令和元年度原子力規制庁委託成果報告書

海溝型地震による地震動の評価手法の検討

株式会社大崎総合研究所

令和2年2月

本報告書は、原子力規制委員会原子力規制庁からの委託により実施した業務の成果をとりまとめたものです。

本報告書に関する問い合わせは、原子力規制庁までお願いします。

目 次

| 1. | 序   | 論       | ì 1                              | 1-1     |
|----|-----|---------|----------------------------------|---------|
|    | 1.1 | はじ      | こめに1                             | 1-1     |
|    | 1.2 | 目       | 的                                | 1-2     |
|    | 1.3 | 事業      | 巻内容及び方法                          | 1-3     |
|    | 1.4 | 実施      | 面体制1                             | 1-5     |
|    |     |         |                                  |         |
| 2. | プ   | ~レー     | ・ト間巨大地震の地震動評価の検討                 | 2.1.1-1 |
|    | 2.1 | プレ      | ~ート間巨大地震の地震動解析                   | 2.1.1-1 |
|    | 2   | 2.1.1 2 | 2015 年チリ Illapel 地震のアスペリティモデルの設定 | 2.1.1-1 |
|    | 2   | 2.1.2 2 | 2015 年チリ Illapel 地震の地震動再現解析      | 2.1.2-1 |
|    | 2   | .1 節    | iの参考文献                           | 参 2.1-1 |
|    |     |         |                                  |         |

| 2.2 プレート間地震のスケーリング則等の検討       | 2.2.1-1 |
|-------------------------------|---------|
| 2.2.1 プレート間地震の地震動特性の調査        | 2.2.1-1 |
| 2.2.2 プレート間地震のスケーリング則の調査      | 2.2.2-1 |
| 2.2.3 プレート間地震の震源断層パラメータの整理・分析 | 2.2.3-1 |
| 2.2.4 プレート間地震の地震動特性の整理・分析     | 2.2.4-1 |
| 2.2.5 スロー地震の文献調査              | 2.2.5-1 |
| 2.2 節の参考文献                    | 参 2.2-1 |

| 3. 海洋プレート内地震の地震動評価の検討                         | 3.1.1-1   |
|-----------------------------------------------|-----------|
| 3.1 スラブ内地震の地震動解析                              | 3.1.1-1   |
| 3.1.1 2017 年メキシコ Puebla 地震の地震観測記録の収集及び波形処理    | 3.1.1-1   |
| 3.1.2 2017 年メキシコ Puebla 地震の長周期インバージョン解析       | 3.1.2-1   |
| 3.1.3 2017 年メキシコ Puebla 地震の特性化震源モデルの設定        | 3.1.3-1   |
| 3.1.4 2017 年メキシコ Puebla 地震の地震動再現解析            | 3.1.4-1   |
| 3.1.5 2018 年アラスカ Anchorage 地震の地震観測記録の収集及び波形処理 | ₤ 3.1.5-1 |

| 3.1.6 2018 年アラスカ Anchorage 地震の長周期インバージョン解析 | .3.1.6-1 |
|--------------------------------------------|----------|
| 3.1 節の参考文献                                 | .参 3.1-1 |

| 3.2 | 2 スラブ内地震のスケーリング則等の検討       | . 3.2.1-1 |
|-----|----------------------------|-----------|
|     | 3.2.1 スラブ内地震の地震動特性の調査      | . 3.2.1-1 |
|     | 3.2.2 スラブ内地震のスケーリング則の調査    | . 3.2.2-1 |
|     | 3.2.3 スラブ内地震の断層パラメータの整理・分析 | . 3.2.3-1 |
|     | 3.2.4 スラブ内地震の地震動特性の整理・分析   | . 3.2.4-1 |
|     | 3.2 節の参考文献                 | .参 3.2-1  |

| 4. | 結 | 論 | 1 |
|----|---|---|---|
|----|---|---|---|

## 1. 序 論

1.1 はじめに

基準地震動策定において想定地震は、内陸地殻内地震、プレート間地震及び海洋プレート 内地震の3 つのタイプに分けて、それぞれの検討用地震を選定して地震動評価が行われて いる。特に、プレート間地震及び海洋プレート内地震の海溝型地震に関して、「国内のみな らず世界で起きた大規模な地震を踏まえ、地震の発生機構及びテクトニクス的背景の類似 性を考慮した上で震源領域の設定を行うこと」が新規制基準で規定されている。

プレート間地震は、数十年程度の比較的短い周期で繰り返し発生する大規模地震の場合、 過去の地震に対する調査研究で得た知見を基に、想定地震の発生場所や規模を推測できる。 2011 年東北地方太平洋沖地震のような数百年程度の比較的長い周期で繰り返し発生するプ レート間巨大地震は、国内の事例が少ないため、世界中で起きた巨大地震、特に観測記録が 得られた巨大地震の調査研究が重要である。特に、短周期地震動について日本の手法で解析 を行った事例は非常に少ないため、国外で起きた地震の観測記録を収集して国内と同様の 解析を実施することが重要となる。

海洋プレート内地震は、特に敷地周辺で深さ数+km以上の深い場所で発生する場合、地 表に痕跡が残っておらず、また、発生周期も特定されていないため、想定地震の発生場所や 規模の推定は非常に困難である。さらに、敷地周辺で発生する海洋プレート内地震は、他の タイプの同規模の地震に比べて大きな短周期地震動を生ずるため、地震動評価において震 源特性を明確にすることは重要である。

1 - 1

1.2 目 的

本研究では、断層モデルを用いた手法(以下「断層モデル法」という。)による地震動評価の精度向上のため、国内外で起きた海溝型地震を対象に、地震動解析や分析等を実施する こととし、以下2項目の内容を実施する。

- (1) プレート間巨大地震の地震動評価の検討
- (2) 海洋プレート内地震の地震動評価の検討

1.3 事業内容及び方法

1.3.1 プレート間巨大地震の地震動評価の検討

「震源断層を特定した地震の強震動予測手法(「レシピ」)」(以下「強震動予測レシピ」 という。)は、強震動評価に関する既往の検討結果から、断層モデル法における震源特性パ ラメータの設定等について取りまとめた標準的な手法として、地震調査研究推進本部(以下 「地震本部」という。)で公開されている(詳細は http://www.jishin.go.jp/main/chousa/17\_ yosokuchizu/recipe.pdf を参照)。強震動予測レシピでまとめたプレート間地震の震源特性パ ラメータの設定方法は、主に 1978 年宮城県沖地震や 2003 年十勝沖地震の地震動評価を踏 まえて提案されたものであり、2011 年東北地方太平洋沖地震のようなプレート間巨大地震 による地震動を評価するためには、過去の巨大地震の震源特性及び地震評価に関する知見 を反映することが重要である。

そこで、本事業では、プレート間巨大地震を対象とし、地震動評価に用いた震源特性パラ メータの設定手法の高度化を行うことを目的とし、以下の項目を実施する。

(1) プレート間巨大地震の地震動解析

国内外で発生したプレート間巨大地震(一つ以上)を対象に、(周期1秒以下)短周期地震動に着目した特性化震源モデルの構築を検討し、強震動予測レシピの適用性に関する検証 解析を行うとともに、プレート間巨大地震の地震動評価における現状及び課題についてま とめる。検討地震の選定、検討手法等の詳細は、原子力規制庁担当者と協議して決定する。

(2) プレート間地震のスケーリング則等の検討

国内外で発生したプレート間地震を対象に、(1)で得られた震源断層パラメータに加え、 既往研究で得られた震源断層パラメータや地震動特性等に関するデータを整理・分析し、既 往スケーリング則等との比較を行う。

1 - 3

1.3.2 海洋プレート内地震の地震動評価の検討

海洋プレート内地震は、海溝の海側の沈み込むプレート内で起きるやや浅い地震(所謂「アウターライズ地震」)と沈み込んだプレート内(スラブ内)で起きるやや深い地震(以下「スラブ内地震」という。)、2種類に分けられており、本事業では、震源が陸に近い且つ 強震動が生じやすい後者のスラブ内地震を検討対象とする。地震本部では、国内のスラブ内 地震のみを対象とした震源特性に関する研究成果を基に、スラブ内地震の特性化震源モデ ルの設定手法を新たに追加し、強震動予測レシピを2016年に更新した。一方、スラブ内地 震は、国内に限らず、国外でも起きている。例えば、2017年9月にメキシコで続発した二 つのスラブ内地震(9月7日 Mw 8.2 と 9月19日 Mw 7.1)は、強い揺れを生じ、甚大な被害 を及ぼした。このような国外で起きた地震を調査し検証を積み重ねることにより、海洋プレ ート内地震の特性をより明確にすることが重要である。

そこで、本事業では、海洋プレート内地震を対象とし、地震動評価に用いた震源特性パラ メータの設定手法の高度化を行うことを目的とし、以下の項目を実施する。

(1) スラブ内地震の地震動解析

メキシコ等国外でおきたスラブ内地震(二つ程度)を対象に、(周期2秒以上)やや長周期 地震動を用いて震源過程解析を実施する。さらに、震源過程解析の結果を踏まえ、短周期地 震動に着目し二つの解析地震から一つ選び特性化震源モデルを構築し、断層モデル法に基 づく地震動再現解析を行う。地震動再現解析の対象地震の選定等の詳細は、原子力規制庁担 当者と協議して決定する。

(2) スラブ内地震のスケーリング則等の検討

国内外で発生したスラブ内地震を対象に、(1)で得られた震源断層パラメータに加え、既 往研究で得られた震源断層パラメータや地震動特性等に関するデータの整理・分析を行い、 既往スケーリング則等との比較を行う。 本事業を進める上で、適宜、学識経験者からの指導・助言を仰ぐとともに、海外の研究者 と連絡を取りながら、助言・示唆を受けるものとする。種々の参考情報は、必要に応じて、 本事業に反映する。なお、本業務の一部を一般財団法人 地域地盤環境研究所および株式会 社 サイスモ・リサーチに外注する。 2. プレート間巨大地震の地震動評価の検討

2.1 プレート間巨大地震の地震動解析

2.1.1 2015 年チリ Illapel 地震のアスペリティモデルの設定

既往の研究(原子力規制庁,2018)で対象とした2015年チリ Illapel 地震を対象に、アスペ リティモデルの設定を行った。既往の研究(原子力規制庁,2018)では、ターゲットの地震 の長周期インバージョン結果からアスペリティ(主な強震動生成域)に相当すると思われ る部分を取り出して SMGA (Strong Motion Generation Area)モデルを作成し、経験的グリー ン関数法による検討を行ったが、本研究では、地震調査研究推進本部によるプレート間地震 の「レシピ」と比較するために、背景領域も含む、アスペリティモデルとして考えた場合に ついて検討した。その際、「レシピ」に基づき第1ステージのプレート間地震としてモデル 化した場合(Eshelby(1957)による円形クラック式、Caselと呼ぶ)と、第1ステージから 第2ステージへの遷移ステージの地震としたモデル化場合の、大きく2種類の場合につい て検討した。後者については、Eshelby(1957)による円形クラック式を用いるとともに、震 源インバージョン解析結果を参考に、大すべり域を導入し、浅部のみに大すべり域がある場 合(Case2)と、浅部および深部ともに大すべり域がある場合(Case3)に分ける。なお、Case3 で浅部および深部ともに大すべり域の実効応力を背景領域と同じに設定したことに対して、 大すべり域の実効応力を背景領域の2倍にした場合(Case4)と、4倍にした場合(Case5)に ついても検討した。全部で計5ケースのアスペリティモデルを作成した。

- ■地震本部のレシピにより第 1 ステージの地震とした場合の断層モデル (円形クラック、 Casel)
- ■第1から第2への遷移ステージの地震とした場合の断層モデル (円形クラック式+大すべり域)
  - a) 浅部のみに大すべり域がある場合 (Case2)
  - b) 浅部および深部ともに大すべり域がある場合
    - $\sigma_{\pm} = \sigma_{back}$  (Case3)
    - $\sigma_{\pm} = 2\sigma_{back}$  (Case4)
    - $\sigma_{\pm} = 4 \sigma_{back}$  (Case5)

2.1.1-1

(1) 対象地震

地震動再現解析の対象は、既往の研究(原子力規制庁,2018)と同様で、2015年9月16日 に発生したチリ Illapel 地震(Mw8.3、以降、ターゲットの地震と呼ぶ)とし、経験的グリー ン関数法用の要素地震として2016年2月10日に発生した余震(Mw6.4)を用いた。ターゲ ットの地震の長周期インバージョン結果によるすべり変位分布、最大すべり速度分布と各 小断層のすべり時間関数、要素地震の震央位置および地震動評価点(13 地点)を図 2.1.1-1 ~図 2.1.1-3 に示す。

(2) アスペリティモデルおよび断層パラメータ

断層パラメータの設定では、既往の研究 (原子力規制庁, 2018; 郭・他, 2018) を参照に、 ターゲットの地震のモーメントマグニチュード *M<sub>WI</sub>*=8.3、要素地震のモーメントマグニチュ ード *M<sub>Ws</sub>*=6.4、ターゲットの地震の断層面積 *S<sub>I</sub>*=240 km×150 km=36,000 km<sup>2</sup> (図 2.1.1-2)、 2015 年チリ Illapel 地震の経験的グリーン関数法用のパラメータの見積り結果 (図 2.1.1-4、 表 2.1.1-1) を参照に、要素地震のコーナー振動数 *f<sub>cs</sub>*=0.22 Hz、ターゲットの地震と要素地 震の短周期レベルの比 *CN*=13 (ここに、経験的グリーン関数法による波形合成時に用いる重 ね合わせ数 *N*=7 (7.4)、およびターゲットの地震と要素地震の応力降下量の比 *C*=1.8) の 5 つ のパラメータを与条件として、ターゲットの地震のアスペリティモデルの断層パラメータ を設定した。

■ 地震本部のレシピにより第1ステージの地震とした場合の断層モデル (円形クラック式、 Casel)

ここでは、地震調査研究推進本部 (2005) でまとめられているプレート間地震の強震動予 測レシピと同様に第 1 ステージの地震として断層モデルを設定した。地震調査研究推進本 部 (2005) の強震動予測レシピによる、プレート間地震のアスペリティモデルの設定の流れ は図 2.1.1-5 のようになっている。

プレート間地震のアスペリティモデルを記述する主なパラメータは、震源断層面積 S、地 震モーメント  $M_0$ 、短周期レベル A、平均応力降下量 $\Delta \sigma$ 、アスペリティ (強震動生成域) の 応力降下量 $\Delta \sigma_a$ 、アスペリティ (強震動生成域) の面積  $S_a$ の6つである。

地震調査研究推進本部 (2005) のプレート間地震の強震動予測レシピでは、震源域を明確 に設定できる場合は、その範囲より震源断層の面積を計算し、地震規模-断層面積の経験的

2.1.1-2

関係式から地震規模を推定する、もしくは、過去の地震から想定されている値を基に、地震 規模を設定し、地震規模-断層面積の経験的関係から震源断層の面積を設定するとしている。 上記の地震規模 (地震モーメント  $M_0$ ) と断層面積 S の経験式については、過去の地震のデ ータがある程度得られている場合には、地域性を考慮した式を用いるとしている。例えば、 Kanamori and Anderson (1975) と同様に円形破壊面を仮定した次の関係式 (Eshelby, 1957) を 基に震源域の地震の平均応力降下量 $\Delta\sigma$ (MPa) を推定することで、地域的な地震モーメント  $M_0$  (N·m) と断層面積 S (km<sup>2</sup>) の関係式を設定するとしている。

$$M_0 = 16 / (7 \cdot \pi^{3/2}) \cdot \Delta \sigma \cdot S^{3/2}$$
(2.1.1-1)

一方、過去の地震のデータがあまり得られていない場合には、平均的な特性を示す地震規 模と断層面積 (例えば、宇津,2001;石井・佐藤,2000)、または地震モーメント *M*<sub>0</sub>と断層面 積*S*(例えば、佐藤,1989; Yamanaka and Shimazaki, 1990) などの経験式を用いるとしている。

対象地震の短周期レベル A に関しては、想定震源域における最新活動の地震の短周期レ ベル A が推定されていない場合には、壇・他 (2001) による地震モーメント M<sub>0</sub> と短周期レ ベル A の経験的関係により設定するとしている。想定震源域における最新活動の地震の短 周期レベル A が推定されている場合には、その推定値と地震モーメント M<sub>0</sub> との経験的関係 の傾向を参照して、想定する地震の地震モーメントに応じた短周期レベルを設定するとし ている。

ー方、アスペリティ(強震動生成域)の応力降下量*Δσa、*アスペリティ(強震動生成域)の 面積 *Sa、*および短周期レベル*A*は下記の関係式を満たす。ここに、(2.1.1-2)式は Madariaga (1979)によるアスペリティモデルの一般式、(2.1.1-3)式は円形クラックモデルを念頭におい た Brune (1970)による経験式であるが、のちに Boatwright (1988)が断層の動力学的破壊シ ミュレーションよりアスペリティモデルにも適用できることを示した式である。

$$\Delta \sigma_a = (S / S_a) \Delta \sigma \tag{2.1.1-2}$$

$$A = 4\pi\beta^2 (S_a / \pi)^{1/2} \Delta \sigma_a$$
 (2.1.1-3)

ここでは、ターゲットの地震の地震モーメント *M*<sub>01</sub>は与えられた値を用い、ターゲットの 地震の短周期レベル *A*<sub>1</sub>については、既往の研究 (原子力規制庁, 2018) によるパラメータか ら推定した値を直接用いることにした。また、ターゲットの地震の断層面積 *S*<sub>1</sub> も与条件と して既往の研究 (原子力規制庁, 2018) で設定した値を用いたので、(2.1.1-1)式~(2.1.1-3)式 に示した 3 つの関係式で、ターゲットの地震のアスペリティモデルにおける残りの 3 つの 断層パラメータ、平均応力降下量*Δσ*<sub>1</sub>、アスペリティ (強震動生成域) の応力降下量*Δσ*<sub>4</sub>、ア スペリティ (強震動生成域)の面積 Saを求めることができる。

一方、ターゲットの地震の短周期レベル A<sub>l</sub>を推定するために、まず要素地震の短周期レベル A<sub>s</sub>を求めた。要素地震の地震モーメント M<sub>0s</sub>とモーメントマグニチュード M<sub>Ws</sub>は(2.1.1-4)式を満たす。次に、Brune (1970) の $\omega^2$ モデルを仮定した場合の、(2.1.1-5)式によるコーナ 一振動数の値と、円形クラックの平均応力降下量を求める(2.1.1-6)式を用いて、要素地震の 断層面積 S<sub>s</sub>、および要素地震の応力降下量 $\Delta \sigma_s$ を算定した。さらに、要素地震の断層面積 S<sub>s</sub>、 および要素地震の応力降下量 $\Delta \sigma_s$ を用いて、(2.1.1-7)式より要素地震の短周期レベル A<sub>s</sub>が求 まる。

$$M_{0s}[\mathbf{N} \cdot \mathbf{m}] = 10^{1.5M_{Ws}+9.1} \tag{2.1.1-4}$$

$$f_{cs} = \beta \sqrt{(7/16)/S_s} = 0.22 \,\mathrm{Hz}$$
 (2.1.1-5)

$$\Delta \sigma_s = (7/16) M_{0s} / (S_s / \pi)^{1.5}$$
(2.1.1-6)

$$A_{s} = 4\pi\beta^{2} (S_{s} / \pi)^{1/2} \Delta \sigma_{s}$$
(2.1.1-7)

要素地震の短周期レベル A<sub>s</sub> が求まったので(2.1.1-8)式よりターゲットの地震の短周期レベル A<sub>l</sub>が求まる。

$$A_l / A_s = CN = 13 \tag{2.1.1-8}$$

ターゲットの地震の地震モーメント  $M_{0l}$ 、短周期レベル  $A_l$ 、ターゲットの地震の震源断層 面積  $S_l$ が分かったので、(2.1.1-1)式~(2.1.1-3)式より、ターゲットの地震における、平均応 力降下量 $\Delta\sigma$ 、アスペリティ (強震動生成域)の応力降下量 $\Delta\sigma_a$ 、アスペリティ (強震動生成 域)の面積  $S_a$ が求まる。

ほかに、ターゲットの地震の平均すべり量*Di*は下記の(2.1.1-9)式より算定した。ここに、 剛性率μは、既往の研究 (原子力規制庁, 2018) より、4.55×10<sup>10</sup> N/m<sup>2</sup>とした。

$$M_{0l} = \mu D_l S_l \tag{2.1.1-9}$$

また、アスペリティ (強震動生成域)の平均すべり量Daは、既往の研究 (原子力規制庁, 2018; 郭・他,2018) による長周期インバージョン結果 (図2.1.1-1の大すべり域の領域A1) に よるすべり分布を参考に与えた。

最後に、背景領域の平均すべり量 $D_{back}$ 、および実効応力 $\sigma_{back}$ は下記の(2.1.1-10)式~(2.1.1-11)式より算定した。ここに、 $W_{back} = W_l$ とし、 $W_a = sqrt(S_a)$ とした。

$$D_{back} = (D_l S_l - D_a S_a) / (S_l - S_a)$$
(2.1.1-10)

$$\sigma_{back} = (D_{back} / W_{back}) / (D_a / W_a) \cdot \Delta \sigma_a$$
(2.1.1-11)

表 2.1.1-2 に要素地震の断層パラメータを示し、表 2.1.1-3 に本方法で設定したターゲット

の地震のアスペリティモデルの断層パラメータを示す。

ターゲットの地震の地震モーメント M<sub>0</sub>と断層面積 S の関係を図 2.1.1-6 に、ターゲットの地震の地震モーメント M<sub>0</sub>と短周期レベル A の関係を図 2.1.1-7 に示す。ターゲットの地震のアスペリティモデルの断層モデルを図 2.1.1-8 に示す。

■ 第1から第2への遷移ステージの地震とした場合の断層モデル(円形クラック式+大すべり域)

ここでは、浅部断層における破壊が十分には成長していない第1ステージから第2ステ ージへの遷移ステージの地震として断層モデルを設定した。平均応力降下量の算定式とし ては、推本レシピと同様に Eshelby (1957)による円形クラック式を用い、さらに震源インバ ージョン解析結果を参考に大すべり域を導入した。

a) 浅部のみに大すべり域がある場合 (Case2)

まず、地震調査研究推進本部によるプレート間地震の「レシピ」に基づいた場合と同様に、 ターゲットの地震の地震モーメント *M*<sub>0</sub> は与えられた値を用い、ターゲットの地震の短周期 レベル *A*<sub>1</sub>については、既往の研究 (原子力規制庁, 2018) によるパラメータから推定した値 を直接用いることにした。また、ターゲットの地震の断層面積 *S*<sub>1</sub> も与条件として既往の研 究 (原子力規制庁, 2018) で設定した値を用いたので、(2.1.1-1)式~(2.1.1-3)式に示した 3 つ の関係式で、ターゲットの地震のアスペリティモデルにおける残りの 3 つの断層パラメー タ、平均応力降下量*A*<sub>0</sub>、アスペリティ (強震動生成域) の応力降下量*A*<sub>0</sub>、アスペリティ (強 震動生成域) の面積 *S*<sub>a</sub>を求めることができる。

浅部の大すべり域のすべり量 D<sub>浅部大</sub>と、浅部の大すべり域の面積 S<sub>浅部大</sub>は、既往の研究 (原子力規制庁, 2018; 郭・他, 2018) による長周期インバージョン結果による、すべり分布 (図 2.1.1-1 の大すべり域の領域 A2、A3) を参考に与えた。また、深部には長周期インバー ジョンからみられる大すべり域の領域 A1 にアスペリティ(強震動生成域)のみを設置し、そ の平均すべり量 D<sub>a</sub>は、既往の研究 (原子力規制庁, 2018; 郭・他, 2018) による長周期インバ ージョン結果 (図 2.1.1-1 の大すべり域の領域 A1) によるすべり分布を参考に与えた。

最後に、背景領域の平均すべり量 $D_{back}$ 、背景領域の実効応力 $\sigma_{back}$ 、および大すべり域の実 効応力 $\sigma_{t}$ は下記の(2.1.1-12)式~(2.1.1-14)式より算定した。ここに、 $W_{back} = W_l$ とし、 $W_a = sqrt$ ( $S_a$ ) とした。

$$D_{back} = (D_l S_l - D_a S_a - D_{j \in int} S_{j \in int}) / (S_l - S_a - S_{j \in int})$$
(2.1.1-12)

$$\sigma_{back} = (D_{back} / W_{back}) / (D_a / W_a) \cdot \Delta \sigma_a$$
(2.1.1-13)

$$\sigma_{\text{{\it k}}\text{{\it n}}\text{{\it t}}} = \sigma_{back} \tag{2.1.1-14}$$

表 2.1.1-4 に、本方法で設定したターゲットの地震のアスペリティモデルの断層パラメー タを示し、ターゲットの地震のアスペリティモデルの断層モデルを図 2.1.1-9 に示す。

b) 浅部および深部ともに大すべり域がある場合 (Case3~Case5)

ここでは、a) で設定した断層モデルにおいて、浅部および深部ともに、すなわち深部の アスペリティ (強震動生成域)の周囲にも大すべり域がある場合について検討した。

したがって、ターゲットの地震の地震モーメント  $M_{0l}$ 、短周期レベル  $A_l$ 、断層面積  $S_l$ 、平均応力降下量 $\Delta \sigma_l$ 、アスペリティ (強震動生成域)の応力降下量 $\Delta \sigma_a$ 、アスペリティ (強震動 生成域)の面積  $S_a$ は a) と同じである。

深部および浅部の大すべり域のすべり量 D<sub>x</sub>と、大すべり域の面積 S<sub>x</sub>は既往の研究 (原 子力規制庁, 2018; 郭・他, 2018) による長周期インバージョン結果による、すべり分布 (図 2.1.1-1 の大すべり域の領域 A1、A2 および A3) を参考に与えた。また、深部の大すべり域 A1 の中にアスペリティ(強震動生成域)が位置していると考え、その平均すべり量 D<sub>a</sub> は、既 往の研究 (原子力規制庁, 2018、郭・他, 2018) による長周期インバージョン結果 (図 2.1.1-1 の大すべり域の領域 A1) によるすべり分布を参考に与えた。すなわち、領域 A1 の地震モ ーメントは、アスペリティ(強震動生成域)とその周囲の深部の大すべり域で負担することに なる。

最後に、背景領域の平均すべり量 $D_{back}$ 、背景領域の実効応力 $\sigma_{back}$ 、および大すべり域の実 効応力 $\sigma_{t}$ は下記の(2.1.1-15)式~(2.1.1-17)式より算定した。ここに、 $W_{back} = W_l$ とし、 $W_a = sqrt$ ( $S_a$ ) とした。

$$D_{back} = (D_l S_l - D_{\pm} S_{\pm}) / (S_l - S_{\pm})$$
(2.1.1-15)

$$\sigma_{back} = (D_{back} / W_{back}) / (D_a / W_a) \cdot \Delta \sigma_a$$
(2.1.1-16)

$$\sigma_{\mathbf{x}} = \sigma_{back} \tag{2.1.1-17}$$

以上より設定したターゲットの地震のアスペリティモデルを Case3 とし、断層パラメー タを表 2.1.1-5 に示し、断層モデルを図 2.1.1-10 に示す。

なお、Case3 では浅部および深部の大すべり域の実効応力を背景領域と同じに設定したことに対して、Case4 では(2.1.1-18)式により大すべり域の実効応力を背景領域の2倍にした場

合 (図 2.1.1-11) について、Case5 では(2.1.1-19)式により大すべり域の実効応力を背景領域の4倍にした場合 (図 2.1.1-12) について検討した。

$$\sigma_{\mathbf{x}} = 2\sigma_{back} \tag{2.1.1-18}$$

$$\sigma_{\mathbf{x}} = 4\sigma_{back} \tag{2.1.1-19}$$



図2.1.1-1 2015年チリIllapel地震のすべり変位分布 (原子力規制庁, 2018; 郭・他, 2018)



図 2.1.1-2 2015 年チリ Illapel 地震の最大すべり速度分布と各小断層のすべり時間関数 (原子力規制庁, 2018; 郭・他, 2018 の一部修正)



図 2.1.1-3 2015 年チリ Illapel 地震の本震の震央位置 (赤★印) とメカニズム解、余震の震 央位置 (黄☆印) とメカニズム解、および観測点 (▲印) の位置



図 2.1.1-4 2015 年チリ Illapel 地震の経験的グリーン関数法用のパラメータの見積り

| 経験的                    | 長周期側            | 短周期側 | 重ね   | 応力降下 | 余震のコー                           |
|------------------------|-----------------|------|------|------|---------------------------------|
| グリーン関数法用の              | の比率             | の比率  | 合わせ数 | 量の比  | ナー振動数                           |
| パラメータ                  | CN <sup>3</sup> | CN   | Ν    | С    | $f_{c}\left(\mathrm{Hz}\right)$ |
| 本震(Mw 8.3)/            | 708             | 13   | 7.4  | 1.8  | 0.22                            |
| 余震(M <sub>W</sub> 6.4) |                 |      | ≒7   |      |                                 |

表 2.1.1-1 経験的グリーン関数法用のパラメータ



図 2.1.1-5 地震調査研究推進本部 (2005) の強震動予測レシピによるプレート間地震の断 層パラメータ算定手順

## 表 2.1.1-2 2015 年チリ Illapel 地震の余震 (要素地震)の断層パラメータ

| 要素地震の断層パラ                                  | メータ      | 設定方法                                                                                                |
|--------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|
| モーメントマグニチュードMws                            | 6.4      | H30年度NRA安全研究報告書                                                                                     |
| 地震モーメントM <sub>0s</sub> (N·m)               | 5.01E+18 | $M_{0s}[N \cdot m] = 10^{\circ}(1.5M_{Ws}+9.1)$                                                     |
| 応力降下量⊿σ₅(MPa)                              | 9.6      | $\Delta \sigma_s = (7/16)[(M_{0s}/(S_s/\pi)^{1.5}]]$                                                |
| 断層面積 $S_s$ (km <sup>2</sup> )              | 117      | $S_s = (7/16)(\beta/f_c)^2$ 、ここに $\beta$ はH30年度NRA安全研究報告書より3.6km/sとした。                              |
| 断層長さL <sub>s</sub> (km)                    | 11       | $L_s = W_s = \operatorname{sqrt}(S_s)$                                                              |
| 断層幅 $W_s$ (km)                             | 11       | $L_s = W_s = \operatorname{sqrt}(S_s)$                                                              |
| 平均すべり量D <sub>s</sub> (m)                   | 0.9      | $D_s = M_{0s} / (\mu S_s)$ 、ここに $\mu$ はH29年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。 |
| コーナー振動数f <sub>α</sub> (Hz)                 | 0.22     | 本研究                                                                                                 |
| 短周期レベルA <sub>s</sub> (N・m/s <sup>2</sup> ) | 9.58E+18 | $A_s = 4\pi\beta^2 (S_s/\pi)^{1/2} \Delta \sigma_s$                                                 |

## 表 2.1.1-3 2015 年チリ Illapel 地震 (ターゲットの地震) のアスペリティモデルの断層パラ

メータ: 地震本部のレシピにより第1ステージの地震とした場合の断層モデル (円形クラ

ック、Case1)

| ターゲットの地震の断層                            | ペラメータ    | 設定方法                                                                                                |
|----------------------------------------|----------|-----------------------------------------------------------------------------------------------------|
| モーメントマグニチュードMWI                        | 8.3      | H30年度NRA安全研究報告書                                                                                     |
| 地震モーメントM <sub>0l</sub> (N・m)           | 3.55E+21 | $M_{0l}$ [N·m]=10 <sup>(1.5</sup> $M_{Wl}$ +9.1)                                                    |
| 短周期レベルA1 (N·m/s <sup>2</sup> )         | 1.24E+20 | $A_I = A_s CN$ 、ここに $CN$ はH30年度NRA安全研究報告書より13とした。                                                   |
| 断層面積 $S_l$ (km <sup>2</sup> )          | 36000    | $S_1 = L_1 \times W_1$                                                                              |
| 断層長さL1 (km)                            | 240      | 郭·他(2018, JEES)を参照                                                                                  |
| 断層幅W1 (km)                             | 150      | 郭・他(2018, JEES)を参照                                                                                  |
| 平均すべり量D1(m)                            | 2.2      | $D_l = M_{0l} / (\mu S_l)$ 、ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。 |
| 平均応力降下量⊿σ/(MPa)                        | 1.3      | $\Delta \sigma_l = (7/16)[(M_{0l}/(S_l/\pi)^{1.5}]]$                                                |
| アスペリティの面積 $S_{asp}$ (km <sup>2</sup> ) | 1131     | $S_a = S \square \sigma / \square \sigma_a$                                                         |
| アスペリティの長さLa (km)                       | 34       | $L_a = W_a = \operatorname{sqrt}(S_a)$                                                              |
| アスペリティの幅 $W_a$ (km)                    | 34       | $L_a = W_a = \operatorname{sqrt}(S_a)$                                                              |
| アスペリティの応力降下量⊿σ <sub>a</sub> (MPa)      | 40.3     | $\Delta \sigma_a = A^2 S^{0.5} / (7\pi^{2.5} \beta^4 M_0)$                                          |
| アスペリティのすべり量 $D_a$ (m)                  | 3.6      | 郭・他(2018, JEES)を参照                                                                                  |
| アスペリティの地震モーメントM <sub>0a</sub> (N・m)    | 1.85E+20 | $M_{0a} = \mu D_a S_a$ 、ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。     |
| 背景領域の地震モーメントM <sub>0back</sub>         | 2 26E±21 | $M_{\rm H} = -M_{\rm H} M_{\rm H}$                                                                  |
| (N•m)                                  | 3.30E+21 | $M \ 0 back - M \ 0 l - M \ 0 a$                                                                    |
| 背景領域の面積S back                          | 34869    | $S_{back} = S_l - S_a$                                                                              |
| 背景領域のすべり量D <sub>back</sub> (m)         | 2.1      | $D_{back} = (S_1 D_1 - S_a D_a) / S_{back}$                                                         |
| 背景領域の実効応力o <sub>back</sub> (MPa)       | 5.3      | $\sigma_{back} = (D_{back}/W_{back})/(D_a/W_a) \Delta \sigma_a$                                     |

表 2.1.1-4 2015 年チリ Illapel 地震 (ターゲットの地震) のアスペリティモデルの断層パラ メータ:第1から第2への遷移ステージの地震とした場合の断層モデル (円形クラック式+ 大すべり域):浅部のみに大すべり域がある場合 (Case2)

| ターゲットの地震の断層                                    | パラメータ    | 設定方法                                                                                                                                    |
|------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| モーメントマグニチュードMwl                                | 8.3      | H30年度NRA安全研究報告書                                                                                                                         |
| 地震モーメントM <sub>0l</sub> (N・m)                   | 3.55E+21 | $M_{0l}$ [N·m]=10 $(1.5M_{Wl}+9.1)$                                                                                                     |
| 短周期レベルA1 (N・m/s <sup>2</sup> )                 | 1.24E+20 | $A_1 = A_s CN$ 、ここに $CN$ はH30年度NRA安全研究報告書より13とした。                                                                                       |
| 断層面積S1 (km <sup>2</sup> )                      | 36000    | $S_l = L_l \times W_l$                                                                                                                  |
| 断層長さL1 (km)                                    | 240      | 郭・他(2018, JEES)を参照                                                                                                                      |
| 断層幅 $W_l$ (km)                                 | 150      | 郭・他(2018, JEES)を参照                                                                                                                      |
| 平均すべり量D1(m)                                    | 2.2      | $D_l = M_{0l} / (\mu S_l)$ 、ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。                                     |
| 平均応力降下量⊿σ₁(MPa)                                | 1.3      | $\Delta \sigma_l = (7/16)[(M_{0l}/(S_l/\pi)^{1.5}]$                                                                                     |
| アスペリティの面積 $S_{asp}$ (km <sup>2</sup> )         | 1131     | $S_a = S \Delta \sigma / \Delta \sigma_a$                                                                                               |
| アスペリティの長さLa (km)                               | 34       | $L_a = W_a = \operatorname{sqrt}(S_a)$                                                                                                  |
| アスペリティの幅 $W_a$ (km)                            | 34       | $L_a = W_a = \operatorname{sqrt}(S_a)$                                                                                                  |
| アスペリティの応力降下量⊿σ <sub>a</sub> (MPa)              | 40.3     | $\Delta \sigma_a = A^2 S^{0.5} / (7\pi^{2.5} \beta^4 M_0)$                                                                              |
| アスペリティのすべり量 $D_a$ (m)                          | 3.6      | 郭・他(2018, JEES)を参照                                                                                                                      |
| アスペリティの地震モーメントM <sub>0a</sub> (N・m)            | 1.85E+20 | $M_{0a} = \mu D_a S_a$ 、ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。                                         |
| 浅部の大すべり域のすべり量D <sub>浅部大</sub> (m)              | 3.6      | 郭・他(2018, JEES)                                                                                                                         |
| 浅部の大すべり域の面積S <sub>浅部大</sub> (km <sup>2</sup> ) | 5500     | 郭・他(2018, JEES)。                                                                                                                        |
| 浅部の大すべり域の地震モーメント<br>M <sub>0浅部大</sub> (N・m)    | 9.01E+20 | $M_{0\pm} = \mu D_{\delta \oplus \pm} S_{\delta \oplus \pm}$ 。ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。   |
| 浅部の大すべり域の実効応力σ <sub>浅部大</sub><br>(MPa)         | 4.6      | $\sigma$ <sub>浅部大</sub> = $\sigma$ <sub>back</sub>                                                                                      |
| 背景領域の地震モーメントM <sub>0back</sub><br>(N•m)        | 2.46E+21 | <i>M</i> <sub>0back</sub> = <i>M</i> <sub>0l</sub> - <i>M</i> <sub>0a</sub> - <i>M</i> <sub>0浅節大</sub>                                  |
| 背景領域の面積S back                                  | 29369    | $S_{back} = S_I - S_a - S_{\wr \wr \exists t}$                                                                                          |
| 背景領域のすべり量D back (m)                            | 1.8      | D <sub>back</sub> =(S <sub>1</sub> D <sub>1</sub> -S <sub>a</sub> D <sub>a</sub> -S <sub>浅部大</sub> D <sub>浅部大</sub> )/S <sub>back</sub> |
| 背景領域の実効応力σ <sub>back</sub> (MPa)               | 4.6      | $\sigma_{back} = (D_{back}/W_{back})/(D_a/W_a)\Delta\sigma_a$                                                                           |

