平成 30 年度原子力規制庁委託成果報告書

海溝型地震による地震動の評価手法の検討

株式会社大崎総合研究所

平成 31 年 3 月

本報告書は、原子力規制委員会原子力規制庁からの委託により実施した業務の成果をとりまとめたものです。

本報告書に関する問い合わせは、原子力規制庁までお願いします。

目 次

1. 序 論1-1

1.1 はじめに1-1
1.2 目 的1-2
1.3 事業内容及び方法1-3
1.4 実施体制1-6
2. プレート間巨大地震の地震動評価の検討2.1.1-1
2.1 巨大地震の観測記録の収集及び解析2.1.1-1
2.1.1 2001 年ペルーArequipa 地震等の地震観測記録の収集及び波形処理2.1.1-1
2.1.2 2015 年チリ Illapel 地震の長周期インバージョン解析
2.1.3 2015 年チリ Illapel 地震の特性化震源モデルの設定 2.1.3-1
2.1.4 2015 年チリ Illapel 地震の地震動再現解析
2.1.5 2014 年チリ Iquique 地震のアスペリティモデルの設定 2.1.5-1
2.1.6 2014 年チリ Iquique 地震の地震動再現解析 2.1.6-1
2.1 節の参考文献 参 2.1-1
2.2 プレート間地震のスケーリング則等の検討2.2.1-1
 2.2 プレート間地震のスケーリング則等の検討

3.1.3 2016 年アラスカ Iniskin 地震の地震動再現解析	3.1.3-1
3.1.4 2005 年チリ Tarapaca 地震のアスペリティモデルの設定	3.1.4-1
3.1.5 2005 年チリ Tarapaca 地震の地震動再現解析	3.1.5-1
3.1節の参考文献	参 3.1-1

3.	.2 海洋プレート内地震のスケーリング則等の検討	3.2.	1-1
	3.2.1 海洋プレート内地震の地震動特性の調査	3.2.	1-1
	3.2.2 海洋プレート内地震のスケーリング則の調査	3.2.	2-1
	3.2.3 海洋プレート内地震の断層パラメータの調査	3.2.	3-1
	3.2.4 海洋プレート内地震の断層パラメータの分析	3.2.	4-1
	3.2節の参考文献	参 3.	2-1

付録 A.	収集した文献のリスト	付	A-1
付録 B.	収集した断層パラメータ	付	B-1
付録 C.	地震タイプごとの断層パラメータ	付	C-1

1. 序 論

1.1 はじめに

基準地震動策定において想定地震は、内陸地殻内地震、プレート間地震及び海洋プレー ト内地震の3つのタイプに分けて、それぞれの検討用地震を選定して地震動評価が行わ れている。特に、プレート間地震及び海洋プレート内地震(以下「海溝型地震」という。) に関して、「国内のみならず世界で起きた大規模な地震を踏まえ、地震の発生機構及びテ クトニクス的背景の類似性を考慮した上で震源領域の設定を行うこと」が新規制基準で 規定されている。

プレート間地震は、数十年程度の比較的短い周期で繰り返し発生する大規模地震の場 合、過去の地震に対する調査研究で得た知見を基に、想定地震の発生場所や規模を推測で きる。2011 年東北地方太平洋沖地震のような数百年程度の比較的長い周期で繰り返し発 生するプレート間巨大地震は、国内の事例が少ないため、世界中で起きた巨大地震、特に 観測記録が得られた巨大地震の調査研究が重要である。特に、短周期地震動について日本 の手法で解析を行った事例は非常に少ないため、国外で起きた地震の観測記録を収集し て国内と同様の解析を実施することが重要となる。

海洋プレート内地震は、特に敷地周辺で深さ数十 km 以上の深い場所で発生する場合、 地表に痕跡が残っておらず、また、発生周期も特定されていないため、想定地震の発生場 所や規模の推定は非常に困難である。さらに、敷地周辺で発生する海洋プレート内地震は、 他のタイプの同規模の地震に比べて大きな短周期地震動を生ずるため、地震動評価にお いて震源特性を明確にすることは重要である。

1 - 1

1.2 目 的

本研究では、断層モデルを用いた手法(以下「断層モデル法」という。)による地震動 評価の精度向上のため、国内外で起きた海溝型地震の地震動特性及び震源特性に関する 研究を対象に文献調査、地震動解析等を実施することとし、以下2項目の内容を実施する。

(1) プレート間巨大地震の地震動評価の検討

(2) 海洋プレート内地震の地震動評価の検討

1.3.1 プレート間巨大地震の地震動評価の検討

「震源断層を特定した地震の強震動予測手法(「レシピ」)」(以下「強震動予測レシ ピ」という。)は、強震動評価に関する既往の検討結果から、断層モデル法における震源 特性パラメータの設定等について取りまとめた標準的な手法として、地震調査研究推進 本部(以下「地震本部」という。)で公開されている(詳細は http://www.jishin.go.jp/main/chousa/17_yosokuchizu/recipe.pdfを参照)。強震動予 測レシピでまとめたプレート間地震の震源特性パラメータの設定方法は、主に1978年宮 城県沖地震や2003年十勝沖地震の地震動評価を踏まえて提案されたものであり、2011年 東北地方太平洋沖地震のようなプレート間巨大地震による地震動を評価するためには、 過去の巨大地震の震源特性及び地震評価に関する知見を反映することが重要である。

そこで、本事業では、プレート間巨大地震を対象とし、地震動評価に用いた震源特性パ ラメータの設定手法の整備並びに巨大地震に適応できる統計的及び経験的グリーン関数 法の高度化を行うことを目的とし、以下の項目を実施する。

(1) 巨大地震の観測記録の収集及び解析

国内外で発生したプレート間巨大地震(2 個程度)による観測記録を収集し分析した上 で、検討地震を1 個選定し、震源過程解析を行う。また、短周期地震動に着目し、特性 化震源モデルの構築を検討し、震源断層パラメータを求め、強震動予測レシピの適用性に 関する検証解析を行うとともに、プレート間巨大地震の地震動評価における課題及びそ の解決策について整理する。ここでは、平成29 年度とは異なる地震を対象とする、又は 同じ地震の場合は異なる手法により解析を実施する。検討地震選定、検討手法等の詳細は、 原子力規制庁担当者と協議して決定する。

(2) プレート間地震のスケーリング則等の検討

国内外で発生したプレート間地震を対象に、(1)で得られた震源断層パラメータに加 え、既往研究で得られた震源断層パラメータ、地震動特性等に関するデータを収集する。 また、プレートの地域性に着目しながら、震源断層パラメータのデータを整理・分析し、

1 - 3

既往スケーリング則等との比較を行う。

1.3.2 海洋プレート内地震の地震動評価の検討

本事業は、海溝の海側の沈み込むプレート内で起きるやや浅い地震と沈み込んだプレ ート内(スラブ内)で起きるやや深い地震(以下「スラブ内地震」という。)の2種類の 海洋プレート内地震を検討対象とする。地震本部では、後者のスラブ内地震の震源特性に 関する近年の研究成果を基に、スラブ内地震の特性化震源モデルの設定手法を新たに追 加し、強震動予測レシピを2016年に更新した。一方、スラブ内地震は、想定地震の発生 周期や場所に関する情報が少ないため、強震動予測レシピでは、想定地震の規模の推定手 法が提示されていない。さらに、敷地周辺で発生するスラブ内地震は、他のタイプの同規 模の地震に比べて大きな短周期地震動を生ずるとの既往研究も多いため、プレート内で 起きるやや浅い地震との比較等を行うことにより地震動評価における震源特性を明確に することは重要である。また、国内で起きた海洋プレート内地震に関する研究事例が限ら れているため、国内外で起きた海洋プレート内地震を対象に、より数多くの地震を調査し 比較検討することにより、地域的な特性または海洋プレートの特性を明確にすることが 重要である。

そこで、本事業では、海洋プレート内地震を対象とし、地震動評価に用いた震源特性パ ラメータの設定手法の高度化を行うことを目的とし、以下の項目を実施する。

(1) スラブ内地震の地震動解析

平成29年度に対象としていない最近の国外のスラブ内地震(1個)を対象に、特性化 震源モデルを構築し、断層モデル法に基づく地震動再現解析を行い、強震動予測レシピの 適用性に関する検証を行う。検討地震選定、検討手法等の詳細は、原子力規制庁担当者と 協議して決定する。

(2) 海洋プレート内地震のスケーリング則等の検討

国内外で発生した海洋プレート内地震を対象に、(1)で得られた震源断層パラメータ に加え、既往研究で得られた震源断層パラメータや地震動特性等に関するデータを収集 する。また、プレートの地域性に着目しながら、断層パラメータ等のデータセットの整理・ 分析を行い、既往スケーリング則等との比較を行う。 本事業を進める上で、適宜、学識経験者からの指導・助言を仰ぐとともに、海外の研究 者と連絡を取りながら、助言・示唆を受けるものとする。種々の参考情報は、必要に応じ て、本事業に反映する。なお、本業務の一部を一般財団法人 地域地盤環境研究所および 株式会社 サイスモ・リサーチに外注する。 2. プレート間巨大地震の地震動評価の検討

2.1 巨大地震の観測記録の収集及び解析

2.1.1 2001 年ペルーArequipa 地震等の地震観測記録の収集及び波形処理

ここでは, 昨年度 (原子力規制庁, 2018) 収集した 2010 年チリ Maule 地震 (*M*_w 8.8), 2014 年チリ Iquique 地震 (*M*_w 8.1), 2015 年チリ Illapel 地震 (*M*_w 8.3) に引き続き, 国外で近年発 生した M8 以上のプレート間巨大地震の 2 地震, 2001 年 6 月 23 日 (世界標準時) ペルー Arequipa 地震 (*M*_w 8.4) および 2007 年 9 月 12 日 (世界標準時) インドネシア Southern Sumatra 地震 (*M*_w 8.5) を対象に, 震源域に比較的近い場所で得られている強震波形記録を収集した. なお, Arequipa 地震はペルー・チリ海溝, Southern Sumatra 地震はスンダ海溝のプレート境 界を震源としている. 両地震の震央を図 2.1.1-1 に示す.

(1) 2001 年ペルーArequipa 地震 (*M*_w 8.4)

この地震では、図 2.1.1-2 に示す 1 観測点の加速度波形を、ペルー国立工科大学のペルー・ 日本地震防災センター (CISMID; http://www.cismid-uni.org/) より入手した. 波形の最大値(3 成分合成)は 319 Gal である. なお、入手した波形には 0.1-20 Hz のバンドパスフィルタが すでに施されている. 波形およびそのフーリエスペクトルを図 2.1.1-3 に示す.

(2) 2007 年インドネシア Southern Sumatra 地震 (*M*_w 8.5)

この地震では、ドイツのポツダム地球科学研究センター (GFZ) の観測網による 1 観測点 (図 2.1.1-4)の加速度波形を、米国地震学連合のデータ管理センター (IRIS-DMC; https://ds.iris.edu/ds/nodes/dmc/)より入手した.波形の最大値(3 成分合成)は 176 Gal であ る.波形およびそのフーリエスペクトルを図 2.1.1-5 に示す.

図 2.1.1-1 記録収集の 2 地震の震央位置. 緑星は Arequipa 地震, 赤星は Southern Sumatra 地震を表す.

図 2.1.1-2 Arequipa 地震の震央(星)と観測点(三角).

図 2.1.1-3 MOQ1の加速度波形(上)と加速度フーリエスペクトル(下). なお,波形には 0.1-20 Hz のバンドパスフィルタが施されており,スペクトルはバンド幅 0.1 Hz の Parzen window で平滑化してある.

図 2.1.1-4 Southern Sumatra 地震の震央(星)と観測点(三角).

図 2.1.1-5 MNAI の加速度波形(上)と加速度フーリエスペクトル(下). なお, スペクト ルはバンド幅 0.1 Hz の Parzen window で平滑化してある.

2.1.2 2015 年チリ Illapel 地震の長周期インバージョン解析

(1) はじめに

2015 年チリ Illapel 地震は, 2015 年 9 月 16 日 22 時 54 分(世界標準時)に, チリ中部 Illapel 市の西約 50 km の沖合の,南米プレートとそれに沈み込む Nazca プレートの境界で発生し たプレート間地震である. Harvard 大学の GCMT (Global Centroid Moment Tensor) 解による M_w は 8.3 である. この地震により,少なくとも 10 名以上の犠牲者が出ているほか,震源 域に近い沿岸部では 5 m に近い高さの津波が観測された (CNN.co.jp, 2015).

この地震の震源域に近い地域において比較的密な地震観測ネットワークが展開されて おり、それによって多数の良質な強震波形記録が得られている.ここでは、昨年度(原子 力規制庁,2018)に収集したこの地震の観測記録を用いて,震源断層におけるすべり破壊 の時空間的過程をマルチタイムウィンドウ・線形波形インバージョン (Hartzell and Heaton, 1983) により推定し(以降,「震源インバージョン」と呼ぶ),そこから得られる震源断層 パラメータ等について議論する.次に,震源インバージョンの結果に基づく特性化震源モ デルを構築し、観測波形に対する再現を行う.なお、本項の対象とする周波数帯域は 0.03-0.20 Hz(周期 5-33 秒)である.一般的に, 0.10 Hz以上(周期 10 秒以下)の周波数 帯域は強震動による被害と深く関係しており、この帯域を説明するための強震動生成域に 関する研究(例えば,川辺・釜江,2013; Frankel, 2017)が盛んに行われている.一方, 0.10 Hz 以下(周期 10 秒以上)の周波数帯域は津波の生成あるいは長大な構造物への被害 と密接な関係があり、このうち、巨大な津波がもたらされた 2011 年東北地方太平洋沖地震 (M_w 9.0) では、海溝軸付近に推定されたこの帯域の波の生成源が津波の波源域とほぼ対応 していた (e.g., Yoshida et al., 2011, Satake et al., 2013). 近年, 強震動と津波を同時に予測す るための統一的震源モデルが提案されている(例えば,壇・他,2013).本項のように, 強震動を特徴づける周波数 (>0.1 Hz) と津波を特徴づける周波数 (<0.1 Hz) の両方を同時 に含む帯域を震源インバージョンに使用することは、そのような広帯域地震動予測のため の震源モデルのさらなる高度化につながる.

(2) 断層モデル化の方法

解析にあたり,アメリカ地質調査所 (USGS) による本震発生後 24 時間以内の余震分布 等を参考に, strike 方向に 240 km, dip 方向に 150 km の断層面を設定した(図 2.1.2-1a). この断層面を 10×10 km²の小断層に分割し空間的な離散化を行った.各小断層は, Hayes et al. (2012)の三次元構造モデル(Slab1.0;図 2.1.2-1a)をもとにプレート境界面に沿うよう に配置され,その深さは最浅部である海溝軸付近で約9 km,最深部で約56 km である(図 2.1.2-1b).なお,この地域の地震発生帯(seismogenic zone)の下限は,蛇紋岩化したマン トルウェッジの最上部(e.g., Oleskevich et al., 1999)である深さ約50 km (Marot et al., 2014) とされるが,この深さと設定した断層面の下端深さはおおむね一致している.グリーン関 数を計算する際の strike および dip角は,断層面設定と同様にプレート境界面の三次元形 状を考慮し,小断層ごとに異なるものを与えた.strike角は-9~5°の間(図 2.1.2-1c),dip 角は深さが増すにつれて急激になり,最浅部の小断層で約8°,最深部の小断層で約24°で ある(図 2.1.2-1d).破壊開始点(図 2.1.2-1 中の黄色星)の経度・緯度はUSGSのもの(西 経 71.674°,南緯 31.573°)を使用するが,深さ(29 km)はプレート境界面に沿った断層面 を設定しているためUSGS(22 km)に比べてやや深い設定になっている.

すべり破壊の時空間的発展については,破壊フロントが破壊開始点から同一の破壊伝播 速度で断層面上を広がると仮定し,各小断層においては,破壊フロントが小断層中心に到 達する時刻から2.5秒間隔にパルス幅5秒の smoothed ramp 関数を試行錯誤により7個並べ て最大継続時間20秒のすべり破壊を許容した(図2.1.2-2).各小断層の rake 角は非負条件 (Lawson and Hanson, 1974)を用いて,90°±45°の範囲内に拘束した.また,時空間的に隣 り合うすべりを平滑化する拘束条件 (e.g., Sekiguchi *et al.*, 2000)も付加した.破壊伝播速 度および時空間的平滑化の強さは,赤池ベイズ情報量基準 (ABIC; Akaike, 1980)を参考に 決定した.

