sqrt{3}}{2} \frac{H}{L} \left[1 - \left(\frac{y}{H}\right)^{2} \right] \tanh\left(\sqrt{3} \frac{L}{H}\right)$	${}_{1}P_{\rm g} = \rho L \ddot{X} \frac{\sqrt{3}}{2} \frac{H}{L} \frac{\sinh\left(\sqrt{3} \frac{x}{H}\right)}{\cosh\left(\sqrt{3} \frac{L}{H}\right)}$
摇動圧	${}_{\rm c} P_{\rm W} = \rho L S_{\rm A}(\omega_{\rm I}) \frac{10}{12} \frac{\cosh\left(\sqrt{\frac{5}{2}} \frac{y}{L}\right)}{\cosh\left(\sqrt{\frac{5}{2}} \frac{H}{L}\right)}$	${}_{c}P_{s} = \rho LS_{A}(\omega_{1})\frac{5}{4}\left[\frac{x}{L} - \frac{1}{3}\left(\frac{x}{L}\right)^{3}\right]\frac{1}{\cosh\left(\sqrt{\frac{5}{2}}\frac{H}{L}\right)}$

表 2-1 JEAG4601-1987における動水圧算定式

ここで,

$$w_{1} = \sqrt{\int \frac{5}{2}} \frac{g}{L} \tanh \left(\sqrt{\frac{5}{2}} \frac{H}{L} \right)$$
:自由水の1次円振動数

$$\rho$$
:単位長さ当たり液体の質量(tf · s²/m²)
h :液体の深さ
H : H=h (h≤1.5L), H=1.5L (h>1.5L)
2L :矩形ブール幅(m)
X :ブール設置床の応答最大加速度(m/s²) 又は設置床とその上階床
との平均の応答最大加速度(m/s²)
 $S_{A}(w_{1})$: $\ddot{X}(t)$ に対する w_{1} の床応答スペクトラム
g :重力加速度(m/s²)
x : ブール医版の中心を原点とする水平方向座標
y : ブール医版の中心を原点とする鉛直方向座標
 $\int \int \frac{1}{P_{W}} \int \frac$

- 3. 地震時動水圧荷重の算定諸元
- 3.1 単位長さ当たり液体の質量 液体は水であり、単位長さ当たり液体の質量ρは1.0(tf・s²/m²)とする。
- 3.2 寸法及び固有周期

表 3-1 に液体の深さh及び矩形プール幅 2L 並びにHを示す。また,表 3-2 の寸法 より算定した自由水の1次円振動数ω1及び固有周期を示す。

 h
 11.51

 2L
 NS方向
 14.00

 H
 NS方向
 10.50

 H
 EW方向
 11.51

表 3-1 液体の深さh及び矩形プール幅2L並びにH(単位:m)

	NS 方向	EW 方向
ω ₁ (<mark>rad/s</mark>)	<mark>1. 475</mark>	1.293
固有周期(s)	<mark>4.26</mark>	4.86

表 3-2 自由水の1次円振動数ω1及び固有周期

3.3 応答最大加速度

衝撃圧の算定に用いるプール設置床の応答最大加速度Xは,「工事計画に係る説明 資料(建屋・構築物の地震応答計算書)」のうち「原子炉建屋の地震応答計算書に関 する補足説明資料」の別紙 3-2「材料物性の不確かさを考慮した地震応答解析結果」 に示す地震応答解析結果の最大加速度のうち,T.M.S.L.18.1m及びT.M.S.L.23.5mの包 絡値とする。表 3-3 にプール設置床の応答最大加速度Xを示す。

表 3-3 プール設置床の応答最大加速度X

T. M. S. L.	地震応答解析結果から得られた 最大加速度(m/s ²)		 X (m/s²)	
(m)	NS 方向	EW 方向		
23.5	4.94	5. 21	5.91	
18.1	4.50	4.75	5.21	

(a) 弾性設計用地震動 S d

T. M. S. L.	地震応答解析結果から得られた 最大加速度(m/s ²)		 X (m/s²)
(m)	NS 方向	EW 方向	
23.5	9.84	9.87	0.00
18.1	8.89	9.22	9.00

(b) 基準地震動 S s

3.4 床応答スペクトラム

揺動圧の算定に用いるX(t)に対するω1の床応答スペクトラムSA(ω1)は、V
-2-1-7「設計用床応答曲線の作成方針」に基づき設定した T.M.S.L.18.1m,
T.M.S.L.23.5m及びT.M.S.L.31.7mの減衰定数0.5%の床応答スペクトラムより、表3
-2に示した固有周期における加速度を読み取った値(以下「読み取り値」という。)
を包絡するように設定した値である。