表 2.1.1-5 2015 年チリ Illapel 地震 (ターゲットの地震) のアスペリティモデルの断層パラ メータ:第1から第2への遷移ステージの地震とした場合の断層モデル (円形クラック式+ 大すべり域):浅部および深部ともに大すべり域がある場合 (Case3)

| ターゲットの地震の断層                                       | パラメータ    | 設定方法                                                                                                        |
|---------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|
| モーメントマグニチュードMwi                                   | 8.3      | H30年度NRA安全研究報告書                                                                                             |
| 地震モーメントM <sub>01</sub> (N・m)                      | 3.55E+21 | $M_{0l}$ [N·m]=10 <sup>(1.5</sup> $M_{Wl}$ +9.1)                                                            |
| 短周期レベルA1 (N·m/s <sup>2</sup> )                    | 1.24E+20 | A <sub>1</sub> =A <sub>s</sub> CN、ここにCNはH30年度NRA安全研究報告書より13とした。                                             |
| 断層面積 $S_l$ (km <sup>2</sup> )                     | 36000    | $S_1 = L_1 \times W_1$                                                                                      |
| 断層長さL1 (km)                                       | 240      | 郭・他(2018, JEES)を参照                                                                                          |
| 断層幅 $W_l$ (km)                                    | 150      | 郭・他(2018, JEES)を参照                                                                                          |
| 平均すべり量D1(m)                                       | 2.2      | $D_l = M_{0l} / (\mu S_l)$ 、ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。         |
| 平均応力降下量⊿σ <sub>l</sub> (MPa)                      | 1.3      | $\Delta \sigma_l = (7/16) [(M_{0l}/(S_l/\pi)^{1.5}]]$                                                       |
| アスペリティの面積 $S_{asp}$ (km <sup>2</sup> )            | 1131     | $S_a = S \Delta \sigma / \Delta \sigma_a$                                                                   |
| アスペリティの長さLa (km)                                  | 34       | $L_a = W_a = \operatorname{sqrt}(S_a)$                                                                      |
| アスペリティの幅 $W_a$ (km)                               | 34       | $L_a = W_a = \operatorname{sqrt}(S_a)$                                                                      |
| アスペリティの応力降下量⊿σ <sub>a</sub> (MPa)                 | 40.3     | $\Delta \sigma_a = A^2 S^{0.5} / (7\pi^{2.5} \beta^4 M_0)$                                                  |
| アスペリティのすべり量 $D_a$ (m)                             | 3.6      | 郭•他(2018, JEES)を参照                                                                                          |
| アスペリティの地震モーメントM <sub>0a</sub> (N・m)               | 1.85E+20 | $M_{0a} = \mu D_a S_a$ 、ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。             |
| 大すべり域のすべり量 $D_{\pm}(\mathbf{m})$                  | 3.6      | 郭・他(2018, JEES)                                                                                             |
| 大すべり域の面積 <i>S</i> <sub>大</sub> (km <sup>2</sup> ) | 7300     | 郭・他(2018, JEES)。ここに、 $S_{\pm}$ の中には $S_a$ が含まれている。                                                          |
| 大すべり域の地震モーメントM <sub>0大</sub><br>(N·m)             | 1.20E+21 | $M_{0,t} = \mu D_{t,t} S_{t,c}$ ここに $\mu$ はH30年度NRA安全研究報告書より4.55×10 <sup>10</sup> N/m <sup>2</sup> とした。ここに、 |
| 大すべり域の実効応力σ <sub>大</sub> (MPa)                    | 4.5      | $\sigma_{\pm} = \sigma_{back}$                                                                              |
| 背景領域の地震モーメントM <sub>0back</sub><br>(N・m)           | 2.35E+21 | $M_{0back} = M_{0l} - M_{0k}$                                                                               |
| 背景領域の面積S back                                     | 28700    | $S_{back} = S_I - S_{\pm}$                                                                                  |
| 背景領域のすべり量D back (m)                               | 1.8      | $D_{back} = (S_I D_I - S_{\pm} D_{\pm})/S_{back}$                                                           |
| 背景領域の実効応力 oback (MPa)                             | 4.5      | $\sigma_{back} = (D_{back}/W_{back})/(D_a/W_a)\Delta\sigma_a$                                               |



図 2.1.1-6 2015 年チリ Illapel 地震の地震モーメントと断層面積との関係



図 2.1.1-7 2015 年チリ Illapel 地震の地震モーメントと短周期レベルとの関係



図 2.1.1-8 地震本部のレシピにより第 1 ステージの地震とした場合の断層モデル (円形ク ラック、Casel)



図 2.1.1-9 第1から第2への遷移ステージの地震としたした場合の断層モデル (円形クラ ック式+大すべり域): 浅部のみに大すべり域がある場合 (Case2)



図 2.1.1-10 第1から第2への遷移ステージの地震としたした場合の断層モデル (円形クラ ック式+大すべり域): 浅部および深部ともに大すべり域がある場合 (Case3:  $\sigma_{t} = \sigma_{back}$ )



図 2.1.1-11 第1から第2への遷移ステージの地震としたした場合の断層モデル (円形クラ ック式+大すべり域): 浅部および深部ともに大すべり域がある場合 (Case4:  $\sigma_{\pm}=2\sigma_{back}$ )



図 2.1.1-12 第1から第2への遷移ステージの地震としたした場合の断層モデル (円形クラ ック式+大すべり域): 浅部および深部ともに大すべり域がある場合 (Case5:  $\sigma_{\chi}$ =4 $\sigma_{back}$ )

Dan et al. (1989) による経験的グリーン関数法を用いて、2015 年チリ Illapel 地震の地震動 再現解析を行った。図 2.1.2-1 に、2015 年チリ Illapel 地震(ターゲットの地震)の、地震本 部のレシピにより第1ステージの地震とした場合の断層モデル(円形クラック、Casel)の 断層面と要素地震の震央の位置を示す。図中、星印(★印)はアスペリティモデルの破壊開 始点で、三角印は計算地点である。同様に、図 2.1.2-2 に、第1から第2への遷移ステージ の地震とした場合の(円形クラック式+大すべり域)のうち浅部のみに大すべり域がある場 合(Case2)の断層モデルを、図 2.1.2-3 に、第1から第2への遷移ステージの地震とした場 合の(円形クラック式+大すべり域)のうち浅部および深部ともに大すべり域がある場合 (Case3~Case5)の断層モデルを示す。

2015年チリIllapel地震のCase1のアスペリティモデルによる各観測点における合成結果を 図2.1.2-4~図2.1.2-16に、Case2のアスペリティモデルによる合成結果を図2.1.2-17~図2.1.2-29に、Case3のアスペリティモデルによる合成結果を図2.1.2-30~図2.1.2-42に、Case4のアス ペリティモデルによる合成結果を図2.1.2-43~図2.1.2-55に、Case5のアスペリティモデルに よる合成結果を図2.1.2-56~図2.1.2-68に示す。上から順番に、各観測点における加速度時刻 歴、速度時刻歴、変位時刻歴および減衰定数5%の擬似速度応答スペクトルを示す。

Case1~Case3の各観測点における速度波形および減衰定数5%の擬似速度応答スペクトル を図2.1.2-69~図2.1.2-81に比較する。図より、地震本部のレシピにより第1ステージの地震 としたモデル化した場合(Case1)と、第1から第2への遷移ステージの地震としてモデル化 した場合(円形クラック式+大すべり域: Case2とCase3)の結果は、同程度であり、いずれ も1秒以下の短周期側の観測記録を良く説明できていることがわかった。また大すべり域が 浅部のみにある場合(Case2)と、浅部および深部ともにある場合(Case3)の差はほとんど ない。

Case3~Case5の各観測点における速度波形および減衰定数5%の擬似速度応答スペクトル を図2.1.2-82~図2.1.2-94に比較する。図より、大すべり域の実効応力を背景領域の実効応力 の2倍にした場合(Case4)と4倍にした場合(Case5)の結果は、背景領域の実効応力と同じ にした場合(Case3)に比べて、大きく変わらないことから、大すべり域に背景領域と同程 度の実効応力を設定すべきかどうかの判断まではできなかった。

本検討のアスペリティモデルによる地震動解析結果は、昨年度のSMGAモデル(原子力規

2.1.2-1

制庁,2018)に比べて継続時間が長くなっていて、より観測記録に近づいているが、中間周 期の過小評価については引き続き改善する必要があると考えられる。

本検討では、断層面の深部に応力降下量が高い1つのアスペリティ(強震動生成域)を 設定していて、残りの部分は実効応力の小さい背景領域(および大すべり域)でモデル化 しているが、震源インバージョン結果で示している浅い側のすべり量が大きい領域を、大 すべり域ではなく、アスペリティ(強震動生成域)としてモデル化した場合、中間周期が 改善できるかどうかにについても検討してみる必要がある。

さらに、短周期側は本検討による経験的グリーン関数法で、2秒以上の長周期側については、長周期インバージョンに基づいた理論計算を行い、最終的にハイブリッド法で合成することで中間周期の過小評価を改善する方法も考えられる。



図2.1.2-1 地震本部のレシピにより第1ステージの地震とした場合の断層モデル(Casel)に よる2015年チリIllapel地震の地震動再現解析(破壊開始点:★印、要素地震の震源位置:☆ 印、観測点:▲印)



図 2.1.2-2 第1から第2への遷移ステージの地震としたした場合の断層モデル(円形クラ ック式+大すべり域:浅部のみ) (Case2)による 2015 年チリ Illapel 地震の地震動再現解析 (破壊開始点:★印、要素地震の震源位置:☆印、観測点:▲印)



図2.1.2-3 第1から第2への遷移ステージの地震としたした場合の断層モデル(円形クラック 式+大すべり域:浅部および深部) (Case3~Case5)による2015年チリIllapel地震の地震動再 現解析(破壊開始点:★印、要素地震の震源位置:☆印、観測点:▲印)



図2.1.2-4 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震のC010 観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応 答スペクトル)



図2.1.2-5 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震のC09O 観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応 答スペクトル)



図2.1.2-6 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震のC19O 観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応 答スペクトル)



図2.1.2-7 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震のC20O 観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応 答スペクトル)



図2.1.2-8 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震のC26O 観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応 答スペクトル)



図2.1.2-9 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震のC33O 観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応 答スペクトル)


図2.1.2-10 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震の CO03観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似 速度応答スペクトル)



図2.1.2-11 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震の R12M観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似 速度応答スペクトル)



図2.1.2-12 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震の R13M観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似 速度応答スペクトル)



図2.1.2-13 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震の R18M観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似 速度応答スペクトル)



図2.1.2-14 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震の R21M観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似 速度応答スペクトル)



図2.1.2-15 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震の V02A観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似 速度応答スペクトル)



図2.1.2-16 地震本部のレシピによる断層モデル(Casel)による2015年チリIllapel地震の V17A観測点における合成結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似 速度応答スペクトル)



図2.1.2-17 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のC01O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-18 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のC09O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-19 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のC19O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-20 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のC20O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-21 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のC26O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-22 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のC33O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-23 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のCO03観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-24 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2)による2015年チリIllapel地震のR12M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-25 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2)による2015年チリIllapel地震のR13M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-26 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2)による2015年チリIllapel地震のR18M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-27 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2)による2015年チリIllapel地震のR21M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-28 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のV02A観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-29 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部のみの 大すべり域: Case2) による2015年チリIllapel地震のV17A観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-30 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のC01O観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-31 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のC09O観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-32 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のC19O観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-33 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のC20O観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-34 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のC26O観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-35 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のC33O観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-36 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のCOO3観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-37 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のR12M観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-38 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のR13M観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-39 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のR18M観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-40 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のR21M観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-41 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のV02A観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-42 遷移ステージの地震としたした場合の断層モデル(円形クラック式+浅部および 深部の大すべり域: Case3)による2015年チリIllapel地震のV17A観測点における合成結果(上 段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-43 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のC01O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-44 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のC09O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-45 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のC19O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)


図2.1.2-46 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のC20O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-47 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のC26O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-48 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のC33O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-49 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のCO03観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-50 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による図2.1.2-50 2015年チリIllapel地震のR12M観測点における合成 結果(上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-51 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のR13M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-52 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のR18M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-53 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のR21M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-54 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のV02A観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-55 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の2倍: Case4)による2015年チリIllapel地震のV17A観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-56 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のC01O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-57 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のC09O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-58 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のC19O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-59 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のC20O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-60 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のC26O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-61 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のC33O観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-62 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のCO03観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-63 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のR12M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-64 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のR13M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-65 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のR18M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-66 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のR21M観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-67 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のV02A観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-68 遷移ステージの地震としたした場合の断層モデル(大すべり域の実効応力を背 景領域の4倍: Case5)による2015年チリIllapel地震のV17A観測点における合成結果(上段か ら、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)



図2.1.2-69 2015年チリIllapel地震のC01O観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-70 2015年チリIllapel地震のC09O観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-71 2015年チリIllapel地震のC19O観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-72 2015年チリIllapel地震のC20O観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-73 2015年チリIllapel地震のC26O観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-74 2015年チリIllapel地震のC33O観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-75 2015年チリIllapel地震のCO03観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-76 2015年チリIllapel地震のR12M観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-77 2015年チリIllapel地震のR13M観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-78 2015年チリIllapel地震のR18M観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-79 2015年チリIllapel地震のR21M観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-80 2015年チリIllapel地震のV02A観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-81 2015年チリIllapel地震のV17A観測点における合成結果のCase1からCase3の比較
(上段:速度時刻歴、下段:擬似速度応答スペクトル)


 図2.1.2-82 Illapel地震のC01O観測点における合成結果のCase3からCase5の比較(上段:速 度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-83 2015年チリIllapel地震のC09O観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-84 2015年チリIllapel地震のC19O観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-85 2015年チリIllapel地震のC20O観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-86 2015年チリIllapel地震のC26O観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-87 2015年チリIllapel地震のC33O観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-88 2015年チリIllapel地震のCO03観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-89 2015年チリIllapel地震のR12M観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-90 2015年チリIllapel地震のR13M観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-91 2015年チリIllapel地震のR18M観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-92 2015年チリIllapel地震のR21M観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-93 2015年チリIllapel地震のV02A観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)



図2.1.2-94 2015年チリIllapel地震のV17A観測点における合成結果のCase3からCase5の比較
 (上段:速度時刻歴、下段:擬似速度応答スペクトル)

2.1節の参考文献

2.1.1

- 原子力規制庁 (2018): 平成29年度原子力規制庁安全研究, 原子力施設等防災対策等委
   託費 (海溝型地震による地震動の評価手法の検討)事業業務報告書.
- 2) 郭雨佳・宮腰研・鶴来雅人 (2018): 強震波形インバージョンに基づくチリ沖プレート間 巨大地震の震源特性化,第15回日本地震工学シンポジウム, PS1-01-04.
- 地震調査研究推進本部地震調査委員会 (2005):「全国を概観した地震動予測地図」報告書(平成17年3月23日公表,平成17年4月13日更新,平成17年12月14日更新),分冊2,震源断層を特定した地震動予測地図の説明.
- Eshelby, J. D. (1957): The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London, Series A, Vol. 241, pp. 376-396.
- Kanamori, H. and D. L. Anderson (1975): Theoretical basis of some empirical relations in seismology, Bulletin of the Seismological Society of America. Vol. 65, No. 5, pp. 1073-1095.
- 6) 宇津徳治 (2001): 地震学 (第3版), 共立出版.
- 7) 石井透・佐藤俊明 (2000): 強震動評価のための不均質断層モデルの主破壊領域の面積 とモーメントの関係,日本地震学会2000年秋季大会予稿集,B09.
- 8) 佐藤良輔 (1989): 日本の地震断層パラメター・ハンドブック, 鹿島出版会, p. 49.
- 9) Yamanaka, Y. and K. Shimazaki (1990): Scaling relationship between the number of aftershocks and the size of the main shock, Journal of Physics of the Earth, 38, pp. 305-324.
- 10) 壇一男・渡辺基史・佐藤俊明・石井透 (2001): 断層の非一様すべり破壊モデルから算定 される短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデ ル化,日本建築学会構造系論文集, No. 545, pp. 51-62.
- Madariaga, R. (1979): On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity, Journal of Geophysical Research, Vol. 84, No. B5, pp. 2243-2250.

- 12) Brune, J. N. (1970): Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of Geophysical Research, Vol. 75, No. 26, pp.4997-5009.
- 13) Boatwright, J. (1988): The seismic radiation from composite models of faulting, Bulletin of the Seismological Society of America, Vol. 78, No. 2, pp. 489-508.

## 2.1.2

- Dan, K., T. Watanabe and T. Tanaka (1989): A semi-empirical method to synthesize earthquake ground motions based on approximate far-field shear-wave displacement, Journal of Structural and Construction Engineering (Transactions of AIJ), No. 396, pp. 27-36.
- 原子力規制庁 (2018): 平成 29 年度原子力規制庁安全研究, 原子力施設等防災対策等委 託費 (海溝型地震による地震動の評価手法の検討)事業業務報告書.

2.2 プレート間地震のスケーリング則等の検討

2.2.1 プレート間地震の地震動特性の調査

## (1) Crouse (1991)

Crouse (1991) は、日本、中部チリ、ペルー、メキシコ、北西太平洋、およびアラスカのプレート間地震の GMPE (Ground Motion Prediction Equation: 地震動予測式) を作成した。

表2.2.1-1に、Crouse (1991) がプレート間地震のGMPEの作成に用いた観測記録の数、マグ ニチュード、震央距離、および震源深さを示す。

Crouse (1991) がプレート間地震の GMPE に採用した式は、

 $ln(PGA) = p_1 + p_2 M + p_3 M^2 + p_4 ln(R + p_5 exp(p_6 M)) + p_7 h$  (2.2.1-1) である。ここに、*M*はモーメントマグニチュード、*R*(km)はエネルギー中心までの距離、 *h*(km)は震源深さ、pi(i=1~7)は回帰係数である。

表2.2.1-2に、Crouse (1991) によるプレート間地震のGMPEの回帰係数と残差を示す。また、 図2.2.1-1に、Crouse (1991) によるプレート間地震のGMPEと観測記録との比較を示す。 表2.2.1-1 Crouse (1991) がプレート間地震のGMPEの作成に用いた観測記録の数、マグニチ ュード、震央距離、および震源深さ

|                          | No. C      | Comp.      | Magni      | tude       | Epicer<br>Dist | ntral<br>-km | Foca<br>Depth | ıl<br>-km |
|--------------------------|------------|------------|------------|------------|----------------|--------------|---------------|-----------|
| Region                   | <u>PGA</u> | <u>PSV</u> | <u>PGA</u> | <u>PSV</u> | PGA            | <u>PSV</u>   | <u>PGA</u>    | PSV       |
| 1. Japan                 | 635        | 186        | 4.8-8.2    | 5.1-8.2    | 8-866          | 8-462        | 0-238         | 10-238    |
| 2. Central Chile         | 44         | 22         | 7.5-7.8    | 7.5-7.8    | 28-386         | 28-378       | 35-59         | 35-59     |
| 3. Peru                  | 18         | 18         | 5.3-8.1    | 5.3-8.1    | 73-372         | 73-372       | 6-98          | 6-98      |
| <ol><li>Mexico</li></ol> | 78         | 45         | 6.9-8.0    | 7.6-8.0    | 21-469         | 23-469       | 17-31         | 28-31     |
| 5. Pacific N.W.          | 12         | 12         | 6.5-7.1    | 6.5-7.1    | 17-217         | 17-217       | 60            | 60        |
| 6. Alaska                | _4         | 4          | 5.2-7.9    | 5.2-7.9    | 46-135         | 46-135       | 33-52         | 33-52     |
|                          | 791        | 287        |            |            |                |              |               |           |

TABLE 1 Strong-Motion Data Characteristics

表2.2.1-2 Crouse (1991) によるプレート間地震のGMPEの回帰係数と残差

## TABLE 2

Results of PSV Regression Analyses using Equation (4) with  $p_3$ ,  $p_5$ , and  $p_6$  fixed as shown.

|          |                |                |                |                | ·····          |                       |                |                |  |
|----------|----------------|----------------|----------------|----------------|----------------|-----------------------|----------------|----------------|--|
| Period   | p <sub>1</sub> | p <sub>2</sub> | p <sub>3</sub> | p <sub>4</sub> | p <sub>5</sub> | <b>p</b> <sub>6</sub> | p <sub>7</sub> | σ <sup>2</sup> |  |
| 0.1 sec  | 3.26           | 1.12           | 0              | -1.93          | 1.58           | 0.608                 | 0.00566        | 0.544          |  |
| 0.2      | 4.44           | 1.09           | 0              | -1.92          | 1.58           | 0.608                 | 0.00531        | 0.455          |  |
| 0.4      | 3.03           | 1.18           | 0              | -1.69          | 1.58           | 0.608                 | 0.00357        | 0.406          |  |
| 0.6      | 2.86           | 1.41           | 0              | -1.93          | 1.58           | 0.608                 | 0.00257        | 0.477          |  |
| 0.8      | 1.82           | 1.50           | 0              | -1.83          | 1.58           | 0.608                 | 0.00215        | 0.497          |  |
| 1.0      | 1.43           | 1.56           | 0              | -1.83          | 1.58           | 0.608                 | 0.00114        | 0.560          |  |
| 1.5      | -0.433         | 1.50           | 0              | -1.45          | 1.58           | 0.608                 | -0.000843      | 0.542          |  |
| 2.0      | -0.987         | 1.50           | 0              | -1.38          | 1.58           | 0.608                 | -0.00220       | 0.517          |  |
| 3.0      | -1.67          | 1.59           | 0              | -1.41          | 1.58           | 0.608                 | -0.00367       | 0.647          |  |
| 4.0      | -2.20          | 1.67           | 0              | -1.46          | 1.58           | 0.608                 | -0.00439       | 0.656          |  |
| PGA-gals | 11.5           | 0.657          | 0              | -2.09          | 63.7           | 0.128                 | -0.00397       | 0.398          |  |



Figure 26. Comparison of median (solid line) and median ± 1σ (dashed lines) PSV spectra estimated from attenuation equations in Table 2 versus horizontal PSV spectra for following Pacific Northwest accelerogram data: (a) 1949 Olympia, (b) 1949 Seattle, (c) 1965 Olympia, (d) 1965 Seattle, (e) 1965 Tacoma, and (f) 1965 Portland.

図2.2.1-1 Crouse (1991) によるプレート間地震のGMPEと観測記録との比較

(2) Youngs et al. (1997)

Youngs *et al.* (1997) は、モーメントマグニチュードが5以上で、震源距離が10~500kmの プレート間地震とスラブ内地震の最大加速度と加速度応答スペクトルのGMPEを作成した。 図2.2.1-2に、Youngs *et al.* (1997) がプレート間地震のGMPEを作成するのに用いた地震の モーメントマグニチュードと震源距離との関係を示す。

Youngs et al. (1997) が用いたGMPEは、

$$\ln(PGA)_{ij} = C_1^* + C_2 M_i + C_3^* \ln \left[ (r_{rup})_{ij} + e^{C_4^* - \frac{C_2}{C_3^*} M_i} \right] + C_5 Z_{ss} + C_8 Z_T + C_9 H_i + \eta_i + \varepsilon_{ij}$$

$$C_1^* = C_1 + C_3 C_4 - C_3^* C_4^*$$

$$C_3^* = C_3 + C_6 Z_s$$

$$C_4^* = C_4 + C_7 Z_s$$

$$\ln(SA / PGA)_{ij} = B_1 + B_2 (10 - M_i)^3 + B_3 \ln[(r_{rup})_{ij} + e^{\alpha_1 + \alpha_2 M_i}]$$
(2.2.1-2)

である。ここに、iは地震番号、jは観測点番号、PGAは水平2成分の最大加速度の幾何平均(単位はg:重力加速度)、SAは加速度応答スペクトル、Mはモーメントマグニチュード、 $r_{nup}$ は震源距離(単位はkm)、Hは震源深さ(単位はkm)、 $C_1 \sim C_9 \geq B_1 \sim B_3$ および $\alpha_1 \sim \alpha_2$ は回帰係数である。また、プレート間地震のとき $Z_{T}=0$ 、スラブ内地震のとき $Z_{T}=1$ である。

表2.2.1-3に、Youngs et al. (1997) が求めた沈み込み帯の地震のGMPEの回帰係数を示す。 また、図2.2.1-3に、Youngs et al. (1997) によるプレート間地震のGMPEの例を示す。





図2.2.1-2 Youngs *et al.* (1997) がプレート間地震のGMPEを作成するのに用いた地震のモー メントマグニチュードと震源距離との関係

表2.2.1-3 Youngs et al. (1997) が求めた沈み込み帯の地震のGMPEの回帰係数 (Z<sub>T</sub>=0はプレ ート間地震、Z<sub>T</sub>=1はスラブ内地震)

| Attenuation Rela                                                                                                        | tionships for Horizont                                                            | TABL<br>al Response Spectra           | E 2<br>Acceleration (5%         | Damping) for Subd   | uction Earthquakes      |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|---------------------------------|---------------------|-------------------------|
|                                                                                                                         |                                                                                   | For F                                 | lock                            |                     |                         |
| ln(y) =                                                                                                                 | ≈ 0.2418 + 1.414 <b>M</b> + C                                                     | $C_1 + C_2 (10 - \mathbf{M})^3 + C_3$ | $\ln(r_{rup} + 1.7818e^{0.55})$ | (M) + 0.00607 H + 0 | $.3846Z_{T}$            |
| Standa                                                                                                                  | and Deviation = $C_4 + C_5$                                                       | 5 <b>M</b>                            |                                 |                     |                         |
| Period(s)                                                                                                               | <i>C</i> <sub>1</sub>                                                             | C <sub>2</sub>                        | <i>C</i> <sub>3</sub>           | C4*                 | <i>C</i> <sub>5</sub> * |
| PGA                                                                                                                     | 0.0                                                                               | 0.0                                   | -2.552                          | 1.45                | -0.1                    |
| 0.075                                                                                                                   | 1.275                                                                             | 0.0                                   | -2.707                          | 1.45                | -0.1                    |
| 0.1                                                                                                                     | 1.188                                                                             | -0.0011                               | -2.655                          | 1.45                | 0.1                     |
| 0.2                                                                                                                     | 0.722                                                                             | -0.0027                               | -2.528                          | 1.45                | 0.1                     |
| 0.3                                                                                                                     | 0.246                                                                             | -0.0036                               | -2.454                          | 1.45                | -0.1                    |
| 0.4                                                                                                                     | -0.115                                                                            | -0.0043                               | -2.401                          | 1.45                | 0.1                     |
| 0.5                                                                                                                     | -0.400                                                                            | -0.0048                               | -2.360                          | 1.45                | -0.1                    |
| 0.75                                                                                                                    | -1.149                                                                            | -0.0057                               | -2.286                          | 1.45                | -0.1                    |
| 1.0                                                                                                                     | -1.736                                                                            | -0.0064                               | -2.234                          | 1.45                | -0.1                    |
| 1.5                                                                                                                     | -2.634                                                                            | -0.0073                               | -2.160                          | 1.50                | -0.1                    |
| 2.0                                                                                                                     | -3.328                                                                            | -0.0080                               | -2.107                          | 1.55                | -0.1                    |
| 3.0                                                                                                                     | -4.511                                                                            | -0.0089                               | -2.033                          | 1.65                | -0.1                    |
| Stand                                                                                                                   | ard Deviation = $C_4 + C_4$                                                       | 55M                                   | -,                              | ,                   |                         |
| Period(s)                                                                                                               | <i>C</i> 1                                                                        | <i>C</i> <sub>2</sub>                 | <i>C</i> <sub>3</sub>           | C4*                 | C5*                     |
| PGA                                                                                                                     | 0.0                                                                               | 0.0                                   | -2.329                          | 1.45                | -0.1                    |
| 0.075                                                                                                                   | 2.400                                                                             | -0.0019                               | -2.697                          | 1.45                | -0.1                    |
| 0.1                                                                                                                     | 2.516                                                                             | -0.0019                               | -2.697                          | 1.45                | -0.1                    |
| 0.2                                                                                                                     | 1.549                                                                             | -0.0019                               | -2.464                          | 1.45                | -0.1                    |
| 0.3                                                                                                                     | 0.793                                                                             | -0.0020                               | -2.327                          | 1.45                | -0.1                    |
| 0.4                                                                                                                     | 0.144                                                                             | -0.0020                               | -2.230                          | 1.45                | -0.1                    |
| 0.5                                                                                                                     | -0.438                                                                            | -0.0035                               | -2.140                          | 1.45                | -0.1                    |
| 0.75                                                                                                                    | -1.704                                                                            | -0.0048                               | -1.952                          | 1.45                | -0.1                    |
| 1.0                                                                                                                     | -2.870                                                                            | -0.0066                               | -1.785                          | 1.45                | -0.1                    |
| 1.5                                                                                                                     | -5.101                                                                            | -0.0114                               | -1.470                          | 1.50                | -0.1                    |
| 2.0                                                                                                                     | -6.433                                                                            | -0.0164                               | -1.290                          | 1.55                | -0.1                    |
| 3.0                                                                                                                     | -6.672                                                                            | -0.0221                               | -1.347                          | 1.65                | -0.1                    |
| 4.0                                                                                                                     | -7.618                                                                            | -0.0235                               | -1.272                          | 1.65                | -0.1                    |
| y = spectral ac<br>M = moment m<br>$r_{rup} =$ closest dist<br>H = depth (km)<br>$Z_T =$ source type<br>T = source type | celeration in g<br>agnitude<br>tance to rupture (km)<br>e, 0 for interface, 1 for | intraslab                             | ual to the value for <b>N</b>   |                     |                         |
| Stanuaru ueviat                                                                                                         | ion for magnitudes gre                                                            | ater than wio set eq                  |                                 | N 0                 |                         |



▲ Figure 4. Comparison of PGA values predicted using attenuation models listed in Table 2 and the empirical data for interface earthquakes. Numbers in parentheses give the average depth of earthquakes in each data subset. The solid line is the attenuation relationship fit to deep soil site data and the dashed line is the relationship fit to the rock site data.

図2.2.1-3 Youngs et al. (1997) によるプレート間地震のGMPEの例

(3) Hong et al. (2009)

Hong *et al.* (2009) は、メキシコの沈み込み帯で発生した地震記録を用いて、プレート間地 震のGMPEとスラブ内地震のGMPEを求めた。プレート間地震は40地震で、モーメントマグ ニチュードは5~8、震源深さは8~29km、記録数は418である。

Hong et al. (2009) が採用したプレート間地震のGMPEは、下のGarcia (2006) が用いた式である。

 $\log_{10} Y = c_1 + c_2 M_W + c_3 R - c_4 \log_{10}(R + c_5 10^{c_6 M_W}) + c_7 H + \varepsilon$  (2.2.1-3) ここに、 $Y(\text{cm/s}^2)$ は、最大応答スペクトル $A_{\text{maxR}}(T_n)$ 、幾何平均応答スペクトル $A_{\text{GM}}(T_n)$ 、二 乗和平方根応答スペクトル $A_{\text{QM}}(T_n)$ 、または最大加速度PGAで、 $c_i(i=1,...,7)$ は回帰係数、 $M_W$ はモーメントマグニチュード、R(km)は $M_W > 6.0$ のとき断層面までの最短距離で、それ以外 のとき震源距離、H(km)は震源深さ、 $\varepsilon$ は標準偏差が $\sigma$ の残差で、 $\sigma_r$ を地震内の標準偏差、  $\sigma_e$ を地震間の標準偏差として、 $\sigma=(\sigma_r^2+\sigma_e^2)^{0.5}$ である。また、

$$c_4 = 1.82 - 0.16M_w \tag{2.2.1-4}$$

である。

表2.2.1-4にHong *et al.* (2009) が求めたプレート間地震の最大応答スペクトル $A_{maxR}(T_n)$ のGMPEの回帰係数を、表2.2.1-5に幾何平均応答スペクトル $A_{GM}(T_n)$ のGMPEの回帰係数を、表2.2.1-6に二乗和平方根応答スペクトル $A_{QM}(T_n)$ のGMPEの回帰係数を示す。また、図2.2.1-4にHong *et al.* (2009) によるプレート間地震のGMPEの例を示す。

表2.2.1-4 Hong et al. (2009) が求めたプレート間地震の最大応答スペクトルAmaxR(Tn)の

GMPEの回帰係数

|          |        | •     |                       |                       |                       |                       |      |              |      |
|----------|--------|-------|-----------------------|-----------------------|-----------------------|-----------------------|------|--------------|------|
| $T_n(s)$ | $c_1$  | $c_2$ | <i>c</i> <sub>3</sub> | <i>c</i> <sub>5</sub> | <i>C</i> <sub>6</sub> | <i>c</i> <sub>7</sub> | σ    | $\sigma_{r}$ | σ    |
| 0.10     | 3.128  | 0.096 | -0.0045               | 0.0075                | 0.496                 | -0.0025               | 0.21 | 0.30         | 0.37 |
| 0.15     | 2.873  | 0.128 | -0.0040               | 0.00825               | 0.4855                | -0.0022               | 0.18 | 0.30         | 0.35 |
| 0.20     | 2.743  | 0.144 | -0.0035               | 0.009                 | 0.475                 | -0.0051               | 0.17 | 0.29         | 0.34 |
| 0.25     | 2.574  | 0.161 | -0.0030               | 0.007                 | 0.4835                | -0.0066               | 0.16 | 0.28         | 0.33 |
| 0.30     | 2.395  | 0.179 | -0.0027               | 0.005                 | 0.492                 | -0.0070               | 0.16 | 0.28         | 0.33 |
| 0.40     | 1.961  | 0.218 | -0.0021               | 0.004                 | 0.504                 | -0.0048               | 0.18 | 0.29         | 0.34 |
| 0.50     | 1.655  | 0.247 | -0.0016               | 0.003                 | 0.515                 | -0.0041               | 0.17 | 0.29         | 0.33 |
| 0.60     | 1.403  | 0.270 | -0.0013               | 0.002                 | 0,527                 | -0.0041               | 0.17 | 0.29         | 0.33 |
| 0.70     | 1.168  | 0.290 | -0.0011               | 0.002                 | 0.512                 | -0.0034               | 0.16 | 0.29         | 0.33 |
| 0.80     | 1.118  | 0.287 | -0.0008               | 0.002                 | 0.504                 | -0.0044               | 0.15 | 0.28         | 0.32 |
| 0.90     | 0.986  | 0.299 | -0.0007               | 0.002                 | 0,507                 | -0.0050               | 0.15 | 0.28         | 0.32 |
| 1.00     | 0.828  | 0.310 | -0.0006               | 0.002                 | 0.509                 | -0.0045               | 0.15 | 0.28         | 0.32 |
| 1.10     | 0.735  | 0.313 | -0.0005               | 0.002                 | 0.507                 | -0.0045               | 0.16 | 0.27         | 0.32 |
| 1.20     | 0.629  | 0.323 | -0.0004               | 0.002                 | 0.504                 | -0.0052               | 0.16 | 0.27         | 0.31 |
| 1.30     | 0.528  | 0.332 | -0.0004               | 0.002                 | 0.501                 | -0.0059               | 0.16 | 0.28         | 0.32 |
| 1.40     | 0.413  | 0.340 | -0.0004               | 0.002                 | 0.498                 | -0.0054               | 0.16 | 0.27         | 0.32 |
| 1.50     | 0.289  | 0.349 | -0.0004               | 0.002                 | 0.495                 | -0.0045               | 0.17 | 0.27         | 0.32 |
| 1.60     | 0.158  | 0.365 | -0.0004               | 0.002                 | 0.494                 | -0.0047               | 0.17 | 0.26         | 0.31 |
| 1.70     | 0.031  | 0.383 | -0.0004               | 0.002                 | 0.493                 | -0.0055               | 0.16 | 0.26         | 0.30 |
| 1.80     | -0.078 | 0.395 | -0.0004               | 0.002                 | 0.492                 | -0.0059               | 0.16 | 0.25         | 0.30 |
| 1.90     | -0.142 | 0.398 | -0.0003               | 0.002                 | 0.49                  | -0.0059               | 0.17 | 0.25         | 0.30 |
| 2.00     | -0.206 | 0.400 | -0.0003               | 0.002                 | 0.489                 | -0.0056               | 0.17 | 0.24         | 0.30 |
| 2.20     | -0.386 | 0.420 | -0.0004               | 0.002                 | 0,4892                | -0.0057               | 0.18 | 0.24         | 0.29 |
| 2.40     | -0.527 | 0.433 | -0.0004               | 0.002                 | 0.4894                | -0.0059               | 0.18 | 0.24         | 0.30 |
| 2.60     | -0.604 | 0.436 | -0.0004               | 0.002                 | 0.4896                | -0.0060               | 0.20 | 0.24         | 0.31 |
| 2.80     | -0.692 | 0.440 | -0.0004               | 0.002                 | 0.4898                | -0.0057               | 0.21 | 0.24         | 0.32 |
| 3.00     | -0.802 | 0.445 | -0.0004               | 0.002                 | 0.49                  | -0.0046               | 0.22 | 0.24         | 0.33 |
| PGA      | 2.594  | 0.112 | -0.0037               | 0.0075                | 0.474                 | -0.0033               | 0.20 | 0.27         | 0.33 |

Table 3(a) Attenuation coefficients for the maximum resulting response (i.e.,  $A_{maxR}(T_n)$ ) considering the records of the interplate earthquakes ( $c_4$  is defined in Eq. (9))