(3) 震源インバージョンの波形データ

昨年度(原子力規制庁, 2018) に収集した加速度波形のうち,破壊開始点から 400 km 以内にある 18 観測点(図 2.1.2-1a 中の三角) 54 成分を震源インバージョンに使用した. なお,これらの波形データは,Centro Sismológico Nacional,Universidad de Chile (http://evtdb.csn.uchile.cl/) より入手したものである,これらを一回積分して速度波形に直 し,0.03-0.20 Hz のバンドパスフィルターを施し、1 Hz にリサンプリングしたものを解析 に使用した.使用データの時間長は観測点によって異なり、P 波到達時刻から 105-175 秒 間とした.図 2.1.2-3 に、18 観測点における生波形と解析に使用した波形を示す. (4) グリーン関数およびその高精度化

震源インバージョンをより精度良く行うには、地下構造を適切に反映した速度構造モデ ルに基づいて計算されるグリーン関数の使用が望ましい.そこで、本震の震源域で起きた 中規模地震の観測波形の時刻歴に対するシミュレーションを行い、震源インバージョンに 使用する一次元水平成層構造モデルを調整した.

初期モデルは Marot *et al.* (2014) による一次元 *P* 波・*S* 波速度構造モデル(表 2.1.2-1)を 使用した. 密度ρ (g/cm³) および *Q* 値は Brocher (2008) の変換式

 $\rho = 1.6612V_P - 0.4721V_P^2 + 0.0671V_P^3 - 0.0043V_P^4 + 0.000106V_P^5$

 $Q_S = -16 + 104.13V_S - 25.225V_S^2 + 8.2184V_S^3$, $Q_P = 2Q_S$

を用いて与えた.なお、このモデルにはS波速度の遅い(約2km/s以下)堆積層は含まれ ていない.このモデルに代表されるように、本研究の対象領域であるチリ中部では、堆積 層が全体的に薄く、震源インバージョンが対象とする0.20 Hz以下(周期5秒以上)の帯 域の波形への堆積層の影響は非常に限定的であると考えられる.

構造モデルの調整に用いた中規模地震は,2015年9月21日5時39分(世界標準時)に 本震の破壊開始点付近で発生した *M*_w 6.1 (GCMT)の地震(図 2.1.2-1a 中の緑色星)である. なお,この地震の波形記録は,震源域内にある観測点 CO06 では得られていないため,CO06 に関しては記録が存在する 2016年2月10日0時33分(世界標準時)に発生した *M*_w 6.4 (GCMT)の地震(図 2.1.2-1a 中の緑色星)の波形を補助的に使用した.表 2.1.2-2 に両地震 の諸元を示す. Centro Sismológico Nacional, Universidad de Chile より入手した観測点(図 2.1.2-1a 中の赤三角)の加速度波形を速度波形(0.05-0.20 Hz; 4 Hz リサンプリング)に変 換したものをデータとした.

1-3 層目の層厚をそれぞれ 3, 5, 5 km に細分化し, 1A-4 層目の合計 7 層 (表 2.1.2-1 中の 灰色部分)の層厚を保持したまま, S 層速度を未知パラメータとして, Pitarka *et al.* (2004) の フィッティング指標 f:

$$f = 2 \frac{\int u(t)_{\text{obs}} u(t)_{\text{syn}} dt}{\int u(t)_{\text{obs}}^2 dt + \int u(t)_{\text{syn}}^2 dt}$$

をもとに、2.3-4.1 km/s の間で 0.1 km/s 刻みでグリッドサーチにより調整した.ただし、上 式での $u(t)_{obs}, u(t)_{syn}$ はそれぞれ、観測波形と理論波形の時刻歴を表す.S波速度に対する P波速度は初期モデルの V_P/V_S 比を、密度および Q 値は初期モデルと同様に Brocher (2008) を用いて自動的に算出した.理論波形の計算は smoothed ramp 型のすべり時間関数を持つ ダブルカップル点震源を仮定し,離散化波数法 (Bouchon, 1981) と反射・透過係数行列法 (Kennett and Kerry, 1979) で計算した.

構造調整の結果を図 2.1.2-4 に,各観測点の観測と理論波形の比較を図 2.1.2-5 に示す. 図 2.1.2-4 から,全観測点において,S波速度の速いほうに調整されるのが見て取れる,また,図 2.1.2-5 から,調整後のモデルによる理論波形は調整前のものに比べて,観測波形の 位相に対する再現性が向上している.震源インバージョンのグリーン関数の計算において, これらの 13 観測点は調整後のモデルを,残り5 観測点(図 2.1.2-1a 中の黒三角)は初期モ デルを使用した.

(5) 震源インバージョンの結果

図 2.1.2-6 の ABIC をもとに,図 2.1.2-7 に示すすべり変位分布を最適解として採用した. なお,ABIC が最小となる平滑化の強さが一意的に決まらなかったため,ここでは ABIC の減少が緩やかになるところを最適と見なした(図 2.1.2-6a).この最適解による破壊フロ ントの破壊伝播速度は 2.5 km/s である(図 2.1.2-6b).また,解放された地震モーメントは 3.32×10^{21} Nm (M_w 8.3)であり,これは GCMT 解 (3.23×10^{21} Nm)と同程度の値である. 最大すべり変位は 5.0 m で,破壊開始点北西側の深さ約 10 km の海溝軸付近に位置してお り,既往研究 (e.g., Melgar *et al.*, 2016; Tilmann *et al.*, 2016) とおおむね一致する.

図 2.1.2-8 に示す各小断層のすべり時間関数に基づき, すべり破壊の時空間発展の 7.5 秒 ごとのスナップショットを図 2.1.2-9 に描く. 同じくペルー・チリ海溝で発生し破壊伝播様 式が複雑であった 2014 年チリ Iquique 地震 (e.g., Suzuki *et al.*, 2016) に比べて, この地震の 破壊伝播様式は比較的単純であり, 破壊フロントがほぼ同心円状に広がっているのが分か る. 最大すべり変位を記録した破壊開始点北西側では, 破壊開始から 67.5-75 秒後にもっ とも大きくすべった. また, 陸地に近い場所では, 破壊開始から約 37.5-45 秒後に破壊開 始点の真北で大きなすべりが生じた.

(6) 考察

表 2.1.2-3 に震源インバージョン結果から抽出された断層パラメータをまとめる. なお, 表には, Murotani *et al.* (2008) に倣って平均すべり変位の 1.5 倍以上の小断層を大すべり域 と定義した場合と, Somerville *et al.* (1999) の規範に従って矩形の大すべり域を抽出した場 合の両方を示している. それぞれの場合での大すべり域を図 2.1.2-7 に図示している. Somerville *et al.* (1999) の規範に従うと, 破壊開始点の北側深部 (A1), 北側浅部 (A2), 西 側浅部 (A3) の3 個の大すべり域 (図 2.1.2-7 中の灰色枠) が抽出され, それらの面積の合 計は Murotani *et al.* (2008) に比べてやや大きかった. これは, 矩形の最端部において断層 全体の平均すべり変位の 1.25 倍以上 1.5 倍未満を持つ小断層の行または列も抽出対象とし て許容するという Somerville *et al.* (1999) の規範に起因しているかもしれないが, 今後の検 討課題としたい. どちらの規範で抽出しても, 断層面積に対する大すべり域面積の比は, 既往研究 (Murotani *et al.*, 2013; Skarlatoudis *et al.*, 2016) のばらつきの範囲内であった. 図 2.1.2-10 に, 断層面積, 断層幅, Somerville *et al.* (1999) で定義した場合の大すべり域面積 および断層全体の平均すべり変位の 4 パラメータの地震モーメントとの関係を示すが, い ずれのパラメータの値も既往の震源スケーリング則 (Strasser *et al.*, 2010; Murotani *et al.*, 2013; Skarlatoudis *et al.*, 2016; Allen and Hayes, 2017; Thingbaijam *et al.*, 2017) と整合的であ った. したがって, これらの震源スケーリング則は, この地震に対して説明能力を有して いると言える. また, Okada (1992) で算出した断層全体の平均静的応力降下量は 1.50 MPa であるが, これも Murotani *et al.* (2008) がまとめたプレート間地震の平均的な値 (1.4 MPa) と整合的であった.

図 2.1.2-7 のすべり変位分布から分かるように、比較的大きなすべり破壊は浅部では海溝 軸付近、一方、深部では断層下端であるこの地域の地震発生帯の下限まで及んでいるため、 断層幅の飽和が示唆される.田島・他 (2013) は断層幅が断層長さに比例する自己相似則 が成り立つモデル、および断層幅の飽和により自己相似則から乖離するモデルからなる 2-stages scaling model を提案しているが、この地震は 2-stages scaling model の第 2 段階の地 震であると解釈できる. Allen and Hayes (2017) は 2-stages scaling model (図 2.1.2-10 中の 紫実線) とそうでないモデル (図 2.1.2-10 中の紫破線)の両方に対して関係式を提示して いるが、この地震の断層幅および断層面積の値は前者モデルのほうの平均値により近く、 2-stages scaling model の第 2 段階の可能性を支持している.ただし、この地震は 2011 年東 北地方太平洋沖地震 (M_w 9.0) と異なり、特に大きな津波を引き起こすような、断層面深部 に比べて著しく大きいすべり変位が海溝軸付近には見られないことから、第 1 段階に比較 的近い第 2 段階の地震と考えるのが妥当であろう.

次に, Somerville et al. (1999)の規範に従って抽出された大すべり域 A1-A3 およびそれら を除いた背景領域の,震源インバージョンの理論波形 (0.03-0.20 Hz) への寄与を調べた(図 2.1.2-11). A1 は,破壊開始点北側の震源域に比較的近くに位置し,大きな振幅が記録され た観測点での速度波形の主要なフェーズ(例えば C100 の 30-60 秒)を説明している.こ のうち,フェーズの前半部(例えば C100 の 30-45 秒)は加速度波形のパルスと良く対応 している(図 2.1.2-1).このパルス波形は A1の中の特に深部の小断層の,すべり時間関数 の前半に見られる立ち上がりが急峻かつ継続時間が短いパルスによって生成されたと考え られる.本項の震源インバージョンの対象周波数帯域は 0.03-0.20 Hz と低周波数ではある が,上記の検討から,A1の特に深部付近(深さ 30-45 km)はこの地震の強震動(0.1-10 Hz) 生成域に当たる可能性が高い.また,A2は主として破壊開始点北側の遠方の観測点(例え ば AC04)の,A3は破壊開始点南側の観測点の波形にそれぞれ寄与している.

この地震の場合,図 2.1.2-11 から分かるように,大すべり域のみならず,本来寄与が小 さいはずの背景領域の寄与も比較的大きい.背景領域の寄与を詳細に検討するために、こ こでは観測点 C10O を例に, すべり変位の比較的大きかった破壊開始点の北側深部にある 小断層を12個(A-K)の小断層ブロックに分割し,波形への各ブロックの寄与を調べた(図 2.1.2-12). このとき、ブロック G, K が大すべり域 A1 に、それ以外は背景領域に当たる. 大すべり域 A1 に当たるブロック G の主要フェーズへの寄与がもっとも大きいが,ブロッ クF,L等の大すべり域A1周辺にある背景領域が持つ寄与も無視できないことがわかった. これは、震源インバージョンで得られた大すべり域と背景領域のすべり変位量のコントラ ストが、特に破壊開始点の北側で小さいことによる結果である.表 2.1.2-3 の (9) にもあ るように, Somerville et al. (1999) で定義した場合の大すべり域の平均すべり変位は断層全 体の 1.62 倍であり、この値は既往の震源スケーリング則(例えば、岩切・他、2014)の 2.3 倍とは有意な乖離がある. このようなすべり変位の小さいコントラストをもたらして いるのは, 観測点の分布の偏りである. 今回の震源インバージョンでは, 破壊開始点の東 側において使用できる強震観測点が残念ながら存在せず、観測点が均等に分布するような 理想的な解析条件とはなっていない. そのため、チェッカーボードテストによる検討を行 った結果、破壊開始点周辺を中心に震源インバージョンの空間解像度が低下している(図 2.1.2-13). このことが、大すべり域 A1 とその周辺の背景領域の間のすべり変位の空間的 変化をなめらかにし、背景領域の波形への寄与を大きく見せかけるという結果を招いてい る.実際の大すべり域の寄与はより大きく、背景領域の寄与は相対的により小さいと考え られる. したがって、本来寄与が小さいはずの背景領域の寄与が大きいという図 2.1.2-11 の検討結果が、この地震の震源特性を高い精度で表していると言うのは困難である可能性 が高い.

2.1.2-6

(7) 長周期に対する特性化震源モデル

ここでは、震源インバージョン結果に基づいて特性化震源モデルを構築し、本項が対象 とする 0.03-0.20 Hz(周期 5-33 秒)の地震動の再現を試みた.なお、波形計算の手法と速 度構造モデルはインバージョンの際と同じである.

特性化震源モデルの地震モーメントは震源インバージョン結果と同じにした. 断層面の 位置および形状もインバージョンと同じであるが,剛性率はインバージョンと異なり,深 さに寄らずに一様とした. 断層面は,大すべり域 A1-A3 と背景領域から構成されるとし, それらの断層パラメータを表 2.1.2-4 にまとめる. 各小断層のすべり時間関数の形は, smoothed ramp型とした. なお,各小断層のパラメータ抽出では,すべり遅れ時間 Td とラ イズタイム Tr を持つ smoothed ramp 関数を一つ予め用意し,震源インバージョンで得られ たすべり時間関数とのフィッティングにより決定された最適な Tr を各小断層のライズタ イムとした. また,破壊フロントの到達時刻からの最適な Td を各小断層における正味の 破壊開始時刻とし,隣接する小断層の破壊開始時刻の差分を取って(宮腰・他,2017)破 壊伝播速度を算出した.算出された各小断層のライズタイムと破壊伝播速度を図 2.1.2-14 に示す.

破壊伝播様式は地震動に大きく影響するパラメータである(例えば, Iwaki et al., 2016; 原子力規制庁, 2018). そこで,2種類の破壊伝播様式を設定し(図2.1.2-15),地震動を計 算した.一つ目は,破壊開始点から同心円状に破壊が進展するものであり,これをモデル M1とする.二つ目の破壊伝播様式は,背景領域および大すべり域A2,A3では破壊開始点 より同心円状に進むが,観測された大きな波形振幅に寄与する大すべり域A1のみ,破壊 開始28.1秒(破壊開始点より背景領域を同心円状に進んできた破壊が到達する時刻)後に その南西端から破壊が開始するとした,いわゆる多重震源型であり,これをモデル M2と する.

両モデルによる速度波形(図 2.1.2-16 中の灰色線)を震源インバージョンの理論波形(図 2.1.2-16 中の赤色線)と比較する.大きな振幅が観測された破壊開始点の北側において, モデル M1 では主要動の振幅に対して過小評価であるが,大すべり域 A1 に海域から陸域 への directivity 効果を持たせたモデル M2 の場合,走時は必ずしも一致しないものの,振 幅に関してはある程度再現できている.擬似速度応答スペクトル(減衰定数 5%;3 成分合 成値)からも,周期 10-20 秒におけるモデル M1(図 2.1.2-17 中の灰色破線)の過小評価が モデル M2 (図 2.1.2-17 中の灰色実線)によって改善されているのが見て取れる.一方,破 壊開始点の南側では,両方のモデルともに振幅を過大評価しており,モデル間の波形の差 はほとんど見られない.

次に,波形の振幅に対する再現性が比較的良かったモデル M2 の波形について,震源イ ンバージョンの際と同様,各領域による寄与を調べた (図 2.1.2-18). 表 2.1.2-4 で示すよ うに,特性化震源モデルのすべり変位はインバージョン結果に基づいて設定している.そ のため、震源インバージョンで見られた、観測点分布の偏りに起因すると考えられる、大 すべり域と背景領域の間のすべり変位のコントラストの低さおよび背景領域の波形への 見かけ上の大きな寄与はモデル M2 でも確認できる. この背景領域の大きな寄与は、特に 破壊開始点南側の振幅に対する過大評価に影響している. そこで, これらを解決すべく, 震源インバージョンで得られた地震モーメントを保持しながら、大すべり域の平均すべり 変位が断層全体の 2.3 倍(岩切・他, 2014)となるように, モデル M2 の大すべり域と背 景領域のすべり変位を調整したモデル M3(表 2.1.2-5)を用意し,再度波形を計算した. なお,モデル M3 の破壊伝播様式は M2 と同様とする.モデル M3 による速度波形と擬似 速度応答スペクトル(減衰定数 5%;3成分合成値)を図 2.1.2-19,20に示す.破壊開始点 の北側では、波形の振幅に対する再現性はモデル M2 と同程度に良好であった.大すべり 域のすべり変位を大きくして背景領域のすべり変位を小さくすることで、波形全体への寄 与が大きくなった大すべり域 (A1) だけでも主要動の振幅がある程度説明できるようにな った. 一方, 破壊開始点の南側でも, 背景領域のすべり変位を落とすことで, モデル M2 の場合に見られた波形の振幅に対する過大評価が少なからず改善された.