表 3-4 X (t) に対するω1の床応答スペクトラムSA (ω1)

T. M. S. L.	読み取り値 (m/s ²)		S _A (m/	(ω_1) (s ²)
(11)	NS 方向	EW 方向	NS 方向	EW 方向
31.7	7.75	8.34		
23.5	7.75	8.34	10.0	10.9
18.1	7.75	8.34		

(a) 弾性設計用地震動Sd

T. M. S. L.	読み取り値 (m/s ²)		シ取り値 m/s^2) $S_A(\omega_1)$ (m/s^2)	
(m)	NS 方向	EW 方向	NS 方向	EW 方向
31.7	15.6	16.9		
23.5	15.6	16.8	20.2	21.9
18.1	15.6	16.8		

(b) 基準地震動 S s

4. 地震時動水圧荷重の算定結果

「3. 地震時動水圧荷重の算定諸元」の各諸元を表 2-1 の動水圧算定式に代入するこ とで算定した衝撃圧を表 4-1 に, 揺動圧を表 4-2 に示す。また, 衝撃圧と揺動圧を合 計することで算定した地震時動水圧荷重を表 4-3 に示す。

表 4-1 衝撃圧

(単位:kN/m²)

弾性設計用地震動 S d		基準地震動 S s	
NS 方向	EW 方向	NS 方向	EW 方向
38.8	45.4	73.7	86.1

表 4-2 摇動圧

(単位:kN/m²)

弾性設計用地震動 S d		基準地震動 S s		
NS 方向	EW 方向	NS 方向	EW 方向	
58.6	81.2	118	163	

表 4-3 地震時動水圧荷重

(単位:kN/m²)

別紙10 使用済燃料貯蔵ラックの地震時反力の検討

目 次

1.	概要	別紙 10-1
2.	解析モデルについて	別紙 10-1
3.	使用済燃料貯蔵ラックと原子炉建屋の質量比較について ・・・・・・	別紙 10-1
4.	まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 10-1

1. 概要

本資料は、使用済燃料貯蔵ラックの地震時反力の検討に関する説明資料であり、V-2-4-2-1「使用済燃料貯蔵プール及びキャスクピットの耐震性についての計算書」の補 足説明をするものである。

2. 解析モデルについて

使用済燃料貯蔵プールの解析モデルでは,使用済燃料貯蔵ラックの質量は固定荷重と して扱っている。これは,使用済燃料貯蔵ラックの質量が,躯体に対して大きくないこ とから,評価上連成させる必要がないと考えられるためである。以下に,使用済燃料貯 蔵ラックと躯体の質量比較を行う。

3. 使用済燃料貯蔵ラックと原子炉建屋の質量比較について

使用済燃料貯蔵ラックと原子炉建屋の質量比較検討結果を表 3-1 に示す。算出した使 用済燃料貯蔵ラックの質量と原子炉建屋の質量を比較した結果,使用済燃料貯蔵ラック の質量は躯体の質量に対して,割合が小さいことを確認した。

検討項目	使用済燃料貯蔵ラック [kg]	原子炉建屋 [kg]
質量	1, 283, 688 ^{*1}	199, 365, 736 ^{*2}

表 3-1 質量比較検討結果

注記*1:使用済燃料貯蔵プール内の使用済燃料貯蔵ラック総質量

*2 : V-2-2-1「原子炉建屋の地震応答計算書」より質点重量の合計値

4. まとめ

使用済燃料貯蔵ラックの地震時の挙動について,原子炉建屋との質量比較の検討を行った結果,使用済燃料貯蔵ラックは原子炉建屋に対して十分質量が小さいことを確認した。よって,使用済燃料貯蔵ラックの質量はモデル上,固定荷重として考慮すれば,連成の考慮は不要であることを確認した。

以上のことから,使用済燃料貯蔵プール躯体側の評価としては,固定荷重のみ考慮す れば問題なく,反力の考慮は不要といえる。