表2.2.1-5 Hong et al. (2009) が求めたプレート間地震の幾何平均応答スペクトルAGM(Tn)の

GMPEの回帰係数

| T, (S) | <i>c</i> <sub>1</sub> | <i>c</i> <sub>2</sub> | C,      | c <sub>5</sub> | c <sub>6</sub> | <i>c</i> , | σ    | <i>o</i> <sub>r</sub> | σ    | σ    |
|--------|-----------------------|-----------------------|---------|----------------|----------------|------------|------|-----------------------|------|------|
| 0.10   | 3.040                 | 0.091                 | -0.0045 | 0.0075         | 0.496          | -0.0020    | 0.22 | 0.30                  | 0.11 | 0.39 |
| 0.15   | 2.769                 | 0.126                 | -0.0040 | 0.00825        | 0.4855         | -0.0017    | 0.19 | 0.30                  | 0.11 | 0.37 |
| 0.20   | 2.609                 | 0.144                 | -0.0034 | 0.009          | 0.475          | -0.0041    | 0.18 | 0.29                  | 0.12 | 0.36 |
| 0.25   | 2.419                 | 0.161                 | -0.0030 | 0.007          | 0.4835         | -0.0047    | 0.17 | 0.28                  | 0.12 | 0.35 |
| 0.30   | 2.256                 | 0.178                 | -0.0026 | 0.005          | 0.492          | -0.0058    | 0.17 | 0.29                  | 0.12 | 0.36 |
| 0.40   | 1.841                 | 0.212                 | -0.0020 | 0.004          | 0.504          | -0.0036    | 0.18 | 0.29                  | 0.13 | 0.37 |
| 0.50   | 1.542                 | 0.238                 | -0.0015 | 0.003          | 0.515          | -0.0030    | 0.17 | 0.29                  | 0.13 | 0.36 |
| 0.60   | 1.288                 | 0.262                 | -0.0012 | 0.002          | 0.527          | -0.0034    | 0.18 | 0.29                  | 0.14 | 0.37 |
| 0.70   | 1.058                 | 0.282                 | -0.0009 | 0.002          | 0.512          | -0.0029    | 0.17 | 0.29                  | 0.14 | 0.36 |
| 0.80   | 1.003                 | 0.278                 | -0.0007 | 0.002          | 0.504          | -0.0042    | 0.16 | 0.29                  | 0.15 | 0.36 |
| 0.90   | 0.866                 | 0.291                 | -0.0006 | 0.002          | 0.507          | -0.0048    | 0.16 | 0.29                  | 0.15 | 0.36 |
| 1.00   | 0.734                 | 0.301                 | -0.0005 | 0.002          | 0.509          | -0.0050    | 0.16 | 0.28                  | 0.15 | 0.36 |
| 1.10   | 0.616                 | 0.308                 | -0.0004 | 0.002          | 0.507          | -0.0047    | 0.16 | 0.28                  | 0.15 | 0.36 |
| 1.20   | 0.526                 | 0.314                 | -0.0003 | 0.002          | 0.504          | -0.0052    | 0.16 | 0.28                  | 0.15 | 0.35 |
| 1.30   | 0.424                 | 0.323                 | -0.0003 | 0.002          | 0.501          | -0.0058    | 0.16 | 0.28                  | 0.15 | 0.36 |
| 1.40   | 0.335                 | 0.328                 | -0.0002 | 0.002          | 0.498          | -0.0057    | 0.17 | 0.28                  | 0.15 | 0.35 |
| 1.50   | 0.214                 | 0.336                 | -0.0002 | 0.002          | 0.495          | -0.0049    | 0.17 | 0.27                  | 0.15 | 0.35 |
| 1.60   | 0.101                 | 0.349                 | -0.0002 | 0.002          | 0.494          | -0.0054    | 0.17 | 0.27                  | 0.15 | 0.35 |
| 1.70   | -0.028                | 0.366                 | -0.0002 | 0.002          | 0.493          | -0.0056    | 0.17 | 0.26                  | 0.15 | 0.34 |
| 1.80   | -0.131                | 0.377                 | -0.0002 | 0.002          | 0.492          | -0.0059    | 0.16 | 0.26                  | 0.15 | 0.34 |
| 1.90   | -0.219                | 0.384                 | -0.0002 | 0.002          | 0.49           | -0.0057    | 0.17 | 0.25                  | 0.15 | 0.34 |
| 2.00   | -0.314                | 0.391                 | -0.0002 | 0.002          | 0.489          | -0.0052    | 0.17 | 0.25                  | 0.14 | 0.33 |
| 2.20   | -0.483                | 0.407                 | -0.0002 | 0.002          | 0.4892         | -0.0053    | 0.18 | 0.24                  | 0.15 | 0.33 |
| 2.40   | -0.610                | 0.419                 | -0.0003 | 0.002          | 0.4894         | -0.0055    | 0.19 | 0.24                  | 0.14 | 0.34 |
| 2.60   | -0.688                | 0.424                 | -0.0003 | 0.002          | 0.4896         | -0.0059    | 0.20 | 0.24                  | 0.14 | 0.34 |
| 2.80   | -0.773                | 0.428                 | -0.0003 | 0.002          | 0.4898         | -0.0058    | 0.20 | 0.24                  | 0.14 | 0.35 |
| 3.00   | -0.869                | 0.432                 | -0.0003 | 0.002          | 0.49           | -0.0049    | 0.21 | 0.25                  | 0.14 | 0.35 |
| PGA    | 2.545                 | 0.108                 | -0.0037 | 0.0075         | 0.474          | -0.0024    | 0.20 | 0.27                  | 0.10 | 0.35 |

Table 4(a) Attenuation coefficients for the geometric mean (i.e.,  $A_{GM}(T_{s})$ ) considering the records of the interplate earthquakes ( $c_{4}$  is defined in Eq. (9))

表2.2.1-6 Hong et al. (2009) が求めたプレート間地震の二乗和平方根応答スペクトル

AQM(Tn)のGMPEの回帰係数

Table 5(a) Attenuation coefficients for the quadratic mean (i.e.,  $A_{QM}(T_n)$ ) considering the records of the interplate earthquakes ( $c_4$  is defined in Eq. (9))

| $T_{n}(s)$ | <i>c</i> 1 | <i>c</i> <sub>2</sub> | <i>C</i> <sub>3</sub> | c,     | <i>C</i> <sub>6</sub> | <i>c</i> <sub>7</sub> | σ    | σ    | σ    |
|------------|------------|-----------------------|-----------------------|--------|-----------------------|-----------------------|------|------|------|
| 0.10       | 3.027      | 0.098                 | -0.0045               | 0.0075 | 0.496                 | -0.0025               | 0.21 | 0.29 | 0.36 |
| 0.30       | 2.259      | 0.184                 | -0.0026               | 0.005  | 0.492                 | -0.0067               | 0.17 | 0.28 | 0.33 |
| 1.00       | 0.735      | 0.307                 | -0.0005               | 0.002  | 0.509                 | -0.0048               | 0.16 | 0.27 | 0.31 |
| 3.00       | -0.890     | 0.440                 | -0.0003               | 0.002  | 0.49                  | -0.0046               | 0.21 | 0.24 | 0.32 |



Fig. 10 Comparison of the attenuation relations

図2.2.1-4 Hong et al. (2009) によるプレート間地震のGMPEの例

(4) Arroyo *et al.* (2010)

Arroyo et al. (2010) は、Garcia et al. (2009) によるメキシコのプレート間地震の記録 (1985 年~2004年に発生したモーメントマグニチュード5.0以上の地震による記録) を用いて、最 大加速度と加速度応答スペクトルのGMPEを作成した。

図2.2.1-5に、Arroyo *et al.* (2010) がメキシコのプレート間地震のGMPEを作成するのに用いた地震の震央 (○印) と観測点 (▲印) を、図2.2.1-6に、地震のモーメントマグニチュードと断層最短距離を示す。

Arroyo et al. (2010) が用いたGMPEは、

$$SA(T) = \alpha_1(T) + \alpha_2(T)M_W + \alpha_3(T)\ln\left[\frac{E_1(\alpha_4(T)R) - E_1(\alpha_4(T)\sqrt{R^2 + r_0^2})}{r_0^2}\right]$$
(2.2.1-5)

である。ここに、 $\alpha_i$  (T)は回帰係数、 $M_W$ はモーメントマグニチュード、Rは断層面までの最短距離、 $r_0$ は

$$r_0^2 = 1.4447 \times 10^{-5} e^{2.3026M_W} \tag{2.2.1-6}$$

である。

表2.2.1-7に、Arroyo *et al.* (2010) によるメキシコのプレート間地震のGMPEの回帰係数を 示す。また、図2.2.1-7に、Arroyo *et al.* (2010) によるメキシコのプレート間地震のGMPEの 例を示す。



図2.2.1-5 Arroyo *et al.* (2010) がメキシコのプレート間地震のGMPEを作成するのに用いた 地震の震央 (○印) と観測点 (▲印)



Fig. 2 Magnitude versus distance plot summarizing the data used in this study. *Symbols* indicate the type of data available. *Circles* accelerograms, *open diamonds* broadband velocity data

図2.2.1-6 Arroyo *et al.* (2010) がメキシコのプレート間地震のGMPEを作成するのに用いた 地震のモーメントマグニチュードと断層最短距離

表2.2.1-7 Arroyo et al. (2010) によるメキシコのプレート間地震のGMPEの回帰係数

| Table 2 Regression     | T(s)  | $\alpha_1(T)$ | $q_2(T)$      | $\alpha_2(T)$ | $\alpha_{4}(T)$ | V -    | b       | σ      | σ.      | σ.     |
|------------------------|-------|---------------|---------------|---------------|-----------------|--------|---------|--------|---------|--------|
| parameters of the      | DCA   | 2 4962        | 0.0202        | 0.5061        | 0.0150          | 0.2850 | 0.0191  | 0.7500 | 0.4654  | 0.5992 |
| proposed strong        | 0.040 | 3 8123        | 0.8636        | 0.5578        | 0.0150          | 0.3850 | -0.0254 | 0.7500 | 0.40.04 | 0.5882 |
| ground-motion model    | 0.045 | 4 0440        | 0.8480        | 0.5645        | 0.0150          | 0.3874 | -0.0254 | 0.8420 | 0.5246  | 0.6507 |
|                        | 0.050 | 4 1429        | 0.8580        | 0.5725        | 0.0150          | 0.3731 | -0.0285 | 0.8512 | 0.5199  | 0.6740 |
|                        | 0.055 | 4.3092        | 0.8424        | 0.5765        | 0.0150          | 0.3746 | 0.0004  | 0.8583 | 0.5253  | 0.6788 |
|                        | 0.060 | 4.3770        | 0.8458        | 0.5798        | 0.0150          | 0.4192 | -0.0120 | 0.8591 | 0.5563  | 0.6547 |
|                        | 0.065 | 4.5185        | 0.8273        | 0.5796        | 0.0150          | 0.3888 | -0.0226 | 0.8452 | 0.5270  | 0.6607 |
|                        | 0.070 | 4.4591        | 0.8394        | 0.5762        | 0.0150          | 0.3872 | -0.0346 | 0.8423 | 0.5241  | 0.6594 |
|                        | 0.075 | 4.5939        | 0.8313        | 0.5804        | 0.0150          | 0.3775 | -0.0241 | 0.8473 | 0.5205  | 0.6685 |
|                        | 0.080 | 4.4832        | 0.8541        | 0.5792        | 0.0150          | 0.3737 | -0.0241 | 0.8421 | 0.5148  | 0.6664 |
|                        | 0.085 | 4.5062        | 0.8481        | 0.5771        | 0.0150          | 0.3757 | -0.0138 | 0.8344 | 0.5115  | 0.6593 |
|                        | 0.090 | 4.4648        | 0.8536        | 0.5742        | 0.0150          | 0.4031 | -0.0248 | 0.8304 | 0.5273  | 0.6415 |
|                        | 0.095 | 4.3940        | 0.8580        | 0.5712        | 0.0150          | 0.4097 | 0.0040  | 0.8294 | 0.5309  | 0.6373 |
|                        | 0.100 | 4.3391        | 0.8620        | 0.5666        | 0.0150          | 0.3841 | -0.0045 | 0.8254 | 0.5116  | 0.6477 |
|                        | 0.120 | 4.0505        | 0.8933        | 0.5546        | 0.0150          | 0.3589 | -0.0202 | 0.7960 | 0.4768  | 0.6374 |
|                        | 0.140 | 3.5599        | 0.9379        | 0.5350        | 0.0150          | 0.3528 | -0.0293 | 0.7828 | 0.4650  | 0.6298 |
|                        | 0.160 | 3.1311        | 0.9736        | 0.5175        | 0.0150          | 0.3324 | -0.0246 | 0.7845 | 0.4523  | 0.6409 |
|                        | 0.180 | 2.7012        | 1.0030        | 0.4985        | 0.0150          | 0.3291 | -0.0196 | 0.7717 | 0.4427  | 0.6321 |
|                        | 0.200 | 2.5485        | 0.9988        | 0.4850        | 0.0150          | 0.3439 | -0.0250 | 0.7551 | 0.4428  | 0.6116 |
|                        | 0.220 | 2.2699        | 1.0125        | 0.4710        | 0.0150          | 0.3240 | -0.0205 | 0.7431 | 0.4229  | 0.6109 |
|                        | 0.240 | 1.9130        | 1.0450        | 0.4591        | 0.0150          | 0.3285 | -0.0246 | 0.7369 | 0.4223  | 0.6039 |
|                        | 0.260 | 1./181        | 1.0418        | 0.4450        | 0.0150          | 0.3595 | -0.0220 | 0.7264 | 0.4356  | 0.5814 |
|                        | 0.280 | 1.4039        | 1.0782        | 0.4391        | 0.0150          | 0.3381 | -0.0260 | 0.7209 | 0.4191  | 0.5865 |
|                        | 0.300 | 1.1080        | 1.1038        | 0.4287        | 0.0150          | 0.3537 | -0.0368 | 0.7198 | 0.4281  | 0.5787 |
|                        | 0.320 | 0.8210        | 1.0868        | 0.4208        | 0.0150          | 0.3702 | -0.0345 | 0.7206 | 0.4384  | 0.5719 |
|                        | 0.340 | 0.0519        | 1.1000        | 0.4142        | 0.0150          | 0.3423 | -0.0383 | 0.7264 | 0.42.30 | 0.5808 |
|                        | 0.300 | 0.4905        | 1 1 288       | 0.3030        | 0.0150          | 0.3591 | -0.0363 | 0.7202 | 0.4.10  | 0.5800 |
|                        | 0.380 | 0.2735        | 1.1500        | 0.3930        | 0.0130          | 0.3075 | -0.0204 | 0.7252 | 0.4419  | 0.5653 |
|                        | 0.450 | 0.0990        | 1.1662        | 0.4007        | 0.0117          | 0.3466 | -0.0267 | 0.7216 | 0.4249  | 0.5833 |
|                        | 0.500 | -0.0379       | 1.2206        | 0.4523        | 0.0084          | 0.3519 | -0.0338 | 0.7189 | 0.4265  | 0.5788 |
|                        | 0.550 | -0.3512       | 1.2445        | 0.4493        | 0.0076          | 0.3529 | -0.0298 | 0.7095 | 0.4215  | 0.5707 |
|                        | 0.600 | -0.6897       | 1.2522        | 0.4421        | 0.0067          | 0.3691 | -0.0127 | 0.7084 | 0.4304  | 0.5627 |
|                        | 0.650 | -0.6673       | 1.2995        | 0.4785        | 0.0051          | 0.3361 | -0.0192 | 0.7065 | 0.4096  | 0.5756 |
|                        | 0.700 | -0.7154       | 1.3263        | 0.5068        | 0.0034          | 0.3200 | -0.0243 | 0.7070 | 0.3999  | 0.5830 |
|                        | 0.750 | -0.7015       | 1.2994        | 0.5056        | 0.0029          | 0.3364 | -0.0122 | 0.7092 | 0.4113  | 0.5778 |
|                        | 0.800 | -0.8581       | 1.3205        | 0.5103        | 0.0023          | 0.3164 | -0.0337 | 0.6974 | 0.3923  | 0.5766 |
|                        | 0.850 | -0.9712       | 1.3375        | 0.5201        | 0.0018          | 0.3435 | -0.0244 | 0.6906 | 0.4047  | 0.5596 |
|                        | 0.900 | -1.0970       | 1.3532        | 0.5278        | 0.0012          | 0.3306 | -0.0275 | 0.6923 | 0.3980  | 0.5665 |
|                        | 0.950 | -1.2346       | 1.3687        | 0.5345        | 0.0007          | 0.3264 | -0.0306 | 0.6863 | 0.3921  | 0.5632 |
|                        | 1.000 | -1.2600       | 1.3652        | 0.5426        | 0.0001          | 0.3194 | -0.0183 | 0.6798 | 0.3842  | 0.5608 |
|                        | 1.100 | -1.7687       | 1.4146        | 0.5342        | 0.0001          | 0.3336 | -0.0229 | 0.6701 | 0.3871  | 0.5471 |
|                        | 1.200 | -2.1339       | 1.4417        | 0.5263        | 0.0001          | 0.3445 | -0.0232 | 0.6697 | 0.3931  | 0.5422 |
|                        | 1.300 | -2.4122       | 1.4577        | 0.5201        | 0.0001          | 0.3355 | -0.0231 | 0.6801 | 0.3939  | 0.5544 |
|                        | 1.400 | -2.5442       | 1.4618        | 0.5242        | 0.0001          | 0.3759 | -0.0039 | 0.6763 | 0.4146  | 0.5343 |
|                        | 1.500 | -2.8509       | 1.4920        | 0.5220        | 0.0001          | 0.3780 | -0.0122 | 0.6765 | 0.4159  | 0.5335 |
|                        | 1.600 | -3.0887       | 1.5157        | 0.5215        | 0.0001          | 0.3937 | -0.0204 | 0.6674 | 0.4187  | 0.5197 |
|                        | 1.700 | -3.4884       | 1.5750        | 0.5261        | 0.0001          | 0.4130 | -0.0208 | 0.6480 | 0.4164  | 0.4965 |
|                        | 1.800 | -3.7195       | 1.5966        | 0.5255        | 0.0001          | 0.3967 | -0.0196 | 0.6327 | 0.3985  | 0.4914 |
| <b>T</b> 11 A <i>L</i> | _     |               |               |               |                 |        |         |        |         |        |
| Table 2 (continued)    | T (s) | $\alpha_1(T)$ | $\alpha_2(T)$ | $\alpha_3(T)$ | $\alpha_4(T)$   | Ye     | Ь       | σ      | o e     | σ,     |
|                        | 1.900 | -4.0141       | 1.6162        | 0.5187        | 0.0001          | 0.4248 | -0.0107 | 0.6231 | 0.4062  | 0.4726 |
|                        | 2.000 | -4.1908       | 1.6314        | 0.5199        | 0.0001          | 0.3967 | -0.0133 | 0.6078 | 0.3828  | 0.4721 |
|                        | 2.500 | -5.1104       | 1.7269        | 0.5277        | 0.0001          | 0.4302 | -0.0192 | 0.6001 | 0.3936  | 0.4530 |
|                        | 3.000 | -5.5926       | 1.7515        | 0.5298        | 0.0001          | 0.4735 | -0.0319 | 0.6029 | 0.4148  | 0.4375 |
|                        | 3.500 | -6.1202       | 1.8077        | 0.5402        | 0.0001          | 0.4848 | -0.0277 | 0.6137 | 0.4273  | 0.4405 |
|                        | 4.000 | -6.5318       | 1.8353        | 0.5394        | 0.0001          | 0.5020 | -0.0368 | 0.6201 | 0.4393  | 0.4376 |
|                        | 4.500 | -6.9744       | 1.8685        | 0.5328        | 0.0001          | 0.5085 | -0.0539 | 0.6419 | 0.4577  | 0.4500 |
|                        | 5.000 | -7.1389       | 1.8721        | 0.5376        | 0.0001          | 0.5592 | -0.0534 | 0.6701 | 0.5011  | 0.4449 |

Fig. 10 Observed (open circles) and estimated SA (curves; same symbols as in Fig. 9) as a function of distance for the same periods as in Fig. 9 and magnitudes  $M_w$ 6.0 and 8.0



図2.2.1-7 Arroyo et al. (2010) によるメキシコのプレート間地震のGMPEの例

(5) Contreras and Boroschek (2012)

Contreras and Boroschek (2012) は、2010年チリMaule地震 (Mw 8.8) を含む1985年~2010 年にチリで発生したプレート間地震のGMPEを作成した。

図2.2.1-8に、Contreras and Boroschek (2012) がチリのプレート間地震のGMPEの作成に用 いた地震の震央 (赤丸印) と観測点 (▲印) を、図2.2.1-9に、観測記録のモーメントマグニ チュードと断層最短距離を示す。

Contreras and Boroschek (2012) が用いたGMPEは、

 $\log_{10}(Y) = C_1 + C_2 M_W + C_3 H + C_4 R - g \log_{10}(R) + C_5 Z$ (2.2.1-7)

である。ここに、Yは最大加速度 (PGA) もしくは加速度応答スペクトル (SA) である。いず れも水平2成分の幾何平均で単位は重力加速度である。 $M_W$ はモーメントマグニチュード、H は震源深さ (単位はkm)、Rは $R = \sqrt{R_{rup}^2 + \Delta^2}$ で $R_{rup}$ は断層面までの最短距離 (単位はkm)、 $\Delta$ は 震源近傍における頭打ちの項で $\Delta = C_6 10^{C7M_W}$ 、gは幾何減衰項で $g = C_8 + C_9 M_W$ である。岩盤では Z=0、地盤ではZ=1である。 $C_i$  (*i*=1,...,9) は回帰係数である。

表2.2.1-8に、Contreras and Boroschek (2012) によるチリのプレート間地震のGMPEの回帰 係数を、図2.2.1-10に、チリのプレート間地震のGMPEと観測記録の加速度応答スペクトルの 比較を示す。



Figure 2.1. Map of north and central Chile showing epicenters (listed circles) of earthquakes used in this study. Red circles correspond to main events and orange circles correspond to aftershocks. The circles size is proportional to the Magnitud. Grey triangles represent the strong motion stations.

図2.2.1-8 Contreras and Boroschek (2012) がチリのプレート間地震のGMPEの作成に用いた 地震の震央 (赤丸印) と観測点 (▲印)



Figure 2.2. Distribution of the data for interface earthquakes used in this study.

図2.2.1-9 Contreras and Boroschek (2012) がチリのプレート間地震のGMPEの作成に用いた 観測記録のモーメントマグニチュードと断層最短距離

| Period (sec) | C1      | C2     | C3     | C4      | C <sub>5</sub> | σ      |
|--------------|---------|--------|--------|---------|----------------|--------|
| PGA          | -1.8559 | 0.2549 | 0.0111 | -0.0013 | 0.3061         | 0.2137 |
| 0.04         | -1.7342 | 0.2567 | 0.0111 | -0.0016 | 0.2865         | 0.2311 |
| 0.10         | -1.4240 | 0.2597 | 0.0081 | -0.0019 | 0.2766         | 0.2557 |
| 0.15         | -1.1244 | 0.2373 | 0.0062 | -0.0017 | 0.2811         | 0.2594 |
| 0.20         | -1.0028 | 0.2375 | 0.0023 | -0.0014 | 0.2699         | 0.2469 |
| 0.25         | -1.0232 | 0.2405 | 0.0014 | -0.0011 | 0.2690         | 0.2349 |
| 0.30         | -1.2836 | 0.2519 | 0.0044 | -0.0009 | 0.2977         | 0.2434 |
| 0.35         | -1.2239 | 0.2430 | 0.0031 | -0.0007 | 0.3097         | 0.2495 |
| 0.40         | -1.4161 | 0.2568 | 0.0049 | -0.0008 | 0.3150         | 0.2414 |
| 0.45         | -1.8610 | 0.2943 | 0.0084 | -0.0008 | 0.3093         | 0.2322 |
| 0.50         | -2.1228 | 0.3208 | 0.0094 | -0.0008 | 0.2834         | 0.2272 |
| 0.60         | -2.7134 | 0.3668 | 0.0141 | -0.0008 | 0.2824         | 0.2174 |
| 0.70         | -2.9001 | 0.3795 | 0.0152 | -0.0009 | 0.2969         | 0.2221 |
| 0.80         | -3.0909 | 0.4005 | 0.0147 | -0.0009 | 0.2834         | 0.2279 |
| 0.90         | -3.1439 | 0.3952 | 0.0163 | -0.0010 | 0.2730         | 0.2260 |
| 1.00         | -3.3352 | 0.4013 | 0.0186 | -0.0010 | 0.2839         | 0.2351 |
| 1.10         | -3.5092 | 0.4093 | 0.0202 | -0.0011 | 0.2849         | 0.2379 |
| 1.20         | -3.5599 | 0.4079 | 0.0211 | -0.0011 | 0.2700         | 0.2374 |
| 1.30         | -3.6365 | 0.4090 | 0.0218 | -0.0010 | 0.2631         | 0.2429 |
| 1.40         | -3.7061 | 0.4096 | 0.0225 | -0.0010 | 0.2555         | 0.2425 |
| 1.50         | -3.7750 | 0.4089 | 0.0228 | -0.0010 | 0.2528         | 0.2459 |
| 1.60         | -3.7924 | 0.4047 | 0.0226 | -0.0009 | 0.2406         | 0.2483 |
| 1.70         | -3.8670 | 0.4045 | 0.0234 | -0.0008 | 0.2355         | 0.2498 |
| 2.00         | -3.9051 | 0.4079 | 0.0215 | -0.0008 | 0.2057         | 0.2592 |

表2.2.1-8 Contreras and Boroschek (2012) によるチリのプレート間地震のGMPEの回帰係数

The coefficients associated to the near-source saturation term were fixed for all periods as  $C_6 = 0.0734$ and  $C_7 = 0.3552$ . The coefficients associated to the geometrical spreading term were fixed for all periods as  $C_8 = 1.5149$  and  $C_9 = -0.103$ .



Figure 4.5. Comparison of observed response spectra versus predicted response spectra.

図2.2.1-10 Contreras and Boroschek (2012) によるチリのプレート間地震のGMPEと観測記 録の加速度応答スペクトルの比較

(6) Rodriguez-Perez (2014)

Rodriguez-Perez (2014) は、メキシコのプレート間地震 (モーメントマグニチュード5.1~ 8.0、震源深さ6~20km、8地震) と正断層で起ったスラブ内地震 (モーメントマグニチュー ド5.0~7.2、震源深さ32.2~198km、25地震) の観測記録を用いて、GMPEを作成した。

図2.2.1-11に、Rodriguez-Perez (2014) がメキシコのプレート間地震のGMPEの作成に用いた震央位置と観測点を、図2.2.1-12に地震記録のマグニチュードと距離を示す。

Rodriguez-Perez (2014) が採用した式はGarcia et al. (2005) による下式である。

 $\log Y = c_1 + c_2 M_W + c_3 H + c_4 R - c_5 \log R + \sigma$ (2.2.1-8)

ここに、Yは最大速度 (cm/s)、最大加速度 (cm/s<sup>2</sup>)、または擬似加速度応答スペクトル (cm/s<sup>2</sup>) で水平2成分の二乗和平方根である。Hは震源深さ (km)、Rは断層面までの平均距離 (km) で  $R=(D^{2}_{fault}+\Delta^{2})^{0.5}$ で定義される (Atkinson and Boore, 2003)。 $M_{W} \geq 6.5$ のとき、 $D_{fault}$ は断層面ま での最短距離、それ以外のとき震源距離である。 $\Delta$ はAtkinson and Boore (2003) により定義 された震源近傍における頭打ち項で、 $\Delta=0.00750\times10^{0.507}M_{W}$ である。また、 $c_{i}$ は回帰係数、 $\sigma$ は残差の標準偏差で、地震内の偏差を $\sigma_{r}$ 、地震間の偏差を $\sigma_{e}$ とすると $\sigma=(\sigma_{r}^{2}+\sigma_{e}^{2})^{0.5}$ と表され る。

表2.2.1-9に、Rodriguez-Perez (2014) が求めたメキシコのプレート間地震のGMPEの回帰係 数を示す。また、図2.2.1-13に、Rodriguez-Perez (2014) によるメキシコのプレート間地震の GMPEの例 (破線はArroyo *et al.*, 2010によるGMPE) を示す。



図2.2.1-11 Rodriguez-Perez (2014) がメキシコのプレート間地震のGMPEの作成に用いた震 央位置と観測点



Figure 2. Magnitude-distance data distribution for near-trench high-frequency-depleted interplate events in central Mexico. Open circles, acceleration records; diamonds, broadband velocity records.

図2.2.1-12 Rodriguez-Perez (2014) がメキシコのプレート間地震のGMPEの作成に用いた地
 震記録のマグニチュードと距離
表2.2.1-9 Rodriguez-Perez (2014) が求めたメキシコのプレート間地震のGMPEの回帰係数

| f (Hz.) | <b>c</b> 1 | c2     | <i>c</i> <sub>3</sub> | C4      | c3     | σ    | $\sigma_t$ | $\sigma_{\rm e}$ |
|---------|------------|--------|-----------------------|---------|--------|------|------------|------------------|
| 0.20    | -2.7903    | 0.5844 | -0.0050               | 0.0008  | 0.7850 | 0.34 | 0.32       | 0.11             |
| 0.25    | -2.9584    | 0.6062 | 0.0022                | 0.0006  | 0.7369 | 0.32 | 0.30       | 0.10             |
| 0.33    | -2.9877    | 0.5947 | 0.0091                | 0.0006  | 0.6287 | 0.33 | 0.31       | 0.10             |
| 0.50    | -2.8916    | 0.5682 | 0.0156                | 0.0006  | 0.5917 | 0.39 | 0.37       | 0.12             |
| 0.67    | -2.6288    | 0.5439 | 0.0205                | 0.0005  | 0.5893 | 0.43 | 0.41       | 0.14             |
| 1.00    | -2.4817    | 0.5389 | 0.0243                | 0.0002  | 0.5669 | 0.43 | 0.41       | 0.14             |
| 1.33    | -2.1798    | 0.5307 | 0.0265                | -0.0001 | 0.5815 | 0.42 | 0.40       | 0.13             |
| 2.00    | -1.6906    | 0.5171 | 0.0270                | -0.0002 | 0.7313 | 0.43 | 0.42       | 0.14             |
| 2.50    | -1.1774    | 0.5092 | 0.0263                | -0.0001 | 0.9831 | 0.43 | 0.41       | 0.14             |
| 3.33    | -0.9550    | 0.5087 | 0.0243                | -0.0001 | 1.1475 | 0.42 | 0.40       | 0.13             |
| 5.00    | -0.7533    | 0.5129 | 0.0211                | -0.0003 | 1,2962 | 0.42 | 0.40       | 0.13             |
| 10.00   | -0.6695    | 0.5094 | 0.0178                | -0.0005 | 1.3684 | 0.42 | 0.40       | 0.13             |
| 13.33   | -0.6695    | 0.5019 | 0.0154                | -0.0006 | 1.3555 | 0.42 | 0.40       | 0.13             |
| 20.00   | -0.9193    | 0.4987 | 0.0153                | -0.0006 | 1.2683 | 0.42 | 0.40       | 0.13             |
| 25.00   | -1.2115    | 0.5050 | 0.0161                | -0.0005 | 1.2079 | 0.41 | 0.39       | 0.13             |
| PGA     | -1.2324    | 0.5016 | 0.0141                | -0.0006 | 0.9432 | 0.37 | 0.35       | 0.12             |
| PGV     | -3.3589    | 0.5817 | 0.0000                | -0.0005 | 0.3860 | 0.26 | 0.24       | 0.08             |

| Table 3                                                                |           |         |        |
|------------------------------------------------------------------------|-----------|---------|--------|
| Regression Coefficients of the Ground-Motion Relations for Near-Trench | Events in | Central | Mexico |

The regression equation is  $\log Y = c_1 + c_2 M_w + c_3 H + c_4 R - c_5 \log R + \sigma$ .



Figure 12. Predicted PSA response spectra for near-trench earthquakes of  $M_w$  6.0 and 8.0 with H = 15 km, at the distances of (a) 50, (b) 100, (c) 200, and (d) 400 km. Dashed lines show predicted curves from Arroyo *et al.* (2010) for interplate events in central Mexico.

図2.2.1-13 Rodriguez-Perez (2014) によるメキシコのプレート間地震のGMPEの例 (破線は Arroyo *et al.*, 2010によるGMPE)

(7) Haendel et al. (2014)

Haendel et al. (2014) は、チリのプレート間地震とスラブ内地震の観測記録を用いてGMPE を作成した。

図2.2.1-14に、Haendel *et al.* (2014) がチリのプレート間地震とスラブ内地震のGMPEを作成するために用いた観測記録のモーメントマグニチュードと距離を示す。

Haendel et al. (2014) が採用したGMPEは、

$$\ln Z = aM_{W} + br_{rup} - (c + dM_{W}) \ln r_{rup} + e \begin{cases} h, & h \le 125 \,\mathrm{km} \\ 125, & h > 125 \,\mathrm{km} \end{cases}$$

$$+ \begin{cases} q_{i}(M_{W} - 6.3)^{2} + s_{i}, & \text{Interface} \\ q_{s}(M_{W} - 6.5)^{2} + s_{s} + s_{sl} \cdot \ln r_{rup}, & \text{Intraslab} \end{cases}$$

$$+ \begin{cases} x, & \text{NEHRP} \neq B \\ 0, & \text{NEHRP} = B \end{cases} + \epsilon + \eta$$
(2.2.1-9)

である。ここに、Zは最大加速度PGA (cm/s<sup>2</sup>)、 $M_W$ はモーメントマグニチュード、 $r_{rup}$ は断層 までの距離、hは震源深さ、 $a, b, c, d, e, q_i, q_s, s_i, s_s, s_s$ 」およびxは回帰係数、iとsはそれぞれプ レート間地震とスラブ内地震に関する添字、 $s_{sl}$ はスラブ内地震のときに複雑な伝播経路を考 慮するマグニチュードによらない項である。xはNEHRPのサイトクラスの項、 $\varepsilon$ は地震内の 誤差、 $\eta$ は地震間の誤差である。

回帰結果は論文にはなく、別途、インターネット上で公開されている。



Fig. 2 Magnitude-distance distribution of the Chilean recordings

図2.2.1-14 Haendel *et al.* (2014) がチリのプレート間地震とスラブ内地震のGMPEを作成するために用いた観測記録のモーメントマグニチュードと距離

#### (8) Abrahamson et al. (2016)

Abrahamson *et al.* (2016) は、63のスラブ内地震 (5.0  $\leq M \leq$  7.9) による2590の記録と、43の プレート間地震 (6.0  $\leq M \leq$  8.4) による953の記録を用いて、GMPEを作成した。距離は300 km 以内で、モーメントマグニチュードが8を超えるとマグニチュードのスケーリングが変わる ことも考慮している。

図2.2.1-15に、Abrahamson *et al.* (2016) がプレート間地震とスラブ内地震のGMPEの作成 のために用いた記録のモーメントマグニチュードと距離を示す。

Abrahamson et al. (2016) が採用したGMPEは、

$$\ln(Sa_{interface}) = \theta_1 + \theta_4 \Delta C_1 + (\theta_2 + \theta_3(M - 7.8)) \ln(R_{rup} + C_4 \exp(\theta_9(M - 6))) + \theta_6 R_{rup} + f_{mag}(M) + f_{FABA}(R_{rup}) + f_{site}(PGA_{1100}, V_{S30})$$
(2.2.1-10)

$$\begin{aligned} \ln(Sa_{slab}) &= \theta_1 + \theta_4 \Delta C_1 + (\theta_2 + \theta_{14}F_{event} + \theta_3(M - 7.8)) \ln(R_{hypo} + C_4 \exp(\theta_9(M - 6))) \\ &+ \theta_6 R_{hypo} + \theta_{10}F_{event} + f_{mag}(M) + f_{depth}(Z_h) + f_{FABA}(R_{hypo}) + f_{site}(PGA_{1100}, V_{S30}) \end{aligned}$$

$$(2.2.1-11)$$

である。ここに、 Sa: 加速度応答スペクトル (単位はg: 重力加速度) M: モーメントマグニチュード R<sub>rup</sub>: 断層最短距離 (km)

- Rhypo: 震源距離 (km)
- Zh: 震源深さ (km)

$$F_{event} = \begin{cases} 0 \quad プレート間地震のとき \\ 1 \quad スラブ内地震のとき \end{cases}$$

$$F_{FABA} = \begin{cases} 0 & 前弧もしくは不明のサイトのとき \\ 1 & 背弧のサイトのとき \end{cases}$$

である。また、マグニチュードの項は、

$$f_{mag}(M) = \begin{cases} \theta_4(M - (C_1 + \Delta C_1)) + \theta_{13}(10 - M)^2 & \text{for } M \le C_1 + \Delta C_1 \\ \theta_5(M - (C_1 + \Delta C_1)) + \theta_{13}(10 - M)^2 & \text{for } M > C_1 + \Delta C_1 \end{cases}$$
(2.2.1-12)

である。ここに、*C*<sub>1</sub>=7.8である。*ΔC*<sub>1</sub>はマグニチュードのスケーリングが変わることを考慮 する回帰係数で、はじめは0.0であるが、巨大地震の記録から、周期依存の値で表されるこ とになった。震源深さの項は、

$$f_{depth}(Z_h) = \theta_{11}(\min(Z_h, 120) - 60)F_{event}$$
(2.2.1-13)

で、前弧/背弧の項は、

$$f_{FABA}(R) = \begin{cases} \left[ \theta_7 + \theta_8 Ln \left( \frac{\max(R_{hypo}, 85)}{40} \right) \right] F_{FABA} & For \ F \ event = 1 \\ \left[ \theta_{15} + \theta_{16} Ln \left( \frac{\max(R_{rup}, 100)}{40} \right) \right] F_{FABA} & For \ F \ event = 0 \end{cases}$$
(2.2.1-14)

である。サイト特性の項は、

$$f_{site}(PGA_{1000}, V_{S30}) = \begin{cases} \theta_{12}Ln\left(\frac{V_{S}^{*}}{V_{lin}}\right) - bLn(PGA_{1000} + c) + bLn\left(PGA_{1000} + c\left(\frac{V_{S}^{*}}{V_{lin}}\right)^{n}\right) & \text{for } V_{S30} \leq V_{lin} \\ \theta_{12}Ln\left(\frac{V_{S}^{*}}{V_{lin}}\right) + bLn\left(\frac{V_{S}^{*}}{V_{lin}}\right) & \text{for } V_{S30} \geq V_{in} \end{cases}$$

(2.2.1-15)

である。ここに、PGA1000はVS30=1,000m/sのときの最大加速度PGAの中央値で、

$$V_{S}^{*} = \begin{cases} 1,000 & \text{for } V_{S30} > 1,000 \\ V_{S30} & \text{for } V_{S30} \le 1,000 \end{cases}$$
(2.2.1-16)

である。

表2.2.1-10に、Abrahamson *et al.* (2016) によるプレート間地震とスラブ内地震のGMPEの 回帰係数のうち周期によらない係数を、表2.2.1-11に、GMPEの回帰係数のうち周期による係 数を示す。また、表2.2.1-12に、Abrahamson *et al.* (2016) によるプレート間地震のGMPEで使 用が推奨されている回帰係数 $\Delta C_1$ を、図2.2.1-16に、Abrahamson *et al.* (2016) により用いるこ とが推奨されている回帰係数 $\Delta C_1$ の影響を示す。

図2.2.1-17に、Abrahamson et al. (2016) によるプレート間地震のGMPEの例を示す。



Figure 1. Distribution of magnitude and distance (interface events are plotted versus rupture distance; intraslab events, versus hypocentral distance) in the final data set used to develop the GMPE, prior to the 2010 Maule, Chile, and 2011 Tohoku, Japan, earthquakes.