(8) まとめ

本項では,強震動記録の長周期成分 (0.03-0.20 Hz) を用いた波形インバージョンにより, 2015 年チリ Illapel 地震の震源破壊の時空間的すべりを推定した.さらに,推定結果に基づ く長周期に対する特性化震源モデルを構築し,波形の再現性について検討した.これらの 解析によって得られた知見を以下にまとめる.

- 震源インバージョン結果から抽出されたこの地震の巨視的断層パラメータの値は、既 往の震源スケーリング則と整合的である。
- 2. この地震は断層幅が飽和する, 2-stages scaling model の 2 段階目の地震であるが,特に 大きなすべり変位が海溝軸付近には見られないことから,1 段階目に比較的近い 2 段階

目の地震であると考えられる.

- 3. この地震の断層面深部に位置する大すべり域は,速度波形の主要動の振幅と加速度波形のパルス波形の両方を説明しており,強震動 (0.1-10 Hz) 生成域に相当すると考えられる.
- 4. 長周期に対する特性化震源モデルにおいて,周期 10-20 秒の振幅に対する過小評価を防 ぐために,大すべり域の海域から陸域への directivity 効果を考慮することが重要である.
- 既往スケーリング則のすべり変位における大すべり域の断層全体に対する倍率に基づいて特性化震源モデルのすべり変位を適切に設定すれば、この地震の波形振幅を良好に再現することは可能である.

図2.1.2-1 (a) 2015年チリIllapel地震の震源インバージョンで設定した断層面,および各小断層の (b) 深さ (c) strike角 (d) dip角. 黄色星は本震の破壊開始点である. (a) 中のコンターはHayes *et al.* (2012) によるプレート境界の深さ (km) を表し,緑色星は構造モデルの調整に使用した地震の震央,プロットは本震発生後24時間以内の余震の震央であり,黒三角は震源インバージョンの観測点,そのうち赤三角は構造調整を行った観測点である.

図2.1.2-2 マルチタイムウィンドウの概念図.

の速度波形(下段). 各波形の右の数字は最大振幅を表し,加速度波形の単位はcm/s/s,速度波形の単位はcm/sである.時刻の0秒はP波到達時刻である.

層番号	¹ 上面深さ(km)	¹ P波速度 (km/s)	¹ S波速度 (km/s)	² 密度 (g/cm ³)	$^{2}Q_{P}$	^{2}Qs	備考
1	0	4.9	2.8	2.52	516	258	3 kmを境に ^{1A} の2層に分割 1B
2	6	6.1	3.5	2.74	784	392	11 kmを境に ^{2A} 2B の2層に分割
3	16	6.6	3.8	2.86	933	466	21 kmを境に ^{3A} 3B の2層に分割
4	26	7.0	4.0	2.97	1046	523	
5	36	7.2	4.1	3.03	1106	553	
6	46	7.7	4.4	3.19	1308	654	
7	56	8.0	4.5	3.29	1382	691	
8	66	8.2	4.6	3.36	1458	729	

表2.1.2-1 構造モデルの調整で使用する初期モデル.

1: Marot et al. (2014) 2: Brocher (2008)

表2.1.2-2 構造モデルの調整で使用する地震の諸元.

	余震1	余震2		
日時 (UTC)	2015/9/21 5:39:35	2016/2/10 0:33:05		
1経度	71.7431°W	71.5838°W		
1緯度	31.5757°S	30.5723°S		
「震源深さ	30.0 km	29.0 km		
² strike	N2°E	N11°E		
² dip	28°	29°		
² rake	101°	103°		
² 地震モーメント	$1.78 \times 10^{18} \mathrm{Nm}(M_w6.1)$	4.30×10^{18} Nm (M_w 6.4)		
2ライズタイム	5.4 s	7.4 s		

1: USGS 2: GCMT

図2.1.2-4 構造モデルの調整結果. 青色は初期モデルの,赤色は調整後の一次元S波速度構造モデルを表す.

図2.1.2-5 構造モデルの調整を行った観測点での速度波形 (0.05-0.20 Hz)の比較. 黒色は観 測波形,赤色は調整後モデルによる理論波形,青色は初期モデルによる理論波 形である.時刻の0秒はP波到達時刻5秒前である.

伝播速度のABICとの関係.黒丸は最適解を表す.

図2.1.2-7 震源インバージョンで推定されたすべり変位の分布. 黄色星は破壊開始点, 青コンターはHayes et al. (2012) によるプレート境界の深さ (km) を表す. 黒四角で囲んだ小断層はMurotani et al. (2008) の, 灰色の四角で囲んだ領域 (A1-A3) はSomerville et al. (1999) の規範で抽出した大すべり域を表す.

図2.1.2-8 最大すべり速度の分布と各小断層でのすべり時間関数.赤色星は破壊開始点,四角で囲んだ領域はSomerville et al. (1999)の規範で抽出した大すべり域を表す.

図2.1.2-9 破壊伝播の7.5秒ごとのスナップショット(すべり変位の増分).

	Murotani et al.	Somerville et al.		
	(2008)	(1999)		
(1) 地震モーメント	3.32×10^{21} Nm			
(2) 断層長さ	240 km			
(3) 断層幅	150 km			
(4) 断層面積	$36,000 \text{ km}^2$			
(5) 断層全体の平均すべり変位	2.21 m			
(6) 断層全体の最大すべり変位	4.96 m			
(7) 断層全体の平均静的応力降下量 1	1.50 MPa			
(8) 大すべり域の面積	5,900 km ²	7,300 km ²		
(8)÷(4)	0.16	0.20		
(9) 大すべり域の平均すべり変位	3.82 m	3.59 m		
(9)÷(5)	1.73	1.62		

表2.1.2-3 震源インバージョン結果から抽出された断層パラメータ.

*1. Okada (1992) で計算

合の大すべり域面積(右下)断層全体の平均すべり変位の,地震モーメントとの関係.

図2.1.2-11 震源インバージョンにおける,大すべり域 (A1-A3) と背景領域による速度波形 (0.03-0.20 Hz) への寄与.時刻の0秒はP波到達時刻である.

図2.1.2-11 (続き)

図2.1.2-11 (続き)

図2.1.2-12 震源インバージョンにおける,小断層ブロック (A-K) による観測点C10Oの速 度波形 (0.03-0.20 Hz) への寄与.

図2.1-2-13 チェッカーボード解像度テスト. (左) ターゲット(右)結果. 三角は震源インバージョンの観測点,青枠は大すべり域A1-A3を表す.

	A1	A2	A3	背景領域
	4.55×10^{10}			
面積 (km ²)	30×60	70×50	50×40	28700
平均すべり変位 (m)	3.51	3.60	3.65	1.86
平均すべり角 (°)	87	77	94	90
平均ライズタイム (s)	9.5	9.9	10.0	8.7
平均破壊伝播速度 (km/s) / そのVs比 (%)	2.50/64	1.78/46	2.50/64	2.50/64

表2.1.2-4 長周期に対する特性化震源モデルM1, M2の断層パラメータ.

なお,平均破壊伝播速度は,各領域内の中央値を使用した.

図2.1.2-14 震源インバージョン結果から算出された各小断層の (a) ライズタイム (b) 破壊伝播速度.

図2.1.2-15 長周期に対する特性化震源モデルM1, M2の破壊開始時刻.赤色星は断層全体の 破壊開始点,モデルM2における紫色星は大すべり域A1の破壊開始点,コンター は破壊到達時刻(単位:秒)を表す.

はモデルM2による理論波形である.

図2.1.2-16 (続き)

図2.1.2-17 観測波形(黒)・震源インバージョンの理論波形(赤)・特性化震源モデルM1 (灰破線)・モデルM2(灰実線)の擬似速度応答スペクトル(減衰定数5%;3 成分合成値).

図2.1.2-18 特性化震源モデルM2の理論速度波形 (0.03-0.20 Hz) における, 大すべり域

(A1-A3) と背景領域の寄与.

図2.1.2-18 (続き)

	A1	A2	A3	背景領域
		4.55×10^{10}		
面積 (km ²)	30×60	70 × 50	50×40	28700
平均すべり変位 (m)	4.66	4.66	4.66	1.36
平均すべり角 (°)	87	77	94	90
平均ライズタイム (s)	9.5	9.9	10.0	8.7
平均破壊伝播速度 (km/s) / そのVs比 (%)	2.50/64	1.78/46	2.50/64	2.50/64

表2.1.2-5 長周期に対する特性化震源モデルM3の断層パラメータ.

イタリックはモデルM1, M2からの変更点を表す.

(A1-A3) と背景領域の寄与.

図2.1.2-20 観測波形(黒)・震源インバージョンの理論波形(赤)・特性化震源モデルM3 (灰実線)の擬似速度応答スペクトル(減衰定数5%;3成分合成値).比較のた めに,モデルM2のものも灰破線で示す.

2.1.3 2015 年チリ Illapel 地震の特性化震源モデルの設定

2.1.2 節の長周期インバージョン解析で対象とした 2015 年チリ Illapel 地震を対象に、特性化震源モデルの設定を行った。まず、本震および余震記録の分析に基づいて、経験的グリーン関数法による波形合成時に用いる重ね合わせ数 N、およびターゲットの地震と要素地震の応力降下量の比 C、要素地震のコーナー振動数 fcs を求めた。次に、ターゲットの地震の 震源モデルをクラックモデル(強震動生成域のみ)として解釈して、特性化震源モデルの断層パラメータを設定した。

(1) 対象地震

特性化震源モデルの対象は、2015年9月16日のチリ Illapel 地震(*M*_W8.3、以降、本震と 呼ぶ)とし、要素地震の候補として2015年9月21日に発生した余震1(*M*_W6.1)および 2016年2月10日に発生した余震2(*M*_W6.4)を用いた。本震、および2つの余震の震央位 置およびメカニズム解を図2.1.3-1に示す。

(2) 観測記録の収集

CSN (Centro Sismológico Nacional, Universidad de Chile)の公開サイトより、本震記録および 2 つの余震記録が同時に観測されている 13 地点を対象に、観測記録を収集した。観測点の 位置を図 2.1.3-1 に合わせて示す。各観測点から本震、余震との震源距離を表 2.1.3-1 に示す。

本震および 2 つの余震における加速度の時刻歴を図 2.1.3-2~図 2.1.3-4 に示す。図より、 時刻歴は途切れることなどなく、良好な記録が取れていることが分かる。本震および 2 つの 余震における加速度スペクトルを図 2.1.3-5~図 2.1.3-7 に、変位フーリエスペクトル(水平 2 成分)を図 2.1.3-8~図 2.1.3-10 に示す。図より、短周期側のノイズは比較的少なく、長周期 側は観測点によっては 0.02Hz 以下でノイズ(〇印)が見られることが分かる。

(3) 経験的グリーン関数法用のパラメータの推定

ここでは、本震と余震の変位フーリエスペクトルの比率に基づいて、経験的グリーン関数 法による波形合成時に用いる重ね合わせ数 N、およびターゲットの地震と要素地震の応力降 下量の比 C、要素地震のコーナー振動数 fcs を求める。

まず、本震と余震の変位フーリエスペクトルについて、Hanning Window によるスムージ

2.1.3-1

ング処理(黒線)を行った。次に、スムージング処理後の本震と余震のそれぞれの変位フー リエスペクトルに対して、距離補正および Q 値の補正を行った後、本震と余震との変位フ ーリエスペクトルの比率を求めた。その際、本震との震源距離は、長周期インバージョン結 果を参照に強震動生成域との距離(図 2.1.3-1 の赤●印との距離)を採用した。また、Q 値 の補正においては、震源のS波速度は Vs=3.6km/s、 Q 値は各観測点で短周期レベル側が平 均的にフラットになるように試行錯誤で Q=200f^{0.69}と仮定した。

以上より求めた、本震と余震1との変位フーリエスペクトルの比、図2.1-12に本震と余 震2との変位スペクトルの比を図2.1-11~図2.1-12に示す。左から右の順に、各観測点にお ける本震のNS、EW成分の変位フーリエスペクトル、余震のNS、EW成分の変位フーリエ スペクトル、本震と余震との変位フーリエスペクトルの比(水平2成分の重ね図)を示す。

図 2.1-13 に本震と余震 1 との変位フーリエスペクトルの比に基づいてフィッティングした結果、図 2.1-14 に本震と余震 2 との変位フーリエスペクトルの比に基づいてフィッティングした結果を示す。それぞれの最適フィッティングした結果より求めた、経験的グリーン 関数法用のパラメータを表 2.1.3-2 に示す。本震と余震 1 より求まった重ね合わせ数は N=11、 応力降下量の比は C=1.4 である。本震と余震 2 より求まった重ね合わせ数は N=7、応力降 下量の比は C=1.8 である。

ここでは、経験的グリーン関数法用のパラメータと同時に、余震1と余震2のコーナー 振動数も推定した。余震1のコーナー振動数は0.34Hzで、余震2のコーナー振動数は0.22Hz となった。余震1と余震2のコーナー振動数を用いて計算した理論スペクトルと、観測記 録の変位フーリエスペクトルを図2.1.15~図2.1.16に比較する。図より、余震1と余震2の 理論スペクトルと観測記録は良く整合していることから、推定されたコーナー振動数は妥 当であると考えられる。

(4) SMGA モデルおよび断層パラメータ

本検討では、ターゲットの長周期インバージョン結果からアスペリティ(主な強震動生成 域)に相当すると思われる部分を取り出して SMGA モデルを作成した。その際、アスペリ ティとの距離がより短い余震 2 を経験的グリーン関数法の要素地震として用いることにし た。

断層パラメータの設定では、ターゲットの地震のモーメントマグニチュード *Mwt*=8.3、タ ーゲットの地震の断層面積 *St*=240km×150km=36,000km²、要素地震(余震 2)のコーナー振動

2.1.3-2

数 *f_{cs}*=0.22Hz、余震 2 を要素地震として用いた場合の経験的グリーン関数法による波形合成時に用いる重ね合わせ数 *N* =7、およびターゲットの地震と要素地震の応力降下量の比 *C* =1.8 の 5 つのパラメータを与条件とした。

アスペリティに相当する部分を SMGA でモデル化する場合、主なパラメータは、SMGA の面積 S_{SMGA} 、SMGA の地震モーメント M_{0SMGA} 、短周期レベル A_{SMGA} 、応力降下量 $\Delta \sigma_{SMGA}$ の 4 つである。ここに、SMGA の短周期レベル A_{SMGA} はターゲットの地震の全体の短周期レベ λ_{I} と等しい。

$$A_{SMGA} = A_l \tag{2.1.3-1}$$

まず、SMGA の短周期レベル A_{SMGA} およびターゲットの地震の短周期レベル A_l を推定す るために、まず要素地震の短周期レベル A_s を求めた。まず、Kanamori(1977)による(2.1.3-2) 式より、ターゲットの地震のモーメントマグニチュード M_{Wl} から地震モーメン M_{0l} が求ま るので、C=1.8 と N=7 の値を(2.1.3-3)式に代入すると、要素地震の地震モーメント M_{0s} が決 まる。次に、Brune(1970)の ω^{-2} モデルを仮定した場合の、(2.1.3-4) 式によるコーナー振動数 の値と、円形クラックの平均応力降下量を求める(2.1.3-5)式を用いて、要素地震の断層面積 S_s 、および要素地震の応力降下量 $\bigtriangleup \sigma_s$ を算定した。さらに、要素地震の断層面積 S_s 、および 要素地震の応力降下量 $\bigtriangleup \sigma_s$ を用いて、Brune (1970) の(2.1.3-6)式より要素地震の短周期レベ ル A_s が求まる。

$$M_{0l}[\mathbf{N} \cdot \mathbf{m}] = 10^{1.5M_{Wl}+9.1} \tag{2.1.3-2}$$

$$M_{0l} / M_{0s} = CN^3 = 617 \tag{2.1.3-3}$$

$$f_{cs} = \beta \sqrt{(7/16)/S_s} = 0.22 \,\mathrm{Hz}$$
 (2.1.3-4)

$$\Delta \sigma_s = (7/16) M_{0s} / (S_s / \pi)^{1.5}$$
(2.1.3-5)

$$A_{s} = 4\pi\beta^{2} (S_{s} / \pi)^{1/2} \Delta\sigma_{s}$$
(2.1.3-6)