図2.2.1-15 Abrahamson *et al.* (2016) がプレート間地震とスラブ内地震のGMPEの作成のために用いた記録のモーメントマグニチュードと距離

表2.2.1-10 Abrahamson *et al.* (2016) によるプレート間地震とスラブ内地震のGMPEの回帰 係数のうち周期によらない係数

| Coefficient  | Value over all periods |
|--------------|------------------------|
| n            | 1.18                   |
| С            | 1.88                   |
| $\theta_3$   | 0.1                    |
| $\theta_4$   | 0.9                    |
| $\theta_{s}$ | 0.0                    |
| $\theta_9$   | 0.4                    |
| C4           | 10                     |

 Table 2. Period-independent subduction model coefficients

 used in the regression analysis

| Table 3 | Reg    | ression c | coefficien | ts for the | e median ( | (g) subduc | ction G    | MPE           | model         |               |               |               |               |               |      |      |      |
|---------|--------|-----------|------------|------------|------------|------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------|------|------|
| Period  |        |           |            |            |            |            |            |               |               |               |               |               |               | }             |      |      |      |
| (s)     | Viin   | 9         | $\theta_1$ | $\theta_2$ | $\theta_6$ | $\theta_7$ | $\theta_8$ | $\theta_{10}$ | $\theta_{11}$ | $\theta_{12}$ | $\theta_{13}$ | $\theta_{14}$ | $\theta_{15}$ | $\theta_{16}$ | ф    | 2    | 6    |
| 0.000   | 865.1  | -1.186    | 4.2203     | -1.350     | -0.0012    | 1.0988     | -1.42      | 3.12          | 0.0130        | 0.980         | -0.0135       | -0.40         | 0.9996        | -1.00         | 0.60 | 0.43 | 0.74 |
| 0.020   | 865.1  | -1.186    | 4.2203     | -1.350     | -0.0012    | 1.0988     | -1.42      | 3.12          | 0.0130        | 0.980         | -0.0135       | -0.40         | 96660         | -1.00         | 0.60 | 0.43 | 0.74 |
| 0.050   | 1053.5 | -1.346    | 4.5371     | -1.400     | -0.0012    | 1.2536     | -1.65      | 3.37          | 0.0130        | 1.288         | -0.0138       | -0.40         | 1.1030        | -1.18         | 0.60 | 0.43 | 0.74 |
| 0.075   | 1085.7 | -1.471    | 5.0733     | -1.450     | -0.0012    | 1.4175     | -1.80      | 3.37          | 0.0130        | 1.483         | -0.0142       | -0.40         | 1.2732        | -1.36         | 0.60 | 0.43 | 0.74 |
| 0.100   | 1032.5 | -1.624    | 5.2892     | -1.450     | -0.0012    | 1.3997     | -1.80      | 3.33          | 0.0130        | 1.613         | -0.0145       | -0.40         | 1.3042        | -1.36         | 0.60 | 0.43 | 0.74 |
| 0.150   | 877.6  | -1.931    | 5.4563     | -1.450     | -0.0014    | 1.3582     | -1.69      | 3.25          | 0.0130        | 1.882         | -0.0153       | -0.40         | 1.2600        | -1.30         | 0.60 | 0.43 | 0.74 |
| 0.200   | 748.2  | -2.188    | 5.2684     | -1.400     | -0.0018    | 1.1648     | -1.49      | 3.03          | 0.0129        | 2.076         | -0.0162       | -0.35         | 1.2230        | -1.25         | 0.60 | 0.43 | 0.74 |
| 0.250   | 654.3  | -2.381    | 5.0594     | -1.350     | -0.0023    | 0.9940     | -1.30      | 2.80          | 0.0129        | 2.248         | -0.0172       | -0.31         | 1.1600        | -1.17         | 0.60 | 0.43 | 0.74 |
| 0.300   | 587.1  | -2.518    | 4.7945     | -1.280     | -0.0027    | 0.8821     | -1.18      | 2.59          | 0.0128        | 2.348         | -0.0183       | -0.28         | 1.0500        | -1.06         | 0.60 | 0.43 | 0.74 |
| 0.400   | 503.0  | -2.657    | 4.4644     | -1.180     | -0.0035    | 0.7046     | -0.98      | 2.20          | 0.0127        | 2.427         | -0.0206       | -0.23         | 0.8000        | -0.78         | 0.60 | 0.43 | 0.74 |
| 0.500   | 456.6  | -2.669    | 4.0181     | -1.080     | -0.0044    | 0.5799     | -0.82      | 1.92          | 0.0125        | 2.399         | -0.0231       | -0.19         | 0.6620        | -0.62         | 0.60 | 0.43 | 0.74 |
| 0.600   | 430.3  | -2.599    | 3.6055     | -0.990     | -0.0050    | 0.5021     | -0.70      | 1.70          | 0.0124        | 2.273         | -0.0256       | -0.16         | 0.5800        | -0.50         | 0.60 | 0.43 | 0.74 |
| 0.750   | 410.5  | -2.401    | 3.2174     | -0.910     | -0.0058    | 0.3687     | -0.54      | 1.42          | 0.0120        | 1.993         | -0.0296       | -0.12         | 0.4800        | -0.34         | 0.60 | 0.43 | 0.74 |
| 1.000   | 400.0  | -1.955    | 2.7981     | -0.850     | -0.0062    | 0.1746     | -0.34      | 1.10          | 0.0114        | 1.470         | -0.0363       | -0.07         | 0.3300        | -0.14         | 0.60 | 0.43 | 0.74 |
| 1.500   | 400.0  | -1.025    | 2.0123     | -0.770     | -0.0064    | -0.0820    | -0.05      | 0.70          | 0.0100        | 0.408         | -0.0493       | 0.00          | 0.3100        | 0.00          | 0.60 | 0.43 | 0.74 |
| 2.000   | 400.0  | -0.299    | 1.4128     | -0.710     | -0.0064    | -0.2821    | 0.12       | 0.70          | 0.0085        | -0.401        | -0.0610       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 2.500   | 400.0  | 0.000     | 0.9976     | -0.670     | -0.0064    | -0.4108    | 0.25       | 0.70          | 0.0069        | -0.723        | -0.0711       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 3.000   | 400.0  | 0.000     | 0.6443     | -0.640     | -0.0064    | -0.4466    | 0.30       | 0.70          | 0.0054        | -0.673        | -0.0798       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 4.000   | 400.0  | 0.000     | 0.0657     | -0.580     | -0.0064    | -0.4344    | 0.30       | 0.70          | 0.0027        | -0.627        | -0.0935       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 5.000   | 400.0  | 0.000     | -0.4624    | -0.540     | -0.0064    | -0.4368    | 0.30       | 0.70          | 0.0005        | -0.596        | -0.0980       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 6.000   | 400.0  | 0.000     | -0.9809    | -0.500     | -0.0064    | -0.4586    | 0.30       | 0.70          | -0.0013       | -0.566        | -0.0980       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 7.500   | 400.0  | 0.000     | -1.6017    | -0.460     | -0.0064    | -0.4433    | 0.30       | 0.70          | -0.0033       | -0.528        | -0.0980       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 10.000  | 400.0  | 0.000     | -2.2937    | -0.400     | -0.0064    | -0.4828    | 0.30       | 0.70          | -0.0060       | -0.504        | -0.0980       | 00.0          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |

表2.2.1-11 Abrahamson *et al.* (2016) によるプレート間地震とスラブ内地震のGMPEの回帰 係数のうち周期による係数

表2.2.1-12 Abrahamson *et al.* (2016) によるプレート間地震のGMPEで使用が推奨されている回帰係数*AC*1

| Period (s) | Lower value1 | Central value <sup>1</sup> | Upper value |
|------------|--------------|----------------------------|-------------|
| PGA        | 0.0          | 0.2                        | 0.4         |
| 0.3        | 0.0          | 0.2                        | 0.4         |
| 0.5        | -0.1         | 0.1                        | 0.3         |
| 1.0        | -0.2         | 0.0                        | 0.2         |
| 2.0        | -0.3         | -0.1                       | 0.1         |
| 3.0-10.0   | -0.4         | -0.2                       | 0.0         |

**Table 4.** Recommended period-dependent  $\Delta C_1$  Values for Interface earthquakes based on residual analysis of the Maule and Tohoku earthquakes with the GMPE model

Note: Lower, central, and upper values are included to capture the model's epistemic uncertainty.

<sup>1</sup>For intermediate spectral periods, values should be interpolated based on log-spectral periods and linear values.



Figure 8. Effect of the recommended change (i.e., initial model versus revised model based on Tohoku and Maule earthquake data) in the  $\Delta C_1$  terms from Table 4.

図2.2.1-16 Abrahamson et al. (2016) により用いることが推奨されている回帰係数AC1の影



Figure 10. Examples of median spectra for interface earthquakes at sites with  $V_{S30} = 760 \text{ m/s}$  located in the forearc region.

図2.2.1-17 Abrahamson et al. (2016) によるプレート間地震のGMPEの例

(9) Idini et al. (2017)

Idini et al. (2017) は、チリで発生した65のプレート間地震の369の観測記録および38のス ラブ内地震の114の観測記録を用いてGMPEを作成した。

図2.2.1-18に、Idini et al. (2017) がチリのプレート間地震とスラブ内地震のGMPEを作成するために用いた地震を示す。

Idini et al. (2017) が採用したGMPEは、

$$\log_{10} Y = F_F(M_W, H, F_{eve}) + F_D(R, M_W, F_{eve}) + F_S$$
(2.2.1-17)

である。ここに、Yは最大加速度または加速度応答スペクトルで単位はg(重力加速度)、 $F_F$ は 震源項、 $F_D$ は伝播特性、 $F_S$ はサイト特性である。また、 $M_W$ はモーメントマグニチュード、 Hは震源深さ、 $F_{eve}$ はプレート間地震のとき0でスラブ内地震のとき1、Rはスラブ内地震か $M_W$ <7.7のプレート間地震のとき震源距離、 $M_W \ge 7.7$ のプレート間地震のとき断層最短距離で ある。

震源項 $F_F$ は、

$$F_{F}(M_{w}, H, F_{eve}) = c_{1} + c_{2}M_{w} + c_{8}(H - h_{o})F_{eve} + \Delta f_{M}$$
(2.2.1-18)  
 $\mathfrak{C} \mathfrak{H} \mathfrak{Z}_{\circ} \subset \mathfrak{L} \mathfrak{L}_{\circ}$ 

$$\Delta f_M = \begin{cases} c_9 M_w^2; & F_{eve} = 0\\ \Delta c_1 + \Delta c_2 M_w; & F_{eve} = 1 \end{cases}$$
(2.2.1-19)

で、 $h_o=50$ kmである。また、 $F_D$ は

$$F_D(R, M_w, F_{eve}) = g \log_{10}(R + R_o) + c_5 R$$
(2.2.1-20)

で、 $R_o = (1 - F_{eve})c_6 \cdot 10^{c_7[M_W - M_r]}$ 、 $g = (c_3 + c_4[M_W - M_r] + \Delta c_3 F_{eve})$ 、 $M_r = 5$ である。 $c_i (i = 1, 2, ..., 9)$ と  $\Delta c_j (j = 1, 2, 3)$ は回帰係数である。

表2.2.1-13に、Idini *et al.* (2017) が求めたチリのプレート間地震とスラブ内地震のGMPEの 第一段階の回帰係数を、表2.2.1-14に第二段階の回帰係数を示す。また、図2.2.1-19に、Idini *et al.* (2017) によるチリのプレート間地震のGMPEの例を示す。



Fig. 1 The database used in this study. a Spacial distribution of the hypocenters. *Circles* indicate interface earthquakes and *squares* indicate intraslab earthquakes. b Magnitude versus distance of the data subset used in the GMPE derivation. c Total number of response spectra data used in the GMPE derivation at each period

図2.2.1-18 Idini et al. (2017) がチリのプレート間地震とスラブ内地震のGMPEを作成する ために用いた地震

# 段階)の回帰係数

| irst | Period (s) | <i>c</i> <sub>3</sub> | C5       | $\Delta c_3$ | $\sigma_r$ |
|------|------------|-----------------------|----------|--------------|------------|
|      | PGA        | -0.97558              | -0.00174 | -0.52745     | 0.232      |
|      | 0.01       | -1.02993              | -0.00175 | -0.50466     | 0.231      |
|      | 0.02       | -1.08567              | -0.00176 | -0.48043     | 0.233      |
|      | 0.03       | -1.15951              | -0.00176 | -0.42490     | 0.235      |
|      | 0.05       | -1.28640              | -0.00178 | -0.31239     | 0.241      |
|      | 0.07       | -1.34644              | -0.00181 | -0.17995     | 0.251      |
|      | 0.10       | -1.32353              | -0.00182 | -0.13208     | 0.255      |
|      | 0.15       | -1.17687              | -0.00183 | -0.26451     | 0.255      |
|      | 0.20       | -1.04508              | -0.00182 | -0.39105     | 0.268      |
|      | 0.25       | -0.94363              | -0.00178 | -0.34348     | 0.264      |
|      | 0.30       | -0.84814              | -0.00173 | -0.36695     | 0.260      |
|      | 0.40       | -0.69278              | -0.00166 | -0.46301     | 0.263      |
|      | 0.50       | -0.57899              | -0.00161 | -0.54098     | 0.261      |
|      | 0.75       | -0.56887              | -0.00158 | -0.46266     | 0.252      |
|      | 1.00       | -0.53282              | -0.00154 | -0.42314     | 0.247      |
|      | 1.50       | -0.46263              | -0.00145 | -0.58519     | 0.246      |
|      | 2.00       | -0.40594              | -0.00139 | -0.65999     | 0.245      |
|      | 3.00       | -0.33957              | -0.00137 | -0.79004     | 0.231      |
|      | 4.00       | -0.26479              | -0.00137 | -0.86545     | 0.228      |
|      | 5.00       | -0.22333              | -0.00137 | -0.88735     | 0.232      |
|      | 7.50       | -0.30346              | -0.00131 | -0.91259     | 0.231      |
|      | 10.00      | -0.33771              | -0.00117 | -0.96363     | 0.204      |

 
 Table 4
 Standard deviation and coefficient results of the first stage of the regression methodology

| Period (s) | <i>c</i> <sub>1</sub> | <i>c</i> <sub>2</sub> | <i>C</i> 9 | C8      | $\Delta c_1$ | $\Delta c_2$ | σe    | $\sigma_t$ |
|------------|-----------------------|-----------------------|------------|---------|--------------|--------------|-------|------------|
| PGA        | -2.8548               | 0.7741                | -0.03958   | 0.00586 | 2.5699       | -0.4761      | 0.172 | 0.289      |
| 0.01       | -2.8424               | 0.8052                | -0.04135   | 0.00584 | 2.7370       | -0.5191      | 0.173 | 0.288      |
| 0.02       | -2.8337               | 0.8383                | -0.04325   | 0.00583 | 2.9087       | -0.5640      | 0.176 | 0.292      |
| 0.03       | -2.8235               | 0.8838                | -0.04595   | 0.00586 | 3.0735       | -0.6227      | 0.178 | 0.295      |
| 0.05       | -2.7358               | 0.9539                | -0.05033   | 0.00621 | 3.2147       | -0.7079      | 0.190 | 0.307      |
| 0.07       | -2.6004               | 0.9808                | -0.05225   | 0.00603 | 3.0851       | -0.7425      | 0.213 | 0.329      |
| 0.10       | -2.4891               | 0.9544                | -0.05060   | 0.00571 | 2.8091       | -0.7055      | 0.195 | 0.321      |
| 0.15       | -2.6505               | 0.9232                | -0.04879   | 0.00560 | 2.6260       | -0.6270      | 0.160 | 0.302      |
| 0.20       | -3.0096               | 0.9426                | -0.05034   | 0.00573 | 2.6063       | -0.5976      | 0.157 | 0.310      |
| 0.25       | -3.3321               | 0.9578                | -0.05143   | 0.00507 | 2.3654       | -0.5820      | 0.142 | 0.299      |
| 0.30       | -3.5422               | 0.9441                | -0.05052   | 0.00428 | 2.2017       | -0.5412      | 0.141 | 0.296      |
| 0.40       | -3.3985               | 0.7773                | -0.03885   | 0.00308 | 1.6367       | -0.3448      | 0.157 | 0.306      |
| 0.50       | -2.8041               | 0.5069                | -0.01973   | 0.00257 | 0.7621       | -0.0617      | 0.152 | 0.302      |
| 0.75       | -4.4588               | 0.8691                | -0.04179   | 0.00135 | 2.1003       | -0.4349      | 0.146 | 0.291      |
| 1.00       | -5.3391               | 1.0167                | -0.04999   | 0.00045 | 2.5610       | -0.5678      | 0.153 | 0.290      |
| 1.50       | -6.1204               | 1.1005                | -0.05426   | 0.00068 | 2.8923       | -0.5898      | 0.152 | 0.289      |
| 2.00       | -7.0334               | 1.2501                | -0.06356   | 0.00051 | 3.3941       | -0.7009      | 0.157 | 0.291      |
| 3.00       | -8.2507               | 1.4652                | -0.07797   | 0.00066 | 4.0033       | -0.8465      | 0.155 | 0.279      |
| 4.00       | -8.7433               | 1.4827                | -0.07863   | 0.00063 | 3.9337       | -0.8134      | 0.160 | 0.279      |
| 5.00       | -8.9927               | 1.4630                | -0.07638   | 0.00067 | 3.7576       | -0.7642      | 0.167 | 0.286      |
| 7.50       | -9.8245               | 1.6383                | -0.08620   | 0.00108 | 4.3948       | -0.9313      | 0.164 | 0.283      |
| 10.00      | -9.8671               | 1.5877                | -0.08168   | 0.00014 | 4.3875       | -0.8892      | 0.176 | 0.270      |

Table 5 Standard deviation and coefficient results of the second stage of the regression methodology

Global standard deviation is computed as  $\sigma_t = \sqrt{\sigma_e^2 + \sigma_r^2}$ 



図2.2.1-19 Idini et al. (2017) によるチリのプレート間地震のGMPEの例

#### (1) Kanamori and Anderson (1975)

Kanamori and Anderson (1975) は、プレート間地震とプレート内地震の断層パラメータの スケーリング則を調べた。

図2.2.2-1に、Kanamori and Anderson (1975) によるプレート間地震とプレート内地震の地 震モーメントと断層面積との関係を示す。図より、断層面積の対数と地震モーメントの対数 は顕著な線形関係 (勾配はぼぼ2/3) があり、円形クラックの式を適用すると、プレート間地 震で応力降下量は30 bar、プレート内地震で100 barであることがわかる。



FIG. 2. Relation between S (fault surface area) and  $M_o$  (seismic moment). The straight lines give the relations for circular cracks with constant  $\Delta\sigma$  (stress drop). The numbers attached to each event correspond to those in Table 1.

図2.2.2-1 Kanamori and Anderson (1975) によるプレート間地震 (黒丸) とプレート内地震
 (白丸) の地震モーメントと断層面積との関係

(2) Fujii and Matsu'ura (2000)

Fujii and Matsu'ura (2000) は、最近の140年間にプレート境界で発生した67の地震を4つの グループに分類した。この4つのグループとは、横ずれ断層によるプレート間地震、横ずれ 断層によるプレート内地震、島弧の沈み込み帯で発生するプレート間地震、大陸の縁の沈み 込み帯で発生するプレート間地震である。

図2.2.2-2に、Fujii and Matsu'ura (2000) がプレート間地震のスケーリング則を求めるため に用いた地震の断層面積と地震モーメントとの関係を、表2.2.2-1にデータを、図2.2.2-3に地 震の震央を示す。

図2.2.2-4に、Fujii and Matsu'ura (2000) による地震モーメントと断層長さとの関係を示 す。(a)は島弧の沈み込み帯で発生するプレート間地震のもので、(b)は大陸の縁で発生する プレート間地震のものである。

図2.2.2-5に、Fujii and Matsu'ura (2000) による島弧で発生するプレート間地震の断層幅と 断層長さとの関係および平均すべり量と断層長さとの関係を、図2.2.2-6に、大陸の縁で発生 するプレート間地震の断層幅と断層長さとの関係および平均すべり量と断層長さとの関係 を示す。

図より、島弧の沈み込み帯で発生するプレート間地震は、断層幅に120 kmの頭打ちがあ り、長さが200 kmを超えると長さの3乗と地震モーメントとの比例関係がくずれること、大 陸の縁の沈み込み帯で発生するプレート間地震には、現在のデータベース(断層幅200km以 下、断層長さ1000km以下)では、そのような断層幅の頭打ちは見られないことがわかる。



Figure 1

Plots of fault area S versus seismic moment  $M_0$  for all earthquakes used in the present study. The solid and open circles indicate interplate and intraplate strike-slip events, respectively, and the solid and open triangles indicate island-arc and continental-margin underthrust events, respectively. The  $S^{3/2}$  dependence of  $M_0$  is denoted by the solid line.

図2.2.2-2 Fujii and Matsu'ura (2000) がプレート間地震のスケーリング則を求めるために用 いた地震の断層面積と地震モーメントとの関係

表2.2.2-1 Fujii and Matsu'ura (2000) がプレート間地震のスケーリング則を調べた地震のデ

#### ータ

| Table 1 | (cor | tinued) |
|---------|------|---------|
|---------|------|---------|

| C: Under<br>1 196<br>2 193<br>3 195<br>4 196<br>5 194<br>6 195<br>7 196<br>8 195 | thrust ew<br>65 0204<br>38 1110<br>57 0309<br>63 1013<br>46 1221<br>58 1106<br>68 0516<br>69 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                            | ents at island-arc subc<br>Central Aleutians<br>Eastern Aleutians<br>Central Aleutians<br>South Kuril<br>Japan<br>South Kuril<br>Japan<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan | duction zon<br>51.3<br>55.5<br>51.6<br>44.9<br>33.1<br>44.4<br>41.0<br>42.5<br>43.4<br>-4.9 | 178.6<br>- 158.4<br>- 175.4<br>149.6<br>135.8<br>148.6<br>143.6<br>143.0<br>147.8                                              | 8.2<br>8.1<br>8.1<br>8.1<br>8.0<br>8.1<br>8.1<br>8.3 | 125<br>100<br>88<br>75<br>60<br>44<br>28<br>23 | 580<br>525<br>550<br>275<br>250<br>150<br>150 | 100<br>120<br>100<br>125<br>100<br>80<br>100 | 58000<br>63000<br>55000<br>34375<br>25000<br>12000<br>15000 | 4.8(e)<br>3.2(e)<br>3.2(e)<br>4.3(e)<br>3.7(c)<br>5.1(e)<br>4.1(e) | 59, 65<br>60<br>16, 31<br>16, 37<br>9, 66<br>25<br>33 |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|
| 1 196<br>2 193<br>3 195<br>4 196<br>5 194<br>6 195<br>7 196<br>8 195             | 65         0204           38         1110           57         0309           53         1013           46         1221           58         1106           58         0516           52         0304           59         0812           71         0726           44         1207           23         0901 | Central Aleutians<br>Eastern Aleutians<br>Central Aleutians<br>South Kuril<br>Japan<br>South Kuril<br>Japan<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan                            | 51.3<br>55.5<br>51.6<br>44.9<br>33.1<br>44.4<br>41.0<br>42.5<br>43.4<br>-4.9                | $     178.6 \\     -158.4 \\     -175.4 \\     149.6 \\     135.8 \\     148.6 \\     143.6 \\     143.0 \\     147.8 \\     $ | 8.2<br>8.1<br>8.1<br>8.0<br>8.1<br>8.1<br>8.1<br>8.3 | 125<br>100<br>88<br>75<br>60<br>44<br>28<br>23 | 580<br>525<br>550<br>275<br>250<br>150<br>150 | 100<br>120<br>100<br>125<br>100<br>80<br>100 | 58000<br>63000<br>55000<br>34375<br>25000<br>12000<br>15000 | 4.8(e)<br>3.2(c)<br>3.2(c)<br>4.3(c)<br>3.7(c)<br>5.1(e)<br>4.1(e) | 59, 65<br>60<br>16, 31<br>16, 37<br>9, 66<br>25<br>33 |
| 2 193<br>3 195<br>4 196<br>5 194<br>6 195<br>7 196<br>8 195                      | 38       1110         57       0309         53       1013         46       1221         58       1106         58       0516         52       0304         69       0812         71       0726         44       1207         23       0901                                                                     | Eastern Aleutians<br>Central Aleutians<br>South Kuril<br>Japan<br>Japan<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan                                                                | 55.5<br>51.6<br>44.9<br>33.1<br>44.4<br>41.0<br>42.5<br>43.4<br>-4.9                        | -158.4<br>-175.4<br>149.6<br>135.8<br>148.6<br>143.6<br>143.0<br>147.8                                                         | 8.1<br>8.1<br>8.0<br>8.1<br>8.1<br>8.1<br>8.3        | 100<br>88<br>75<br>60<br>44<br>28<br>23        | 525<br>550<br>275<br>250<br>150<br>150        | 120<br>100<br>125<br>100<br>80<br>100        | 63000<br>55000<br>34375<br>25000<br>12000<br>15000          | 3.2(c)<br>3.2(c)<br>4.3(c)<br>3.7(c)<br>5.1(c)<br>4.1(c)           | 60<br>16, 31<br>16, 37<br>9, 66<br>25<br>33           |
| 3 195<br>4 196<br>5 194<br>6 195<br>7 196<br>8 195                               | 57 0309<br>53 1013<br>46 1221<br>58 1106<br>58 0516<br>52 0304<br>69 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                    | Central Aleutians<br>South Kuril<br>Japan<br>South Kuril<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan                                                                               | 51.6<br>44.9<br>33.1<br>44.4<br>41.0<br>42.5<br>43.4<br>-4.9                                | -175.4<br>149.6<br>135.8<br>148.6<br>143.6<br>143.0<br>147.8                                                                   | 8.1<br>8.0<br>8.1<br>8.1<br>8.3                      | 88<br>75<br>60<br>44<br>28<br>23               | 550<br>275<br>250<br>150<br>150               | 100<br>125<br>100<br>80<br>100               | 55000<br>34375<br>25000<br>12000<br>15000                   | 3.2(c)<br>4.3(c)<br>3.7(c)<br>5.1(c)<br>4.1(c)                     | 16, 31<br>16, 37<br>9, 66<br>25<br>33                 |
| 4 196<br>5 194<br>6 195<br>7 196<br>8 195                                        | 53 1013<br>46 1221<br>58 1106<br>58 0516<br>52 0304<br>69 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                               | South Kuril<br>Japan<br>South Kuril<br>Japan<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan                                                                                           | 44.9<br>33.1<br>44.4<br>41.0<br>42.5<br>43.4<br>-4.9                                        | 149.6<br>135.8<br>148.6<br>143.6<br>143.0<br>147.8                                                                             | 8.1<br>8.0<br>8.1<br>8.1<br>8.3                      | 75<br>60<br>44<br>28<br>23                     | 275<br>250<br>150<br>150                      | 125<br>100<br>80<br>100                      | 34375<br>25000<br>12000<br>15000                            | 4.3(e)<br>3.7(c)<br>5.1(e)<br>4.1(e)                               | 16, 37<br>9, 66<br>25<br>33                           |
| 5 194<br>6 195<br>7 196<br>8 195                                                 | 46 1221<br>58 1106<br>58 0516<br>52 0304<br>69 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                                          | Japan<br>South Kuril<br>Japan<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan                                                                                                          | 33.1<br>44.4<br>41.0<br>42.5<br>43.4<br>-4.9                                                | 135.8<br>148.6<br>143.6<br>143.0<br>147.8                                                                                      | 8.0<br>8.1<br>8.3                                    | 60<br>44<br>28<br>23                           | 250<br>150<br>150                             | 100<br>80<br>100                             | 25000<br>12000<br>15000                                     | 3.7(c)<br>5.1(e)<br>4.1(e)                                         | 9, 66<br>25<br>33                                     |
| 6 195<br>7 196<br>8 195                                                          | 58 1106<br>58 0516<br>52 0304<br>59 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                                                     | South Kuril<br>Japan<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan                                                                                                                   | 44.4<br>41.0<br>42.5<br>43.4<br>-4.9                                                        | 148.6<br>143.6<br>143.0<br>147.8                                                                                               | 8.1<br>8.1<br>8.3                                    | 44<br>28<br>23                                 | 150<br>150                                    | 80<br>100                                    | 12000<br>15000                                              | 5.1(e)<br>4.1(e)                                                   | 25<br>33                                              |
| 7 196<br>8 195                                                                   | 58 0516<br>52 0304<br>59 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                                                                | Japan<br>Japan<br>South Kuril<br>Solomon Islands<br>Japan                                                                                                                                  | 41.0<br>42.5<br>43.4<br>4.9                                                                 | 143.6<br>143.0<br>147.8                                                                                                        | 8.1<br>8.3                                           | 28<br>23                                       | 150                                           | 100                                          | 15000                                                       | 4.1(e)                                                             | 33                                                    |
| 8 195                                                                            | 52 0304<br>59 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                                                                           | Japan<br>South Kuril<br>Solomon Islands<br>Japan                                                                                                                                           | 42.5<br>43.4<br>-4.9                                                                        | 143.0<br>147.8                                                                                                                 | 8.3                                                  | 23                                             | 120                                           |                                              |                                                             |                                                                    |                                                       |
| 0 101                                                                            | 69 0812<br>71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                                                                                      | South Kuril<br>Solomon Islands<br>Japan                                                                                                                                                    | 43.4<br>                                                                                    | 147.8                                                                                                                          | 0.0                                                  |                                                | 130                                           | 100                                          | 13000                                                       | 3.5(e)                                                             | 8                                                     |
| 9 196                                                                            | 71 0726<br>44 1207<br>23 0901                                                                                                                                                                                                                                                                                 | Solomon Islands<br>Japan                                                                                                                                                                   | -4.9                                                                                        |                                                                                                                                | 8.2                                                  | 22                                             | 180                                           | 85                                           | 15300                                                       | 2.9(e)                                                             | 2                                                     |
| 10 197                                                                           | 44 1207<br>23 0901                                                                                                                                                                                                                                                                                            | Japan                                                                                                                                                                                      |                                                                                             | 153.2                                                                                                                          | 7.7                                                  | 18                                             | 180                                           | 70                                           | 12600                                                       | 2.8(e)                                                             | 52                                                    |
| 11 194                                                                           | 23 0901                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                            | 33.8                                                                                        | 136.0                                                                                                                          | 7.8                                                  | 15                                             | 120                                           | 80                                           | 9600                                                        | 3.1(e)                                                             | 34                                                    |
| 12 192                                                                           |                                                                                                                                                                                                                                                                                                               | Japan                                                                                                                                                                                      | 35.4                                                                                        | 139.2                                                                                                                          | 8.0                                                  | 8.4                                            | 93                                            | 53                                           | 4929                                                        | 4.6(c)                                                             | 41                                                    |
| 13 193                                                                           | 38 1105                                                                                                                                                                                                                                                                                                       | Japan                                                                                                                                                                                      | 37.0                                                                                        | 141.7                                                                                                                          | 7.5                                                  | 7.0                                            | 100                                           | 60                                           | 6000                                                        | 2.3(e)                                                             | 5                                                     |
| 14 196                                                                           | 53 1020                                                                                                                                                                                                                                                                                                       | South Kuril                                                                                                                                                                                | 44.9                                                                                        | 150.3                                                                                                                          | 7.2                                                  | 7.0                                            | 100                                           | 60                                           | 6000                                                        | 2.3(e)                                                             | 24, 27                                                |
| 15 197                                                                           | 73 0617                                                                                                                                                                                                                                                                                                       | Japan                                                                                                                                                                                      | 43.0                                                                                        | 146.0                                                                                                                          | 7.4                                                  | 6.7                                            | 100                                           | 100                                          | 10000                                                       | 1.0(d)                                                             | 8                                                     |
| 16 193                                                                           | 38 1105                                                                                                                                                                                                                                                                                                       | Japan                                                                                                                                                                                      | 37.2                                                                                        | 141.8                                                                                                                          | 7.5                                                  | 4.8                                            | 100                                           | 60                                           | 6000                                                        | 1.6(e)                                                             | 5                                                     |
| 17 193                                                                           | 38 0523                                                                                                                                                                                                                                                                                                       | Japan                                                                                                                                                                                      | 36.5                                                                                        | 141.3                                                                                                                          | 7.4                                                  | 4.0                                            | 75                                            | 40                                           | 3000                                                        | 2.7(e)                                                             | 5                                                     |
| 18 197                                                                           | 78 0612                                                                                                                                                                                                                                                                                                       | Japan                                                                                                                                                                                      | 38.2                                                                                        | 142.2                                                                                                                          | 7.5                                                  | 3.1                                            | 61                                            | 34                                           | 2074                                                        | 2.2(e)                                                             | 53                                                    |
| 19 196                                                                           | 65 0811                                                                                                                                                                                                                                                                                                       | Vanuatu Islands                                                                                                                                                                            | -15.5                                                                                       | 166.9                                                                                                                          | 7.3                                                  | 3.0                                            | 63                                            | 50                                           | 3150                                                        | 1.5(e)                                                             | 22                                                    |
| 20 196                                                                           | 58 0401                                                                                                                                                                                                                                                                                                       | Japan                                                                                                                                                                                      | 32.5                                                                                        | 132.3                                                                                                                          | 7.6                                                  | 1.8                                            | 56                                            | 32                                           | 1792                                                        | 1.6(e)                                                             | 54                                                    |
| 21 198                                                                           | 86 1114                                                                                                                                                                                                                                                                                                       | Taiwan                                                                                                                                                                                     | 24.0                                                                                        | 121.8                                                                                                                          | 7.8                                                  | 1.7                                            | 68                                            |                                              |                                                             |                                                                    | 28. 30                                                |
| 22 198                                                                           | 85 0703                                                                                                                                                                                                                                                                                                       | New Britain                                                                                                                                                                                | -4.4                                                                                        | 152.8                                                                                                                          | 7.2                                                  | 0.65                                           | 50                                            | 30                                           | 1500                                                        | 0.9(e)                                                             | 46                                                    |
| 23 197                                                                           | 70 0726                                                                                                                                                                                                                                                                                                       | Japan                                                                                                                                                                                      | 32.2                                                                                        | 131.7                                                                                                                          | 7.0                                                  | 0.41                                           | 31                                            | 24                                           | 744                                                         | 1.0(c)                                                             | 54                                                    |
| D: Under                                                                         | D: Underthrust events at continental-margin subduction zones                                                                                                                                                                                                                                                  |                                                                                                                                                                                            |                                                                                             |                                                                                                                                |                                                      |                                                |                                               |                                              |                                                             |                                                                    |                                                       |
| 1 196                                                                            | 50 0522                                                                                                                                                                                                                                                                                                       | South Chile                                                                                                                                                                                | -38.2                                                                                       | -73.5                                                                                                                          | 8.5                                                  | 2000                                           | 1000                                          | 200                                          | 200000                                                      | 20(c)                                                              | 36, 50                                                |
| 2 196                                                                            | 64 0328                                                                                                                                                                                                                                                                                                       | Central Alaska                                                                                                                                                                             | 61.1                                                                                        | -147.6                                                                                                                         | 8.4                                                  | 900                                            | 700                                           | 180                                          | 126000                                                      | 14(e)                                                              | 32, 50                                                |
| 3 195                                                                            | 52 1104                                                                                                                                                                                                                                                                                                       | Kamchatka                                                                                                                                                                                  | 52.8                                                                                        | 159.5                                                                                                                          | 8.2                                                  | 350                                            | 650                                           | 160                                          | 104000                                                      | 6.7(e)                                                             | 15, 35                                                |
| 4 197                                                                            | 79 1212                                                                                                                                                                                                                                                                                                       | Colombia-Ecuador                                                                                                                                                                           | 1.6                                                                                         | -79.4                                                                                                                          | 7.6                                                  | 29                                             | 280                                           | 130                                          | 36400                                                       |                                                                    | 29                                                    |
| 5 196                                                                            | 56 1017                                                                                                                                                                                                                                                                                                       | Northern Peru                                                                                                                                                                              | -10.9                                                                                       | -78.8                                                                                                                          | 7.8                                                  | 20                                             | 80                                            | 140                                          | 11200                                                       | 3.6(e)                                                             | 1                                                     |
| 6 197                                                                            | 74 1003                                                                                                                                                                                                                                                                                                       | Northern Peru                                                                                                                                                                              | -12.4                                                                                       | -77.7                                                                                                                          | 7.6                                                  | 15                                             | 180                                           | 60                                           | 10800                                                       | 2.8(e)                                                             | 20                                                    |
| 7 197                                                                            | 71 1215                                                                                                                                                                                                                                                                                                       | Kamchatka                                                                                                                                                                                  | 56.0                                                                                        | 163.2                                                                                                                          | 7.5                                                  | 6.7                                            | 50                                            |                                              |                                                             |                                                                    | 67                                                    |
| 8 197                                                                            | 71 0708                                                                                                                                                                                                                                                                                                       | Central Chile                                                                                                                                                                              | -32.5                                                                                       | -71.2                                                                                                                          | 7.7                                                  | 5.6                                            | 70                                            | 60                                           | 4200                                                        | 2.7(e)                                                             | 23, 39                                                |
| 9 196                                                                            | 56 1228                                                                                                                                                                                                                                                                                                       | Central Chile                                                                                                                                                                              | -25.5                                                                                       | -70.7                                                                                                                          | 7.7                                                  | 4.5                                            | 80                                            | 30                                           | 2400                                                        | 2.4(e)                                                             | 19                                                    |
| 10 197                                                                           | 73 0130                                                                                                                                                                                                                                                                                                       | Mexico                                                                                                                                                                                     | 18.4                                                                                        | -103.2                                                                                                                         | 7.3                                                  | 3.0                                            | 90                                            | 70                                           | 6300                                                        | 1.4(e)                                                             | 51                                                    |
| 11 197                                                                           | 78 1129                                                                                                                                                                                                                                                                                                       | Mexico                                                                                                                                                                                     | 15.8                                                                                        | -96.8                                                                                                                          | 7.3                                                  | 3.0                                            | 90                                            | 70                                           | 6300                                                        | 1.0(e)                                                             | 58                                                    |
| 12 197                                                                           | 79 0314                                                                                                                                                                                                                                                                                                       | Mexico                                                                                                                                                                                     | 17.3                                                                                        | -101.4                                                                                                                         | 7.4                                                  | 1.8                                            | 70                                            | 64                                           | 4480                                                        | 0.8(e)                                                             | 58                                                    |

(a) Determined from surface offsets. (b) Determined from seismic wave data. (c) Determined from geodetic data. (d) Determined from tsunami data. (e) Estimated from  $M_0$  and S with  $M_0 \equiv \mu DS$ .



A map showing the epicenter distribution of all earthquakes used in the present study. The solid and open circles indicate epicenters of interplate and intraplate strike-slip events, respectively, and the solid and open triangles indicate epicenters of island-arc and continental-margin underthrust events, respectively.

図2.2.2-3 Fujii and Matsu'ura (2000) がスケーリング則を調べた地震の震央



Plots of seismic moment  $M_0$  versus fault length L for (a) the island-arc underthrust events and (b) the continental-margin underthrust events. In either case the solid line denotes the L-cubed dependence of  $M_{0}$ .

図2.2.2-4 Fujii and Matsu'ura (2000) による地震モーメントと断層長さとの関係(a)島弧の沈み込み帯で発生するプレート間地震 (b)大陸の縁で発生するプレート間地震



Figure 9 Plots of W vs. L (left) and D vs. L (right) for the island-arc underthrust events.

図2.2.2-5 Fujii and Matsu'ura (2000) による島弧で発生するプレート間地震の断層幅と断層
 長さとの関係および平均すべり量と断層長さとの関係



Figure 10 Plots of W vs. L (left) and D vs. L (right) for the continental-margin underthrust events.

図2.2.2-6 Fujii and Matsu'ura (2000) による大陸の縁で発生するプレート間地震の断層幅と 断層長さとの関係および平均すべり量と断層長さとの関係 (3) Somerville · 他 (2002)

Somerville・他 (2002) は、プレート間地震の断層パラメータのスケーリング則を求めて、 内陸地殻内地震のスケーリング則と比較した。

表2.2.2-2にSomerville・他 (2002) がプレート間地震の断層パラメータのスケーリング則を 求めるために用いた地震を、表2.2.2-3にそのデータを示す。また、表2.2.2-4にSomerville・他 (2002) が求めたプレート間地震の断層パラメータのスケーリング則を、表2.2.2-5にプレー ト間地震の断層パラメータのスケーリング則と内陸地殻内地震のスケーリング則との比較 を示す。

表2.2.2-2 Somerville・他 (2002) がプレート間地震の断層パラメータのスケーリング則を求めるために用いた地震

| Earthquake      | Date       | Mo<br>x 10 <sup>±</sup><br>dyne.cm | Mw   | Overall<br>Slip<br>Duration<br>(sec) | Rise Time<br>from<br>max, slip<br>velocity<br>(sec) | Rupture Velocity<br>(km/sec) |
|-----------------|------------|------------------------------------|------|--------------------------------------|-----------------------------------------------------|------------------------------|
| Valparaiso      | 1985.3.3   | 150                                | 8.1  | 14                                   | 2.85                                                | 3.0                          |
| Michoacan       | 1985.9.19  | 150                                | 8.1  | 5                                    | 3.88                                                | 2.6                          |
| Peru            | 1974.10.3  | 120                                | 8.0  | <b>I</b> 1                           | 7.0                                                 | 3.0                          |
| Hokkaido nansei | 1993,13,12 | 34                                 | 7.65 | 5                                    | 2.41                                                | 3.0                          |
| Petatlan        | 1979.3.14  | 15                                 | 7.4  | 5                                    | 2,5                                                 | 3.3                          |
| Zihuatanejo     | 1985.9.21  | 13.5                               | 7.4  | >1#                                  | (>1)*                                               | 2,6                          |
| Playa Azul      | 1981,10,25 | 7.14                               | 7.2  | >1#                                  | (>l)*                                               | 2.6                          |
| Peru            | 1974,119   | 5.4                                | 7.1  | 2                                    | 1.25                                                | 3.0                          |
| Tonankai        | 1944.12.12 | 603                                | 8.0  | 15                                   | 13.13                                               | 3.0                          |
| Kanto           | 1923.9.1   | 75                                 | 7.9  | 8                                    | 8.73                                                | 3.0                          |

Table 1 Source Parameters of Subduction Earthquakes

#minimum rise time value \* only one time window

表2.2.2-3 Somerville・他 (2002) がプレート間地震の断層パラメータのスケーリング則を求めるために用いたデータ

| Earthquake  | depth | depth | depth  | strike | dîp | rake | slip model               |
|-------------|-------|-------|--------|--------|-----|------|--------------------------|
|             | of    | of    | σ£     |        |     |      | reference                |
|             | Top   | Hinge | Bottom |        |     |      |                          |
|             | (km)  | (km)  | (km)   |        |     |      |                          |
| Valparaiso  | 6,6   | 26    | 71     | 5      | 15  | 90   | Mendoza et al., 1994     |
|             |       |       |        | 5      | 30  | 110  |                          |
| Michoacan   | 6     | •     | 40     | 300    | 14  | var  | Mendoza & Hartzell, 1989 |
| Peru        | 1.2   | 22    | 50     | 350    | 11  | 92.5 | Hartzell & Langer, 1993  |
| Hokkaido    | 5     | •     | 40     | 20     | 30  | 100  | Mendoza & Fukuyama,      |
| • narsei    | 2     |       | 37     | 340    | 30  | 90   | 1996                     |
| Petatlan    | 3     | •     | 25     | 293    | ]4  | 87   | Mendoza, 1995            |
| Zihuatanejo | 12    | -     | 26     | 300    | 14  | 90   | Mendoza, 1993            |
| Playa Azul  | 6     | -     | 20     | 300    | 14  | 90   | Mendoza, 1993            |
| Рсги        | 6.3   |       | 21.4   | 350    | 11  | 92.5 | Hartzell & Langer, 1993  |
| Tonankai    | 2.0   |       | 40     | 235    | 20  | yar  | Ichinose et al., 2001    |
| Kanto       | 2.0   |       | 31.6   | 290    | 25  | var  | Wald et al., 1995        |

Table 2 Orientation and References of Fault Planes

表2.2.2-4 Somerville・他 (2002) が求めたプレート間地震の断層パラメータのスケーリン グ則

# Table 4 Form of Scaling Relations of Slip Models Assuming Self-Similarity

| Rupture Area vs. Scismic Moment:                               | $A = C1 \times 10^{-15} \times M_0^{-2/3}$          |
|----------------------------------------------------------------|-----------------------------------------------------|
| Average Slip vs. Seismle Moment:                               | $D = C_2 \times 10^{-8} \times M_0^{-1/3}$          |
| Combined Area of Asperities vs. Seismic Moment:                | $A_{g} = C3 \times 10^{-15} \times M_{0}^{2/3}$     |
| Area of Largest Asperity vs. Seismic Moment:                   | $A_1 (km^2) = C4 \times 10^{-16} \times M_0^{-2/3}$ |
| Radius of Largest Asperity vs. Scismic Moment:                 | $r_1 (km) = C5 \times 10^{-8} \times M_0^{1/3}$     |
| Average Number of Asperities                                   | C6                                                  |
| Area of Fault Covered by Asperities                            | C7                                                  |
| Average Asperity SIIp Contrast:                                | C8                                                  |
| Hypocentral Distance to Center of Closest Aspecity Vs. Moment: | $R_A = C9 \times 10^{-8} \times Mo^{1/3}$           |
| Overall Slip Duration vs. Seismic Moment:                      | $T_S = C10 \times 10^{-9} \times M0^{1/3}$          |
| Rise Time from Maximum Slip Velocity vs Seismic Moment         | $T_R = C11 \times 10^{-9} \times Mo^{1/3}$          |

表2.2.2-5 Somerville・他 (2002) が求めたプレート間地震の断層パラメータのスケーリング 則と内陸地殻内地震のスケーリング則との比較

| No   | Barranter                                  | Subdustion | Canada  | C.L.L.  |                                             |  |  |
|------|--------------------------------------------|------------|---------|---------|---------------------------------------------|--|--|
| 140. |                                            | Subduction | Cruster | Crustal | Relationship<br>of Subduction<br>to Crustal |  |  |
| Çl   | Rupture Arca                               | 5.20       | 2.23    | 2.33    | Larger                                      |  |  |
| C2   | Average Slip                               | 5.30       | 15.6    | 0.34    | Smaller                                     |  |  |
| C3   | Combined Area of Asperities.               | 1.21       | 0.50    | 2,42    | Larger                                      |  |  |
| C4   | Area of Largest Asperity                   | 8,87       | 3.64    | 2,44    | Larger                                      |  |  |
| C5   | Radius of Largest<br>Asperity              | 1.68       | 1.08    | 1,56    | Larger                                      |  |  |
| C6   | Number of Asperities                       | 2.4        | 2.6     | 0.92    | Similar                                     |  |  |
| C7   | Fraction of Fault Covered<br>by Asperilies | 0.25       | 0.22    | 1,14    | Similar                                     |  |  |
| C8   | Asperity Slip Contrast                     | 2,13       | 2.01    | 3.05    | Similar                                     |  |  |
| C9   | Hypocentral Distance to<br>Asperity        | 1.76       | 1.35    | 1.30 .  | Similar                                     |  |  |
| C10  | Slip Duration                              | 3.62       | 2.03    | 1.78    | Larger                                      |  |  |
| C11  | Rise Time                                  | 1.79       | 1.76    | 1.02    | Similar                                     |  |  |

# Table 5 Comparison of Parameters of Scaling Models of Subduction and Crustal Earthquakes

# (4) Strasser et al. (2010)

Strasser *et al.* (2010) は、モーメントマグニチュードが6.3~9.4の95のプレート間地震(断層モデル数は139) と、モーメントマグニチュードが5.9~7.8の20のスラブ内地震(断層モデル数は21)のデータを用いて、断層パラメータのスケーリング則を求めた。

表2.2.2-6に、Strasser *et al.* (2010) が求めたプレート間地震の断層パラメータのスケーリング則を示す。また、図2.2.2-7に、Strasser *et al.* (2010) が求めたプレート間地震の断層パラメ ータのスケーリング則とデータを示す。

表2.2.2-6 Strasser et al. (2010) が求めたプレート間地震の断層パラメータのスケーリング

則

| TABLE 1           Regression results for relations between rupture dimensions, rupture area, and moment magnitude, for interface events.           s.e. denotes the standard error of the coefficient under consideration, R <sup>2</sup> the coefficient of multiple determination, and N the total number of points used in the regression. |        |          |       |                   |       |                |    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-------|-------------------|-------|----------------|----|--|--|
|                                                                                                                                                                                                                                                                                                                                               | а      | s.e. (a) | b     | s.e. ( <i>b</i> ) | σ     | R <sup>2</sup> | N  |  |  |
| $\log_{10}(L) = a + b \times M_{W}$                                                                                                                                                                                                                                                                                                           | -2.477 | 0.222    | 0.585 | 0.029             | 0.180 | 0.814          | 95 |  |  |
| $\log_{10}(W) = a + b \times M_w$                                                                                                                                                                                                                                                                                                             | -0.882 | 0.226    | 0.351 | 0.029             | 0.173 | 0.634          | 85 |  |  |
| $\log_{10}(A) = a + b \times M_w$                                                                                                                                                                                                                                                                                                             | -3.476 | 0.397    | 0.952 | 0.051             | 0.304 | 0.805          | 85 |  |  |
| $M_w = a + b \times \log_{10}(L)$                                                                                                                                                                                                                                                                                                             | 4.868  | 0.141    | 1.392 | 0.069             | 0.277 | 0.814          | 95 |  |  |
| $M_{w} = a + b \times \log_{10}(W)$                                                                                                                                                                                                                                                                                                           | 4.410  | 0.277    | 1.805 | 0.151             | 0.392 | 0.634          | 85 |  |  |
| $M_{w} = a + b \times \log_{10}(A)$                                                                                                                                                                                                                                                                                                           | 4.441  | 0.179    | 0.846 | 0.046             | 0.286 | 0.805          | 85 |  |  |



▲ Figure 2. Regression results for the prediction of rupture dimensions as a function of moment magnitude. The dashed lines indicate the ±95% confidence intervals for the mean, and the heavy gray line indicates the best fit when self-similar scaling is assumed. The values shown for the individual data points are averaged over all models in the database in the case of multiple models being available for the same event.

図2.2.2-7 Strasser et al. (2010) が求めたプレート間地震の断層パラメータのスケーリング 則とデータ

# (5) Leonard (2010)

Leonard (2010) は、縦ずれ断層によるプレート間地震、横ずれ断層によるプレート間地震、 および縦ずれ断層による安定大陸領域の地震の断層パラメータの相似則を求めた。

表2.2.2-7に、Leonard (2010) による断層パラメータの相似則を示す。また、図2.2.2-8に、 Leonard (2010) による正断層と逆断層によるプレート間地震の断層長さと幅との関係を示 す。

表2.2.2-7 Leonard (2010) による断層パラメータの相似則 (DS: 縦ずれ、SS: 横ずれ、SCR: 安定大陸領域)

|     |                                                        | a*    | <i>b</i> * | $S(b)^{\dagger}$ | Range A (m <sup>2</sup> ), L (m) |
|-----|--------------------------------------------------------|-------|------------|------------------|----------------------------------|
| DS  |                                                        |       |            |                  |                                  |
|     | $\log(W) = a \times \log(L) + b$                       | 0.667 | 1.24       | 1.15-1.40        | > 5, 500                         |
|     | $\log(D_{Av}) = a \times \log(A) + b$                  | 0.5   | -4.42      | -4.823.92        | >0                               |
|     | $\log(D_{Av}) = a \times \log(L) + b$                  | 0.833 | -3.80      | -4.213.29        | > 5, 500                         |
|     | $\log(M_0) = a \times \log(A) + b$                     | 1.5   | 6.10       | 5.69-6.60        | >0                               |
|     | $\log(M_0) = a \times \log(L) + b$                     | 3.0   | 6.10       | -                | 0-5,500                          |
|     |                                                        | 2.5   | 7.96       | 7.53-8.51        | > 5, 500                         |
|     | $\log(M_0) = a \times \log(\text{SRL}) + b^{\ddagger}$ | 2.27  | 9.25       | -                | > 5, 500                         |
| SS  |                                                        |       |            |                  |                                  |
|     | $\log(W) = a \times \log(L) + b$                       | 0.667 | 1.18       | 1.04-1.30        | 3,400-45,000                     |
|     | $\log(D_{Av}) = a \times \log(A) + b$                  | 0.5   | -4.43      | -4.824.05        | >0                               |
|     | $\log(D_{Av}) = a \times \log(L) + b$                  | 1.0   | -          | -                | 0-3,400                          |
|     |                                                        | 0.833 | -3.84      | -4.243.45        | 3,400-45,000                     |
|     |                                                        | 0.5   | -2.29      | -2.721.93        | >45,000                          |
|     | $\log(M_0) = a \times \log(A) + b$                     | 1.5   | 6.09       | 5.69-6.47        | >0                               |
|     | $\log(M_0) = a \times \log(L) + b$                     | 3.0   | 6.095      | 5.65-6.52        | 0-3,400                          |
|     |                                                        | 2.5   | 7.85       | 7.41-8.28        | 3,400-45,000                     |
|     |                                                        | 1.5   | 12.50%     | 12.01-12.885     | >45,000                          |
|     | $\log(M_0) = a \times \log(\text{SRL}) + b$            | 2.27  | 9.15       | -                | 3,400-65,000                     |
|     |                                                        | 11    | 15.26      | -                | > 65, 000                        |
| SCR |                                                        |       |            |                  |                                  |
|     | $\log(W) = a \times \log(L) + b$                       | 0.667 | 1.13       | 1.04-1.23        | >2,500                           |
|     | $\log(D_{Av}) = a \times \log(A) + b$                  | 0.5   | -4.14      | -4.304.00        | >0                               |
|     | $\log(D_{Av}) = a \times \log(L) + b$                  | 0.833 | -3.57      | -3.723.43        | > 2, 500                         |
|     | $\log(M_0) = a \times \log(A) + b$                     | 1.5   | 6.38       | 6.22-6.52        | >0                               |
|     | $\log(M_0) = a \times \log(L) + b$                     | 3.0   | 6.39       | -                | 0-2,500                          |
|     |                                                        | 2.5   | 8.08       | 7.87-8.28        | >2,500                           |
|     | $\log(M_0) = a \times \log(\text{SRL}) + b$            | 2.54  | 8.084      | -                | -                                |

|         |    |           |     |     | Table   | e 5       |               |            |
|---------|----|-----------|-----|-----|---------|-----------|---------------|------------|
| Summary | of | Constants | for | the | More    | Common    | Fault-Scaling | Relations, |
|         |    |           | in  | Met | ers and | d Newtons | \$            |            |

\*The value of a and b in each row is the value applicable to the algebraic equation in the first column of that row.

 $^{\dagger}S(b)$  are the uncertainties calculated from the uncertainties in  $C_1$  and  $C_2$  that were estimated from the  $W \sim L$ ,  $M_0 \sim A$ , and  $M_0 \sim L$  data.

<sup>4</sup>SRL variables are derived by substituting the relation SRL =  $1.1 \log \text{RLD} - 0.275$  into the *L* results. <sup>4</sup>These values were set so they intersect with the values estimated from the data between 3.4 and 40 km, where a = 2.5.

<sup>||</sup>These values are set such that they meet the previously identified relation at 65 km and the moment at 400 km is identical for both SRL and L relations.

<sup>a</sup>The data suggest that for SCR the relation SRL = RLD is preferred so the SLR and L relations are identical.



**Figure 1.** Width versus length for normal and reverse dip-slip interplate faults. The least-squares estimate has a slope of 0.668. The three solid thin lines have slopes of 0.57, 0.67 and 0.73 with a common value at the point of smallest least-squares error. They encompass the range of slopes allowed within the  $\pm 1\sigma$  confidence interval. The gray dashed line is defined by  $W = C_1 L\beta$ , where  $\beta = 2/3$  with  $C_1 = 1.7$ ; it has a slope of 2/3 for 5.5 < L < 1500 km. The gray dotted lines show the 67% confidence interval. The catalogs referred to are W&C for Wells and Coppersmith (1994), H&D for Henry and Das (2001), S&S for the Shaw and Scholz (2001) catalog published in Manipheti *et al.* (2007), R&R for Romanowicz and Ruff (2002), and Somerville is Somerville *et al.* (1999). See text for details on the two values shown for the 2004 M 9.3 Sumatra–Andaman earthquake. This color coding is used in all figures. The color version of this figure is available only in the electronic edition.

図2.2.2-8 Leonard (2010) による正断層と逆断層によるプレート間地震の断層長さと幅との関係

(6) Rodriguez-Perez and Ottemoller (2013)

Rodriguez-Perez and Ottemoller (2013) は、カリフォルニア湾とメキシコの沈み込み帯で発生した地震の断層パラメータのスケーリング則を調べた。

図2.2.2-9に、Rodriguez-Perez and Ottemoller (2013) が断層パラメータのスケーリング則を 求めたカリフォルニア湾とメキシコの沈み込み帯で発生した地震の震央を示す。

表2.2.2-8に、Rodriguez-Perez and Ottemoller (2013) が求めたメキシコの沈み込み帯で発生 した地震の断層パラメータのスケーリング則の式を、図2.2.2-10に、スケーリング則の線を 示す。



図2.2.2-9 Rodriguez-Perez and Ottemoller (2013) が断層パラメータのスケーリング則を求め たカリフォルニア湾とメキシコの沈み込み帯で発生した地震の震央

## 表2.2.2-8 Rodriguez-Perez and Ottemoller (2013) が求めたメキシコの沈み込み帯で発生した

地震の断層パラメータのスケーリング則

**Table 3.** Regression results for subduction zone events.  $L_{eff}$  is the effective length;  $W_{eff}$  is the effective width;  $A_{eff}$  is the effective area;  $D_{mean}$  is the average slip on the plane;  $D_{max}$  is the maximum displacement;  $A_2$  is the combined area of asperities;  $\tau$  is the duration of the source time function. RV are reverse events.  $R^2$  is the determination coefficient, a is the intercept, sa is the standard error of a, b is the slope, sb is the standard error of b and  $S_{xy}$  is the standard deviation of the error.

| Parameter           | range                                     | Equation                                         | Slip type | a      | Sa    | Ь     | sb    | Sxy   | $\mathbb{R}^2$ | Mw-range  |
|---------------------|-------------------------------------------|--------------------------------------------------|-----------|--------|-------|-------|-------|-------|----------------|-----------|
| Lerr (km)           | 18.55-169.65                              | $\log_{10} L_{eff} = a + b M_W$                  | RV        | -2.271 | 0.262 | 0.555 | 0.037 | 0.065 | 0.981          | 6.48-8.00 |
| Wett (km)           | 13.88-88.02                               | $\log_{10} W_{eff} = a + b M_w$                  | RV        | -1.689 | 0.470 | 0.462 | 0.067 | 0.116 | 0.940          | 6.48-8.00 |
| Aer (km2)           | 319.24-10028.06                           | $\log_{10} A_{\rm eff} = a + b M_{\rm W}$        | RV        | -4.174 | 0.488 | 1.048 | 0.069 | 0.121 | 0.932          | 6.48-8.00 |
| Deff (m)            | 0.30-4.05                                 | $\log_{10} D_{\rm eff} = a + b M_{\rm W}$        | RV        | -4.109 | 0.604 | 0.581 | 0.086 | 0.150 | 0.901          | 6.48-8.00 |
| Dmax (m)            | 0.84-4.35                                 | $\log_{10} D_{\text{max}} = a + b M_{\text{w}}$  | RV        | -2.696 | 0.296 | 0.423 | 0.042 | 0.073 | 0.975          | 6.48-8.00 |
| Aa (km2)5           | 78-2700                                   | $\log_{10} A_a = a + b M_W$                      | RV        | -4.393 | 0.424 | 0.991 | 0.060 | 0.105 | 0.949          | 6.48-8.00 |
| $A_a (km^2)^5$      | 78-2700                                   | $\log_{10} A_a = a + b \log_{10} A_{\text{eff}}$ | RV        | -0.455 | 0.085 | 0.948 | 0.026 | 0.048 | 0.990          | 6.48-8.00 |
| Aa (km2)1           | 48-1800                                   | $\log_{10} A_a = a + b M_w$                      | RV        | -5.581 | 0.480 | 1.137 | 0.068 | 0.119 | 0.934          | 6.48-8.00 |
| Aa (km2)†           | 18-1200                                   | $\log_{10} A_a = a + b M_w$                      | RV        | -6.013 | 0.654 | 1.146 | 0.093 | 0.162 | 0.876          | 6.48-8.00 |
| T(s)                | 15-92                                     | $\log_{10} \tau = a + b M_W$                     | RV        | -1.289 | 0.365 | 0.396 | 0.052 | 0.090 | 0.963          | 6.48-8.00 |
| $E_{\mathbb{R}}(J)$ | $2.3 \times 10^{13} - 7.5 \times 10^{15}$ | $\log_{10}E_{\rm R} = a + bM_{\rm W}$            | RV        | 2.000  | 0.691 | 1.762 | 0.098 | 0.171 | 0.854          | 6.48-8.00 |

§Somerville et al. (1999) asperity definition.

<sup>‡</sup>Mai et al. (2005) large asperity definition.

+Mai et al. (2005) very large asperity definition.



Figure 7. Scaling relationships obtained in this study. The solid black lines are the regression relationships; the dashed lines are the 95 per cent confidence intervals in the regression; and the solid gray lines indicate the slope for self-similar scaling. Results are shown for effective slip  $(D_{\text{eff}})$  (left top panel), effective width  $(W_{\text{eff}})$  (right top panel), effective area  $(A_{\text{eff}})$  (left bottom panel) and effective length  $(L_{\text{eff}})$  (right bottom panel).

図2.2.2-10 Rodriguez-Perez and Ottemoller (2013) が求めたメキシコの沈み込み帯で発生した地震の断層パラメータのスケーリング則

(7) Kumar *et al.* (2017)

Kumar et al. (2017) は、逆断層による内陸地殻内地震、沈み込み帯のプレート間地震、正 断層による地震、横ずれ断層による地震の断層パラメータのスケーリング則を求めた。

表2.2.2-9に、Kumar et al. (2017) による断層長さLとモーメントマグニチュードMw、断層 幅WとモーメントマグニチュードMw、および断層面積AとモーメントマグニチュードMwと の関係を示す。また、表2.2.2-10に、平均くい違い量DとモーメントマグニチュードMw、平 均くい違い量Dと断層面積A、平均くい違い量Dと断層長さL、平均くい違い量Dと断層幅Wと の関係を示す。 表2.2.2-9 Kumar et al. (2017) による断層長さLとモーメントマグニチュード $M_W$ 、断層幅Wとモーメントマグニチュード $M_W$ 、および断層面積Aとモーメントマグニチュード $M_W$ との関係

|          | Scaling | Coefficients | between | Rupture I | length, | Rupture | Width,  | Rupture | Area,          | and M  | Moment | Magnitude  |      |
|----------|---------|--------------|---------|-----------|---------|---------|---------|---------|----------------|--------|--------|------------|------|
|          |         |              |         |           |         |         |         |         |                | au - 1 |        | Data Range |      |
| Faulting | Regime  | Equ          | ation   | b (s      | sb)     | a (s    | a)      | σ       | r <sup>2</sup> | h      | Mw     | Dimensi    | ion  |
| area fai | ling    | log_I =      | a + bM  | 0.614 /   | 0.043)  | 2 603   | (0.202) | 0.083   | 0.03           | 5.5    | 0.7.60 | 4.9 108 (  | 1 km |

Table 1

| Faulting Regime      | Equation                       | b (sb)        | a (sa)         | a     | r <sup>2</sup> | $M_w$     | Dimension                        |
|----------------------|--------------------------------|---------------|----------------|-------|----------------|-----------|----------------------------------|
| Reverse faulting     | $\log_{10} L = a + bM_w$       | 0.614 (0.043) | -2.693 (0.292) | 0.083 | 0.93           | 5.59-7.69 | 4.9-108.0 km                     |
| (shallow crustal)    | $\log_{10} W = a + bM_w$       | 0.435 (0.050) | -1.669 (0.336) | 0.087 | 0.90           | 5.59-7.69 | 4.8-45.0 km                      |
|                      | $\log_{10} A = a + bM_w$       | 1.049 (0.066) | -4.362 (0.445) | 0.121 | 0.94           | 5.59-7.69 | 23.5-4,860.0 km <sup>2</sup>     |
| Subduction interface | $\log_{10} L = a + bM_w$       | 0.583 (0.037) | -2.412 (0.288) | 0.107 | 0.85           | 6.68-9.19 | 29.2-1420.0 km                   |
|                      | $\log_{10} W = a + bM_w$       | 0.366 (0.031) | -0.880 (0.243) | 0.099 | 0.75           | 6.68-9.19 | 29.2-260.0 km                    |
|                      | $\log_{10} A = a + bM_{\rm W}$ | 0.949 (0.049) | -3.292 (0.377) | 0.150 | 0.86           | 6.68-9.19 | 852.6-318, 080.0 km <sup>2</sup> |
| Normal faulting      | $\log_{10} L = a + bM_w$       | 0.485 (0.036) | -1.722 (0.260) | 0.128 | 0.88           | 5.86-8.39 | 9.0-262.5 km                     |
|                      | $\log_{10} W = a + bM_w$       | 0.323 (0.047) | -0.829 (0.333) | 0.128 | 0.77           | 5.86-8.39 | 6.0-112.5 km                     |
|                      | $\log_{10} A = a + bM_w$       | 0.808 (0.059) | -2.551 (0.423) | 0.181 | 0.88           | 5.86-8.39 | 54.0-29, 531.3 km <sup>2</sup>   |
| Strike slip          | $\log_{10} L = a + bM_w$       | 0.681 (0.052) | -2.943 (0.357) | 0.151 | 0.88           | 5.38-8.70 | 6.0-580.0 km                     |
|                      | $\log_{10} W = a + bM_w$       | 0.261 (0.026) | -0.543 (0.179) | 0.105 | 0.75           | 5.38-8.70 | 6.5-50.0 km                      |
|                      | $\log_{10} A = a + bM_w$       | 0.942 (0.058) | -3.486 (0.399) | 0.184 | 0.88           | 5.38-8.70 | 39.0-29, 000.0 km <sup>2</sup>   |

Scaling coefficients were obtained by general orthogonal regressions, except for the scaling relationships between moment magnitude and nupture area, which were calculated using those of rupture length and nupture width. The notations in the equations: L, W, A, and  $M_w$  denote nupture length, nupture width, nupture area, and moment magnitude. The slope and intercept are given by a and b, their standard errors by sa and sb, while the standard deviation is given by  $\sigma$ . The correlation coefficient is denoted by  $r^2$ .

表2.2.2-10 Kumar et al. (2017) による平均くい違い量Dとモーメントマグニチュード $M_W$ 、 平均くい違い量Dと断層面積A、平均くい違い量Dと断層長さL、平均くい違い量Dと断層幅 Wとの関係

Table 2 Scaling Coefficients between Average Slip, Rupture Width, Rupture Length, Rupture Area, and Moment Magnitude

| Faulting Regime                    | Equation                          | b (sb)        | a (sa)         | σ     | <b>r</b> <sup>2</sup> |
|------------------------------------|-----------------------------------|---------------|----------------|-------|-----------------------|
| Reverse faulting (shallow crustal) | $\log_{10} D = a + bM_{\rm w}$    | 0.451 (0.093) | -3.156 (0.639) | 0.149 | 0.77                  |
|                                    | $\log_{10} D = a + b \log_{10} A$ | 0.429 (0.134) | -1.213 (0.379) | 0.180 | 0.72                  |
|                                    | $\log_{10} D = a + b \log_{10} L$ | 0.975 (0.203) | -1.456 (0.309) | 0.132 | 0.78                  |
|                                    | $\log_{10} D = a + b \log_{10} W$ | 0.767 (0.397) | -1.022 (0.522) | 0.200 | 0.58                  |
| Subduction interface               | $\log_{10} D = a + bM_{\rm w}$    | 0.552 (0.067) | -4.226 (0.526) | 0.171 | 0.74                  |
|                                    | $\log_{10} D = a + b \log_{10} A$ | 0.582 (0.136) | -2.375 (0.558) | 0.257 | 0.35                  |
|                                    | $\log_{10} D = a + b \log_{10} L$ | 1.092 (0.223) | -2.320(0.477)  | 0.213 | 0.34                  |
|                                    | $\log_{10} D = a + b \log_{10} W$ | 1.244 (0.577) | -2.438 (1.154) | 0.213 | 0.25                  |
| Normal faulting                    | $\log_{10} D = a + bM_{\rm w}$    | 0.693 (0.066) | -4.967 (0.484) | 0.195 | 0.86                  |
|                                    | $\log_{10} D = a + b \log_{10} A$ | 0.858 (0.214) | -2.779 (0.683) | 0.330 | 0.29                  |
|                                    | $\log_{10} D = a + b \log_{10} L$ | 1.302 (0.303) | -2.302 (0.531) | 0.252 | 0.43                  |
|                                    | $\log_{10} D = a + b \log_{10} W$ | 2.512 (0.842) | -3.698 (1.216) | 0.223 | 0.00                  |
| Strike slip                        | $\log_{10} D = a + bM_w$          | 0.558 (0.054) | -4.032 (0.376) | 0.227 | 0.77                  |
|                                    | $\log_{10} D = a + b \log_{10} A$ | 0.593 (0.112) | -1.875 (0.342) | 0.302 | 0.43                  |
|                                    | $\log_{10} D = a + b \log_{10} L$ | 0.789 (0.144) | -1.473 (0.259) | 0.276 | 0.48                  |
|                                    | $\log_{10} D = a + b \log_{10} W$ | 2.391 (0.485) | -3.092 (0.602) | 0.178 | 0.10                  |
|                                    |                                   |               |                |       |                       |

Scaling coefficients were obtained by general orthogonal regressions. The notations are as in Table 1. D, A, and  $M_w$  denote average slip (in m), rupture area (in km<sup>2</sup>), and moment magnitude.

2.2.3 プレート間地震の震源断層パラメータの整理・分析

本項では、既往の研究(原子力規制庁,2018)で収集した国内外のプレート間地震の断層 パラメータのデータベースと、今年度業務における地震動解析対象地震の断層パラメータ の関係を調べた。主に断層長さ、断層幅、断層面積および短周期レベル等の断層パラメータ を対象に整理・分析を行った。

a) 国内外のプレート間地震の断層幅 Wと断層長さ L との関係

図 2.2.3-1 に、既往の研究(原子力規制庁,2018)で収集した国内外のプレート間地震の 断層幅 Wと断層長さ Lのデータと、今年度業務における地震動解析対象地震の断層パラメ ータを比較した。

図中、既往の研究(原子力規制庁,2018)で収集したデータのうち、国内の地震について は白丸印で、国外の地震については黒丸印で示し、地震動解析対象地震である2015年チリ Illapel 地震(*M<sub>W</sub>* 8.3)のデータを赤■で示す。参考に、既往の研究(原子力規制庁,2018) の地震動解析対象地震である2014年チリ Iquique 地震(*M<sub>W</sub>* 8.1)のデータを青■で示す。図 中、赤線は渡辺・他(2002)による、プレート間地震の断層幅と断層長さの経験的関係式で ある。

図より、2015年チリ Illapel 地震(*M<sub>W</sub>* 8.3) と 2014年チリ Iquique 地震(*M<sub>W</sub>* 8.1)の断層 幅は概ね 150 km 程度であり、渡辺・他 (2002) で得られた、断層長さ 300 km 以上で飽和す る断層幅とよく整合していることが分かった。2 つの地震のデータともに、渡辺・他 (2002) による経験則の折り曲げのところに位置していることから、これらの地震は、第1ステージ から第2ステージへの遷移ステージの地震である可能性が示唆されており、長周期震源イ ンバージョン結果で見られた、海溝軸まで破壊が達しているけど、超大すべりなどは見られ ていないこととも整合していると考える。



図 2.2.3-1 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

b) 国内外のプレート間地震の断層面積 Sと地震モーメント M<sub>0</sub>と関係の分析

図 2.2.3-2 の a)に、既往の研究(原子力規制庁, 2018)で収集した国内外のプレート間地 震の断層面積 Sと地震モーメント M<sub>0</sub>のデータと、今年度業務における地震動解析対象地震 の断層パラメータを比較した。

図中、既往の研究(原子力規制庁,2018)で収集したデータのうち、国内の地震について は白丸印で、国外の地震については黒丸印で示し、地震動解析対象地震である2015年チリ Illapel 地震(*M<sub>W</sub>* 8.3)のデータを赤■で示す。参考に、既往の研究(原子力規制庁,2018) の地震動解析対象地震である2014年チリ Iquique 地震(*M<sub>W</sub>* 8.1)のデータを青■で示す。図 中、黒線は(2.2.3-1)式で表される Murotani *et al.* (2008)による断層面積*S*と地震モーメント *M*<sub>0</sub>との経験式で、赤線は(2.2.3-2)式で表される、田島・他(2013)による断層幅が飽和する 第2ステージのプレート間地震を対象とした、断層面積*S*と地震モーメント*M*<sub>0</sub>との経験的 関係式(2.2.3-2)式である。参考として、(2.2.3-3)式で表される、地震調査研究推進本部(2005) によるプレートの地震の強震動予測のためのレシピで採用されている宇津(2001)も、青点 線で示す。

$$S[\text{km}^{2}] = 1.48 \times 10^{-10} (M_{0}[\text{N} \cdot \text{m}])^{2/3}$$
(2.2.3-1)

$$S[\text{km}^{2}] = 5.82 \times 10^{-7} (M_{0}[\text{N} \cdot \text{m}])^{1/2}$$
(2.2.3-2)

$$S[\text{km}^{2}] = 8.58 \times 10^{-11} (M_{0}[\text{N} \cdot \text{m}])^{2/3}$$
(2.2.3-3)

図より、2015年チリ Illapel 地震(*M<sub>W</sub>* 8.3) と 2014年チリ Iquique 地震(*M<sub>W</sub>* 8.1)の断層 パラメータは、第2ステージ以降の既往の経験則(田島・他,2013)の下限値より小さい側 への延長線上にあるように見える。長周期震源インバージョン結果で見られたように、海溝 軸まで破壊が達しているけど、超大すべりなどは見られていない、第1ステージから第2ス テージへの遷移ステージの地震である可能性がこちらでも示唆されている。

一方、既往の研究(原子力規制庁,2018)で収集した国内外のプレート間地震の断層面積 Sと地震モーメント $M_0$ のデータを対象に、第1ステージのみ( $S \propto M_0^{2/3}$ )で回帰分析した場 合と、第1ステージから第2ステージへの折り曲げ点を持つ折れ線( $S \propto M_0^{2/3}$ から $S \propto M_0^{1/2}$ に変わる)で回帰した場合に、データはどの相似則とより整合しているかを、赤池の情報量 規準(AIC)法で調べた。

図 2.2.3-2 の b)に、既往の研究(原子力規制庁, 2018)で収集した国内外のプレート間地 震の断層面積 *S* と地震モーメント *M*<sub>0</sub>のデータと、本検討による回帰分析の結果を比較した。

図中、既往の研究(原子力規制庁,2018)で収集したデータのうち、破壊が海溝軸まで達して、かつ超大すべり域も表れている地震(第2ステージ)を赤丸で、それ以外の地震を青丸印で示す。図中、黒点線は(2.2.3-4)式で表される第1ステージのみ( $S \propto M_0^{2/3}$ )で回帰分析した場合の断層面積 S と地震モーメント  $M_0$  との経験式で、緑の点線は(2.2.3-5)式で表される、第1ステージから第2ステージへの折り曲げ点を持つ折れ線( $S \propto M_0^{2/3}$ から  $S \propto M_0^{1/2}$ に変わる)で回帰した場合断層面積 S と地震モーメント  $M_0$  との経験式である。参考として、(2.2.3-1)式で表される Murotani et al. (2008)による断層面積 S と地震モーメント  $M_0$ との経験式である。参考として、 験式を灰色の実線で、(2.2.3-2)式で表される、田島・他(2013)による断層幅が飽和する第2ステージのプレート間地震を対象とした、断層面積 S と地震モーメント  $M_0$ との経験的関係式(2.2.3-2)式を赤線で、(2.2.3-3)式で表される、地震調査研究推進本部(2005)によるプレートの地震の強震動予測のためのレシピで採用されている宇津(2001)を灰色の点線で示す。

それぞれの AIC は 2.82+03 と、2.73+03 となり、折り曲げ線で回帰した方がよりデータと 整合していることがわかった。折り曲げ線で回帰した場合の折り曲げ点の  $M_W$ は 8.6 で田 島・他 (2013) による経験則の下限値である 8.4 より多少大きいが、第2ステージの部分は 田島・他 (2013) とよく整合していることがわかる。

$$S[\text{km}^{2}] = 1.17 \times 10^{-10} (M_{0}[\text{N} \cdot \text{m}])^{2/3}$$
(2.2.3-4)

$$\begin{cases} S[\text{km}^{2}] = 1.28 \times 10^{-10} (M_{0}[\text{N} \cdot \text{m}])^{2/3}, M_{W} < 8.6 \\ S[\text{km}^{2}] = 5.95 \times 10^{-7} (M_{0}[\text{N} \cdot \text{m}])^{1/2}, M_{W} \ge 8.6 \end{cases}$$
(2.2.3-5)



b) 回帰分析

図 2.2.3-2 国内外のプレート間地震の断層面積 S と地震モーメント M<sub>0</sub> との関係 2.2.3-5

c) 国内外のプレート間地震の地震モーメント M<sub>0</sub>と短周期レベル A との関係の分析

図 2.2.3-3 に、既往の研究(原子力規制庁,2018)で収集した国内外のプレート間地震の 地震モーメント M<sub>0</sub>と短周期レベルAのデータと、今年度業務における地震動解析対象地震 の断層パラメータを比較した。

図中、既往の研究(原子力規制庁,2018)で収集したデータのうち、国内の地震について は白丸印で、国外の地震については黒丸印で示し、地震動解析対象地震である2015年チリ Illapel 地震(*M*<sub>W</sub> 8.3)のデータを赤■で示す。参考に、既往の研究(原子力規制庁,2018) の地震動解析対象地震である2014年チリ Iquique 地震(*M*<sub>W</sub> 8.1)のデータを青■で示す。図 中、黒線は(2.2.3-6)式で表される、地震調査研究推進本部(2005)による強震動予測のため のレシピで採用されている壇・他(2001)の式で、黒実線は平均値で、黒点線はその2倍と 1/2、灰色部分は外挿である。

$$A[N \cdot m/s^{2}] = 2.46 \times 10^{10} \times (M_{0}[N \cdot m] \times 10^{7})^{1/3}$$
(2.2.3-6)

図より、2015 年チリ Illapel 地震(*M<sub>W</sub>* 8.3) と 2014 年チリ Iquique 地震(*M<sub>W</sub>* 8.1)の断層 パラメータは、壇・他 (2001) の 0.5 倍から 2 倍の間にあり、平均的には経験式と整合して いることが分かった。



図 2.2.3-3 国内外のプレート間地震の短周期レベルAと地震モーメント Moとの関係

2.2.4 プレート間地震の地震動特性の整理・分析

本検討では、プレート間地震の地震動予測式(GMPE)について、以下の7つの式を用いて、地震動予測式による予測値の比較によって、地震動の地域性の有無を検討することとした。

2.2.4.1 項では、対象とする地震動予測式の概要を述べ、2.2.4.2 項では地震動予測式による予測値の比較を示す。

#### 2.2.4.1 対象地震動予測式の概要

(1) Atkinson and Boore (2003)

Atkinson and Boore (2003) は、世界の沈み込み帯で起こったプレート間地震とスラブ内地 震 (*M* 5~*M* 8.3)の強震記録を用いて、最大加速度および減衰定数 5%の擬似加速度応答ス ペクトルの回帰分析を行った。データベースには、日本やメキシコおよび中米の沈み込み帯 の多くの地震が含まれている。Atkinson and Boore (2003) がプレート間地震の検討に用いた 地震のモーメントマグニチュードと断層最短距離を図 2.2.4-1 に示す。

回帰モデルは下の(2.2.4-1)式で表される。

$$\log Y = fn(M) + c_3h + c_4R - g\log R + c_5 sl S_C + c_6 sl S_D + c_7 sl S_E$$
(2.2.4-1)

ここに、Yは最大加速度もしくは減衰定数 5%の擬似加速度応答スペクトル(cm/s<sup>2</sup>)、M はモ ーメントマグニチュード (プレート間地震の場合  $M \leq 8.5$ )、 $fn(M)=c_1+c_2M$ 、h は震源深さ(km)、  $R=\text{sqrt}(D_{\text{fault}}^2+\Delta^2)$ 、 $D_{\text{fault}}$ は断層のトレースからの最短距離、 $\Delta$ は断層近傍の飽和を示す項で、  $\Delta=0.00724\times10^{0.507M}$ 、 $g=10^{1.2-0.18M}$ である。また、 $c_1\sim c_7$ は回帰係数で、 $S_{\text{C}}$ 、 $S_{\text{D}}$ 、 $S_{\text{E}}$ は地盤種別 を表す係数である。slは最大加速度の大きさと振動数による係数で、表 2.2.4-1 に示す値で ある。

Atkinson and Boore (2003) による最大加速度の例を図 2.2.4-2 に、擬似加速度応答スペクトルの例を図 2.2.4-3 に示す。

一方、図 2.2.4-4 に示すように、マグニチュード、距離、地震タイプおよび地盤種別を同 ーにした場合、高振動数における加速度応答スペクトルが日本の地震では大きく、Cascadia の地震では小さいといった地域性が見られることを指摘している。

#### 2.2.4-1




図2.2.4-1 Atkinson and Boore (2003) が検討に用いたプレート間地震のモーメントマグニチ ュードと断層最短距離(工学的に重要なのは、濃い灰色の部分の地震の記録であ る。モーメントマグニチュードが小さすぎたり、断層最短距離が遠すぎる淡い灰 色の部分の地震の記録は回帰分析に用いていない。)



Figure 9. Peak ground acceleration for rock (NEHRP B) and soil (NEHRP D) for interface events (depth = 20 km) of M 5.5, 6.5, 7.5, and 8.5 (top frame) and in-slab events (depth = 50 km) of M 5.5, 6.5, and 7.5. Nonlinear soil response is assumed for records with  $PGA_{rx} > 100 \text{ cm/sec}^2$ .