要素地震の短周期レベル As が求まったので(2.1.3-7)式よりターゲットの地震の短周期レベル Al が求まることから、SMGA の短周期レベル AsmGA も求まる。

$$A_{SMGA} / A_s = A_l / A_s = CN = 12.6 \tag{2.1.3-7}$$

次に、SMGAモデルの残りの3つのパラメータである、断層面積*S_{SMGA}、*地震モーメント *M*_{0SMGA}、および応力降下量⊿σ_{SMGA}を求めるために、まずターゲットの地震をアスペリティ モデルとして考える場合のパラメータを整理する。

地震調査研究推進本部(2005)のプレート間地震の強震動予測レシピによると、ターゲットの地震をアスペリティモデルでモデル化する場合、平均応力降下量△σ/、地震モーメント

2.1.3-3

 M_{0l} と断層面積 S_l は円形クラックの式を仮定していることから、下式よりターゲットの地震の平均動的応力降下量 $\Delta \sigma_l$ を算定することができる。

$$\Delta \sigma_l = (7/16) M_{0l} / (S_l / \pi)^{1.5}$$
(2.1.3-8)

そして、アスペリティの応力降下量⊿σ_a、アスペリティの面積 S_a、およびターゲットの地 震の短周期レベル A_lは下記の関係式を満たす。ここに、(2.1.3-9)式は Madariaga (1979)によ るアスペリティモデルの一般式、 (2.1.3-10)式は円形クラックモデルを念頭においた Brune (1970)による経験式であるが、のちに Boatwright (1988)が断層の動力学的破壊シミュレーシ ョンよりアスペリティモデルにも適用できることを示した式である。

$$\Delta \sigma_a = (S_l / S_a) \Delta \sigma_l \tag{2.1.3-9}$$

$$A_{l} = 4\pi\beta^{2} (S_{a} / \pi)^{1/2} \Delta \sigma_{a}$$
(2.1.3-10)

ターゲットの地震の平均応力降下量⊿σ_lが求まったので、(2.1.3-9)式と(2.1.3-10)式を用いて、アスペリティの面積 *S_a*とアスペリティモデルの応力降下量⊿σ_aを求めることができる。

SMGA の面積および応力降下量が、ターゲットの地震のアスペリティの面積および応力降下量と等しいとすると、SMGA の断層面積 *S_{SMGA}、*応力降下量*△*σ_{SMGA} が求まる。

$$\Delta \sigma_{SMGA} = \Delta \sigma_a \tag{2.1.3-11}$$

$$S_{SMGA} = S_a \tag{2.1.3-12}$$

また、SMGA モデルの場合、断層面積 S_{SMGA} 、地震モーメント M_{0SMGA} 、応力降下量 $\Delta \sigma_{SMGA}$ は円形クラック式を満たすことから、下記の(2.1.3-13)式より SMGA の地震モーメント M_{0SMGA} も求めることができ、(2.1.3-14)式より SMGA の平均すべり量 D_{SMGA} も決まる。

$$\Delta \sigma_{SMGA} = (7/16) M_{0SMGA} / (S_{SMGA} / \pi)^{1.5}$$
(2.1.3-13)

$$D_{SMGA} = M_{0SMGA} / (\mu S_{SMGA})$$
(2.1.3-14)

表 2.1.3-3 に、本方法で設定した SMGA モデルの断層パラメータを示し、表 2.1.3-4 に要素地震(余震 2)の断層パラメータを示す。ターゲットの地震の地震モーメント M₀ と短周期 レベル A の関係を図 2.1.3-17 に、ターゲットの地震のアスペリティ部分の SMGA モデルを 図 2.1.3-18 に示す。

図2.1.3-1 2015年チリIllapel地震の本震の震央位置(赤★印)とメカニズム解、余震の震央 位置(黄☆印)とメカニズム解、および観測点(▲印)の位置

観測点	緯度[N°]	経度[E°」	Vs30[m/s]	ρ[g/cm ³]	本震との 震源距離1[km] (破壊開始点)	本震との 震源距離2[km] (強震動生成域)	余震1との 震源距離[km]	余震2との 震源距離[km]
C01O	-29.9	-71.2	447	1.43	192	114	195	88
C09O	-29.5	-71.2	754	1.62	235	156	238	128
C190	-30.1	-71.4	1106	1.79	167	90	170	62
C20O	-30.0	-71.3	737	1.62	179	102	182	75
C26O	-30.3	-71.5	364	1.35	144	70	146	43
C33O	-29.9	-71.3	587	1.53	190	112	193	84
CO03	-30.8	-70.7	704	1.60	128	78	135	93
R12M	-33.4	-70.6	267	1.25	227	294	231	328
R13M	-33.2	-70.8	281	1.27	200	268	203	302
R18M	-33.5	-70.7	370	1.36	234	302	237	336
R21M	-33.4	-70.8	347	1.34	220	290	223	324
V02A	-33.0	-71.5	596	1.53	161	240	162	271
V17A	-33.6	-71.6	281	1.27	226	306	227	337

表 2.1.3-1 各観測点から本震、余震との震源距離

図2.1.3-2 2015年チリIllapel地震の本震(2015年9月16日、Mw 8.3)の加速度時刻歴

図2.1.3-2 2015年チリIllapel地震の本震(2015年9月16日、Mw 8.3)の加速度時刻歴

(つづき)

図2.1.3-3 2015年チリIllapel地震の余震1(2015年9月21日、Mw 6.1)の加速度時刻歴

図2.1.3-3 2015年チリIllapel地震の余震1(2015年9月21日、*Mw* 6.1)の加速度時刻歴 (つづき)

図2.1.3-4 2015年チリIllapel地震の余震2(2016年2月10日、Mw 6.4)の加速度時刻歴

図2.1.3-4 2015年チリIllapel地震の余震2(2016年2月10日、*M*_W 6.4)の加速度時刻歴

(つづき)

図2.1.3-5 2015年チリIllapel地震の本震(2015年9月16日、Mw 8.3)の加速度フーリエスペク

トル

図2.1.3-5 2015年チリIllapel地震の本震(2015年9月16日、*M*_W 8.3)の加速度フーリエスペク

トル (つづき)

図2.1.3-6 2015年チリIllapel地震の余震1(2015年9月21日、Mw 6.1)の加速度フーリエスペ

クトル(つづき)

図2.1.3-7 2015年チリIllapel地震の余震2(2016年2月10日、M_W 6.4)の加速度フーリエスペ

クトル

図2.1.3-7 2015年チリIllapel地震の余震2(2016年2月10日、Mw 6.4)の加速度フーリエスペ

クトル(つづき)

図2.1.3-8 2015年チリIllapel地震の本震(2015年9月16日、Mw 8.3)の

変位フーリエスペクトル

図2.1.3-8 2015年チリIllapel地震の本震(2015年9月16日、Mw 8.3)の変位フーリエスペクト

ル (つづき)

図2.1.3-9 2015年チリIllapel地震の余震1(2015年9月21日、M_W 6.1)の変位フーリエスペク

トル

図2.1.3-9 2015年チリIllapel地震の余震1(2015年9月21日、Mw 6.1)の変位フーリエスペク

トル(つづき)

図2.1.3-10 2015年チリIllapel地震の余震2(2016年2月10日、Mw 6.4)の変位フーリエスペク

トル

図2.1.3-10 2015年チリIllapel地震の余震2(2016年2月10日、Mw 6.4)の変位フーリエスペク

トル(つづき)

図2.1.3-11 2015年チリIllapel地震の本震(M_W 8.4)と余震1(M_W 6.1)の

変位フーリエスペクトルとフーリエスペクトルの比

(左から順番に、本震のNS、EW成分、余震のNS、EW成分、本震と余震との比)

(黒線:スムージング処理後のスペクトル)

図2.1.3-11 2015年チリIllapel地震の本震(M_W 8.4)と余震1(M_W 6.1)の

変位フーリエスペクトルとフーリエスペクトルの比

(左から順番に、本震のNS、EW成分、余震のNS、EW成分、本震と余震との比)

(黒線:スムージング処理後のスペクトル)

(つづき)

(左から順番に、本震のNS、EW成分、余震のNS、EW成分、本震と余震との比)

(黒線:スムージング処理後のスペクトル)

(つづき)

図2.1.3-12 2015年チリIllapel地震の本震(M_W 8.4)と余震2(M_W 6.4)の

変位フーリエスペクトルとフーリエスペクトルの比

(左から順番に、本震のNS、EW成分、余震のNS、EW成分、本震と余震との比)

(黒線:スムージング処理後のスペクトル)

変位フーリエスペクトルとフーリエスペクトルの比(つづき)

(左から順番に、本震のNS、EW成分、余震のNS、EW成分、本震と余震との比)

(黒線:スムージング処理後のスペクトル)

(黒線:スムージング処理後のスペクトル)

図2.1.3-13 2015年チリIllapel地震の本震(*M_W* 8.4)と余震1(*M_W* 6.1)の変位フーリエスペクトルとフーリエスペクトルの比(黒線:観測記録、青線:観測記録の平均値、赤点線: フィッティングのパラスタ、赤太線:最適フィッティング結果)

図2.1.3-14 2015年チリIllapel地震の本震(M_W 8.4)と余震2(M_W 6.4)の 変位フーリエスペクトルとフーリエスペクトルの比(黒線:観測記録、青線:観測記録の 平均値、赤点線:フィッティングのパラスタ、赤太線:最適フィッティング結果)

経験的	長周期側	短周期側	重ね	応力降下	余震のコー
グリーン関数法用の	の比率	の比率	合わせ数	量の比	ナー振動数
パラメータ	CN ³	CN	Ν	С	$f_{c}\left(\mathrm{Hz}\right)$
本震(Mw 8.3)/	1995	16	11.2	1.4	0.34
余震1(Mw 6.1)			≒11		
本震(M _W 8.3)/	708	13	7.4	1.8	0.22
余震2(M _W 6.4)			≒7		

表 2.1.3-2 経験的グリーン関数法用のパラメータ

図2.1.3-15 2015年チリIllapel地震の余震1(2015年9月21日、*M*_W 6.1)の変位フーリエスペクトルと理論スペクトルとの比較

図2.1.3-15 2015年チリIllapel地震の余震1(2015年9月21日、*M*_W 6.1)の変位フーリエスペク

トルと理論スペクトルとの比較(つづき)

図2.1.3-16 2015年チリIllapel地震の余震2(2016年2月10日、M_W 6.4)の

変位フーリエスペクトルと理論スペクトルとの比較

図2.1.3-16 2015年チリIllapel地震の余震2(2016年2月10日、M_W 6.4)の

変位フーリエスペクトルと理論スペクトルとの比較(つづき)

表 2.1.3-3	2015 年チリ	Illapel ‡	也震(ターク	ドット	・の地震)の	SMGA	モデルの断層	パラ	メーク	9
-----------	----------	-----------	--------	-----	--------	------	--------	----	-----	---

SMGAモデルの断層パラメータ		設定方法		
地震モーメントM _{0SMGA} (N·m)	5.66E+20	$M_{0SMGA} = (16/7) \Delta \sigma_{SMGA} (S_{SMGA}/\pi)^{1.5}$		
平均応力降下量⊿σ _{SMGA} (MPa)	49.8	$\Delta \sigma_{SMGA} = A/(4\pi\beta^2 \operatorname{sqrt}(S_{SMGA}/\pi))$		
断層面積S _{SMGA} (km ²)	915	$S_{SMGA} = S_a$		
断層長さL _{SMGA} (km)	30	$L_{SMGA} = W_{SMGA} = \operatorname{sqrt}(S_{SMGA})$		
断層幅W _{SMGA} (km)	30	$L_{SMGA} = W_{SMGA} = \operatorname{sqrt}(S_{SMGA})$		
平均すべり量D _{SMGA} (m)	13.6	$D_{SMGA} = M_{0SMGA} / (\mu S_{SMGA}), \ \exists z \mid z \mid 4.55 \times 10^{10} \text{N/m}^2 \ge t z_{\circ}$		
短周期レベルA _{SMGA} (N・m/s ²)	1.38E+20	$A_{SMGA} = A_s CN_{\chi} CN = 12.6$		
その他のパラメータ				
モーメントマグニチュードMwl	8.3	本研究		
地震モーメントM _{0l} (N·m)	3.55E+21	M_{0l} [N·m] = 10 ^{(1.5} M _{Wl} +9.1)		
短周期レベルA1 (N·m/s ²)	1.38E+20	$A_1 = A_s CN \setminus CN = 12.6$		
断層面積S1 (km ²)	36000	$S_l = L_l \times W_l$		
断層長さL1 (km)	240	郭・他(2018, JEES)を参照		
断層幅W1 (km)	150	郭・他(2018, JEES)を参照		
平均応力降下量⊿σ₁(MPa)	1.3	$\Delta \sigma_l = (7/16) [(M_{0l}/(S_l/\pi)^{1.5}]$		
アスペリティの面積 S_{asp} (km ²)	915	$S_a = S \Delta \sigma / \Delta \sigma_a$		
アスペリティの応力降下量乙σ _a (MPa)	49.8	$\Delta \sigma_a = A^2 S^{0.5} / (7\pi^{2.5} \beta^4 M_0)$		

表 2.1.3-4 2015 年チリ Illapel 地震の余震 2(要素地震)の断層パラメータ

要素地震の断層パラメータ		設定方法
モーメントマグニチュードM Ws	6.4	$M_{Ws} = (\log 10(M_{0s}[N \cdot m]) - 9.1)/1.5$
地震モーメント M_{0s} (N·m)	5.75E+18	$M_{0s} = M_{0l} / (CN^3)$
応力降下量⊿σ _s (MPa)	11.0	$\Delta \sigma_s = (7/16)[(M_{0s}/(S_s/\pi)^{1.5}]$
断層面積 S_s (km ²)	117	$S_s = (7/16)(\beta/f_c)^2$ 、ここに β はH29年度NPA安全研究報告書より4.1km/s とした。
断層長さL _s (km)	11	$L_s = W_s = \operatorname{sqrt}(S_s)$
断層幅 W_s (km)	11	$L_s = W_s = \operatorname{sqrt}(S_s)$
平均すべり量D _s (m)	1.1	$D_s = M_{0s} / (\mu S_s)$ 、ここに μ はH29年度NRA安全研究報告書より5.33×10 ¹⁰ N/m ² とした。
コーナー振動数f _{cs} (Hz)	0.22	本研究
短周期レベルA _s (N・m/s ²)	1.10E+19	$A_s = 4\pi\beta^2 (S_s/\pi)^{1/2} \Delta \sigma_s$

図2.1.3-17 2015年チリIllapel地震の地震モーメントと短周期レベルとの関係

図 2.1.3-18 2015 年チリ Illapel 地震 (ターゲットの地震)の SMGA モデル

2.1.4 2015 年チリ Illapel 地震の地震動再現解析

Dan et al. (1989) による経験的グリーン関数法を用いて、2015 年チリ Illapel 地震の地震動 再現解析を行った。図 2.1.4-1 に 2015 年チリ Illapel 地震(ターゲットの地震)の SMGA モデ ルによる断層面と要素地震の震央の位置を示す。図中、星印(☆印)は SMGA モデルの破壊開 始点で、三角印は計算地点である。また、図 2.1.4-2 には 2015 年チリ Illapel 地震の SMGA モデルによる震源モデルを示す。

2015年チリIllapel地震の各観測点におけるSMGAモデルによる合成結果を図2.1.4-3~図 2.1.4-15に示す。上sから順番に、各観測点における加速度時刻歴、速度時刻歴、変位時刻歴 および減衰定数5%の擬似速度応答スペクトルを示す。

各計算点で得られた地震動解析結果(黒線)は、2015年チリIllapel地震の観測記録(赤線) による短周期側の地震動を概ねよく再現できていることがわかった。なお、一部の観測点に おいて10秒付近で過小評価になっていることや、継続時間が短い部分については、今後、改 善を行う必要があると考える。

図2.1.4-1 2015年チリIllapel地震の本震の震央位置(赤★印)とメカニズム解、余震2の震央 位置(黄☆印)とメカニズム解、SMGAモデル(■印)と破壊開始点(黒☆印)、

および観測点(▲印)の位置

図 2.1.4-2 2015 年チリ Illapel 地震 (ターゲットの地震)の SMGA モデル

(図 2.1.3-18 の再掲)

図2.1.4-3 2015年チリIllapel地震のC01O観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-4 2015年チリIllapel地震のC09O観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-5 2015年チリIllapel地震のC19O観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-6 2015年チリIllapel地震のC20O観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-7 2015年チリIllapel地震のC26O観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-8 2015年チリIllapel地震のC33O観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-9 2015年チリIllapel地震のCOO3観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-10 2015年チリIllapel地震のR12M観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-11 2015年チリIllapel地震のR13M観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-12 2015年チリIllapel地震のR18M観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-13 2015年チリIllapel地震のR21M観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-14 2015年チリIllapel地震のV02A観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)

図2.1.4-15 2015年チリIllapel地震のV17A観測点におけるSMGAモデルによる合成結果 (上段から、加速度時刻歴、速度時刻歴、変位時刻歴、擬似速度応答スペクトル)
2.1.5 2014 年チリ Iquique 地震のアスペリティモデルの設定

既往の研究(原子力規制庁,2018)で対象とした2014年チリ Iquique 地震を対象に、アス ペリティモデルの設定を行った。なお、既往の研究(原子力規制庁,2018)では、ターゲッ トの地震の震源モデルをクラックモデル(アスペリティのみ)として解釈して断層パラメー タを設定し、経験的グリーン関数法による検討を行ったが、本研究では、地震調査研究推進 本部によるプレート間地震の「レシピ」と比較するために、背景領域も含む、アスペリティ モデルとして考えた場合について検討した。その際、平均応力降下量を、地震調査研究推進 本部によるプレート間地震の「レシピ」とおりの円形クラックの式で評価した場合と、断層 破壊が地表まで達するプレート間地震の平均動的応力降下量の式(ドルジャパラム・他, 2015)で評価した場合の、2つの断層モデルを作成した。

(1) 対象地震

地震動再現解析の対象は、既往の研究(原子力規制庁,2018)と同様で、2014 年チリ Iquique 地震(*M*_W8.1、以降、ターゲットの地震と呼ぶ)とし、経験的グリーン関数法用の要素地震 として2014年3月16日に発生した前震(*M*_W6.7)を用いた。ターゲットの地震の長周期イ ンバージョン結果によるすべり変位分布、最大すべり速度分布と各小断層のすべり時間関 数、要素地震の震央位置および地震動評価点(3地点)を図2.1.5-1~図2.1.5-3に示す。

(2) アスペリティモデルおよび断層パラメータ

断層パラメータの設定では、既往の研究(原子力規制庁,2018、郭・他,2018)を参照に、 ターゲットの地震のモーメントマグニチュード *Mw*=8.1、ターゲットの地震の断層面積 *Si*=170km×160km=27,200 km²(図 2.1.5-2)、2014 年チリ Iquique 地震の経験的グリーン関数 法用のパラメータの再見積り結果(図 2.1.5-4、表 2.1.5-1)を参照に、要素地震のコーナー 振動数 *f_{cs}*=0.10Hz、経験的グリーン関数法による波形合成時に用いる重ね合わせ数 *N* =4、 およびターゲットの地震と要素地震の応力降下量の比 *C*=1.95 の 5 つのパラメータを与条件 として、ターゲットの地震のアスペリティモデルの断層パラメータを設定した。

a) 地震調査研究推進本部によるプレート間地震の「レシピ」に基づいた場合 地震調査研究推進本部(2005)でまとめられているプレート間地震の強震動予測レシピに

よる、プレート間地震のアスペリティモデルの設定の流れは図 2.1.5-5 のようになっている。 プレート間地震のアスペリティモデルを記述する主なパラメータは、震源断層面積 S、地震 モーメント M_0 、短周期レベル A、平均応力降下量 $\bigtriangleup \sigma$ 、アスペリティの応力降下量 $\bigtriangleup \sigma_a$ 、ア スペリティの面積 S_a の 6 つである。

地震調査研究推進本部(2005)のプレート間地震の強震動予測レシピでは、震源域を明確に 設定できる場合は、その範囲より震源断層の面積を計算し、地震規模-断層面積の経験的関 係式から地震規模を推定する、もしくは、過去の地震から想定されている値を基に、地震規 模を設定し、地震規模-断層面積の経験的関係から震源断層の面積を設定するとしている。 上記の地震規模(地震モーメント M_0)と断層面積Sの経験式については、過去の地震のデ ータがある程度得られている場合には、地域性を考慮した式を用いるとしている。例えば、 Kanamori and Anderson (1975)と同様に円形破壊面を仮定した次の関係式(Eshelby, 1957)を基 に震源域の地震の平均応力降下量 $\Delta \sigma$ (MPa)を推定することで、地域的な地震モーメント M_0 (N·m)と断層面積S(km²)の関係式を設定するとしている。

$$M_0 = 16 / (7 \cdot \pi^{3/2}) \cdot \Delta \sigma \cdot S^{3/2}$$
(2.1.5-1)

一方、過去の地震のデータがあまり得られていない場合には、平均的な特性を示す地震規模と断層面積(例えば、宇津,2001;石井・佐藤,2000)、または地震モーメント M₀と断層面積 S (例えば、佐藤,1989; Yamanaka and Shimazaki, 1990) などの経験式を用いるとしている。

対象地震の短周期レベル A に関しては、想定震源域における最新活動の地震の短周期レ ベル A が推定されていない場合には、壇・他(2001)による地震モーメント M₀ と短周期レベ ル A の経験的関係により設定するとしている。想定震源域における最新活動の地震の短周 期レベル A が推定されている場合には、その推定値と地震モーメント M₀ との経験的関係の 傾向を参照して、想定する地震の地震モーメントに応じた短周期レベルを設定するとして いる。

一方、アスペリティの応力降下量⊿σ_a、アスペリティの面積 S_a、および短周期レベル A は 下記の関係式を満たす。ここに、(2.1.5-2)式は Madariaga (1979)によるアスペリティモデルの 一般式、(2.1.5-3)式は円形クラックモデルを念頭においた Brune (1970)による経験式である が、のちに Boatwright (1988)が断層の動力学的破壊シミュレーションよりアスペリティモデ ルにも適用できることを示した式である。

$$\Delta \sigma_a = (S / S_a) \Delta \sigma \tag{2.1.5-2}$$

$$A = 4\pi\beta^2 (S_a / \pi)^{1/2} \Delta \sigma_a$$
 (2.1.5-3)

ここでは、ターゲットの地震の地震モーメント M_{0l} は与えられた値を用い、ターゲットの地震の短周期レベル A_l については、既往の研究(原子力規制庁, 2018)によるパラメータから推定した値を直接用いることにした。また、ターゲットの地震の断層面積 S_l も与条件として既往の研究(原子力規制庁, 2018)で設定した値を用いたので、式(2.1.5-1)~式(2.1.5-3)に示した 3 つの関係式で、ターゲットの地震のアスペリティモデルにおける残りの 3 つの断層パラメータ、平均応力降下量 $\Delta \sigma_l$ 、アスペリティの応力降下量 $\Delta \sigma_a$ 、アスペリティの面積 S_a を求めることができる。

ターゲットの地震の短周期レベル A_l を推定するために、まず要素地震の短周期レベル A_s を求めた。ターゲットの地震の地震モーメント M_{0l} が分かるので、既往の研究(原子力規制 庁, 2018)で求めた C=1.95と N=4の値を(2.1.5-4)式に代入すると、要素地震の地震モーメ ント M_{0s} が決まる。次に、Brune(1970)の ω^{-2} モデルを仮定した場合の、(2.1.5-5)式によるコ ーナー振動数の値と、円形クラックの平均応力降下量を求める(2.1.5-6)式を用いて、要素地 震の断層面積 S_s 、および要素地震の応力降下量 $\bigtriangleup \sigma_s$ を算定した。さらに、要素地震の断層面 積 S_s 、および要素地震の応力降下量 $\bigtriangleup \sigma_s$ を用いて、(2.1.5-7)式より要素地震の短周期レベル A_s が求まる。

$$M_{0l} / M_{0s} = CN^3 = 125 \tag{2.1.5-4}$$

$$f_{cs} = \beta \sqrt{(7/16)/S_s} = 0.10 \,\mathrm{Hz}$$
 (2.1.5-5)

$$\Delta \sigma_s = (7/16) M_{0s} / (S_s / \pi)^{1.5}$$
(2.1.5-6)

$$A_{s} = 4\pi\beta^{2} (S_{s} / \pi)^{1/2} \Delta \sigma_{s}$$
(2.1.5-7)

要素地震の短周期レベル A_s が求まったので(2.1.5-8)式よりターゲットの地震の短周期レベル A_lが求まる。

$$A_l / A_s = CN = 7.8 \tag{2.1.5-8}$$

ターゲットの地震の地震モーメント M_{0l} 、短周期レベル A_l 、ターゲットの地震の震源断層 面積 S_l が分かったので、 (2.1.5-1)式~(2.1.5-3)式より、ターゲットの地震における、平均応 力降下量 $\Delta \sigma$ 、アスペリティの応力降下量 $\Delta \sigma_a$ 、アスペリティの面積 S_a が求まる。

ほかに、ターゲットの地震の平均すべり量 D_l は下記の(2.1.5-9)式より算定した。ここに、 剛性率 μ は、既往の研究(原子力規制庁,2018)より、 $5.33 \times 10^{10} \, \text{N/m}^2$ とした。

$$M_{0l} = \mu D_l S_l \tag{2.1.5-9}$$

また、アスペリティの平均すべり量Daは、既往の研究(原子力規制庁, 2018、郭・他, 2018)

による長周期インバージョン結果(図2.1.5-2の領域A2)によるすべり分布を参考に与えた。

最後に、背景領域の平均すべり量 D_{back} 、および実効応力 σ_{back} は下記の(2.1.5-10) ~(2.1.5-11)式より算定した。ここに、 $W_{back} = W_l$ とし、 $W_a = sqrt(S_a)$ とした。

$$D_{back} = (D_l S_l - D_a S_a) / (S_l - S_a)$$
(2.1.5-10)

$$\sigma_{back} = (D_{back} / W_{back}) / (D_a / W_a) \cdot \Delta \sigma_a$$
(2.1.5-11)

表 2.1.5-2 の a)に、本方法で設定したターゲットの地震のアスペリティモデルの断層パラ メータを示し、表 2.1.5-3 に要素地震の断層パラメータを示す。

ターゲットの地震の地震モーメント M_0 と断層面積 Sの関係を図 2.1.5-6 に、ターゲットの地震の地震モーメント M_0 と短周期レベル Aの関係を図 2.1.5-7 に示す。ターゲットの地震のアスペリティモデルの断層モデルを図 2.1.5-8 の a) に示す。

b) 断層破壊が地表まで達するプレート間地震の平均動的応力降下量の式(ドルジャパラム・他, 2015)に基づいた場合

ドルジャパラム・他(2015)は、数多くの長大低角逆断層の動力学的断層破壊シミュレーションを行い、下の平均動的応力降下量 Δσ[#]の近似式を得ている。

$$\begin{cases} \Delta \sigma^{\#} = c[M_0 / (LW^2)] = c[M_0 / (SW)] \\ c = 0.45 + 1.1 \exp[-L / W] = 0.45 + 1.1 \exp[-S / W^2] \end{cases}$$
(2.1.5-12)

アスペリティの動的応力降下量 $\Delta \sigma^{*}_{asp}$ は、(2.1.5-12)式に示した平均動的応力降下量の近似 式と、(2.1.5-13)式および(2.1.5-14)式に基づいて、(2.1.5-15)式のように表せる。ここに、(2.1.5-13)式と(2.1.5-14)式は、(2.1.5-2)式および(2.1.5-3)式の $\Delta \sigma$ と $\Delta \sigma_{a}$ を $\Delta \sigma^{*}_{a}$ に読み替えた。

$$A_l = 4\pi\beta^2 (S_a / \pi)^{1/2} \Delta \sigma_a^{\#}$$
(2.1.5-13)

$$S\Delta\sigma^{\#} = S_a \Delta\sigma^{\#}_a \tag{2.1.5-14}$$

$$\Delta \sigma_a^{\#} = A^2 W / \{ 16\pi \beta^4 (0.45 + 1.1 \exp[-S / W^2]) M_0 \}$$
(2.1.5-15)

ここでは、ターゲットの地震の地震モーメント *M*₀ は与えられた値を用い、ターゲットの地震の短周期レベル *A*₁ については、既往の研究(原子力規制庁, 2018)によるパラメータから推定した値を直接用いることにした。また、ターゲットの地震の断層面積 *S*₁ も与条件として既往の研究(原子力規制庁, 2018)で設定した値を用いたので、式(2.1.5-12)~式(2.1.5-14)に示した 3 つの関係式で、ターゲットの地震のアスペリティモデルにおける残りの3 つの断層パラメータ、平均応力降下量△σ₁、アスペリティの応力降下量△σ_a、アスペリティの面積 *S*_aを求めることができる。

アスペリティの平均すべり量*D*_aは、既往の研究(原子力規制庁,2018、郭・他,2018)による長周期インバージョン結果(図2.1.5-2の領域A2)によるすべり分布を参考に与えた。

さらに、ここでは、具・他(2016)を参照に、大すべり域を考慮した。大すべり域のすべり 量D_大と、大すべり域の面積S_大は既往の研究(原子力規制庁,2018)による長周期インバー ジョン結果による、浅い側のすべり分布を参考に与えた。

最後に、背景領域の平均すべり量 D_{back} 、背景領域の実効応力 σ_{back} 、および大すべり域の実 効応力 σ_{t} は下記の(2.1.5-16) ~(2.1.5-18)式より算定した。ここに、 $W_{back} = W_l$ とし、 $W_a = sqrt(S_a)$ とした。

$$D_{back} = (D_l S_l - D_a S_a - D_{\pm} S_{\pm}) / (S_l - S_a - S_{\pm})$$
(2.1.5-16)

$$\sigma_{back} = (D_{back} / W_{back}) / (D_a / W_a) \cdot \Delta \sigma_a$$
(2.1.5-17)

$$\sigma_{\mathbf{t}} = \sigma_{back} \tag{2.1.5-18}$$

表 2.1.5-2 の b)に、本方法で設定したターゲットの地震のアスペリティモデルの断層パラ メータを示し、ターゲットの地震のアスペリティモデルの断層モデルを図 2.1.5-8 の b) に 示す。

図 2.1.5-1 2014 年チリ Iquique 地震のすべり変位分布 (郭・他, 2018)

図 2.1.5-2 2014 年チリ Iquique 地震の最大すべり速度分布と 各小断層のすべり時間関数(郭・他, 2018)

図 2.1.5-3 要素地震の震央位置(黄☆印)および地震動評価点(▲印) (2017 年度報告書の図 2.2.4-3 を再掲)

図 2.1.5-4 2014 年チリ Iquique 地震の経験的グリーン関数法用のパラメータの再見積り

表 2.1.5-1 2014 年チリ Iquique 地震の経験的グリーン関数法用のパラメータの再見積り結果

経験的グリーン関数 法用のパラメータ	長周期側の比 率 <i>CN 3</i>	短周期側 の比率 <i>CN</i>	重ね 合わせ数 <i>N</i>	応力降下 量の比 <i>C</i>	前震の⊐ー ナー振動数 <i>f_{cs}</i> (Hz)
本震(Mw8.1)/ 前震(Mw6.7)	125	7.8	4	1.8	0.10