図2.2.4-2 tkinson and Boore (2003) によるプレート間地震の最大加速度の例



figure 18. Predicted spectra for earthquakes of M 0.2 (top frames), 7.2 (middle frames), and 8.0 (lower frames), at distances of 50 km (left) and 100 km (right) from the fault, for NEHRP C site conditions, for interface (solid lines) and in-slab (dashed lines) events. Corresponding predictions for shallow California earthquakes (from At-kinson and Silva, 2000) are denoted by lines with "C."

図2.2.4-3 Atkinson and Boore (2003) によるプレート間地震とスラブ内地震の擬似加速度応 答スペクトルの例 (プレート間地震の擬似加速度スペクトルは実線で、スラブ内 地震の擬似加速度スペクトルは破線で示されている。Cのついた線はカルフォル ニアの浅い地震の擬似加速度スペクトルである。)



図2.2.4-4 Atkinson and Boore (2003) による擬似加速度応答スペクトルの地域性

表2.2.4-1 Atkinson and Boore (2003) の地震動予測式のsl

$$\begin{split} sl &= 1. \\ & \text{for } \mathrm{PGA}_{\mathrm{rx}} \leq 100 \ \mathrm{cm/sec^2} \ \mathrm{or \ frequencies} \leq 1 \ \mathrm{Hz} \\ sl &= 1. - (f - 1) \ (\mathrm{PGA}_{\mathrm{rx}} - 100.)/400. \\ & \text{for } 100 < \mathrm{PGA}_{\mathrm{rx}} < 500 \ \mathrm{cm/sec^2} \ (1 \ \mathrm{Hz} < f < 2 \ \mathrm{Hz}) \\ sl &= 1. - (f - 1) \\ & \text{for } \mathrm{PGA}_{\mathrm{rx}} \geq 500 \ \mathrm{cm/sec^2} \ (1 \ \mathrm{Hz} < f < 2 \ \mathrm{Hz}) \\ sl &= 1. - (\mathrm{PGA}_{\mathrm{rx}} - 100.)/400. \\ & \text{for } 100 < \mathrm{PGA}_{\mathrm{rx}} < 500 \ \mathrm{cm/sec^2} \ (f \geq 2 \ \mathrm{Hz} \ \mathrm{and} \ \mathrm{PGA}) \\ sl &= 0. \\ & \text{for } \mathrm{PGA}_{\mathrm{rx}} \geq 500 \ \mathrm{cm/sec^2} \ (f \geq 2 \ \mathrm{Hz} \ \mathrm{and} \ \mathrm{PGA}); \end{split}$$

PGA<sub>rx</sub> is predicted PGA on rock (NEHRP B)

(2) Zhao et al. (2006)

Zhao et al. (2006) は、日本で起ったプレート間地震を対象に、はじめに 25 km より浅い地 震による記録を用いて、最大加速度および減衰定数 5%の加速度応答スペクトルの統計処理 を行った。統計処理に用いた回帰式は、

$$\ln Y(T) = aM_w + bX - \ln r + e(h - h_c)\delta_h + F_R + S_I + S_S + S_{SL}\ln X + C_k + \xi + \eta$$
(2.2.4-2)

$$r = X + cexp(dM_w) \tag{2.2.4-3}$$

$$\delta_h = \begin{cases} 0, & h < h_c \\ 1, & h \ge h_c \end{cases}$$
(2.2.4-4)

である。ここに、Y は対象観測点における最大加速度もしくは加速度応答スペクトルで、単位はg(重力加速度),T は周期(s),X は断層最短距離、 $M_W$ はモーメントマグニチュード。  $F_R$  は内陸地殻内の逆断層地震の場合の係数, $S_I$ はプレート間地震の場合の係数, $S_S$  は海洋プレート内地震の場合の係数である。 $S_L$  はマグニチュードに依存しない海洋プレート内地 震の場合複雑なパスの影響を補正するための係数である。 $C_k$ は地盤特性の項である。 $h_c$  は 深さの定数である。 $\delta_h$ は深さh が $h_c$ より大きい場合 1 となり,h が $h_c$ より小さい場合は 0 に なる。h が 125 km より深い場合は,h=125 km となる。a, b, c, d, e は回帰係数である。ま た、 $\xi_{ij}$ は地震間の誤差、 $\eta_i$ は地震内の誤差である。

表 2.2.4-2 と表 2.2.4-3 に回帰係数を、図 2.2.4-5 に加速度応答スペクトルの例を示す。

| Period (sec) | a     | b        | с      | d     | e       | $S_{\rm R}$ | St     | $S_{\rm S}$ | $S_{\rm SL}$ |
|--------------|-------|----------|--------|-------|---------|-------------|--------|-------------|--------------|
| PGA          | 1.101 | -0.00564 | 0.0055 | 1.080 | 0.01412 | 0.251       | 0.000  | 2.607       | -0.528       |
| 0.05         | 1.076 | -0.00671 | 0.0075 | 1.060 | 0.01463 | 0.251       | 0.000  | 2.764       | -0.551       |
| 0.10         | 1.118 | -0.00787 | 0.0090 | 1.083 | 0.01423 | 0.240       | 0.000  | 2.156       | -0.420       |
| 0.15         | 1.134 | -0.00722 | 0.0100 | 1.053 | 0.01509 | 0.251       | 0.000  | 2.161       | -0.431       |
| 0.20         | 1.147 | -0.00659 | 0.0120 | 1.014 | 0.01462 | 0.260       | 0.000  | 1.901       | -0.372       |
| 0.25         | 1.149 | -0.00590 | 0.0140 | 0.966 | 0.01459 | 0.269       | 0.000  | 1.814       | -0.360       |
| 0.30         | 1.163 | -0.00520 | 0.0150 | 0.934 | 0.01458 | 0.259       | 0.000  | 2.181       | -0.450       |
| 0.40         | 1.200 | -0.00422 | 0.0100 | 0.959 | 0.01257 | 0.248       | -0.041 | 2.432       | -0.500       |
| 0.50         | 1.250 | -0.00338 | 0.0060 | 1.008 | 0.01114 | 0.247       | -0.053 | 2.629       | -0.55        |
| 0.60         | 1.293 | -0.00282 | 0.0030 | 1.088 | 0.01019 | 0.233       | -0.103 | 2.702       | -0.573       |
| 0.70         | 1.336 | -0.00258 | 0.0025 | 1.084 | 0.00979 | 0.220       | -0.146 | 2.654       | -0.572       |
| 0.80         | 1.386 | -0.00242 | 0.0022 | 1.088 | 0.00944 | 0.232       | -0.164 | 2.480       | -0.54        |
| 0.90         | 1.433 | -0.00232 | 0.0020 | 1.109 | 0.00972 | 0.220       | -0.206 | 2.332       | -0.52        |
| 1.00         | 1.479 | -0.00220 | 0.0020 | 1.115 | 0.01005 | 0.211       | -0.239 | 2.233       | -0.50        |
| 1.25         | 1.551 | -0.00207 | 0.0020 | 1.083 | 0.01003 | 0.251       | -0.256 | 2.029       | -0.46        |
| 1.50         | 1.621 | -0.00224 | 0.0020 | 1.091 | 0.00928 | 0.248       | -0.306 | 1.589       | -0.37        |
| 2.00         | 1.694 | -0.00201 | 0.0025 | 1.055 | 0.00833 | 0.263       | -0.321 | 0.966       | -0.24        |
| 2.50         | 1.748 | -0.00187 | 0.0028 | 1.052 | 0.00776 | 0.262       | -0.337 | 0.789       | -0.22        |
| 3.00         | 1.759 | -0.00147 | 0.0032 | 1.025 | 0.00644 | 0.307       | -0.331 | 1.037       | -0.26        |
| 4.00         | 1.826 | -0.00195 | 0.0040 | 1.044 | 0.00590 | 0.353       | -0.390 | 0.561       | -0.16        |
| 5.00         | 1.825 | -0.00237 | 0.0050 | 1.065 | 0.00510 | 0.248       | -0.498 | 0.225       | -0.12        |

 Table 4

 Coefficients for Source and Path Terms of the Models in the Present Study

表2.2.4-3 Zhao et al. (2006) が日本のプレート間地震の記録を統計処理して求めた回帰係数

|              |                | Coefficie | nts for Site Cla | iss Terms and I | Prediction Erro | r     |       |                  |
|--------------|----------------|-----------|------------------|-----------------|-----------------|-------|-------|------------------|
| Period (sec) | C <sub>H</sub> | $C_1$     | $C_2$            | $C_3$           | $C_4$           | σ     | τ     | $\sigma_{\rm T}$ |
| PGA          | 0.293          | 1.111     | 1.344            | 1.355           | 1.420           | 0.604 | 0.398 | 0.723            |
| 0.05         | 0.939          | 1.684     | 1.793            | 1.747           | 1.814           | 0.640 | 0.444 | 0.779            |
| 0.10         | 1.499          | 2.061     | 2.135            | 2.031           | 2.082           | 0.694 | 0.490 | 0.849            |
| 0.15         | 1.462          | 1.916     | 2.168            | 2.052           | 2.113           | 0.702 | 0.460 | 0.839            |
| 0.20         | 1.280          | 1.669     | 2.085            | 2.001           | 2.030           | 0.692 | 0.423 | 0.811            |
| 0.25         | 1.121          | 1.468     | 1.942            | 1.941           | 1.937           | 0.682 | 0.391 | 0.786            |
| 0.30         | 0.852          | 1.172     | 1.683            | 1.808           | 1.770           | 0.670 | 0.379 | 0.770            |
| 0.40         | 0.365          | 0.655     | 1.127            | 1.482           | 1.397           | 0.659 | 0.390 | 0.766            |
| 0.50         | -0.207         | 0.071     | 0.515            | 0.934           | 0.955           | 0.653 | 0.389 | 0.760            |
| 0.60         | -0.705         | -0.429    | -0.003           | 0.394           | 0.559           | 0.653 | 0.401 | 0.766            |
| 0.70         | -1.144         | -0.866    | -0.449           | -0.111          | 0.188           | 0.652 | 0.408 | 0.769            |
| 0.80         | -1.609         | -1.325    | -0.928           | -0.620          | -0.246          | 0.647 | 0.418 | 0.770            |
| 0.90         | -2.023         | -1.732    | -1.349           | -1.066          | -0.643          | 0.653 | 0.411 | 0.771            |
| 1.00         | -2.451         | -2.152    | -1.776           | -1.523          | -1.084          | 0.657 | 0.410 | 0.775            |
| 1.25         | -3.243         | -2.923    | -2.542           | -2.327          | -1.936          | 0.660 | 0.402 | 0.773            |
| 1.50         | -3.888         | -3.548    | -3.169           | -2.979          | -2.661          | 0.664 | 0.408 | 0.779            |
| 2.00         | -4.783         | -4.410    | -4.039           | -3.871          | -3.640          | 0.669 | 0.414 | 0.787            |
| 2.50         | -5.444         | -5.049    | -4.698           | -4.496          | -4.341          | 0.671 | 0.411 | 0.786            |
| 3.00         | -5.839         | -5.431    | -5.089           | -4.893          | -4.758          | 0.667 | 0.396 | 0.776            |
| 4.00         | -6.598         | -6.181    | -5.882           | -5.698          | -5.588          | 0.647 | 0.382 | 0.751            |
| 5.00         | -6.752         | -6.347    | -6.051           | -5.873          | -5.798          | 0.643 | 0.377 | 0.745            |

Table 5 Coefficients for Site Class Terms and Prediction Error



Figure 7. Pseudovelocity spectra calculated for crustal strike-slip and normal events, interface events, and slab events with a magnitude of 7.0 and a depth of 20 km for SC II sites at a source distance of (a) 40 km and (b) 60 km. The spectra from a slab event at a depth of 40 km are also presented for comparison.

図2.2.4-5 Zhao et al. (2006) による日本のプレート間地震の加速度応答スペクトルの例

(3) Arroyo *et al.* (2010)

Arroyo et al. (2010) は、Garcia et al. (2009) によるメキシコのプレート間地震の記録 (1985 年~2004年に発生したモーメントマグニチュード5.0以上の地震による記録) を用いて、最 大加速度と加速度応答スペクトルのGMPEを作成した。

図2.2.4-6に、Arroyo *et al.* (2010) がメキシコのプレート間地震のGMPEを作成するのに用いた地震の震央(○印)と観測点(▲印)を、図2.2.4-7に、地震のモーメントマグニチュードと断層最短距離を示す。

Arroyo et al. (2010) が用いたGMPEは、

$$SA(T) = \alpha_1(T) + \alpha_2(T)M_w + \alpha_3(T)\ln\left[\frac{E_1(\alpha_4(T)R) - E_1(\alpha_4(T)\sqrt{R^2 + r_0^2})}{r_0^2}\right]$$
(2.2.4-5)

である。ここに、 $\alpha_i$  (T)は回帰係数、 $M_W$ はモーメントマグニチュード、Rは断層面までの最短距離、 $r_0$ は

$$r_0^2 = 1.4447 \times 10^{-5} e^{2.3026M_W} \tag{2.2.4-6}$$

である。

表2.2.4-4に、Arroyo *et al.* (2010) によるメキシコのプレート間地震のGMPEの回帰係数を 示す。また、図2.2.4-8に、Arroyo *et al.* (2010) によるメキシコのプレート間地震のGMPEの 例を示す。



図2.2.4-6 Arroyo *et al.* (2010) がメキシコのプレート間地震のGMPEを作成するのに用いた 地震の震央(○印)と観測点(▲印)



Fig. 2 Magnitude versus distance plot summarizing the data used in this study. *Symbols* indicate the type of data available. *Circles* accelerograms, *open diamonds* broadband velocity data

図2.2.4-7 Arroyo *et al.* (2010) がメキシコのプレート間地震のGMPEを作成するのに用いた 地震のモーメントマグニチュードと断層最短距離

表2.2.4-4 Arroyo et al. (2010) によるメキシコのプレート間地震のGMPEの回帰係数

| Table 2 Regression  | T(s)  | $\alpha_1(T)$ | $\alpha_2(T)$ | $\alpha_3(T)$ | $\alpha_A(T)$ | Y.     | b       | σ      | σ,     | σ.             |
|---------------------|-------|---------------|---------------|---------------|---------------|--------|---------|--------|--------|----------------|
| parameters of the   | PGA   | 2 4862        | 0.9392        | 0.5061        | 0.0150        | 0.3850 | _0.0181 | 0.7500 | 0.4654 | 0.5882         |
| proposed strong     | 0.040 | 3.8123        | 0.8636        | 0.5578        | 0.0150        | 0.3962 | -0.0254 | 0.8228 | 0.5179 | 0.6394         |
| ground-motion model | 0.045 | 4.0440        | 0.8489        | 0.5645        | 0.0150        | 0.3874 | -0.0285 | 0.8429 | 0.5246 | 0.6597         |
|                     | 0.050 | 4.1429        | 0.8580        | 0.5725        | 0.0150        | 0.3731 | -0.0181 | 0.8512 | 0.5199 | 0.6740         |
|                     | 0.055 | 4.3092        | 0.8424        | 0.5765        | 0.0150        | 0.3746 | 0.0004  | 0.8583 | 0.5253 | 0.6788         |
|                     | 0.060 | 4.3770        | 0.8458        | 0.5798        | 0.0150        | 0.4192 | -0.0120 | 0.8591 | 0.5563 | 0.6547         |
|                     | 0.065 | 4.5185        | 0.8273        | 0.5796        | 0.0150        | 0.3888 | -0.0226 | 0.8452 | 0.5270 | 0.6607         |
|                     | 0.070 | 4.4591        | 0.8394        | 0.5762        | 0.0150        | 0.3872 | -0.0346 | 0.8423 | 0.5241 | 0.6594         |
|                     | 0.075 | 4.5939        | 0.8313        | 0.5804        | 0.0150        | 0.3775 | -0.0241 | 0.8473 | 0.5205 | 0.6685         |
|                     | 0.080 | 4.4832        | 0.8541        | 0.5792        | 0.0150        | 0.3737 | -0.0241 | 0.8421 | 0.5148 | 0.6664         |
|                     | 0.085 | 4.5062        | 0.8481        | 0.5771        | 0.0150        | 0.3757 | -0.0138 | 0.8344 | 0.5115 | 0.6593         |
|                     | 0.090 | 4.4648        | 0.8536        | 0.5742        | 0.0150        | 0.4031 | -0.0248 | 0.8304 | 0.5273 | 0.6415         |
|                     | 0.095 | 4.3940        | 0.8580        | 0.5712        | 0.0150        | 0.4097 | 0.0040  | 0.8294 | 0.5309 | 0.6373         |
|                     | 0.100 | 4.3391        | 0.8620        | 0.5666        | 0.0150        | 0.3841 | -0.0045 | 0.8254 | 0.5116 | 0.6477         |
|                     | 0.120 | 4.0505        | 0.8933        | 0.5546        | 0.0150        | 0.3589 | -0.0202 | 0.7960 | 0.4768 | 0.6374         |
|                     | 0.140 | 3.5599        | 0.9379        | 0.5350        | 0.0150        | 0.3528 | -0.0293 | 0.7828 | 0.4650 | 0.6298         |
|                     | 0.160 | 3.1311        | 0.9736        | 0.5175        | 0.0150        | 0.3324 | -0.0246 | 0.7845 | 0.4523 | 0.6409         |
|                     | 0.180 | 2.7012        | 1.0030        | 0.4985        | 0.0150        | 0.3291 | -0.0196 | 0.7717 | 0.4427 | 0.6321         |
|                     | 0.200 | 2.5485        | 0.9988        | 0.4850        | 0.0150        | 0.3439 | -0.0250 | 0.7551 | 0.4428 | 0.6116         |
|                     | 0.220 | 2.2699        | 1.0125        | 0.4710        | 0.0150        | 0.3240 | -0.0205 | 0.7431 | 0.4229 | 0.6109         |
|                     | 0.240 | 1.9130        | 1.0450        | 0.4591        | 0.0150        | 0.3285 | -0.0246 | 0.7369 | 0.4223 | 0.6039         |
|                     | 0.260 | 1.7181        | 1.0418        | 0.4450        | 0.0150        | 0.3595 | -0.0220 | 0.7264 | 0.4356 | 0.5814         |
|                     | 0.280 | 1.4039        | 1.0782        | 0.4391        | 0.0150        | 0.3381 | -0.0260 | 0.7209 | 0.4191 | 0.5865         |
|                     | 0.300 | 1.1080        | 1.1038        | 0.4287        | 0.0150        | 0.3537 | -0.0368 | 0.7198 | 0.4281 | 0.5787         |
|                     | 0.320 | 1.0652        | 1.0868        | 0.4208        | 0.0150        | 0.3702 | -0.0345 | 0.7206 | 0.4384 | 0.5/19         |
|                     | 0.340 | 0.8319        | 1.1088        | 0.4142        | 0.0150        | 0.3423 | -0.0381 | 0.7264 | 0.4250 | 0.5891         |
|                     | 0.360 | 0.4965        | 1.1408        | 0.4044        | 0.0150        | 0.3591 | -0.0383 | 0.7200 | 0.4348 | 0.5808         |
|                     | 0.380 | 0.3173        | 1.1388        | 0.3930        | 0.0150        | 0.36/3 | -0.0264 | 0.7292 | 0.4419 | 0.5800         |
|                     | 0.400 | 0.2735        | 1.1555        | 0.4067        | 0.0134        | 0.3956 | -0.0317 | 0.7272 | 0.4574 | 0.5653         |
|                     | 0.450 | 0.0990        | 1.1662        | 0.4127        | 0.00117       | 0.3466 | -0.0267 | 0.7216 | 0.4249 | 0.5833         |
|                     | 0.500 | -0.0379       | 1.2200        | 0.4323        | 0.0064        | 0.3519 | 0.0208  | 0.7169 | 0.4205 | 0.5707         |
|                     | 0.550 | -0.5512       | 1.244.5       | 0.4495        | 0.0076        | 0.3329 | -0.0298 | 0.7095 | 0.4213 | 0.5707         |
|                     | 0.600 | -0.6897       | 1.2005        | 0.4421        | 0.0067        | 0.3691 | -0.0127 | 0.7064 | 0.4304 | 0.5627         |
|                     | 0.850 | -0.0073       | 1.2995        | 0.4765        | 0.0034        | 0.3301 | -0.0192 | 0.7065 | 0.4090 | 0.5756         |
|                     | 0.750 | 0.7015        | 1.3203        | 0.5056        | 0.0034        | 0.3200 | -0.0243 | 0.7070 | 0.3999 | 0.5850         |
|                     | 0.750 | -0.7015       | 1.2394        | 0.5050        | 0.0023        | 0.3304 | 0.0337  | 0.7092 | 0.3023 | 0.5766         |
|                     | 0.850 | 0.0712        | 1.3205        | 0.5105        | 0.0023        | 0.3435 | 0.0244  | 0.6974 | 0.3923 | 0.5700         |
|                     | 0.000 | -1.0970       | 1 3532        | 0.5278        | 0.0018        | 0.3455 | -0.0275 | 0.6923 | 0.3980 | 0.5555         |
|                     | 0.950 | -1.2346       | 1.3687        | 0.5345        | 0.0007        | 0.3264 | -0.0275 | 0.6863 | 0.3921 | 0.5632         |
|                     | 1.000 | -1.2600       | 1.3652        | 0.5426        | 0.0001        | 0.3194 | -0.0183 | 0.6798 | 0.3842 | 0.5608         |
|                     | 1.100 | -1.7687       | 1.4146        | 0.5342        | 0.0001        | 0.3336 | -0.0229 | 0.6701 | 0.3871 | 0.5471         |
|                     | 1.200 | -2.1339       | 1.4417        | 0.5263        | 0.0001        | 0.3445 | -0.0232 | 0.6697 | 0.3931 | 0.5422         |
|                     | 1.300 | -2.4122       | 1.4577        | 0.5201        | 0.0001        | 0.3355 | -0.0231 | 0.6801 | 0.3939 | 0.5544         |
|                     | 1.400 | -2.5442       | 1.4618        | 0.5242        | 0.0001        | 0.3759 | -0.0039 | 0.6763 | 0.4146 | 0.5343         |
|                     | 1.500 | -2.8509       | 1.4920        | 0.5220        | 0.0001        | 0.3780 | -0.0122 | 0.6765 | 0.4159 | 0.5335         |
|                     | 1.600 | -3.0887       | 1.5157        | 0.5215        | 0.0001        | 0.3937 | -0.0204 | 0.6674 | 0.4187 | 0.5197         |
|                     | 1.700 | -3.4884       | 1.5750        | 0.5261        | 0.0001        | 0.4130 | -0.0208 | 0.6480 | 0.4164 | 0.4965         |
|                     | 1.800 | -3.7195       | 1.5966        | 0.5255        | 0.0001        | 0.3967 | -0.0196 | 0.6327 | 0.3985 | 0.4914         |
|                     |       |               |               |               |               |        |         |        |        |                |
| Table 2 (continued) | T     |               |               | a (T)         |               |        | h       |        | ~      |                |
| (continued)         | 1 (S) | $\alpha_1(I)$ | $\alpha_2(1)$ | $\alpha_3(I)$ | $\alpha_4(I)$ | Ye     | D       | σ      | σe     | σ <sub>r</sub> |
|                     | 1.900 | -4.0141       | 1.6162        | 0.5187        | 0.0001        | 0.4248 | -0.0107 | 0.6231 | 0.4062 | 0.4726         |
|                     | 2.000 | -4.1908       | 1.6314        | 0.5199        | 0.0001        | 0.3967 | -0.0133 | 0.6078 | 0.3828 | 0.4721         |
|                     | 2.500 | -5.1104       | 1.7269        | 0.5277        | 0.0001        | 0.4302 | -0.0192 | 0.6001 | 0.3936 | 0.4530         |
|                     | 3.000 | -5.5926       | 1.7515        | 0.5298        | 0.0001        | 0.4735 | -0.0319 | 0.6029 | 0.4148 | 0.4375         |
|                     | 3.500 | -6.1202       | 1.8077        | 0.5402        | 0.0001        | 0.4848 | -0.0277 | 0.6137 | 0.4273 | 0.4405         |
|                     | 4.000 | -6.5318       | 1.8353        | 0.5394        | 0.0001        | 0.5020 | -0.0368 | 0.6201 | 0.4393 | 0.4376         |
|                     | 4.500 | -6.9744       | 1.8685        | 0.5328        | 0.0001        | 0.5085 | -0.0539 | 0.6419 | 0.4577 | 0.4500         |
|                     | 5.000 | -7.1389       | 1.8721        | 0.5376        | 0.0001        | 0.5592 | -0.0534 | 0.6701 | 0.5011 | 0.4449         |

Fig. 10 Observed (open circles) and estimated SA (curves; same symbols as in Fig. 9) as a function of distance for the same periods as in Fig. 9 and magnitudes  $M_w$  6.0 and 8.0



図2.2.4-8 Arroyo et al. (2010) によるメキシコのプレート間地震のGMPEの例

(4) Si et al. (2013)

(a) 用いたデータ

1983 年 5 月 26 日日本海中部地震から 2011 年 4 月 11 日浜通り地震までの 34 地震(5.5  $\leq M_W \leq 9.1$ ),水平・上下成分それぞれ 600 記録のデータベースを構築した.各強震記録には 水平成分ではアメリカ NGA のデータベースに準じた GMRotI50 (平均加速度応答スペクト ル),上下動成分では,通常の加速度応答スペクトルをデータとして整備した.

距離の定義については、司・翠川 (1999) と同様に断層最短距離、等価震源距離の双方を 用いた.データの距離範囲についても司・翠川 (1999) と同様とした.

(b) 地震のタイプ

司・翠川 (1999) と同様に、地殻内・プレート間・プレート内地震との地震タイプを考慮 した.ただし、地震タイプと震源深と相関性があるとの説があることから、統計上では、プ レート内地震、プレート間地震の各々について深さの係数を求めてその平均を最終結果と するなどの工夫をしてパラメータ間の相関関係による影響の回避を図っている.

(c) 近距離での頭打ち

硬質岩盤上のデータに限定しているため,近距離での頭打ちを決められるようなデータ を持ち合わせていないため,0.6秒より長周期成分については司・翠川 (1999)の PGV,0.3 秒より短周期成分について司・翠川 (1999)の PGA で用いられている係数をそれぞれ用い た.また,その間の成分については両者を線形補間した値とした.

(d) 距離減衰

既往の研究から,震源がやや深い地震の場合には,浅い地震に比べて距離減衰の傾きが大きくなる傾向が見られるために,震源深さ 30km を境界に幾何減衰を表す係数を変化させている.これにより,震源がやや深い地震での評価精度を向上させている.

(e) 地盤特性

KiK-netの観測点のうち,地中地震計が Vs2km/s の層に設置されている観測点をターゲットに地盤同定などにより基盤地震波を求め,その他硬質岩盤で観測された地震波をもとに,距離減衰式で用いる地震動バラメータを硬質岩盤上に定義した.最終的には S 波速度の分かっている地震記録との比較により,距離減衰式の定義されている地盤について検討を行っている.

(f) ばらつき

回帰誤差(地震内誤差と地震間誤差の双方を含めたもの)は、全地震におけるS波速度の 分かっている地点に対して求められており、常用対数で 0.37 より小さい値となっている. ただし、地盤が硬いほどばらつきが小さくなる傾向を確認されている.

(g) 回帰モデル

$$\log SA(T) = b(T) + g(X) - kX + \varepsilon(T)$$

$$g(X) = \begin{cases} -\log(X+C); D \le 30km \\ 0.6\log(1.7D+C) - 1.6\log(X+C); D > 30km \& X \ge 1.7D \end{cases}$$

$$C = 0.0055 \cdot 10^{0.5M_w}, T < 0.3s$$

$$= 0.0028 \cdot 10^{0.5M_w}, T \ge 0.6s$$

$$k = 0.003, T < 0.3s$$

$$= 0.002, T \ge 0.6s$$

$$\hbar = 0.002, T \ge 0.6s$$

$$b(T) = \begin{cases} a_1(T)M_w + \sum d_i(T)S_i + h(T)D + \varepsilon_1(T) \\ M \le 8.3 \text{or} M \le 7.5 \text{if} T \ge 2s \\ a_2(T)M_w + \sum d_i(T)S_i + h(T)D + \varepsilon_2(T) \\ M > 8.3 \text{or} M > 7.5 \text{if} T \ge 2s \end{cases}$$

ただし, *SA(T)*は GMRotI50, *X* は断層最短距離, *D* は震源断層の平均的な深さ, *S<sub>i</sub>* は地震タイプを示す. なお、回帰係数は表 2.2.4-5 に示す。

| 表2.2.4-5 Si et | al. (2013) | による | GMPEの | 回帰係数 | 夊 |
|----------------|------------|-----|-------|------|---|
|----------------|------------|-----|-------|------|---|

| T     | al     | h      |             | d           | E 1     |
|-------|--------|--------|-------------|-------------|---------|
|       |        |        | Intra-plate | Inter-plate |         |
| PGA   | 0.5715 | 0.0090 | 0.1532      | -0.0794     | -0.3347 |
| 0.10  | 0.5435 | 0.0109 | 0.1125      | -0.1026     | 0.1060  |
| 0.15  | 0.5632 | 0.0100 | 0.1346      | -0.1055     | 0.0569  |
| 0.20  | 0.5646 | 0.0093 | 0.1871      | -0.0605     | 0.0250  |
| 0.25  | 0.6001 | 0.0089 | 0.1659      | -0.0946     | -0.2238 |
| 0.30  | 0.6246 | 0.0084 | 0.1608      | -0.0775     | -0.4348 |
| 0.40  | 0.6296 | 0.0078 | 0.1757      | -0.0838     | -0.5861 |
| 0.50  | 0.6300 | 0.0073 | 0.1718      | -0.0726     | -0.6950 |
| 0.60  | 0.6261 | 0.0069 | 0.1704      | -0.0637     | -0.7698 |
| 0.70  | 0.6343 | 0.0065 | 0.1568      | -0.0583     | -0.8798 |
| 0.80  | 0.6428 | 0.0062 | 0.1730      | -0.0347     | -0.9966 |
| 0.90  | 0.6700 | 0.0060 | 0.1736      | -0.0558     | -1.2224 |
| 1.00  | 0.6834 | 0.0058 | 0.1800      | -0.0704     | -1.3557 |
| 1.50  | 0.7352 | 0.0048 | 0.2017      | -0.0871     | -1.8910 |
| 2.00  | 0.7843 | 0.0042 | 0.1357      | -0.1280     | -2.3476 |
| 2.50  | 0.8306 | 0.0037 | 0.0826      | -0.1513     | -2.7504 |
| 3.00  | 0.8422 | 0.0033 | 0.0728      | -0.1270     | -2.9291 |
| 5.00  | 0.9647 | 0.0022 | 0.0025      | -0.2890     | -3.9748 |
| 10.00 | 0.9696 | 0.0006 | 0.0480      | -0.2778     | -4.5504 |
| DOV   | 0.6644 | 0.0066 | 0.0995      | -0 1250     | -20072  |

| T     | a2      | ε2     |
|-------|---------|--------|
| PGA   | -0.0618 | 4.8992 |
| 0.10  | 0.0149  | 4.4289 |
| 0.15  | 0.0030  | 4.6353 |
| 0.20  | -0.0187 | 4.8599 |
| 0.25  | -0.0802 | 5.3885 |
| 0.30  | -0.0496 | 5.1429 |
| 0.40  | -0.0801 | 5.3208 |
| 0.50  | -0.1383 | 5.7114 |
| 0.60  | -0.1246 | 5.4563 |
| 0.70  | -0.1507 | 5.6355 |
| 0.80  | -0.2196 | 6.1928 |
| 0.90  | -0.2921 | 6.7926 |
| 1.00  | -0.3291 | 7.0575 |
| 1.50  | -0.3164 | 6.8051 |
| 2.00  | 0.1482  | 2.5895 |
| 2.50  | 0.1734  | 2.2843 |
| 3.00  | 0.1825  | 2.1437 |
| 5.00  | 0.1626  | 2.0980 |
| 10.00 | 0.0831  | 2.3704 |
| PGV   | -0.2951 | 5.8245 |

※d:地殻内地震の場合は0

### (5) Abrahamson et al. (2016)

である。ここに、

Abrahamson *et al.* (2016) は、63のスラブ内地震 (5.0  $\leq M \leq$  7.9) による2590の記録と、43の プレート間地震 (6.0  $\leq M \leq$  8.4) による953の記録を用いて、GMPEを作成した。距離は300 km 以内で、モーメントマグニチュードが8を超えるとマグニチュードのスケーリングが変わる ことも考慮している。

図2.2.4-9に、Abrahamson *et al.* (2016) がプレート間地震とスラブ内地震のGMPEの作成の ために用いた記録のモーメントマグニチュードと距離を示す。

Abrahamson et al. (2016) が採用したGMPEは、

$$\ln(Sa_{interface}) = \theta_1 + \theta_4 \Delta C_1 + (\theta_2 + \theta_3 (M - 7.8)) \ln(R_{rup} + C_4 \exp(\theta_9 (M - 6))) + \theta_6 R_{rup} + f_{mag} (M) + f_{FABA} (R_{rup}) + f_{site} (PGA_{1100}, V_{S30})$$
(2.2.4-8)

$$\begin{aligned} \ln(Sa_{slab}) &= \theta_1 + \theta_4 \Delta C_1 + (\theta_2 + \theta_{14}F_{event} + \theta_3(M - 7.8)) \ln(R_{hypo} + C_4 \exp(\theta_9(M - 6))) \\ &+ \theta_6 R_{hypo} + \theta_{10}F_{event} + f_{mag}(M) + f_{depth}(Z_h) + f_{FABA}(R_{hypo}) + f_{site}(PGA_{1100}, V_{S30}) \end{aligned}$$

$$(2.2.4-9)$$

Sa: 加速度応答スペクトル (単位はg: 重力加速度) M: モーメントマグニチュード  $R_{rup}$ : 断層最短距離 (km)  $R_{hypo}$ : 震源距離 (km)  $Z_h$ : 震源深さ (km)  $F_{event} = \begin{cases} 0 ~ プレート間地震のとき \\ 1 ~ スラブ内地震のとき \end{cases}$ 

$$F_{FABA} = \begin{cases} 0 & 前弧もしくは不明のサイトのとき \\ 1 & 背弧のサイトのとき \end{cases}$$

である。また、マグニチュードの項は、

$$f_{mag}(M) = \begin{cases} \theta_4(M - (C_1 + \Delta C_1)) + \theta_{13}(10 - M)^2 & \text{for } M \le C_1 + \Delta C_1 \\ \theta_5(M - (C_1 + \Delta C_1)) + \theta_{13}(10 - M)^2 & \text{for } M > C_1 + \Delta C_1 \end{cases}$$
(2.2.4-10)

である。ここに、*C*<sub>1</sub>=7.8である。*ΔC*<sub>1</sub>はマグニチュードのスケーリングが変わることを考慮 する回帰係数で、はじめは0.0であるが、巨大地震の記録から、周期依存の値で表されるこ とになった。震源深さの項は、

$$f_{depth}(Z_h) = \theta_{11}(\min(Z_h, 120) - 60)F_{event}$$
(2.2.4-11)

### 2.2.4-15

で、前弧/背弧の項は、

$$f_{FABA}(R) = \begin{cases} \left[ \theta_7 + \theta_8 Ln \left( \frac{\max(R_{hypo}, 85)}{40} \right) \right] F_{FABA} & For \ F \ event = 1 \\ \left[ \theta_{15} + \theta_{16} Ln \left( \frac{\max(R_{rup}, 100)}{40} \right) \right] F_{FABA} & For \ F \ event = 0 \end{cases}$$
(2.2.4-12)

である。サイト特性の項は、

$$f_{site}(PGA_{1000}, V_{S30}) = \begin{cases} \theta_{12}Ln\left(\frac{V_{S}^{*}}{V_{lin}}\right) - bLn(PGA_{1000} + c) + bLn\left(PGA_{1000} + c\left(\frac{V_{S}^{*}}{V_{lin}}\right)^{n}\right) & \text{for } V_{S30} < V_{lin} \\ \theta_{12}Ln\left(\frac{V_{S}^{*}}{V_{lin}}\right) + bLn\left(\frac{V_{S}^{*}}{V_{lin}}\right) & \text{for } V_{S30} \ge V_{in} \end{cases}$$

(2.2.4-13)

である。ここに、PGA1000はVS30=1,000m/sのときの最大加速度PGAの中央値で、

$$V_{S}^{*} = \begin{cases} 1,000 & \text{for } V_{S30} > 1,000 \\ V_{S30} & \text{for } V_{S30} \le 1,000 \end{cases}$$
(2.2.4-14)

である。

表2.2.4-6に、Abrahamson *et al.* (2016) によるプレート間地震とスラブ内地震のGMPEの回帰係数のうち周期によらない係数を、表2.2.4-7に、GMPEの回帰係数のうち周期による係数 を示す。また、表2.2.4-8に、Abrahamson *et al.* (2016) によるプレート間地震のGMPEで使用 が推奨されている回帰係数 $\Delta C_1$ を、図2.2.4-10に、Abrahamson *et al.* (2016) により用いること が推奨されている回帰係数 $\Delta C_1$ の影響を示す。

図2.2.4-11に、Abrahamson et al. (2016) によるプレート間地震のGMPEの例を示す。



Figure 1. Distribution of magnitude and distance (interface events are plotted versus rupture distance; intraslab events, versus hypocentral distance) in the final data set used to develop the GMPE, prior to the 2010 Maule, Chile, and 2011 Tohoku, Japan, earthquakes.