図 2.1.5-5 地震調査研究推進本部(2005)の強震動予測レシピによる

プレート間地震の断層パラメータ算定手順

表 2.1.5-2 2014 年チリ Iquique 地震(ターゲットの地震)のアスペリティモデルの

断層パラメータ

a) 地震調査研究推進本部によるプレート間地震の「レシピ」に基づいた場合

ターゲットの地震の断層	パラメータ	設定方法
モーメントマグニチュードMwl	8.1	H29年度NRA安全研究報告書
地震モーメントM _{0l} (N・m)	1.78E+21	M_{0l} [N·m]=10 $(1.5M_{Wl}+9.1)$
短周期レベルA1 (N・m/s ²)	4.39E+19	$A_I = A_s CN$
断層面積S1 (km ²)	27200	$S_l = L_l \times W_l$
断層長さL1 (km)	170	郭・他(2018, JEES)を参照
断層幅 W_l (km)	160	郭・他(2018, JEES)を参照
平均すべり量D1(m)	1.2	$D_l = M_{0l} / (\mu S_l)$ 、ここに μ はOth <i>et al</i> . (2007)より7×10 ¹⁰ N/m ² とした。
平均応力降下量⊿σ₁(MPa)	1.0	$\Delta \sigma_l = (7/16)[(M_{0l}/(S_l/\pi)^{1.5}]]$
アスペリティの面積 S_{asp} (km ²)	5091	$S_a = S \Delta \sigma / \Delta \sigma_a$
アスペリティの長さLa (km)	71	$L_a = W_a = \operatorname{sqrt}(S_a)$
アスペリティの幅 W_a (km)	71	$L_a = W_a = \operatorname{sqrt}(S_a)$
アスペリティの応力降下量⊿σ _α (MPa)	5.2	$\Delta \sigma_a = A^2 S^{0.5} / (7\pi^{2.5} \beta^4 M_0)$
アスペリティのすべり量 D_a (m)	3.8	郭・他(2018, JEES)を参照
アスペリティの地震モーメントM _{0a} (N・m)	1.03E+21	$M_{0a} = \mu D_a S_a$ 、ここに μ はH29年度NRA安全研究報告書より5.33×10 ¹⁰ N/m ² とした。
背景領域の地震モーメントM _{Oback}	7.47E±20	$M \rightarrow -M \rightarrow M$
(N • m)	7.4712+20	$1 \sqrt{2} 0 back = 1 \sqrt{2} 0 l^{-1} \sqrt{2} 0 a$
背景領域の面積S back	22109	$S_{back} = S_I - S_a$
背景領域のすべり量D back (m)	0.6	$D_{back} = (S_I D_I - S_a D_a)/S_{back}$
背景領域の実効応力 oback (MPa)	0.4	$\sigma_{back} = (D_{back}/W_{back})/(D_a/W_a)\Delta\sigma_a$

b) 断層破壊が地表まで達するプレート間地震の平均動的応力降下量の式に基づいた場合

ターゲットの地震の断層	パラメータ	設定方法
モーメントマグニチュードMwi	8.1	H29年度NRA安全研究報告書
地震モーメント M_{0l} (N·m)	1.78E+21	M_{0l} [N·m]=10 ^{(1.5} M_{Wl} +9.1)
短周期レベルA1 (N·m/s ²)	4.39E+19	A ₁ =A _s CN、ここにCNはH29年度NRA安全研究報告書より8とした。
断層面積 S_l (km ²)	27200	$M_{0l} = W \times \Delta \sigma [MPa] \times 10^{15} S [km^2] / (0.45 + 1.1 exp[-S [km^2]/W^2))$
断層長さL1 (km)	170	郭・他(2018, JEES)
断層幅 W_l (km)	160	郭・他(2018, JEES)
平均すべり量D1(m)	1.2	$D_{l}=M_{0l}/(\mu S_{l})$ 、ここに μ はOth <i>et al</i> . (2007)より7×10 ¹⁰ N/m ² とした。
平均応力降下量⊿σ/(MPa)	0.3	$\Delta \sigma_l = c \left[M_0 / (SW) \right], \subset \subset \mathbb{C} c = 0.45 + 1.1 \exp[-S/W^2]$
アスペリティの面積 S_{asp} (km ²)	628	$S_a = S \Delta \sigma / \Delta \sigma_a$
アスペリティの長さLa (km)	25	$L_a = W_a = \operatorname{sqrt}(S_a)$
アスペリティの幅 W_a (km)	25	$L_a = W_a = \operatorname{sqrt}(S_a)$
アスペリティの応力降下量⊿σ _a (MPa)	14.7	$\Delta \sigma_a = A^2 W / (16\pi \beta^4 (0.45 + 1.1 \exp[-S/W^2]) M_0)$
アスペリティのすべり量 D_a (m)	3.8	郭・他(2018, JEES) (30km×30km)
アスペリティの地震モーメントM _{0a} (N・m)	1.27E+20	$M_{0a} = \mu D_a S_a$ 、ここに μ はH29年度NRA安全研究報告書より5.33×10 ¹⁰ N/m ² とした。
大すべり域のすべり量 $D_{\pm}(\mathbf{m})$	2.5	郭・他(2018, JEES)
大すべり域の面積 <i>S</i> _大 (km ²)	1800	郭・他(2018, JEES)
大すべり域の地震モーメントM _{0大} (N•m)	2.40E+20	$M_{0\pm}=\mu D_{\pm}S_{\pm}$ 、ここに μ はH29年度NRA安全研究報告書より5.33×10 ¹⁰ N/m ² とした。
大すべり域の実効応力σ _太 (MPa)	0.6	$\sigma_{\pm} = \sigma_{back}$
背景領域の地震モーメントM _{Oback} (N·m)	1.41E+21	<i>M</i> _{0<i>back</i>} = <i>M</i> _{0<i>l</i>} − <i>M</i> _{0<i>a</i>} − <i>M</i> ₀ _↑
背景領域の面積S back	24772	$S_{back} = S_I - S_a - S_{\pm}$
背景領域のすべり量D _{back} (m)	1.1	$D_{back} = (S_I D_I - S_a D_a - S_{\pm} D_{\pm})/S_{back}$
背景領域の実効応力 <i>o_{back}(MPa)</i>	0.6	$\sigma_{back} = (D_{back}/W_{back})/(D_a/W_a)\Delta\sigma_a$

要素地震の断層パラメータ		設定方法
モーメントマグニチュードMws	6.7	$M_{Ws} = (\log_{10}(M_{0s}[N \cdot m])-9.1)/1.5$
地震モーメントM _{0s} (N・m)	1.42E+19	$M_{0s} = M_{0l} / (CN^3)$
応力降下量⊿σ₅(MPa)	1.7	$\Delta \sigma_s = (7/16)[(M_{0s}/(S_s/\pi)^{1.5}]]$
断層面積 S_s (km ²)	735	$S_s = (7/16)(\beta/f_c)^2$ 、ここに β はH29年度NPA安全研究報告書より4.1km/s とした。
断層長さL _s (km)	27	$L_s = W_s = \operatorname{sqrt}(S_s)$
断層幅Ws (km)	27	$L_s = W_s = \operatorname{sqrt}(S_s)$
平均すべり量D _s (m)	0.4	$D_s = M_{0s} / (\mu S_s)$ 、ここに μ はH29年度NRA安全研究報告書より5.33×10 ¹⁰ N/m ² とした。
コーナー振動数f _{cs} (Hz)	0.10	再検討による値20190204
短周期レベルA。(N·m/s ²)	5.63E+18	$A_s = 4\pi\beta^2 (S_s/\pi)^{1/2} \Delta \sigma_s$

表 2.1.5-3 2014 年の Iquique 地震の前震(要素地震)の断層パラメータ

図 2.1.5-6 2014 年チリ Iquique 地震の地震モーメントと断層面積との関係

図 2.1.5-7 2014 年チリ Iquique 地震の地震モーメントと短周期レベルとの関係

a) 地震調査研究推進本部によるプレート間地震の「レシピ」に基づいた場合

b) 断層破壊が地表まで達するプレート間地震の平均動的応力降下量の式に基づいた場合
 図 2.1.5-8 2014 年チリ Iquique 地震(ターゲットの地震)のアスペリティモデル

2.1.5項で得られた2014年チリIquique地震の2つのアスペリティモデルをもとに、Dan et al.(1989)による経験的グリーン関数法により、T13A、TA01、PGSCXの3つの観測点において 地震動を計算した。アスペリティモデルの詳細なパラメータ及び配置、要素断層の分割など は表2.1.5-1及び図2.1.5-7にそれぞれ示し、要素地震の詳細なパラメータを表2.1.5-2に示す。 計算に用いる要素地震の波形と応答スペクトル、フーリエスペクトルについては図2.1.6-1~ 図2.1.6-3に示す。

T13A観測点における経験的グリーン関数法による計算結果の速度応答スペクトルと観測 記録の速度応答スペクトルを図2.1.6-4に比較する。これらの図には、スペクトルの図に地震 調査研究推進本部によるプレート間地震の「レシピ」に基づいた場合のアスペリティモデル の結果と断層破壊が地表まで達するプレート間地震の平均動的応力降下量の式(ドルジャ パラム・他,2015)に基づいた場合のアスペリティモデルによる結果をそれぞれ示している。 また、地震調査研究推進本部によるプレート間地震の「レシピ」に基づいた場合のアスペリ ティモデルの加速度波形と観測記録の加速度波形を図2.1.6-5に比較し、断層破壊が地表まで 達するプレート間地震の平均動的応力降下量の式(ドルジャパラム・他,2015)に基づいた 場合のアスペリティモデルの加速度波形と観測記録の加速度波形を図2.1.6-6に比較する。

同様に、TA01観測点地点における経験的グリーン関数法による計算結果と観測記録の比較を図2.1.6-7~図2.1.6-9に、PSGCX地点における経験的グリーン関数法による計算結果と観測記録の比較を図2.1.6-10~図2.1.6-12に示す。

これらの図から、合成波形と応答スペクトルにおいて、地震調査研究推進本部によるプレート間地震の「レシピ」に基づいた場合のアスペリティモデルの結果(図中ではAsperity Recipeと表記)は、断層破壊伝播方向にある観測点TA01、T13Aでは観測記録と断層破壊が 地表まで達するプレート間地震の平均動的応力降下量の式(ドルジャパラム・他, 2015)に 基づいた場合のアスペリティモデルによる結果(図中では、Asperity Surfaceと表記)より大 きくなっており、断層破壊の横方向(やや後方)に位置するPGSCXでは、2つの方法による アスペリティモデルの結果が同程度であることが分かる。

2つの方法によるアスペリティモデルは、同じ地震モーメントと同じ短周期レベルに基づいて設定しているが、2つの地震動評価結果が観測点TA01、T13Aにおいて、短周期側と 長周期側ともに大きい差が生じた原因については、今後調べる必要がある。一方、観測点 PGSCXにおいては、2つの方法によるアスペリティモデルの地震動評価結果は同程度であ るが、長周期側で計算結果を大きく上回っており、その原因についても今後調べる必要が ある。

図2.1.6-1 2014年3月16日に発生した地震(Iquique地震の前震)の際にT13A観測点における 観測記録の加速度波形

図2.1.6-2 2014年3月16日に発生した地震(Iquique地震の前震)の際にTA01観測点における 観測記録の加速度波形

図2.1.6-3 2014年3月16日に発生した地震(Iquique地震の前震)の際にPGSCX 観測点におけ る観測記録の加速度波形

図2.1.6-4 T13A地点における計算結果と観測記録の比較(EW、NS成分の速度応答スペクト

ル)

図2.1.6-5 T13A地点における計算結果と観測記録の比較(加速度波形(EW, NS)、レシピ)

図2.1.6-6 T13A地点における計算結果と観測記録の比較(加速度波形(EW, NS)、平均動的応 力降下量の式(ドルジャパラム・他, 2015))

図2.1.6-7 TA01地点における計算結果と観測記録の比較(EW、NS成分の速度応答スペクト

ル)

図2.1.6-8 TA01地点における計算結果と観測記録の比較(加速度波形(EW, NS)、レシピ)

図2.1.6-9 TA01地点における計算結果と観測記録の比較(加速度波形(EW, NS)、平均動的応 力降下量の式(ドルジャパラム・他, 2015))

図2.1.6-10 PSGCX地点における計算結果と観測記録の比較(EW、NS成分の速度応答スペ

クトル)

図2.1.6-11 PSGCX地点における計算結果と観測記録の比較(加速度波形(EW, NS)、レシピ)

図2.1.6-12 PSGCX地点における計算結果と観測記録の比較(加速度波形(EW, NS)、平均動 的応力降下量の式(ドルジャパラム・他, 2015))

2.1節の参考文献(英文:アルファベット順、和文:五十音順)

2.1.1 & 2.1.2

- Akaike, H. (1980): Likelihood and the Bayes procedure, Trabajos de Estadistica Y de Investigacion Operativa, Vol. 31, No. 1, pp. 143-166.
- Allen, T. H. and G. P. Hayes (2017): Alternative rupture-scaling relationships for subduction interface and other offshore environments, Bulletin of the Seismological Society of America, Vol. 107, No. 3, pp. 1240-1253.
- Bouchon, M. (1981): A simple method to calculate Green's functions for elastic layered media, Bulletin of the Seismological Society of America, Vol. 71, No. 4, pp. 959-971.
- Brocher, T. M. (2008): Key elements of regional seismic velocity models for long period ground motion simulations, Journal of Seismology, Vol. 12, No. 2, pp. 217-221.
- 5) CNN.co.jp (2015): チリ地震の死者11人に災害対策で被害は軽減と当局, https://www.cnn.co.jp/world/35070749.html (2019年2月28日参照).
- 6) Frankel, A. (2017): Modeling strong-motion recordings of the 2010 M_w 8.8 Maule, Chile, earthquake with high stress-drop subevents and background slip, Bulletin of the Seismological Society of America, Vol. 107, No. 1, pp. 372-386.
- 7) Hartzell, S. H. and T. H. Heaton (1983): Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bulletin of the Seismological Society of America, Vol. 73, No. 6, pp. 1553-1583.
- Hayes, G. P., D. J. Wald, and R. L. Johnson (2012): Slab1.0: A three-dimensional model of global subduction zone geometries, Journal of Geophysical Research, Vol. 117, No. B1, B01302.
- 9) Iwaki, A., T. Maeda, N. Morikawa, S. Aoi, and H. Fujiwara (2016): Kinematic source models for long period ground motion simulations of megathrust earthquakes: Validation against ground motion data for the 2003 Tokachi-oki earthquake, Earth, Planets and Space, Vol. 68, No. 95.
- Kennett, B. L. N. and N. J. Kerry (1979): Seismic waves in a stratified half space, Geophysical Journal International, Vol. 57, No. 3, pp. 557-583.

- Lawson, C. L. and R. J. Hanson (1974): Solving Least Squares Problems, Prentice-Hall, Inc., 337pp.
- 12) Marot, M., T. Monfret, M. Gerbault, G. Nolet, G. Ranalli, and M. Pardo (2014): Flat versus normal subduction zones: a comparison based on 3-D regional traveltime tomography and petrological modelling of central Chile and western Argentina (29°–35°S), Geophysical Journal International, Vol. 199, No. 3, pp. 1633-1654.
- 13) Melgar, D., W. Fan, S. Riquelme, J. Geng, C. Liang, M. Fuentes, G. Vargas, R. M. Allen, P. M. Shearer, and E. J. Fielding (2016): Slip segmentation and slow rupture to the trench during the 2015, *M_w* 8.3 Illapel, Chile earthquake, Geophysical Research Letters, Vol. 43, No. 3, pp. 961-966.
- 14) Murotani, S., H. Miyake, and K. Koketsu (2008): Scaling of characterized slip models for plateboundary earthquakes, Earth, Planets and Space, Vol. 60, No. 9, pp. 987-991.
- 15) Murotani, S., K. Satake, and Y. Fujii (2013): Scaling relations of seismic moment, rupture area, average slip, and asperity size for *M*~9 subduction-zone earthquakes, Geophysical Research Letters, Vol. 40, No. 19, pp. 5070-5074.
- 16) Okada, Y. (1992): Internal deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, Vol. 82, No. 2, pp. 1018-1040.
- 17) Oleskevich, D. A., R. D. Hyndman, and K. Wang (1999): The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile, Journal of Geophysical Research, Vol. 104, No. B7, pp. 14965-14991.
- 18) Pitarka, A., R. Graves, and P. Somerville (2004): Validation of a 3D velocity model of the Puget Sound region based on modeling ground motion from the 28 February 2001 Nisqually earthquake, Bulletin of the Seismological Society of America, Vol. 94, No. 5, pp. 1670-1689.
- 19) Satake, K., Y. Fujii, T. Harada, and Y. Namegaya (2013): Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data, Bulletin of the Seismological Society of America, Vol. 103, No. 2B, pp. 1473-1492.

- Sekiguchi, H., K. Irikura, and T. Iwata (2000): Fault geometry at the rupture termination of the 1995 Hyogo-ken Nanbu earthquake, Bulletin of the Seismological Society of America, Vol. 90, No. 1, pp. 117-133.
- 21) Skarlatoudis, A. A., P. G. Somerville, and H. K. Thio (2016): Source-scaling relations of interface subduction earthquakes for strong ground motion and tsunami simulation, Bulletin of the Seismological Society of America, Vol. 106, No. 4, pp. 1652-1662.
- 22) Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada (1999): Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seismological Research Letters, Vol. 70, No. 1, pp. 59-80.
- 23) Strasser, F. O., M. C. Arango, and J. J. Bommer (2010): Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude, Seismological Research Letters, Vol. 81, No. 6, pp. 941-950.
- 24) Suzuki, W., N. Pulido, and S. Aoi (2016): Rupture process and strong-motion generation of the 2014 Iquique, northern Chile, earthquake, Journal of Earthquake and Tsunami, Vol. 10, No. 3, 1640008.
- 25) Thingbaijam, K. K. S., P. M. Mai, and K. Goda (2017): New empirical earthquake source-scaling laws, Bulletin of the Seismological Society of America, Vol. 107, No. 5, pp. 2225-2246.
- 26) Tilmann, F., Y. Zhang, M. Moreno, J. Saul, F. Eckelmann, M. Palo, Z. Deng, A. Babeyko, K. Chen, J. C. Baez, B. Schurr, R. Wang, and T. Dahm (2016): The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake?, Geophysical Research Letters, Vol. 43, No. 2, pp. 574-583.
- 27) Yoshida, K., K. Miyakoshi, and K. Irikura (2011): Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with long-period strong-motion records, Earth, Planets and Space, Vol. 63, No. 12.
- 28) 岩切一宏・川添安之・長谷川嘉臣 (2014): 地震波形を用いた気象庁の震源過程解析-解 析方法と断層すべり分布のスケーリング則-, 験震時報, 第78巻, pp. 65-91.
- 29) 川辺秀憲・釜江克宏 (2013): 2011年東北地方太平洋沖地震の震源のモデル,日本地震工

学会論文集, 第13巻, 第2号, pp. 75-87.

- 30) 原子力規制庁 (2018): 平成29年度原子力施設等防災対策等委託費(海溝型地震による地 震動の評価手法の検討)事業 成果報告書.
- 31)田島礼子・松元康広・司宏俊・入倉孝次郎 (2013):内陸地殻内および沈み込みプレート 境界で発生する巨大地震の震源パラメータに関するスケーリング則の比較研究,地震第 2輯,第66巻,第3号, pp. 31-45.
- 32) 壇一男・石井やよい・宮腰淳一・高橋広人・護雅史・福和伸夫 (2013):マグニチュード 9クラスのプレート境界地震による強震動予測のための断層モデルの設定方法-南海ト ラフ巨大地震への適用と東海地方における強震動の試算例-,日本建築学会構造系論文 集,第78巻,第692号, pp. 1685-1694.
- 33) 宮腰研・田中礼司・古村美津子・松浦律子・高井伸雄 (2017):特性化震源モデルに基づいた2015年ネパール・ゴルカ地震 (M_w 7.8)の強震動評価,日本地震学会2017年度秋季 大会,S15-P26.

2.1.3

34) Centro Sismologico Nacional, Universidad de Chile (http://evtdb.csn.uchile.cl/) (2018年9月14日 参照)

2.1.4

35) Dan, K., T. Watanabe, and T. Tanaka (1989): A semi-empirical method to synthesize earthquake ground motions based on approximate far-field shear-wave displacement, Journal of Structural and Construction Engineering (Transactions of AIJ), No. 396, pp. 27-36.

2.1.5

- 36) Boatwright, J. (1988): The seismic radiation from composite models of faulting, Bulletin of the Seismological Society of America, Vol. 78, No. 2, pp. 489-508.
- 37) Brune, J. N. (1970): Tectonic stress and the spectra of seismic shear waves from earthquakes, Journal of Geophysical Research, Vol. 75, No. 26, pp.4997-5009.

- 38) Eshelby, J. D. (1957): The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London, Series A, Vol. 241, pp. 376-396.
- 39) Kanamori, H. and D. L. Anderson (1975): Theoretical basis of some empirical relations in seismology, Bulletin of the Seismological Society of America. Vol. 65, No. 5, pp. 1073-1095.
- Madariaga, R. (1979): On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity, Journal of Geophysical Research, Vol. 84, No. B5, pp. 2243-2250.
- 41) Yamanaka, Y. and K. Shimazaki (1990): Scaling relationship between the number of aftershocks and the size of the main shock, Journal of Physics of the Earth, 38, pp. 305-324.
- 42) 宇津徳治 (2001): 地震学 (第3版), 共立出版.
- 43) 郭雨佳・宮腰研・鶴来雅人 (2018): 強震波形インバージョンに基づくチリ沖プレート間 巨大地震の震源特性化, 第15回日本地震工学シンポジウム, PS1-01-04.
- 44) 原子力規制庁 (1989): 平成29年度原子力規制庁安全研究, 原子力施設等防災対策等委託 費 (海溝型地震による地震動の評価手法の検討)事業業務報告書.
- 45) 佐藤良輔 (1989): 日本の地震断層パラメター・ハンドブック, 鹿島出版会, p. 49.
- 46) 地震調査研究推進本部地震調査委員会 (2005): 「全国を概観した地震動予測地図」報告書 (平成17年3月23日公表,平成17年4月13日更新,平成17年12月14日更新),分冊2,震源 断層を特定した地震動予測地図の説明.
- 47) ドルジャパラムサロル・具典淑・壇一男・入江紀嘉 (2015): 長大低角逆断層を考慮した 動力学的断層破壊シミュレーションによるプレート境界地震の平均動的応力降下量算 定式における応力形状係数の検討 (その 3) アスペリティモデルのシミュレーション結 果, B-II, pp. 103-104.

2.1.6

48) Dan, K., Watanabe, T., and Tanaka, T (1989): A semi-empirical method to synthesize earthquake

ground motions based on approximate far-field shear-wave displacement, Journal of Structural and Construction Engineering (Transactions of the Architectural Institute of Japan), No. 396, pp. 27-36.

- 49) 地震調査研究推進本部地震調査委員会 (2005):「全国を概観した地震動予測地図」報告書(平成17年3月23日公表,平成17年4月13日更新,平成17年12月14日更新),分冊2,震源断層を特定した地震動予測地図の説明.
- 50) ドルジャパラムサロル・具典淑・壇一男・入江紀嘉 (2015): 長大低角逆断層を考慮した 動力学的断層破壊シミュレーションによるプレート境界地震の平均動的応力降下量算 定式における応力形状係数の検討 (その 3) アスペリティモデルのシミュレーション結 果, B-II, pp. 103-104.

2.2 プレート間地震のスケーリング則等の検討

2.2.1 プレート間地震の地震動特性の調査

(1) 佐藤 (2010)

佐藤 (2010) は、太平洋プレートのプレート間地震とスラブ内地震およびフィリピン海プレートのプレート間地震とスラブ内地震の記録を用いて、GMPE を求めた。表 2.2.1-1 に太平洋プレートの地震の諸元を、表 2.2.1-2 にフィリピン海プレートの地震の諸元を示す。また、図 2.2.1-1 に各地震の震央位置を、図 2.2.1-2 にマグニチュードと断層最短距離およびマグニチュードと震源深さを示す。

佐藤 (2010) が用いた GMPE は、モーメントマグニチュード M_W と断層最短距離 X[km]、 震源深さ D[km]をパラメータとした次式である。

$$\log_{10} Y = aM_W + h_{sub} \log_{10} D + h_{sla} \log_{10} D - bX - \log_{10} (X + d10^{0.5M_W}) + c_J \pm e$$

(2.2.1-1)

ただし、D<10kmでは、D=0kmとする。また、YはP波部、S波部、全継続時間のそれぞれ3成 分に対する最大加速度[cm/s²]、最大速度[cm/s]、減衰定数5%の加速度応答スペクトル[cm/s²] である。a、hsub、hsla、b、d、c」は回帰係数であり、eは標準偏差(回帰誤差)である。また、 c」はサイト係数であり、全観測点のサイト係数の平均値をcoと表し、Vs400~600m/sの基盤、 Vs600~800m/sの基盤、Vs800~1000m/sの基盤、Vs 3000m/s程度の地震基盤、道路橋示方書の 定義に基づくI種地盤、III種地盤、III種地盤の観測点のサイト係数の平均値をそれぞれ、C500、 C700、C900、C3000、CI、CI、CII、CIIIと表す。

表2.2.1-3に、太平洋プレートの海溝型地震の最大加速度と最大速度の回帰係数を、表2.2.1-4に、フィリピン海プレートの海溝型地震の最大加速度と最大速度の回帰係数を、表2.2.1-5 に太平洋プレートの海溝型地震の加速度応答スペクトルの回帰係数を、表2.2.1-6に、フィリ ピン海プレートの海溝型地震の加速度応答スペクトルの回帰係数を示す。また、図2.2.1-3に、 プレート間地震とスラブ内地震のGMPEの例と既往の研究によるGMPEとの比較を示す。

これらの図表では、同じプレートのスラブ内地震とプレート間地震の回帰係数hは類似の 傾向をもつこと、同じ震源深さではスラブ内地震の方がプレート間地震より地震動レベル が大きいことが示されている。また、プレート間地震に対するスラブ内地震の比は、データ セットの震源深さの平均値を用いた場合には、最大加速度や加速度応答スペクトルの短周 期領域において、太平洋プレートでは2.8~2.9倍、フィリピン海プレートでは1.5~1.6倍とな

2.2.1-1

っている。一方、*M*_W7~7.4の近距離では、スラブ内地震とプレート間地震とも、ごく1部の 周期を除き、太平洋プレートの方がフィリピン海プレートより、水平動、上下動とも大きく なっている。

-	発度時		深さ	Mj	地震名または	Mw	Mo	地震夕	Ho. Hw
年	月/日	時:分	km		震央地名		dyne-cm	17"	の根拠
1989	11/2	3:25	0.0	7.1	三陸はるか沖	7.4	1.36×10^{27}	sub	llar.
1993	1/15	20:06	109.1	7.5	釧路沖地震	7.6	3.00×10^{27}	sla	文献23)
1994	10/4	22:22	60.5	8.2	北海道東方沖地震	8.2	2.60 \times 10 ²⁸	sla	文献24)
1994	12/28	21:19	32. 3*	7.6	三陸沖地震	7.7	4.00×10^{27}	sub	文献25)
1995	1/7	7:37	47.8	7.2	岩手県北東沖	6.9	3.33×10^{26}	sub	llar.
1996	9/11	11:37	52.0	6.4	銚子付近	6.1	1.97×10^{25}	sla	Har.
1999	5/13	2:59	106.0	6.3	釧路地方	6.1	1.72×10^{25}	sla	F-net
2000	1/28	23:21	58.5	7.0	根室半島沖	6.7	1.21×10^{26}	sla	F-net
2003	5/26	18:24	76.8	7.1	宫城県沖	7.1	6, 50 \times 10 ²⁶	sla	文献26)
2003	9/26	4:50	40.4	8.0	十勝神地震	8.2	2.20×10^{28}	sub	文献27)
2003	9/26	6:08	21.0	7.1	十勝南東沖	7.3	1.15×10 ²⁷	sub	F-net
2003	9/27	5:38	34.0	6.0	十勝南東沖	6.0	1.16×10 ²⁵	sla	F-net
2003	10/8	18:06	51.4	6.1	十勝南東沖	6.6	9.83 \times 10 ²⁵	sub	F-net
2003	10/31	10:06	33.3	6.8	宮城県南東沖	6.7	1.42×10^{26}	sub	F-net
2004	11/29	3:32	48.2	7.1	根室半島沖	7.0	3. 36×10^{26}	sub	F-net
2004	12/6	23:15	45.8	6.9	根室半島沖	6.7	1. 41×10 ²⁶	sub	F-net
2005	8/16	11:46	41.1*	7.2	宮城県沖	7.1	5.62×10^{26}	sub	文献28)
2005	9/21	11:25	102.9	6.0	国後島付近	6.0	1.23×10 ²⁵	sla	F-net
2001	12/2	22:01	121.5	6.4	岩手県南部	6.4	5. 34×10^{25}	sla	F-net
2008	5/8	1:45	50.6	7.0	茨城県はるか沖	6.8	1.97×10^{26}	sub	F-net
2008	7/19	11:39	31.6	6.9	福島県はるか沖	6.9	2.39×10 ²⁶	sub	F-net
2008	7/24	0:26	106.9*	6.8	岩手県北部	6.9	2.89×10 ²⁶	sla	文献29)
2008	9/11	9:20	30.9	7.1	十勝南東沖	6.8	1.97×10^{26}	sub	F-net

表2.2.1-1 佐藤 (2010) がGMPEを求めるために用いた太平洋プレートの海溝型地震の諸元 表1 太平洋プレートの海溝型地震の諸元(気象庁)

表2.2.1-2 佐藤 (2010) がGMPEを求めるために用いたフィリピン海プレートの海溝型地震の諸元

	発震時		深さ	M,	地震名または	Mar	Mo	地震夕	Mo. Ma
年	月/日	時:分	km		震央地名	1	dyne-cm	17"	の根拠
1996	10/18	19:50	37.7	6.4	種子島付近	6.6	1.00×10^{26}	sub	llar.
1996	10/19	23:01	37.0	5.5	日向灘地方	5.7	4.16×10^{24}	sub	llar.
1996	10/19	23:44	34.0	6.9	日向灘地方	6.7	1.43×10^{26}	sub	Har.
1996	10/20	6:17	37.4	5.3	日向灘地方	5.5	2.39×10^{24}	sub	Har.
1996	12/3	7:17	38.0	6.7	日向灘地方	6.7	1.23×10^{26}	sub	llar.
1997	3/16	14:51	39.1	5.9	爱知県北東部	5.6	2.97×10^{24}	sla	F-net
1998	12/16	9:18	24.1	5.6	大隅半岛南東沖	6.1	1.85×10^{25}	sla	F-net
1999	1/24	9:37	40.0	6.6	種子島付近	6.5	6.58×10^{25}	sla	F-net
1999	8/21	5:33	65.8	5.5	和歌山県中部	5.6	2.79×10 ²⁴	sla	F-net
2000	6/25	15:34	36.0	6.0	大隅半島南東沖	6.0	1.13×10 ²⁵	sub	F-net
2001	3/24	15:27	46.5	6.7	芸予地震	6.9	2.98×10^{26}	sla	文献30)
2001	4/25	23:40	39.3	5.7	日向灘地方	5.7	4.00×10^{24}	sla	F-net
2002	11/4	13:36	35.2	5.9	日向灘地方	5.6	3.64×10^{24}	sla	F-net
2004	9/5	19:07	19.2*	7.1	紀伊半島南東沖	7.3	9.80×10^{26}	sla	文献31)
2004	9/5	23:57	15. 2*	7.4	紀伊半島南東沖	7.4	1.80×10^{27}	sla	文献31)
2004	9/6	5:30	36.9	5.9	紀伊半島南東沖	5.7	3.82×10^{24}	sla	F-net
2004	9/7	8:29	41.0	6.5	紀伊半島南東沖	6.5	6.00×10^{25}	sla	F-net
2005	5/31	11:04	28.6	5.8	大隅半島南東沖	5.7	4.38×10^{24}	sub	F-net
2006	3/27	11:50	34.8	5.5	日向升地方	5.5	2.12×10 ²⁴	sla	F-net

図2.2.1-1 佐藤 (2010) がプレート間地震のGMPEとスラブ内地震のGMPEを求めるために 用いた地震の震央とメカニズム解および観測点

図 2 *Mw* と断層最短距離 *X*、震源深さとの関係

図2.2.1-2 佐藤 (2010) がプレート間地震のGMPEとスラブ内地震のGMPEを求めるために 用いた地震のモーメントマグニチュードと断層最短距離との関係およびモーメン トマグニチュードと震源深さとの関係