図2.2.4-9 Abrahamson *et al.* (2016) がプレート間地震とスラブ内地震のGMPEの作成のため に用いた記録のモーメントマグニチュードと距離

表2.2.4-6 Abrahamson *et al.* (2016) によるプレート間地震とスラブ内地震のGMPEの回帰係 数のうち周期によらない係数

| Coefficient  | Value over all periods |
|--------------|------------------------|
| n            | 1.18                   |
| С            | 1.88                   |
| $\theta_3$   | 0.1                    |
| $\theta_4$   | 0.9                    |
| $\theta_{s}$ | 0.0                    |
| $\theta_9$   | 0.4                    |
| $C_4$        | 10                     |

 Table 2. Period-independent subduction model coefficients

 used in the regression analysis

| Table  | 3. Reg | ression | coefficien | ts for the | e median ( | (g) subdue | ction G    | MPE           | model         |               |               |               |               |               |      |      |      |
|--------|--------|---------|------------|------------|------------|------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------|------|------|
| Period |        |         |            |            |            |            |            |               |               |               |               |               |               |               |      |      |      |
| (s)    | Vin    | 9       | $\theta_1$ | $\theta_2$ | $\theta_6$ | $\theta_7$ | $\theta_8$ | $\theta_{10}$ | $\theta_{11}$ | $\theta_{12}$ | $\theta_{13}$ | $\theta_{14}$ | $\theta_{15}$ | $\theta_{16}$ | ф    | 2    | 0    |
| 0.000  | 865.1  | -1.186  | 4.2203     | -1.350     | -0.0012    | 1.0988     | -1.42      | 3.12          | 0.0130        | 0.980         | -0.0135       | -0.40         | 0.9996        | -1.00         | 0.60 | 0.43 | 0.74 |
| 0.020  | 865.1  | -1.186  | 4.2203     | -1.350     | -0.0012    | 1.0988     | -1.42      | 3.12          | 0.0130        | 0.980         | -0.0135       | -0.40         | 9666.0        | -1.00         | 0.60 | 0.43 | 0.74 |
| 0.050  | 1053.5 | -1.346  | 4.5371     | -1.400     | -0.0012    | 1.2536     | -1.65      | 3.37          | 0.0130        | 1.288         | -0.0138       | -0.40         | 1.1030        | -1.18         | 0.60 | 0.43 | 0.74 |
| 0.075  | 1085.7 | -1.471  | 5.0733     | -1.450     | -0.0012    | 1.4175     | -1.80      | 3.37          | 0.0130        | 1.483         | -0.0142       | -0.40         | 1.2732        | -1.36         | 0.60 | 0.43 | 0.74 |
| 0.100  | 1032.5 | -1.624  | 5.2892     | -1.450     | -0.0012    | 1.3997     | -1.80      | 3.33          | 0.0130        | 1.613         | -0.0145       | -0.40         | 1.3042        | -1.36         | 0.60 | 0.43 | 0.74 |
| 0.150  | 877.6  | -1.931  | 5.4563     | -1.450     | -0.0014    | 1.3582     | -1.69      | 3.25          | 0.0130        | 1.882         | -0.0153       | -0.40         | 1.2600        | -1.30         | 0.60 | 0.43 | 0.74 |
| 0.200  | 748.2  | -2.188  | 5.2684     | -1.400     | -0.0018    | 1.1648     | -1.49      | 3.03          | 0.0129        | 2.076         | -0.0162       | -0.35         | 1.2230        | -1.25         | 0.60 | 0.43 | 0.74 |
| 0.250  | 654.3  | -2.381  | 5.0594     | -1.350     | -0.0023    | 0.9940     | -1.30      | 2.80          | 0.0129        | 2.248         | -0.0172       | -0.31         | 1.1600        | -1.17         | 0.60 | 0.43 | 0.74 |
| 0.300  | 587.1  | -2.518  | 4.7945     | -1.280     | -0.0027    | 0.8821     | -1.18      | 2.59          | 0.0128        | 2.348         | -0.0183       | -0.28         | 1.0500        | -1.06         | 0.60 | 0.43 | 0.74 |
| 0.400  | 503.0  | -2.657  | 4.4644     | -1.180     | -0.0035    | 0.7046     | -0.98      | 2.20          | 0.0127        | 2.427         | -0.0206       | -0.23         | 0.8000        | -0.78         | 0.60 | 0.43 | 0.74 |
| 0.500  | 456.6  | -2.669  | 4.0181     | -1.080     | -0.0044    | 0.5799     | -0.82      | 1.92          | 0.0125        | 2.399         | -0.0231       | -0.19         | 0.6620        | -0.62         | 0.60 | 0.43 | 0.74 |
| 0.600  | 430.3  | -2.599  | 3.6055     | -0.990     | -0.0050    | 0.5021     | -0.70      | 1.70          | 0.0124        | 2.273         | -0.0256       | -0.16         | 0.5800        | -0.50         | 0.60 | 0.43 | 0.74 |
| 0.750  | 410.5  | -2.401  | 3.2174     | -0.910     | -0.0058    | 0.3687     | -0.54      | 1.42          | 0.0120        | 1.993         | -0.0296       | -0.12         | 0.4800        | -0.34         | 0.60 | 0.43 | 0.74 |
| 1.000  | 400.0  | -1.955  | 2.7981     | -0.850     | -0.0062    | 0.1746     | -0.34      | 1.10          | 0.0114        | 1.470         | -0.0363       | -0.07         | 0.3300        | -0.14         | 0.60 | 0.43 | 0.74 |
| 1.500  | 400.0  | -1.025  | 2.0123     | -0.770     | -0.0064    | -0.0820    | -0.05      | 0.70          | 0.0100        | 0.408         | -0.0493       | 0.00          | 0.3100        | 0.00          | 0.60 | 0.43 | 0.74 |
| 2.000  | 400.0  | -0.299  | 1.4128     | -0.710     | -0.0064    | -0.2821    | 0.12       | 0.70          | 0.0085        | -0.401        | -0.0610       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 2.500  | 400.0  | 0.000   | 0.9976     | -0.670     | -0.0064    | -0.4108    | 0.25       | 0.70          | 0.0069        | -0.723        | -0.0711       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 3.000  | 400.0  | 0.000   | 0.6443     | -0.640     | -0.0064    | -0.4466    | 0.30       | 0.70          | 0.0054        | -0.673        | -0.0798       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 4.000  | 400.0  | 0.000   | 0.0657     | -0.580     | -0.0064    | -0.4344    | 0.30       | 0.70          | 0.0027        | -0.627        | -0.0935       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 5.000  | 400.0  | 0.000   | -0.4624    | -0.540     | -0.0064    | -0.4368    | 0.30       | 0.70          | 0.0005        | -0.596        | -0.0980       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 6.000  | 400.0  | 0.000   | -0.9809    | -0.500     | -0.0064    | -0.4586    | 0.30       | 0.70          | -0.0013       | -0.566        | -0.0980       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 7.500  | 400.0  | 0.000   | -1.6017    | -0.460     | -0.0064    | -0.4433    | 0.30       | 0.70          | -0.0033       | -0.528        | -0.0980       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |
| 10.000 | 400.0  | 0.000   | -2.2937    | -0.400     | -0.0064    | -0.4828    | 0.30       | 0.70          | -0.0060       | -0.504        | -0.0980       | 0.00          | 0.3000        | 0.00          | 0.60 | 0.43 | 0.74 |

表2.2.4-7 Abrahamson *et al.* (2016) によるプレート間地震とスラブ内地震のGMPEの回帰係 数のうち周期による係数

表2.2.4-8 Abrahamson *et al.* (2016) によるプレート間地震のGMPEで使用が推奨されている

回帰係数 $\Delta C_1$ 

| Period (s) | Lower value1 | Central value <sup>1</sup> | Upper value |
|------------|--------------|----------------------------|-------------|
| PGA        | 0.0          | 0.2                        | 0.4         |
| 0.3        | 0.0          | 0.2                        | 0.4         |
| 0.5        | -0.1         | 0.1                        | 0.3         |
| 1.0        | -0.2         | 0.0                        | 0.2         |
| 2.0        | -0.3         | -0.1                       | 0.1         |
| 3.0-10.0   | -0.4         | -0.2                       | 0.0         |

**Table 4.** Recommended period-dependent  $\Delta C_1$  Values for Interface earthquakes based on residual analysis of the Maule and Tohoku earthquakes with the GMPE model

Note: Lower, central, and upper values are included to capture the model's epistemic uncertainty.

<sup>1</sup>For intermediate spectral periods, values should be interpolated based on log-spectral periods and linear values.



Figure 8. Effect of the recommended change (i.e., initial model versus revised model based on Tohoku and Maule earthquake data) in the  $\Delta C_1$  terms from Table 4.

図2.2.4-10 Abrahamson et al. (2016) により用いることが推奨されている回帰係数 AC1の影



Figure 10. Examples of median spectra for interface earthquakes at sites with  $V_{S30} = 760 \text{ m/s}$  located in the forearc region.

図2.2.4-11 Abrahamson et al. (2016) によるプレート間地震のGMPEの例

(6) Idini et al. (2017)

Idini et al. (2017) は、チリで発生した65のプレート間地震の369の観測記録および38のス ラブ内地震の114の観測記録を用いてGMPEを作成した。

図2.2.4-12に、Idini et al. (2017) がチリのプレート間地震とスラブ内地震のGMPEを作成するために用いた地震を示す。

Idini et al. (2017) が採用したGMPEは、

$$\log_{10} Y = F_F(M_W, H, F_{eve}) + F_D(R, M_W, F_{eve}) + F_S$$
(2.2.4-15)

である。ここに、Yは最大加速度または加速度応答スペクトルで単位はg(重力加速度)、 $F_F$ は 震源項、 $F_D$ は伝播特性、 $F_S$ はサイト特性である。また、 $M_W$ はモーメントマグニチュード、 Hは震源深さ、 $F_{eve}$ はプレート間地震のとき0でスラブ内地震のとき1、Rはスラブ内地震か $M_W$ <7.7のプレート間地震のとき震源距離、 $M_W \ge 7.7$ のプレート間地震のとき断層最短距離で ある。

震源項 $F_F$ は、

$$F_{F}(M_{w}, H, F_{eve}) = c_{1} + c_{2}M_{w} + c_{8}(H - h_{o})F_{eve} + \Delta f_{M}$$
(2.2.4-16)  
 $\mathfrak{C} \mathfrak{B} \mathfrak{Z}_{\circ} \subset \mathfrak{C} \mathfrak{L}_{\circ}$ 

$$\Delta f_M = \begin{cases} c_9 M_w^2; & F_{eve} = 0\\ \Delta c_1 + \Delta c_2 M_w; & F_{eve} = 1 \end{cases}$$
(2.2.4-17)

で、 $h_o=50$ kmである。また、 $F_D$ は

$$F_D(R, M_w, F_{eve}) = g \log_{10}(R + R_o) + c_5 R$$
(2.2.4-18)

で、 $R_o = (1 - F_{eve})c_6 \cdot 10^{c_7[M_w - M_r]}$ 、 $g = (c_3 + c_4[M_w - M_r] + \Delta c_3 F_{eve})$ 、 $M_r = 5$ である。 $c_i (i = 1, 2, ..., 9)$ と  $\Delta c_j (j = 1, 2, 3)$ は回帰係数である。

表2.2.4-9に、Idini *et al.* (2017) が求めたチリのプレート間地震とスラブ内地震のGMPEの 第一段階の回帰係数を、表2.2.4-10に第二段階の回帰係数を示す。また、図2.2.4-13に、Idini *et al.* (2017) によるチリのプレート間地震のGMPEの例を示す。



Fig. 1 The database used in this study. a Spacial distribution of the hypocenters. *Circles* indicate interface earthquakes and *squares* indicate intraslab earthquakes. b Magnitude versus distance of the data subset used in the GMPE derivation. c Total number of response spectra data used in the GMPE derivation at each period

図2.2.4-12 Idini et al. (2017) がチリのプレート間地震とスラブ内地震のGMPEを作成する ために用いた地震

## 段階)の回帰係数

Table 4

| Table 4 Standard deviation and | Period (s) | C3       | C5   |
|--------------------------------|------------|----------|------|
| stage of the regression        | PGA        | -0.97558 | -0.0 |
| methodology                    | 0.01       | -1.02993 | -0.0 |
|                                | 0.02       | -1.08567 | -0.0 |
|                                | 0.03       | -1.15951 | -0.0 |
|                                | 0.05       | -1.28640 | -0.0 |
|                                | 0.07       | -1.34644 | -0.0 |
|                                | 0.10       | -1.32353 | -0.0 |
|                                | 0.15       | -1.17687 | -0.0 |
|                                | 0.20       | -1.04508 | -0.0 |
|                                | 0.25       | -0.04363 | 0.0  |

| Period (s) | <i>c</i> <sub>3</sub> | C5       | $\Delta c_3$ | $\sigma_r$ |
|------------|-----------------------|----------|--------------|------------|
| PGA        | -0.97558              | -0.00174 | -0.52745     | 0.232      |
| 0.01       | -1.02993              | -0.00175 | -0.50466     | 0.231      |
| 0.02       | -1.08567              | -0.00176 | -0.48043     | 0.233      |
| 0.03       | -1.15951              | -0.00176 | -0.42490     | 0.235      |
| 0.05       | -1.28640              | -0.00178 | -0.31239     | 0.241      |
| 0.07       | -1.34644              | -0.00181 | -0.17995     | 0.251      |
| 0.10       | -1.32353              | -0.00182 | -0.13208     | 0.255      |
| 0.15       | -1.17687              | -0.00183 | -0.26451     | 0.255      |
| 0.20       | -1.04508              | -0.00182 | -0.39105     | 0.268      |
| 0.25       | -0.94363              | -0.00178 | -0.34348     | 0.264      |
| 0.30       | -0.84814              | -0.00173 | -0.36695     | 0.260      |
| 0.40       | -0.69278              | -0.00166 | -0.46301     | 0.263      |
| 0.50       | -0.57899              | -0.00161 | -0.54098     | 0.261      |
| 0.75       | -0.56887              | -0.00158 | -0.46266     | 0.252      |
| 1.00       | -0.53282              | -0.00154 | -0.42314     | 0.247      |
| 1.50       | -0.46263              | -0.00145 | -0.58519     | 0.246      |
| 2.00       | -0.40594              | -0.00139 | -0.65999     | 0.245      |
| 3.00       | -0.33957              | -0.00137 | -0.79004     | 0.231      |
| 4.00       | -0.26479              | -0.00137 | -0.86545     | 0.228      |
| 5.00       | -0.22333              | -0.00137 | -0.88735     | 0.232      |
| 7.50       | -0.30346              | -0.00131 | -0.91259     | 0.231      |
| 10.00      | -0.33771              | -0.00117 | -0.96363     | 0.204      |

| Period (s) | <i>c</i> <sub>1</sub> | <i>c</i> <sub>2</sub> | <i>C</i> 9 | C8      | $\Delta c_1$ | $\Delta c_2$ | σe    | $\sigma_t$ |
|------------|-----------------------|-----------------------|------------|---------|--------------|--------------|-------|------------|
| PGA        | -2.8548               | 0.7741                | -0.03958   | 0.00586 | 2.5699       | -0.4761      | 0.172 | 0.289      |
| 0.01       | -2.8424               | 0.8052                | -0.04135   | 0.00584 | 2.7370       | -0.5191      | 0.173 | 0.288      |
| 0.02       | -2.8337               | 0.8383                | -0.04325   | 0.00583 | 2.9087       | -0.5640      | 0.176 | 0.292      |
| 0.03       | -2.8235               | 0.8838                | -0.04595   | 0.00586 | 3.0735       | -0.6227      | 0.178 | 0.295      |
| 0.05       | -2.7358               | 0.9539                | -0.05033   | 0.00621 | 3.2147       | -0.7079      | 0.190 | 0.307      |
| 0.07       | -2.6004               | 0.9808                | -0.05225   | 0.00603 | 3.0851       | -0.7425      | 0.213 | 0.329      |
| 0.10       | -2.4891               | 0.9544                | -0.05060   | 0.00571 | 2.8091       | -0.7055      | 0.195 | 0.321      |
| 0.15       | -2.6505               | 0.9232                | -0.04879   | 0.00560 | 2.6260       | -0.6270      | 0.160 | 0.302      |
| 0.20       | -3.0096               | 0.9426                | -0.05034   | 0.00573 | 2.6063       | -0.5976      | 0.157 | 0.310      |
| 0.25       | -3.3321               | 0.9578                | -0.05143   | 0.00507 | 2.3654       | -0.5820      | 0.142 | 0.299      |
| 0.30       | -3.5422               | 0.9441                | -0.05052   | 0.00428 | 2.2017       | -0.5412      | 0.141 | 0.296      |
| 0.40       | -3.3985               | 0.7773                | -0.03885   | 0.00308 | 1.6367       | -0.3448      | 0.157 | 0.306      |
| 0.50       | -2.8041               | 0.5069                | -0.01973   | 0.00257 | 0.7621       | -0.0617      | 0.152 | 0.302      |
| 0.75       | -4.4588               | 0.8691                | -0.04179   | 0.00135 | 2.1003       | -0.4349      | 0.146 | 0.291      |
| 1.00       | -5.3391               | 1.0167                | -0.04999   | 0.00045 | 2.5610       | -0.5678      | 0.153 | 0.290      |
| 1.50       | -6.1204               | 1.1005                | -0.05426   | 0.00068 | 2.8923       | -0.5898      | 0.152 | 0.289      |
| 2.00       | -7.0334               | 1.2501                | -0.06356   | 0.00051 | 3.3941       | -0.7009      | 0.157 | 0.291      |
| 3.00       | -8.2507               | 1.4652                | -0.07797   | 0.00066 | 4.0033       | -0.8465      | 0.155 | 0.279      |
| 4.00       | -8.7433               | 1.4827                | -0.07863   | 0.00063 | 3.9337       | -0.8134      | 0.160 | 0.279      |
| 5.00       | -8.9927               | 1.4630                | -0.07638   | 0.00067 | 3.7576       | -0.7642      | 0.167 | 0.286      |
| 7.50       | -9.8245               | 1.6383                | -0.08620   | 0.00108 | 4.3948       | -0.9313      | 0.164 | 0.283      |
| 10.00      | -9.8671               | 1.5877                | -0.08168   | 0.00014 | 4.3875       | -0.8892      | 0.176 | 0.270      |

Table 5 Standard deviation and coefficient results of the second stage of the regression methodology

Global standard deviation is computed as  $\sigma_t = \sqrt{\sigma_e^2 + \sigma_r^2}$ 



図2.2.4-13 Idini et al. (2017) によるチリのプレート間地震のGMPEの例

(7) Montalva *et al.* (2017)

Montalva *et al.* (2017) は、チリの沈み込み帯で発生した地震の水平成分の応答スペクトルのGMPEを開発した。データベースは、2010年Maule地震 (*M*<sub>W</sub> 8.8) や2014年Iquique地震 (*M*<sub>W</sub> 8.1)、2015年Illapel地震 (*M*<sub>W</sub> 8.3) を含む473地震による3774記録である。

応答スペクトルの中央値は下式で表されている。

$$\mu(Z|\theta) = \ln SA(T) = \theta_1 + f_{\text{source}} + f_{\text{path}} + f_{\text{event/depth}} + f_{\text{site}} + f_{\text{FABA}}$$
(2.2.4-19)

$$f_{\text{source}} = \theta_4 \Delta C_1 + f_{\text{mag}}(M_W) \tag{2.2.4-20}$$

$$f_{\text{mag}}(M_W) = \begin{cases} \theta_4(M_W - (C_1 + \Delta C_1)), & \text{if } M_W \le C_1 + \Delta C_1 \\ \theta_5(M_W - (C_1 + \Delta C_1)), & \text{if } M_W > C_1 + \Delta C_1 \end{cases}$$
(2.2.4-21)

$$f_{\text{path}} = [\theta_2 + \theta_{14}F_{\text{event}} + \theta_3(M_W - 7.8)] \times \ln(R + C_4 \exp(\theta_9(M_W - 6))) + \theta_6 R \quad (2.2.4-22)$$

$$f_{\text{event/depth}} = [\theta_{10} + \theta_{11}(\min(Z_h, 120) - 60)]F_{\text{event}}$$
(2.2.4-23)

$$f_{\text{site}}(\text{PGA}_{1000}, V_{S30}) = \begin{cases} \theta_{12} \ln\left(\frac{V_S^*}{V_{\text{lin}}}\right) - b \ln(\text{PGA}_{1000} + c) \\ + b \ln\left(\text{PGA}_{1000} + c\left(\frac{V_S^*}{V_{\text{lin}}}\right)^n\right), & \text{if } V_{S30} < V_{\text{lin}} \\ \theta_{12} \ln\left(\frac{V_S^*}{V_{\text{lin}}}\right) + b \ln\left(\frac{V_S^*}{V_{\text{lin}}}\right), & \text{if } V_{S30} < V_{\text{lin}} \end{cases}$$
(2.2.4-24)

$$V_{S}^{*} = \begin{cases} 1000, & \text{if } V_{S30} > 1000 \\ V_{S30}, & \text{if } M_{W} \le C_{1} + \Delta C_{1} \end{cases}$$
(2.2.4-25)

$$f_{\text{FABA}}(R) = \begin{cases} \left(\theta_4 + \theta_8 \ln\left(\frac{\max(R, 85)}{40}\right)\right) \times F_{\text{FABA}}, & \text{if } F_{\text{event}} = 1\\ \left(\theta_{15} + \theta_{16} \ln\left(\frac{\max(R, 100)}{40}\right)\right) \times F_{\text{FABA}}, & \text{if } F_{\text{event}} = 0 \end{cases}$$
(2.2.4-26)

ここに、 $\mu(Z|\theta)$ は中央値、Zは変数、 $\theta$ は回帰係数、SAは減衰定数5%の加速度応答スペクトルか最大加速度で単位は重力加速度、 $M_W$ はモーメントマグニチュード、 $Z_h$ は震源深さで単位はkm、Rはプレート間地震の場合、断層最短距離で、スラブ内地震の場合、震源距離、PGA<sub>1000</sub>は $V_s$ 30が1000m/sのときの最大加速度の中央値、 $F_{event}$ はスラブ内地震のとき1で、プレート間地震のとき0である。 $f_{FABA}$ の項は、背孤で1、前弧もしくは不明の場合に0である。 $\Delta C_1, \theta, C_4, V_{lin}, b, c, and n$ は、背孤の影響を表したBC Hydroモデルから直接採用される係数

である。

図2.2.4-14に、GMPEを求めるのに用いたチリのプレート間地震とスラブ内地震のモーメントマグニチュードと距離との関係およびモーメントマグニチュードと震源深さとの関係 を示す。

表2.2.4-11に、チリのプレート間地震とスラブ内地震の記録を用いて求めた回帰係数を示 す。また、図2.2.4-15に、プレート間地震のGMPEの例を示す。



Figure 1. Distribution of records and earthquakes from the strong ground motion database used for the regression. (a,b) Full dataset; (c,d) high-quality (HQ) dataset. The color version of this figure is available only in the electronic edition.

図2.2.4-14 Montalva *et al.* (2017) がGMPEを求めるのに用いたチリのプレート間地震とスラ ブ内地震のモーメントマグニチュードと距離との関係およびモーメントマグニ チュードと震源深さとの関係

# 表2.2.4-11 Montalva et al. (2017) がチリのプレート間地震とスラブ内地震の記録を用いて求めた回帰係数

| Period (s)                                                                                                                                      | Number of<br>Data Points                                                                                                                                                                                                                                                                                                                                                   | $\theta_1$                                                                                                                                                                                                                                                                                                                                                      | $\theta_4$                                                                                                                                                                                                                                                                                                             | $\theta_5$                                                                                                                                                                                                                                                                                                                                                | $\theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\theta_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\theta_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\theta_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\theta_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\theta_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\phi_{s2s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\phi_{SS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.00                                                                                                                                            | 3657                                                                                                                                                                                                                                                                                                                                                                       | 5.87504                                                                                                                                                                                                                                                                                                                                                         | 0.80277                                                                                                                                                                                                                                                                                                                | -0.33487                                                                                                                                                                                                                                                                                                                                                  | -1.75360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.13125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.73080                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.53143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.01495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.47462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.56436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.39903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.02                                                                                                                                            | 3657                                                                                                                                                                                                                                                                                                                                                                       | 5.97631                                                                                                                                                                                                                                                                                                                                                         | 0.84132                                                                                                                                                                                                                                                                                                                | -0.28055                                                                                                                                                                                                                                                                                                                                                  | -1.77011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.73869                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.57416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.03738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.47632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.05                                                                                                                                            | 3658                                                                                                                                                                                                                                                                                                                                                                       | 7.45297                                                                                                                                                                                                                                                                                                                                                         | 1.03131                                                                                                                                                                                                                                                                                                                | -0.03954                                                                                                                                                                                                                                                                                                                                                  | -2.03336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.69849                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.56071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.31034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.53776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.39720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.075                                                                                                                                           | 3656                                                                                                                                                                                                                                                                                                                                                                       | 8.04760                                                                                                                                                                                                                                                                                                                                                         | 1.03437                                                                                                                                                                                                                                                                                                                | -0.01295                                                                                                                                                                                                                                                                                                                                                  | -2.10610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.65336                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.36639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.48158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.56188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.59937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1                                                                                                                                             | 3652                                                                                                                                                                                                                                                                                                                                                                       | 7.76085                                                                                                                                                                                                                                                                                                                                                         | 1.07565                                                                                                                                                                                                                                                                                                                | 0.00758                                                                                                                                                                                                                                                                                                                                                   | -1.99371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.55051                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.90923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.65619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.52707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.63410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.15                                                                                                                                            | 3654                                                                                                                                                                                                                                                                                                                                                                       | 6.17192                                                                                                                                                                                                                                                                                                                                                         | 1.17061                                                                                                                                                                                                                                                                                                                | 0.10491                                                                                                                                                                                                                                                                                                                                                   | -1.58654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.42997                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.06236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.93944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.63022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.39930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.2                                                                                                                                             | 3657                                                                                                                                                                                                                                                                                                                                                                       | 4.83403                                                                                                                                                                                                                                                                                                                                                         | 1.20531                                                                                                                                                                                                                                                                                                                | 0.17968                                                                                                                                                                                                                                                                                                                                                   | -1.29711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.05250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.53088                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.50113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.08901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.44619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.41782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.25                                                                                                                                            | 3682                                                                                                                                                                                                                                                                                                                                                                       | 4.42688                                                                                                                                                                                                                                                                                                                                                         | 1.37607                                                                                                                                                                                                                                                                                                                | 0.22912                                                                                                                                                                                                                                                                                                                                                   | -1.18774                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.58086                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.62816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.25003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.45040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.3                                                                                                                                             | 3673                                                                                                                                                                                                                                                                                                                                                                       | 4.57009                                                                                                                                                                                                                                                                                                                                                         | 1.34991                                                                                                                                                                                                                                                                                                                | 0.15593                                                                                                                                                                                                                                                                                                                                                   | -1.24896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.66281                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.87634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.28339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.42549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.44123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.4                                                                                                                                             | 3643                                                                                                                                                                                                                                                                                                                                                                       | 3.98311                                                                                                                                                                                                                                                                                                                                                         | 1.37954                                                                                                                                                                                                                                                                                                                | 0.11671                                                                                                                                                                                                                                                                                                                                                   | -1.13377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.72244                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.03388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.31409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.42945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.5                                                                                                                                             | 3591                                                                                                                                                                                                                                                                                                                                                                       | 4.86034                                                                                                                                                                                                                                                                                                                                                         | 1.51950                                                                                                                                                                                                                                                                                                                | 0.18348                                                                                                                                                                                                                                                                                                                                                   | -1.38020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.79644                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.31418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.33333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.43334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.49113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.6                                                                                                                                             | 3634                                                                                                                                                                                                                                                                                                                                                                       | 4.67510                                                                                                                                                                                                                                                                                                                                                         | 1.66663                                                                                                                                                                                                                                                                                                                | 0.21968                                                                                                                                                                                                                                                                                                                                                   | -1.35362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.90120                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.75197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.23422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.44599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.49078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.75                                                                                                                                            | 3614                                                                                                                                                                                                                                                                                                                                                                       | 4.30862                                                                                                                                                                                                                                                                                                                                                         | 1.85625                                                                                                                                                                                                                                                                                                                | 0.29783                                                                                                                                                                                                                                                                                                                                                   | -1.30800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.89829                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.70452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.00031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.05217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.46723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.48213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.45553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                               | 3685                                                                                                                                                                                                                                                                                                                                                                       | 3.57339                                                                                                                                                                                                                                                                                                                                                         | 1.81217                                                                                                                                                                                                                                                                                                                | 0.24372                                                                                                                                                                                                                                                                                                                                                   | -1.23082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.87331                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.56020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.00101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.63506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.43828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.5                                                                                                                                             | 3717                                                                                                                                                                                                                                                                                                                                                                       | 2.92216                                                                                                                                                                                                                                                                                                                                                         | 2.03469                                                                                                                                                                                                                                                                                                                | 0.22521                                                                                                                                                                                                                                                                                                                                                   | -1.18750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.94686                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.83343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.69338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.51633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.42573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.42297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                                                               | 3648                                                                                                                                                                                                                                                                                                                                                                       | 2.39780                                                                                                                                                                                                                                                                                                                                                         | 2.04340                                                                                                                                                                                                                                                                                                                | 0.27383                                                                                                                                                                                                                                                                                                                                                   | -1.16319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.90845                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.59029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.09762                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.40377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.5                                                                                                                                             | 3583                                                                                                                                                                                                                                                                                                                                                                       | 1.64148                                                                                                                                                                                                                                                                                                                                                         | 1.88987                                                                                                                                                                                                                                                                                                                | 0.18740                                                                                                                                                                                                                                                                                                                                                   | -1.06544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.80518                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.13415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.34932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.39825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                                                                                                                                               | 3525                                                                                                                                                                                                                                                                                                                                                                       | 1.66483                                                                                                                                                                                                                                                                                                                                                         | 1.90504                                                                                                                                                                                                                                                                                                                | 0.13268                                                                                                                                                                                                                                                                                                                                                   | -1.12678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.81689                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.18978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.33270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.38493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4                                                                                                                                               | 3283                                                                                                                                                                                                                                                                                                                                                                       | 0.90565                                                                                                                                                                                                                                                                                                                                                         | 1.71178                                                                                                                                                                                                                                                                                                                | 0.01380                                                                                                                                                                                                                                                                                                                                                   | -1.07620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.13838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.00062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.87331                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.50907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.41321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.45311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                                                                                                                               | 3102                                                                                                                                                                                                                                                                                                                                                                       | 0.61234                                                                                                                                                                                                                                                                                                                                                         | 1.59359                                                                                                                                                                                                                                                                                                                | 0.06465                                                                                                                                                                                                                                                                                                                                                   | -1.13080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.87800                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.56386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.42395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.34991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6                                                                                                                                               | 2921                                                                                                                                                                                                                                                                                                                                                                       | 0.32672                                                                                                                                                                                                                                                                                                                                                         | 1.69184                                                                                                                                                                                                                                                                                                                | 0.32368                                                                                                                                                                                                                                                                                                                                                   | -1.15734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.88436                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.55837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.38760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.42084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.5                                                                                                                                             | 2780                                                                                                                                                                                                                                                                                                                                                                       | -0.24140                                                                                                                                                                                                                                                                                                                                                        | 1.71126                                                                                                                                                                                                                                                                                                                | 0.60252                                                                                                                                                                                                                                                                                                                                                   | -1.14070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.98803                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.08282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.32638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.41701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.29895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.36349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10                                                                                                                                              | 2473                                                                                                                                                                                                                                                                                                                                                                       | -0.96314                                                                                                                                                                                                                                                                                                                                                        | 1.67160                                                                                                                                                                                                                                                                                                                | 0.77621                                                                                                                                                                                                                                                                                                                                                   | -1.09295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.05008                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.49692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.00070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.25811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.38872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.28454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.36173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Period (s)                                                                                                                                      | σ                                                                                                                                                                                                                                                                                                                                                                          | 07                                                                                                                                                                                                                                                                                                                                                              | $\theta_8$                                                                                                                                                                                                                                                                                                             | $\theta_{15}$                                                                                                                                                                                                                                                                                                                                             | $\theta_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\theta_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Delta C_{1,\text{interface}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Delta C_{1,\text{in-slab}}$                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V_{\rm lin}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>C</i> <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00                                                                                                                              | σ<br>0.83845                                                                                                                                                                                                                                                                                                                                                               | 07<br>1.0988                                                                                                                                                                                                                                                                                                                                                    | θ <sub>8</sub><br>-1.420                                                                                                                                                                                                                                                                                               | θ <sub>15</sub><br>0.9969                                                                                                                                                                                                                                                                                                                                 | θ <sub>16</sub><br>-1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | θ <sub>9</sub><br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Delta C_{1.interface}$<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta C_{1,\text{in-slab}}$<br>-0.300                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>lin</sub><br>865.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b<br>-1.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>4</sub><br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C <sub>1</sub><br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02                                                                                                                      | σ<br>0.83845<br>0.84618                                                                                                                                                                                                                                                                                                                                                    | 07<br>1.0988<br>1.0988                                                                                                                                                                                                                                                                                                                                          | θ <sub>8</sub><br>-1.420<br>-1.420                                                                                                                                                                                                                                                                                     | θ <sub>15</sub><br>0.9969<br>0.9969                                                                                                                                                                                                                                                                                                                       | θ <sub>16</sub><br>-1.000<br>-1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | θ <sub>9</sub><br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΔC <sub>1.interface</sub><br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta C_{1,in-slab}$<br>-0.300<br>-0.300                                                                                                                                                                                                                                                                                                                                                                                                                                  | V <sub>lin</sub><br>865.1<br>865.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b<br>-1.186<br>-1.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>4</sub><br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>1</sub><br>7.2<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Period (s)<br>0.00<br>0.02<br>0.05                                                                                                              | σ<br>0.83845<br>0.84618<br>0.88409                                                                                                                                                                                                                                                                                                                                         | <i>θ</i> <sub>7</sub><br>1.0988<br>1.0988<br>1.2536                                                                                                                                                                                                                                                                                                             | $\theta_8$<br>-1.420<br>-1.420<br>-1.650                                                                                                                                                                                                                                                                               | <i>θ</i> <sub>15</sub><br>0.9969<br>0.9969<br>1.1030                                                                                                                                                                                                                                                                                                      | θ <sub>16</sub><br>-1.000<br>-1.000<br>-1.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | θ <sub>9</sub><br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΔC <sub>1.in-slab</sub><br>-0.300<br>-0.300<br>-0.300                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>lin</sub><br>865.1<br>865.1<br>1053.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b<br>-1.186<br>-1.186<br>-1.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>4</sub><br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C <sub>1</sub><br>7.2<br>7.2<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075                                                                                                     | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867                                                                                                                                                                                                                                                                                                                              | <i>θ</i> <sub>7</sub><br>1.0988<br>1.0988<br>1.2536<br>1.4175                                                                                                                                                                                                                                                                                                   | θ <sub>8</sub><br>-1.420<br>-1.420<br>-1.650<br>-1.800                                                                                                                                                                                                                                                                 | <i>θ</i> <sub>15</sub><br>0.9969<br>0.9969<br>1.1030<br>1.2732                                                                                                                                                                                                                                                                                            | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Delta C_{1,in-slab}$<br>-0.300<br>-0.300<br>-0.300<br>-0.300<br>-0.300                                                                                                                                                                                                                                                                                                                                                                                                    | V <sub>lin</sub><br>865.1<br>865.1<br>1053.5<br>1085.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>b</i><br>-1.186<br>-1.346<br>-1.346<br>-1.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>4</sub><br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>c</i> <sub>1</sub><br>7.2<br>7.2<br>7.2<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075<br>0.1                                                                                              | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944                                                                                                                                                                                                                                                                                                                   | <i>θ</i> <sub>7</sub><br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997                                                                                                                                                                                                                                                                                         | θ <sub>8</sub><br>-1.420<br>-1.420<br>-1.650<br>-1.800<br>-1.800                                                                                                                                                                                                                                                       | <i>θ</i> <sub>15</sub><br>0.9969<br>0.9969<br>1.1030<br>1.2732<br>1.3042                                                                                                                                                                                                                                                                                  | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | θ <sub>9</sub><br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} \Delta C_{1.in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                                                                                       | V <sub>lin</sub><br>865.1<br>865.1<br>1053.5<br>1085.7<br>1032.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>b</i><br>-1.186<br>-1.346<br>-1.346<br>-1.471<br>-1.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>1</sub><br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075<br>0.1<br>0.15                                                                                      | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171                                                                                                                                                                                                                                                                                                        | <i>θ</i> <sub>7</sub><br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997<br>1.3582                                                                                                                                                                                                                                                                               | θ <sub>8</sub><br>-1.420<br>-1.420<br>-1.650<br>-1.800<br>-1.800<br>-1.690                                                                                                                                                                                                                                             | <i>θ</i> <sub>15</sub><br>0.9969<br>0.9969<br>1.1030<br>1.2732<br>1.3042<br>1.2600                                                                                                                                                                                                                                                                        | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 09<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                                                                             | V <sub>lin</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>b</i><br>-1.186<br>-1.186<br>-1.346<br>-1.471<br>-1.624<br>-1.931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     \begin{array}{r} c_1 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\       7.2 \\ $ |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075<br>0.1<br>0.15<br>0.2                                                                               | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853                                                                                                                                                                                                                                                                                             | 07<br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997<br>1.3582<br>1.1648                                                                                                                                                                                                                                                                                        | $\theta_8$<br>-1.420<br>-1.420<br>-1.650<br>-1.800<br>-1.800<br>-1.690<br>-1.490                                                                                                                                                                                                                                       | $\begin{array}{r} \theta_{15} \\ 0.9969 \\ 0.9969 \\ 1.1030 \\ 1.2732 \\ 1.3042 \\ 1.2600 \\ 1.2230 \end{array}$                                                                                                                                                                                                                                          | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300<br>-1.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | θ <sub>9</sub><br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} \Delta C_{\rm 1.in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                                                     | V <sub>lin</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>b</i><br>-1.186<br>-1.346<br>-1.471<br>-1.624<br>-1.931<br>-2.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                               | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075<br>0.1<br>0.15<br>0.2<br>0.25                                                                       | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654                                                                                                                                                                                                                                                                                  | <i>θ</i> <sub>7</sub><br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997<br>1.3582<br>1.1648<br>0.9940                                                                                                                                                                                                                                                           | $\theta_8$<br>-1.420<br>-1.420<br>-1.650<br>-1.800<br>-1.800<br>-1.690<br>-1.490<br>-1.300                                                                                                                                                                                                                             | θ <sub>15</sub><br>0.9969<br>0.9969<br>1.1030<br>1.2732<br>1.3042<br>1.2600<br>1.2230<br>1.1600                                                                                                                                                                                                                                                           | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300<br>-1.250<br>-1.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\theta_9$<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                                                         | V <sub>lin</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>b</i><br>-1.186<br>-1.186<br>-1.346<br>-1.471<br>-1.624<br>-1.931<br>-2.188<br>-2.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>1</sub><br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.15<br>0.2<br>0.25<br>0.3                                                                         | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713                                                                                                                                                                                                                                                                       | 07<br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997<br>1.3582<br>1.1648<br>0.9940<br>0.8821                                                                                                                                                                                                                                                                    | $\theta_8$<br>-1.420<br>-1.420<br>-1.650<br>-1.800<br>-1.800<br>-1.690<br>-1.490<br>-1.300<br>-1.180                                                                                                                                                                                                                   | <i>θ</i> <sub>15</sub><br>0.9969<br>0.9969<br>1.1030<br>1.2732<br>1.3042<br>1.2600<br>1.2230<br>1.1600<br>1.0500                                                                                                                                                                                                                                          | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300<br>-1.250<br>-1.170<br>-1.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\theta_9$<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                                     | V <sub>lin</sub><br>865.1<br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>b</i><br>-1.186<br>-1.186<br>-1.346<br>-1.471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>1</sub><br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.15<br>0.2<br>0.25<br>0.3<br>0.4                                                                         | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982                                                                                                                                                                                                                                                            | 07<br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997<br>1.3582<br>1.1648<br>0.9940<br>0.8821<br>0.7046                                                                                                                                                                                                                                                          | $\theta_8$<br>-1.420<br>-1.420<br>-1.650<br>-1.800<br>-1.800<br>-1.690<br>-1.490<br>-1.300<br>-1.180<br>-0.980                                                                                                                                                                                                         | <i>θ</i> <sub>15</sub><br>0.9969<br>0.9969<br>1.1030<br>1.2732<br>1.3042<br>1.2600<br>1.2230<br>1.1600<br>1.0500<br>0.8000                                                                                                                                                                                                                                | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300<br>-1.250<br>-1.170<br>-1.060<br>-0.780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \theta_9 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                            | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \Delta C_{1,in-stab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                           | V <sub>lin</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.1<br>503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>b</i><br>-1.186<br>-1.346<br>-1.471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.518<br>-2.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                             | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075<br>0.1<br>0.15<br>0.2<br>0.25<br>0.3<br>0.4<br>0.5                                                  | σ<br>0.83845<br>0.84618<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737                                                                                                                                                                                                                                                            | <i>θ</i> <sub>7</sub><br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997<br>1.3582<br>1.1648<br>0.9940<br>0.8821<br>0.7046<br>0.5799                                                                                                                                                                                                                             | $\begin{array}{r} \theta_8 \\ -1.420 \\ -1.420 \\ -1.650 \\ -1.800 \\ -1.800 \\ -1.690 \\ -1.490 \\ -1.300 \\ -1.180 \\ -0.980 \\ -0.820 \end{array}$                                                                                                                                                                  | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.1600           1.0500           0.8000           0.6620                                                                                                                                                            | $\theta_{16}$<br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300<br>-1.250<br>-1.170<br>-1.060<br>-0.780<br>-0.620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \theta_9 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{tabular}{ c c c c c } \hline & $\Delta C_{1,\text{interface}}$ \\ \hline & $0,200$ \\ \hline & $0,144$ \\ \hline & $0,100$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \Delta C_{1,in-stab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                           | V <sub>lin</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.1<br>503<br>456.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b<br>-1.186<br>-1.346<br>-1.346<br>-1.471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.518<br>-2.557<br>-2.669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                             | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.15<br>0.2<br>0.25<br>0.3<br>0.4<br>0.5<br>0.6                                                           | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265                                                                                                                                                                                                                                      | <i>θ</i> <sub>7</sub><br>1.0988<br>1.0988<br>1.2536<br>1.4175<br>1.3997<br>1.3582<br>1.1648<br>0.9940<br>0.8821<br>0.7046<br>0.5799<br>0.5021                                                                                                                                                                                                                   | $\begin{array}{r} \theta_8 \\ -1.420 \\ -1.420 \\ -1.650 \\ -1.800 \\ -1.800 \\ -1.690 \\ -1.490 \\ -1.300 \\ -1.180 \\ -0.980 \\ -0.820 \\ -0.700 \end{array}$                                                                                                                                                        | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.1600           0.0500           0.8000           0.6620           0.5800                                                                                                                                           | <i>θ</i> <sub>16</sub><br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300<br>-1.250<br>-1.170<br>-1.060<br>-0.780<br>-0.620<br>-0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \theta_9 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \\ 0.4 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{tabular}{ c c c c } \hline $\Delta C_{1,interface}$ \\ \hline $0.200$ \\ \hline $0.144$ \\ \hline $0.100$ \\ \hline $0.074$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \Delta C_{1,in-stab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                                                 | V <sub>lin</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.1<br>503<br>456.6<br>430.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>b</i><br>-1.186<br>-1.346<br>-1.471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.518<br>-2.657<br>-2.669<br>-2.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1 | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                         | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.15<br>0.2<br>0.25<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75                                            | σ<br>0.83845<br>0.84618<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265<br>0.81134                                                                                                                                                                                                                                      | θ₁           1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5799           0.5021           0.3687                                                                                                                                 | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.690           -1.490           -1.300           -1.180           -0.9820           -0.700           -0.540                                                                                                      | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.1600           1.0500           0.8000           0.6620           0.4800                                                                                                                                           | θ <sub>16</sub> -1.000           -1.000           -1.180           -1.360           -1.360           -1.300           -1.250           -1.170           -1.060           -0.780           -0.620           -0.340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,9<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{tabular}{ c c c c } \hline $\Delta C_{1,interface}$\\ \hline $0.200$\\ \hline $0.144$\\ \hline $0.100$\\ \hline $0.074$\\ \hline $0.042$\\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \Delta C_{1,in-stab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$                                                                                                                                                                                                                                                                             | V <sub>lin</sub><br>865.1<br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.1<br>503<br>456.6<br>430.3<br>410.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>b</i><br>-1.186<br>-1.346<br>-1.471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.518<br>-2.657<br>-2.669<br>-2.599<br>-2.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                             | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075<br>0.1<br>0.25<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1                                             | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265<br>0.81134<br>0.80914                                                                                                                                                                                                                | θ₁           1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5799           0.5021           0.3687           0.1746                                                                                                                | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.690           -1.400           -1.300           -1.80           -0.980           -0.980           -0.700           -0.540           -0.340                                                                      | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.1600           0.8000           0.6620           0.5800           0.4800           0.3300                                                                                                                          | 0 <sub>16</sub><br>-1.000<br>-1.000<br>-1.180<br>-1.360<br>-1.360<br>-1.300<br>-1.250<br>-1.170<br>-1.060<br>-0.780<br>-0.620<br>-0.500<br>-0.340<br>-0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | θy           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4                                                                                                                 | ΔC1.interface<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.074<br>0.042<br>0.042<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆C <sub>1,in-stab</sub> -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300                                                                                                           | V <sub>hn</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.1<br>503<br>456.6<br>430.3<br>410.5<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b<br>-1.186<br>-1.346<br>-1.346<br>-1.471<br>-1.624<br>-2.381<br>-2.518<br>-2.557<br>-2.669<br>-2.599<br>-2.599<br>-2.401<br>-1.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>4</sub><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                             | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.25<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5                                               | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82652<br>0.79737<br>0.80265<br>0.81134<br>0.80914<br>0.79168                                                                                                                                                                                                     | θ₁           1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5799           0.5021           0.3687           0.1746           -0.0820                                                                                              | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.800           -1.490           -1.490           -1.490           -1.490           -1.490           -1.490           -0.980           -0.980           -0.700           -0.540           -0.340           -0.050 | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.1600           0.8000           0.6620           0.5800           0.3300           0.3100                                                                                                                          | θ <sub>16</sub> -1.000           -1.000           -1.360           -1.360           -1.360           -1.360           -1.250           -1.170           -1.060           -0.780           -0.620           -0.500           -0.340           -0.140           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0,4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | △C <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.144<br>0.042<br>0.000<br>0.042<br>0.000<br>0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆C <sub>1,in-stab</sub> −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300                                                                                          | V <sub>lin</sub><br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.1<br>503<br>456.6<br>430.3<br>410.5<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b<br>-1.186<br>-1.346<br>-1.346<br>-1.3471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.518<br>-2.518<br>-2.669<br>-2.599<br>-2.401<br>-1.925<br>-1.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10                                                                                                                                                                          | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.075<br>0.1<br>0.25<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5<br>2                                 | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265<br>0.81134<br>0.80914<br>0.79168<br>0.76249                                                                                                                                                                                          | θ₁           1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5799           0.5021           0.3687           0.1746           -0.0820           -0.2821                                                                            | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.800           -1.490           -1.300           -1.300           -0.490           -0.820           -0.700           -0.540           -0.550           0.120                                                     | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2230           1.1600           1.0500           0.6620           0.5800           0.4800           0.3100           0.3000                                                                                                                          | θ <sub>16</sub> -1.000           -1.000           -1.180           -1.360           -1.360           -1.300           -1.250           -1.170           -1.060           -0.780           -0.620           -0.340           -0.140           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | θy           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4                                                                                                                 | ΔC <sub>1.interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.000<br>0.000<br>0.000<br>0.0074<br>0.002<br>0.000<br>0.002<br>0.0074<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.0000000<br>0.00000<br>0.00000000 | ∆C <sub>1,in-stab</sub><br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300<br>−0.300                                                                                                                                                                                                                                                                           | Vha<br>865.1<br>1053.5<br>1085.7<br>1032.5<br>877.6<br>748.2<br>654.3<br>587.6<br>430.3<br>410.5<br>400<br>400<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b<br>-1.186<br>-1.346<br>-1.346<br>-1.3471<br>-1.624<br>-1.331<br>-2.188<br>-2.381<br>-2.518<br>-2.518<br>-2.669<br>-2.599<br>-2.401<br>-1.925<br>-0.299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10                                                                                                                                   | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.15<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5<br>2<br>2.5                            | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265<br>0.81134<br>0.80914<br>0.79168<br>0.76249<br>0.75605                                                                                                                                                                               | θ <sub>7</sub> 1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.5021           0.3687           0.1746           -0.08201           -0.2821           -0.2418                                                                                         | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.690           -1.490           -1.490           -1.300           -0.980           -0.980           -0.540           -0.540           -0.540           0.120                                                     | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.10500           0.8000           0.5800           0.3300           0.3000           0.3000                                                                                                                         | θ <sub>16</sub> -1.000           -1.000           -1.180           -1.360           -1.360           -1.360           -1.300           -1.250           -1.170           -0.620           -0.500           -0.340           -0.140           0.000           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | θy           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4                                                                                     | △C <sub>1,interface</sub><br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.0074<br>0.074<br>0.0058<br>-0.0558<br>-0.1055 -0.1055 -0.1055 -0.1055 -0.1055 -0.1055 -0.1055 -0.1055 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105                                                                                                                                                                                                                                                                                                                                                                                            | ∆C1,in-stab           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300           -0.300         -0.300 | Vin           865.1           865.1           1053.5           1085.7           1032.5           877.6           748.2           654.3           587.1           503           456.6           430.3           410.5           400           400           400                                                                                                                                                                                                                                                                                                                                                                                           | b<br>-1.186<br>-1.346<br>-1.346<br>-1.3471<br>-1.624<br>-1.931<br>-2.188<br>-2.637<br>-2.669<br>-2.599<br>-2.401<br>-1.955<br>-1.025<br>-0.299<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88 | C4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                         | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.15<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5<br>2<br>2.5<br>3                       | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265<br>0.81134<br>0.79168<br>0.76249<br>0.75605<br>0.73593                                                                                                                                                                               | θ₁           1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5799           0.3687           0.1746           -0.0820           -0.4108           -0.4466                                                                           | 0s           -1.420           -1.420           -1.650           -1.800           -1.800           -1.490           -1.490           -1.490           -0.980           -0.820           -0.340           -0.340           -0.050           0.120           0.250                                                        | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.16500           0.6620           0.4800           0.3100           0.3000           0.3000           0.3000           0.3000                                                                                       | <i>0</i> <sub>16</sub><br>−1.000<br>−1.000<br>−1.180<br>−1.360<br>−1.360<br>−1.300<br>−1.250<br>−1.700<br>−0.780<br>−0.620<br>−0.500<br>−0.500<br>−0.340<br>−0.140<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0y<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{tabular}{ c c c c } \hline & $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ∆C <sub>1,in-stab</sub> -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300                                                        | Vhn           865.1           865.1           1053.5           1085.7           1032.5           877.6           748.2           654.3           587.1           503           456.6           430.3           410.5           400           400           400           400           400           400           400           400           400           400                                                                                                                                                                                                                                                                                         | b<br>-1.186<br>-1.346<br>-1.346<br>-1.3471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.557<br>-2.669<br>-2.599<br>-2.401<br>-1.955<br>-1.025<br>-0.299<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10                                                                                                         | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.25<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5<br>2<br>2.5<br>3<br>4                         | σ           0.83845           0.84618           0.88409           0.90867           0.90944           0.90171           0.86853           0.83713           0.82654           0.83713           0.82652           0.79737           0.80265           0.81134           0.79168           0.76249           0.75605           0.73593           0.68480                    | θ₁           1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5799           0.3687           0.1746           -0.4820           -0.4408           -0.4408           -0.4344                                                         | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.800           -1.490           -1.490           -1.490           -1.800           -0.980           -0.820           -0.700           -0.340           -0.050           0.120           0.300                    | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.1600           0.5800           0.6620           0.5800           0.3300           0.3000           0.3000           0.3000           0.3000           0.3000                                                      | 016           -1.000           -1.000           -1.180           -1.360           -1.360           -1.360           -1.250           -1.170           -1.060           -0.780           -0.620           -0.500           -0.340           -0.140           0.000           0.000           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0y           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4                                                         | △C1.interface<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.200<br>0.144<br>0.042<br>0.000<br>-0.058<br>-0.155<br>-0.200<br>-0.200<br>0.155<br>-0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ∆C <sub>1,in-stab</sub> −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300                                       | Vin           865.1           865.1           1053.5           1085.7           1032.5           877.6           748.2           654.3           587.1           503           456.6           430.3           410.5           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400                                                                                                                                                                                                     | b<br>-1.186<br>-1.346<br>-1.346<br>-1.3471<br>-1.624<br>-1.931<br>-2.188<br>-2.351<br>-2.518<br>-2.659<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.669<br>-2.599<br>-2.699<br>-2.699<br>-2.699<br>-2.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.02599<br>-0.02599<br>-0.0259<br>-0.0259<br>-0.0259<br>-0.0259 | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10                           | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.15<br>0.2<br>0.25<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5<br>2<br>2.5<br>3<br>4<br>5     | σ<br>0.83845<br>0.84618<br>0.8409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265<br>0.81134<br>0.80914<br>0.79168<br>0.76249<br>0.75605<br>0.73593<br>0.68480<br>0.67609                                                                                                                                               | θ <sub>7</sub> 1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5021           0.3687           0.1746           -0.4202           -0.4204           -0.4368                                                                         | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.800           -1.490           -1.490           -1.300           -0.980           -0.980           -0.540           -0.340           -0.320           0.120           0.250           0.300                     | θ15           0.9969           0.9069           1.030           1.2732           1.3042           1.2600           1.2500           0.8000           0.8000           0.6500           0.4800           0.3300           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000                     | $\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.360 \\ -1.360 \\ -1.360 \\ -1.360 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.500 \\ -0.340 \\ -0.140 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.0$ | θy           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4 | $\begin{tabular}{ c c c c } \hline $\Delta C_{1,interface} \\ \hline $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.200 \\ $0.144 \\ $0.100 \\ $0.074 \\ $0.042 \\ $0.000 \\ $-0.058 \\ $-0.100 \\ $-0.155 \\ $-0.200 \\ $-0.200 \\ $-0.200 \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ∆C1,in-stab           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300                                         | Vin           865.1           865.1           1053.5           1085.7           1032.5           877.6           748.2           654.3           587.1           503           545.6           430.3           410.5           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400                                                                                                                                                                                                     | b<br>-1.186<br>-1.346<br>-1.347<br>-1.624<br>-1.931<br>-2.188<br>-2.3518<br>-2.518<br>-2.557<br>-2.669<br>-2.599<br>-2.599<br>-2.401<br>-1.955<br>-0.299<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10 | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.15<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5<br>2<br>2.5<br>3<br>4<br>5<br>6        | σ           0.83845           0.84618           0.88409           0.90944           0.90944           0.90944           0.85654           0.85654           0.83713           0.82982           0.79737           0.80265           0.81134           0.80914           0.76249           0.75605           0.73593           0.648480           0.67609           0.64653 | θ₁           1.0988           1.0988           1.2536           1.4175           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5021           0.3687           0.1746           -0.820           -0.2821           -0.4108           -0.4408           -0.4344           -0.4356                      | θ <sub>8</sub> -1.420           -1.420           -1.650           -1.800           -1.800           -1.490           -1.490           -1.490           -1.490           -0.980           -0.980           -0.700           -0.540           -0.540           -0.250           0.300           0.300                    | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.10500           0.8000           0.58000           0.4800           0.3300           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000 | $\theta_{16}$ -1.000           -1.000           -1.180           -1.360           -1.360           -1.360           -1.300           -1.250           -1.170           -1.060           -0.780           -0.620           -0.500           -0.340           -0.140           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | θy           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4               | ∆C1.interface           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.144           0.100           0.074           0.042           0.000           -0.058           -0.100           -0.200           -0.200           -0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∆C1,in-stab           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300           -0.300                        | Vin           865.1           1053.5           1085.7           1032.5           877.6           748.2           654.3           503           456.6           430.3           410.5           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400                   | b<br>-1.186<br>-1.346<br>-1.346<br>-1.3471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.577<br>-2.669<br>-2.569<br>-2.401<br>-1.955<br>-1.025<br>-0.299<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10 | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Period (s)<br>0.00<br>0.02<br>0.05<br>0.1<br>0.15<br>0.2<br>0.3<br>0.4<br>0.5<br>0.6<br>0.75<br>1<br>1.5<br>2<br>2.5<br>3<br>4<br>5<br>6<br>7.5 | σ<br>0.83845<br>0.84618<br>0.88409<br>0.90867<br>0.90944<br>0.90171<br>0.86853<br>0.85654<br>0.83713<br>0.82982<br>0.79737<br>0.80265<br>0.81134<br>0.79168<br>0.76249<br>0.75605<br>0.73593<br>0.68480<br>0.67609<br>0.64653<br>0.62881                                                                                                                                   | θ₁           1.0988           1.0988           1.2536           1.3997           1.3582           1.1648           0.9940           0.8821           0.7046           0.5799           0.3687           0.1746           -0.42821           -0.4108           -0.4384           -0.4386           -0.4388           -0.4388           -0.4388           -0.4388 | 0s           -1.420           -1.420           -1.650           -1.800           -1.800           -1.490           -1.490           -1.490           -0.980           -0.980           -0.540           -0.340           -0.050           0.300           0.300           0.300                                        | θ15           0.9969           0.9969           1.1030           1.2732           1.3042           1.2600           1.2230           1.16500           0.8000           0.6620           0.4800           0.3100           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000           0.3000  | 016           -1.000           -1.000           -1.180           -1.360           -1.360           -1.360           -1.360           -1.360           -1.360           -1.360           -1.360           -1.360           -1.360           -1.360           -1.360           -0.780           -0.620           -0.500           -0.500           -0.340           -0.000           0.000           0.000           0.000           0.000           0.000           0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0y           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4           0.4               | ∆C1.interface           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.200           0.144           0.100           -0.058           -0.100           -0.105           -0.200           -0.200           -0.200           -0.200           -0.200           -0.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ∆C <sub>1,in-stab</sub> −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300           −0.300                      | Vhn           865.1           865.1           1053.5           1085.7           1032.5           877.6           748.2           654.3           587.1           503           456.6           430.3           410.5           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400           400 | b<br>-1.186<br>-1.346<br>-1.346<br>-1.3471<br>-1.624<br>-1.931<br>-2.188<br>-2.381<br>-2.577<br>-2.669<br>-2.599<br>-2.401<br>-1.955<br>-1.025<br>-0.299<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88<br>1.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10 | C1           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2           7.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 1 Model Coefficients



Figure 3. Response spectra obtained for a fore-arc site with V<sub>530</sub> = 300 m/s for an interplate earthquake. PGA, peak ground acceleration. The color version of this figure is available only in the electronic edition.

図2.2.4-15 Montalva et al. (2017) によるプレート間地震のGMPEの例

### 2.2.4.2 対象地震動予測式の比較検討

検討はプレート間地震を対象に、M7、 8、9、震源深さ 30 km、距離が 30 km、50 km、100 km、200 kmの各ケースに対して行った。それぞれのケースについて、地震動予測式をプロットして比較を行った。計算の際には Si et al. (2013)による地震動予測式については、Si et al. (2016)による地盤特性の評価式を用いて予測値を対象地盤上のものに変換された。また、比較は地震動予測式における地震動強さの定義が無視できると仮定した。計算の結果を図2.2.4-16~図2.2.4-18 に示す。これらの図から、マグニチュードが 7 の場合はそれぞれの地震動予測式による予測値に比較的大きなバラツキがみられるが、マグニチュードが大きくなるにつれて、そのバラツキが若干小さくなることが見受けられる。そのうち、チリの地震を対象とした地震動予測式、Idini et al. (2017)と Montalva et al. (2017)による予測値の違いが大きいことが分かった。また、メキシコのプレート間地震で開発された Arroyo et al. (2010) が全般的に比較的に小さめであることがみられた。なお、M9の場合、Zhao et al. (2006)は外挿になってしまうことから、その他の地震動予測式との違いが顕著になったと見受けられた。

図 2.2.4-19~図 2.2.4-21 には、検討対象の地震動予測式のうち、同様な回帰モデルを使用 している Abrahamson et al. (2016)と Montalva et al. (2017)との地震動予測式の比較を示して いる。この 2 つの式の間にみられる違いは、回帰モデルによる影響はすくなく、主にデータ セットと統計手法によるものとみられる。したがって、仮に統計手法に起因する違いが無視 できる程度であれば、地震動予測式間の違いは地域性による差とみることができよう。検討 の結果、図に示す通り、マグニチュード7の場合両者の違いが大きいが、マグニチュードが 8 から9 になるにつれてその違いが小さくなっていることが分かった。このことは、マグニ チュードの大きい場合は二つの地震動予測式のデータベースが同程度のものであることで 制つめい出来るが、マグニチュード7 の場合はデータベースの違いによって差が大きくな っていることが考えられる。ただし、Montalva et al. (2017)による地震動予測式は Idini et al. (2017)とも異なることから、Abrahamson et al. (2016)と Montalva et al. (2017)との差はデータ セットのほかに、統計手法によるものとも考えられる。したがって、地震動の地域性を確認 するには、たとえ同じ回帰モデルで地震動予測式を作成することだけではなく、回帰分析手 法も同一ものとしたほうが良いと考えられる。さらに、データセットのマグニチュード、震 源距離、および震源深さに対する分布の違いにも配慮する必要があると考えられる。

#### 2.2.4-28



図2.2.4-16 プレート間地震を対象とした地震動予測式の比較図(M7の場合)



図2.2.4-17 プレート間地震を対象とした地震動予測式の比較図(M8の場合)



図2.2.4-18 プレート間地震を対象とした地震動予測式の比較図(M9の場合)



図2.2.4-19 同様な回帰モデルで得られたAbrahamson *et al.* (2016)とMontalva *et al.* (2017)の比較(*M*7の場合)



図2.2.4-20 同様な回帰モデルで得られたAbrahamson *et al.* (2016)とMontalva *et al.* (2017)の比較(*M*8の場合)



図2.2.4-21 同様な回帰モデルで得られたAbrahamson *et al.* (2016)とMontalva *et al.* (2017)の比較(*M*9の場合)

2.2.4.3 まとめ

本項では、プレート間地震について、7つの地震動予測式による予測値の比較検討を行い、 地震動の地域性がみられるかについて検討を行った。同じ地震規模と、距離、および地盤情 報を与条件とした場合、メキシコで発生する地震による地震動予測式は、他の地震動予測式 に比べて小さめである一方、チリ地震を対象とした 2 つの地震動予測式の間では比較的に やや大きな差がみられた。また、回帰モデルの同じ 2 つの地震動予測式による比較では、マ グニチュード7程度では地震動予測式による予測値に違いがみられ、観測記録にみられる 地域性を示唆するものとなったが、統計手法とデータの質による影響もあると考えられる ことから、地域性を検討するには、観測記録に基づき、回帰モデルや回帰分析手法による違 いとデータセットの質による違いなどを分離して、さらなる検討が必要と考えられる。 2000年頃にスロー地震が発見されて以降、世界中のプレートにおいて、スロー地震の存在 が報告されている(図2.2.5-1)。本項ではプレートの地域性を検討する観点から、スロー地 震とプレート間地震の関連性について議論している既往研究の調査を行った。



図2.2.5-1 世界のそれぞれの地域で発生するスロー地震の種類

(1) Obara and Kato (2016)

Obara and Kato (2016) は、2000 年頃から始まった約 20 年間のスロー地震研究によって明 らかにされたスロー地震の活動様式の特徴(図 2.2.5-2)や種類をを整理した上で、巨大地震 との関連性に焦点を絞りスロー地震が担う役割を以下に示す 3 つのポイントに分けて議論 を行った。

① 類似現象

数種類のスロー地震のうち、ETS(Episodic Tremor and Slip)は、その発生様式が巨大 地震と類似している。更に、ETSは頻繁に発生しており、多くの観測事例から発生様 式の揺らぎ等における法則性を見出すことができれば、巨大地震の発生間隔や破壊域 にみられる規則性やその揺らぎ、連動性を含めた発生様式の理解に役立つ可能性があ る。

② 応力状態を反映するインジケーター

スロー地震の発生域では断層強度が弱く、周囲の応力変化の影響を受けやすい。従っ

て、スロー地震域に隣接する巨大地震震源域における応力蓄積状態を反映して、スロー地震活動の発生パターンが変化することが期待される。

③ 周囲への応力載荷

2011 年東北地方太平洋沖地震の大すべり域周辺で微動やスロースリップイベントが 地震以前に起きて、断層破壊を促進させた可能性があることが分かった。また、2013 年メキシコのパパノア地震や、2014 年チリ北部のイキケ地震でも観測された。スロー スリップによる震源域への応力載荷により破壊が促進された可能性を示すものと考 えられる。



図4. 南海トラフ沈み込み帯で発生するスロー地震の多様性や相互作用を示す概念図。黒の矢 印はスロー地震の移動方向を、赤の矢印は長期的スロースリップイベントから他のスロー地震 に対する誘発作用を表す。赤と黄の星印はそれぞれ浅部側、及び深部側の深部低周波微動を表 し、浅部側の深部低周波微動は長期的スロースリップイベントの影響を受けやすい。また、長 期的スロースリップイベントは、浅部のスロー地震の活動にも影響を及ぼす。

図 2.2.5-2 スロー地震の活動様式の特徴

(2) 高木 (2018)

高木 (2018) は、南海トラフ西部にける新たなスロースリップイベント (SSE) カタログ に基づき、SSE 活動と巨大地震を発生させるプレート間固着の空間的相関性について述べ た後、南海トラフのプレート境界浅部の固着域と深部の SSE 活動の相関関係は、他の沈み 込みプレート境界においても見られることを指摘した (図 2.2.5-3)。



図2.2.5-3 4地域におけるプレート境界浅部の固着域と深部のSSE活動の相関関係

(3) Nishikawa *et al.* (2019)

Nishikawa et al. (2019) は、日本海溝海底地震津波観測網(S-net)をはじめとする陸海域の地震・測地観測網のデータを用いて詳細なスロー地震分布図を作成し、東北地震の破壊がスロー地震多発域で停止していたことを明らかにした。これによりスロー地震多発域が 巨大地震の破壊に対するバリアとして働く可能性が示唆した。図2.2.5-4に日本海溝のスロー地震分布を示す。



図:日本海溝海底地震津波観測網(S-net)(左)と、日本海溝のスロー地震分布を単純化したもの(右)。左図の S-net 観測装置の写真は防災科学技術研究所提供。東北地震大すべり域は linuma et al. (2012)に基づく。

図2.2.5-4 日本海溝のスロー地震分布と2011年東北地方太平洋沖地震の破壊域
2.2.1

- Crouse C. B. (1991): Ground-motion attenuation equations for earthquakes on the Cascadia subduction zones. Earthquake Spectra, Vol. 7, No. 2, pp. 201-236.
- Youngs R. R., S. J. Chiou, W. J. Silva and J. R. Humphrey (1997): Strong ground motion attenuation relationships for subduction zone earthquakes, Seismological Research Letters, Vol. 68, No. 1, pp. 58-73.
- Hong H. P., A. Pozos-Estrada and R. Gomez (2009): Orientation effect on ground motion measurements for Mexican subduction earthquakes. Earthquake Engineering and Engineering Vibration, Vol. 8, No. 1, pp. 1-16.
- 4) Arroyo D., D. Garcia, M. Ordaz, M. A. Mora and S. K. Singh (2010): Strong ground-motion relations for Mexican interplate earthquakes, Journal of Seismology, Vol. 14, No. 4, pp. 769-785.
- Contreras V. and R. Boroschek (2012): Strong ground motion attenuation relations for Chilean subduction zone interface earthquakes, In Proceedings of Fifteenth World Conference on Earthquake Engineering 2012, Lisbon, Portugal.
- Rodriguez-Perez Q. (2014): Ground-motion prediction equations for near-trench interplate and normal-faulting inslab subduction zone earthquakes in Mexico, Bulletin of the Seismological Society of America, Vol. 104, No. 1, pp. 427-438.
- Haendel A., S. Specht, N. M. Kuehn and F. Scherbaum (2014): Mixtures of ground-motion prediction equations as backbone models for a logic tree: An application to the subduction zone in northern Chile, Bulletin of Earthquake Engineering, Vol. 12, No. 3, DOI10.1007/s10518-014-9636-7.
- Abrahamson N., N. Gregor and K. Addo (2016): BC Hydro ground motion prediction equations for subduction earthquakes, Earthquake Spectra, Vol. 32, No. 1, pp. 23-44.
- 9) Idini B., F. Rojas, S. Ruiz and C. Pasten (2017): Ground motion prediction equations for the Chilean subduction zone, Bulletin of Earthquake Engineering, Vol. 15, No. 5, pp. 1853-1880.

- 2.2.2
- 1) Kanamori, H. and D. L. Anderson (1975): Theoretical basis of some empirical relations in seismology, Bulletin of the Seismological Society of America, Vol. 65, No. 5, pp. 1073-1095.
- Fujii, Y. and Matsu'ura, M. (2000): Regional Difference in Scaling Laws for Large Earthquakes and its Tectonic Implication. Pure and Applied Geophysics, No. 157, pp. 2283-2302.
- Somerville, P. G., T. Sato, T. Ishii, N. F. Collins, K. Dan and H. Fujiwara (2002): Characterizing heterogeneous slip models for large subduction earthquakes for strong ground motion prediction. Proceedings of the 11th Japan Earthquake Engineering Symposium, Architectural Institute of Japan, pp. 163-166.
- Strasser, F. O., M. C. Arango and J. J. Bommer (2010): Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude, Seismological Research Letters, Vol. 81, No. 6, pp. 941-950.
- Leonard, M. (2010): Earthquake fault scaling: Relating rupture length, width, average displacement, and moment release, Bulletin of the Seismological Society of America, Vol. 100, No. 5, pp. 1971-1988.
- Rodriguez-Perez, Q. and L. Ottemoller (2013): Finite-fault scaling relations in Mexico, Geophysical Journal International, No. 193, pp. 1570-1588.
- 7) Kumar, K., S. Thingbaijam, P. M. Mai and K. Goda (2017): New empirical earthquake sourcescaling laws, Bulletin of the Seismological Society of America, Vol. 107, No. 5, pp. 2225-2246.

## 2.2.3

- 原子力規制庁 (2018): 平成 29 年度原子力規制庁安全研究, 原子力施設等防災対策等委 託費 (海溝型地震による地震動の評価手法の検討)事業業務報告書.
- Murotani, S, H. Miyake and K. Koketsu (2008): Scaling of characterized slip models for plateboundary earthquakes, Earth Planets Space, 60, pp. 987–991.
- 3) 宇津徳治 (2001): 地震学 (第3版), 共立出版.

- 4) 田島礼子・松元康広・司宏俊・入倉孝次郎 (2013):内陸地殻内および沈み込みプレート 境界で発生する巨大地震の震源パラメータに関するスケーリング則の比較研究,地震, 第2輯,第66巻, pp. 31-45.
- 5) 壇一男・渡辺基史・佐藤俊明・石井透 (2001): 断層の非一様すべり破壊モデルから算定 される短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデ ル化,日本建築学会構造系論文集,第545号, pp. 51-62.
- 6) 佐藤智美 (2010): 逆断層と横ずれ断層の違いを考慮した日本の地殻内地震の短周期レベルのスケーリング則,日本建築学会構造系論文集, Vol. 75, No. 651, pp. 923-932.
- 渡辺基史・壇一男・佐藤俊明 (2002): 巨視的断層パラメータの相似則,日本建築学会大 会学術講演梗概集, B-II, pp. 117-118.
- 8) 地震調査研究推進本部 (2005):「全国を概観した地震動予測地図」報告書 (平成 17 年 3 月 23 日公表,平成 17 年 4 月 13 日更新,平成 17 年 12 月 14 日更新),分冊 2,震源 断層を特定した地震動予測地図の説明.
- 2.2.4
- Atkinson, G. M. and D. M. Boore (2003): Empirical ground-motion relations for subduction zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4):1703-1729.
- Arroyo, D., D. G., M. Ordaz, M. A. Mora and S. K. Singh (2010): Strong ground-motion relations for Mexican interplate earthquakes. Journal of Seismology, 14(4):769785, doi: 10.1007/s10950-010-9200-0.
- 3) Zhao, J. X., J. Zhang, A. Asano, Y. Ohno, T. Oouchi, T. Takahashi, H. Ogawa, K. Irikura, H. K. Thio, P. G. Somerville, Y. Fukushima and Y. Fukushima (2006): Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3): 898-913, doi: 10.1785/0120050122.
- 4) Si, H., S. Midorikawa, H. Tsutsumi, C. Wu, T. Masatsuki and A. Noda (2013): Preliminary analysis of attenuation relationship for response spectra on bedrock based on strong motion records including the 2011 Mw9.0 Tohoku earthquake, Proceedings of 10th International Conference on Urban Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan.

- 5) Abrahamson, N., N. Gregor and K. Addo (2016): BC Hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra, 32(1):23-44, doi: 10.1193/051712EQS188MR.
- Idini, B., F. Rojas, S. Ruiz and C. Pastén (2017): Ground motion prediction equations for the Chilean subduction zone. Bulletin of Earthquake Engineering, 15(5):18531880, doi: 10.1007/s10518-016-0050-1.
- Montalva, G. A., N. Bastías and A. Rodriguez-Marek (2017): Ground-motion prediction equation for the Chilean subduction zone. Bulletin of the Seismological Society of America, 107(2):901911, doi:10.1785/0120160221.
- Montalva, G. A., N. Bastías and A. Rodriguez-Marek (2017): Erratum to Ground-motion prediction equation for the Chilean subduction zone. Bulletin of the Seismological Society of America, 107(5):2541, doi:10.1785/0120170189.

## 2.2.5

- Obara, K. and A. Kato (2016): Connecting slow earthquakes to huge earthquakes, Science, Vol. 353, Issue 6296, pp. 253-257, DOI: 10.1126/science.aaf1512.
- 2) 高木涼太 (2018): スロースリップとプレート間固着の空間的相関, Slow Earthquakes Newsletter Vol. 03, pp. 5-6, 2018, http://www.eri.u-tokyo.ac.jp/project/sloweq/newsletters/pdf/ newsletter 03.pdf, (参照2019-02-07).
- Nishikawa, T., T. Matsuzawa, K. Ohta, N. Uchida, T. Nishimura and S. Ide (2019): The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor, Science, Vol. 365, pp. 808-813, DOI : 10.1126/science.aax5618.