表2.2.1-3 佐藤 (2010) が求めた太平洋プレートの海溝型地震の最大加速度と最大速度の回 帰係数

+ 亚洋プリートの海港刑地会の具大加法庭と具大法庭の同県係数

	3	X3 A	半年ノ	レートの	毋 俾空 1	国長の取	入加速》	夏と取り	速度の	四师休	奴			
最大加速度	а	h sub	h sla	b	d	C ₀	C 700	cI	CII	cIII	C 3000	C 500	е	error
P波部:Radial	0.531	0.417	0.572	-0.00307	0.0140	-0.657	-0.787	-0.628	-0.602	-0.749	-	-	0.318	0.210
P波部:Transverse	0.528	0.418	0.581	-0.00319	0.0145	-0.659	-0.804	-0.627	-0.608	-0.729	-	-	0.327	0.210
P波部:Vertical	0.467	0. 547	0.703	-0.00451	0.0080	-0.306	-0.433	-0.299	-0.250	-0.328	-	-	0.324	0.222
全継続時間:Radial	0.522	0.690	0.808	-0.00305	0.0055	-0.452	-0.538	-0.465	-0.412	-0.424	-1.036	-0.620	0.307	0.217
全継続時間:Transverse	0.509	0.685	0.802	-0.00311	0.0055	-0.342	-0.421	-0.356	-0.298	-0.313	-0.904	-0.538	0.310	0.219
全継続時間:Vertical	0.472	0.493	0.639	-0.00321	0.0025	-0.152	-0.204	-0.153	-0.123	-0.173	-0.599	-0.252	0.302	0.209
最大速度	а	h sub	h sla	. <i>b</i>	d	C 0	C 700	cI	cII	cIII	C 3000	C 500	е	error
P波部:Radial	0.480	0.417	0.570	-0.00277	0.0085	-0.394	-0.523	-0.364	-0.340	-0.486	-	-	0.320	0.211
P波部:Transverse	0.474	0.299	0.416	-0.00262	0.0065	-1.599	-1.842	-1.608	-1.520	-1.508	-	-	0.344	0.239
P波部:Vertical	0.414	0.324	0.438	-0.00349	0.0065	-1.077	-1.188	-1.071	-1.034	-1.070	-	-	0.294	0.201
全継続時間:Radial	0.499	0.459	0.586	-0.00261	0.0020	-1.192	-1.429	-1.249	-1.119	-1.003	-1.831	-1.368	0.289	0.201
全継続時間:Transverse	0.481	0.553	0.651	-0.00252	0.0020	-1.208	-1.427	-1.274	-1.123	-1.019	-1.861	-1.454	0.294	0.208
全継續時間:Vertical	0.474	0.194	0.307	-0.00198	0.0025	-1.018	-1.148	-1.026	-0.988	-0.970	-1.387	-1.040	0.260	0.175

表2.2.1-4 佐藤 (2010) が求めたフィリピン海プレートの海溝型地震の最大加速度と最大速 度の回帰係数

	24		1	114	1	arr in real	IC MAY	Conversion.		ALL CONTRACTOR	-1111 11. 34				
最大加速度	a	h sub	hsla	Ь	d	Co	C 700	cI	CII	CIII	C 3000	C 500	C 900	e	error
P波部:Radial	0.606	1.377	1.493	-0.003461	0.0140	-2.724	-3.016	-2.729	-2.662	-2.633		1000-000		0.385	0.267
P波部:Transverse	0.632	1.479	1.603	-0.003539	0.0145	-3.094	-3. 433	-3.097	-3.032	-2.995				0.390	0.265
P波部:Vertical	0.594	1.389	1.536	-0.004479	0.0080	-2.638	-2.828	-2.663	-2.536	-2.509	-	-	-	0.380	0.280
全継続時間:Radial	0.518	0.496	0.596	-0.003614	0.0055	-0.220	-0.556	-0.224	-0.162	-0.079	-0.935	-0.371	-0.543	0.287	0.154
全継続時間:Transverse	0.522	0.524	0.612	-0.003807	0.0055	-0.248	-0.588	-0.250	-0.194	-0.115	-0.980	-0.388	-0.635	0.294	0.154
全継続時間:Vertical	0.532	0.454	0.565	-0.003925	0.0025	-0.607	-0.858	-0.624	-0.530	-0.424	-0.978	-0.747	-0.995	0.277	0.151
最大速度	8	h sub	hsla	Ь	d	Co	C 700	CI	C 11	CIII	C 3000	C 500	C 900	e	error
P波部:Radial	0.612	1.378	1.443	-0.00180	0.0085	-4.365	-4.549	-4.399	-4.260	-4.126	10.75 - 10.00	-		0.350	0.259
P波部:Transverse	0.620	1.645	1.708	-0.00179	0.0065	-4.948	-5.215	-4.983	-4.824	-4.691			1000-000	0.381	0.267
P波部:Vertical	0.576	1.422	1.489	-0.00251	0.0065	-4.192	-4.246	-4.222	-4.113	-4.035				0.331	0.257
全継続時間:Radial	0.490	0.463	0.506	-0.00242	0.0020	-1.380	-1.638	-1.422	-1.245	-1.090	-1.994	-1.533	-1.788	0.278	0.158
全継続時間:Transverse	0.486	0.488	0.512	-0.00230	0.0020	-1.382	-1.601	-1.425	-1.253	-1.075	-2.015	-1.563	-1.788	0.284	0.167
全継続時間:Vertical	0.492	0.333	0.375	-0.00121	0.0025	-1.656	-1,780	-1.679	-1.592	-1.479	-2.016	-1.699	-1.925	0.238	0.149

表 4 フィリピン海プレートの海溝型地震の最大加速度と最大速度の回帰係数

表2.2.1-5 佐藤 (2010) が求めた太平洋プレートの海溝型地震の加速度応答スペクトルの回 帰係数

表 5	太平洋プレートの海溝型地震の加速度応答スペクトルの回帰係数
	(上段:Radial、中段:Transverse、下段:Vertical)

(上段:Radial、	中段:Transverse、	下段:Vertical)
-------------	----------------	--------------

T		<u>h</u> .	h .	h	d	C.	Care	C .	C	C	C	C	0	arror
0.07	0 500	a cost	0.000	0 00010	0.0005	0.000	0,500	0.000	0.711	0.777	0 3000	0.500	0.007	0.001
0.01	0.569	0.801	0.929	-0.00346	0.0085	-0. 693	-0. 593	-0.660	-0.711	-0.757	-1. 194	-0.739	0.321	0.221
0.10	0.596	0.790	0.919	-0.00359	0.0110	-0.704	-0.688	-0.668	-0.712	-0.769	-1.306	-0.801	0.343	0.233
0.15	0.555	0.688	0.807	-0.00348	0.0070	-0. 229	-0.370	-0.228	-0.180	-0.257	-0.844	-0.390	0.341	0.226
0.20	0.512	0.614	0.727	-0.00308	0.0050	0.121	-0.097	0.092	0.213	0.129	-0.455	-0.048	0.339	0.220
0.25	0.516	0.561	0.677	-0.00274	0.0040	0.083	-0.172	0.035	0.191	0.126	-0.531	-0.096	0.336	0.221
0.30	0.503	0.477	0.604	-0.00263	0.0035	0.248	-0.011	0.188	0.368	0.312	-0.407	0.082	0.337	0.221
0.40	0.492	0.588	0.698	-0.00186	0.0025	-0.053	-0.339	-0.134	0.085	0.070	-0.771	-0.174	0.332	0.221
0.50	0.487	0.524	0.634	-0.00157	0.0025	-0.042	-0.336	-0.136	0.091	0.162	-0.713	-0.144	0.326	0.212
0.60	0.463	0.441	0.544	-0.00180	0.0020	0.209	-0.069	0.116	0.330	0.442	-0.531	0.103	0.325	0.207
0.70	0.471	0.414	0.516	-0.00174	0.0020	0.111	-0.183	0.020	0.219	0.382	-0.605	0.002	0.330	0.204
0.80	0.473	0.316	0, 431	-0.00171	0.0020	0.194	-0,109	0,104	0.293	0.491	-0.555	0,090	0.334	0,203
0.90	0.475	0.325	0.444	-0.00160	0.0015	0,080	-0,207	-0,009	0,164	0.411	-0,659	-0,007	0, 339	0,200
1.00	0.483	0.314	0.435	-0.00204	0.0015	0.039	-0.218	-0.046	0.112	0.374	-0.714	-0.029	0.342	0.200
1.50	0.500	0.273	0.396	-0.00229	0.0020	-0.195	-0.474	-0.263	-0.139	0.112	-0.986	-0.266	0.358	0.207
2 00	0.535	0.325	0 438	-0 00258	0.0020	-0 666	-0 979	-0 735	-0.605	-0 372	-1 355	-0 760	0.368	0 208
2.50	0.553	0.203	0.400	-0.00270	0.0015	-0.855	-1 150	-0.927	-0.787	-0 601	-1 462	-0.963	0.365	0.207
2.00	0.505	0.233	0. 401	-0.00219	0.0015	-1 211	-1.501	-1 974	-1 142	_0.001	-1 910	-1 201	0.300	0.201
3.00	0. 595	0.214	0.317	-0.00282	0.0025	-0.007	-1. 301	-1.214	-1.142	-0. 700	-1.610	-1.291	0.300	0.204
4.00	0.509	0.114	0.207	0.00248	0.0030	-1 417	-1.620	-1.036	-1. 220	-1 205	-1.033	-1.502	0.349	0.192
5.00 T	0.013	0.028	0.134	-0.00203	0.0030	-1.41/	-1.020	-1.4/4	-1.339	-1.205	-1. 982	-1. 503	0.331	0.179
1	a	n sub	n _{sla}	D	0	<i>C</i> ₀	C 700	C1	C11	C 111	C 3000	C 500	<i>e</i>	error
0.07	0.560	0.754	0.888	-0.00348	0.0090	-0. 547	-0.480	-0.511	-0.565	-0.615	-1.017	-0.592	0.329	0.220
0.10	0.565	0.751	0.876	-0.00365	0.0095	-0. 426	-0.395	-0.393	-0.431	-0.486	-1.008	-0.551	0.343	0.223
0.15	0. 534	0.706	0.822	-0.00372	0.0070	-0.067	-0.179	-0.063	-0.021	-0.101	-0.650	-0.252	0.350	0.229
0.20	0. 521	0.631	0.734	-0.00334	0.0050	0.074	-0.111	0.055	0.147	0.078	-0.452	-0.108	0.346	0.226
0.25	0.503	0.537	0.657	-0.00288	0.0035	0.239	0.011	0.199	0.341	0.267	-0.367	0.050	0.339	0.217
0.30	0.502	0.500	0.611	-0.00249	0.0035	0.211	-0.009	0.155	0.319	0.287	-0.438	0.043	0.336	0.219
0.40	0.488	0.515	0.629	-0.00194	0.0020	0.098	-0.140	0.014	0.237	0.224	-0.645	-0.049	0.324	0.218
0.50	0.479	0.508	0.606	-0.00211	0.0025	0.120	-0.137	0.021	0.258	0.316	-0.567	-0.032	0.322	0.215
0.60	0.468	0.458	0.557	-0.00210	0.0020	0.196	-0.032	0.099	0.329	0.406	-0.579	0.054	0.323	0.209
0.70	0.477	0.489	0.580	-0.00179	0.0020	-0.030	-0.288	-0.130	0.090	0.223	-0.861	-0.212	0.329	0.206
0.80	0.493	0.487	0. 582	-0.00116	0.0020	-0.289	-0.534	-0.387	-0.178	-0.003	-1.053	-0.457	0.329	0.207
0.90	0.465	0.440	0.531	-0.00119	0.0015	-0.072	-0.310	-0.170	0.022	0.243	-0.851	-0.235	0.337	0.212
1.00	0.468	0.444	0. 532	-0.00112	0.0020	-0.147	-0.337	-0.240	-0.064	0.173	-0.914	-0.305	0.338	0.213
1.50	0.470	0.413	0.494	-0.00180	0.0015	-0.248	-0.436	-0.328	-0.177	0.053	-1.023	-0.362	0.345	0.213
2.00	0.484	0.553	0.617	-0.00169	0.0015	-0.753	-0.945	-0.835	-0.686	-0.486	-1.528	-0.853	0.358	0.217
2.50	0.490	0.496	0.553	-0.00222	0.0010	-0.782	-1.004	-0.858	-0.713	-0.534	-1.576	-0.893	0.350	0.210
3.00	0.479	0.378	0.436	-0.00247	0.0010	-0. 590	-0.830	-0.655	-0.515	-0.388	-1.363	-0.676	0.355	0.213
4.00	0.498	0.200	0.272	-0.00275	0.0015	-0.589	-0.799	-0.657	-0.510	-0.403	-1.339	-0.691	0.340	0.203
5.00	0.569	0.087	0.181	-0.00279	0.0015	-1.094	-1.281	-1.157	-1.016	-0.902	-1.810	-1.179	0.324	0.194
T	a	h sub	hala	Ь	d	Co	C 700	ci	CII	CIII	C 3000	C 500	0	error
0.07	0.516	0.624	0.800	-0.00432	0.0025	-0.216	-0.264	-0.188	-0.200	-0.273	-0.677	-0.262	0.358	0.237
0.10	0.497	0.611	0.761	-0,00393	0.0025	-0.060	-0.122	-0.056	-0.013	-0.117	-0.396	-0.172	0.349	0.226
0,15	0.472	0.488	0,628	-0.00318	0.0020	0.198	0.079	0.175	0.274	0.178	-0.262	0.077	0.321	0.212
0.20	0.484	0,496	0.606	-0,00280	0,0035	0.040	-0.057	0.009	0.106	0.052	-0.386	-0.050	0.304	0.203
0.25	0.483	0.424	0.534	-0.00236	0.0035	0.062	-0.023	0.030	0.125	0.074	-0.370	-0.068	0.290	0.197
0.30	0, 483	0.458	0.557	-0,00196	0.0040	-0.080	-0.177	-0.111	-0.036	-0.025	-0.500	-0, 188	0.276	0, 192
0,40	0.509	0.458	0.564	-0.00113	0.0040	-0.451	-0.540	-0.484	-0.409	-0.376	-0.943	-0.547	0.272	0.182
0.50	0.509	0.403	0.499	-0.00131	0.0045	-0.385	-0, 486	-0, 421	-0.348	-0.279	-0.781	-0.468	0.268	0.176
0.60	0.484	0.329	0.412	-0.00141	0.0045	-0.148	-0.243	-0.177	-0.114	-0.060	-0.682	-0.222	0.270	0.174
0.70	0.476	0.325	0.404	-0.00112	0.0045	-0.182	-0.280	-0.203	-0.156	-0.107	-0.757	-0.241	0.277	0.172
0.80	0.474	0.215	0.313	-0.00083	0.0040	-0.088	-0.210	-0.104	-0.065	-0.007	-0.685	-0.133	0.281	0.173
0.90	0.470	0.187	0.277	-0.00086	0.0040	-0.055	-0.179	-0.070	-0.037	0.027	-0.662	-0.093	0.282	0.170
1.00	0.461	0.171	0.253	-0.00101	0.0030	0.003	-0.124	-0.008	0.021	0.076	-0.598	-0.022	0.287	0.174
1.50	0.466	0.043	0.144	-0.00128	0.0025	-0.006	-0.155	-0.019	0.028	0.083	-0.540	0.012	0.312	0.186
2.00	0.499	0.171	0,259	-0.00117	0.0020	-0.629	-0.743	-0.654	-0.578	-0.529	-1.074	-0. 599	0.322	0.186
2.50	0.546	0.061	0.152	-0.00152	0.0020	-0.848	-1.046	-0.877	-0.787	-0.765	-1.200	-0.851	0.329	0.192
3.00	0.545	-0.053	0.026	-0.00174	0.0020	-0.713	-0.927	-0.739	-0.655	-0.639	-1.045	-0.716	0.324	0.200
4.00	0.560	-0.167	-0.092	-0.00173	0.0025	-0.807	-1.002	-0.825	-0.762	-0.730	-1.186	-0.798	0.316	0.198
5,00	0.648	-0.278	-0.191	-0.00161	0.0040	-1.406	-1.592	-1.419	-1.374	-1.315	-1.762	-1.368	0.291	0.180

表2.2.1-6 佐藤 (2010) が求めたフィリピン海プレートの海溝型地震の加速度応答スペクト ルの回帰係数

	CONSTRAINS.		26.822562.00	(-	L+X.Ra	ulai, I	ex. IIa	insverse,	1 +2.	ventical)		a participation de la control	CACHES IN SHARE	
T	a	heat	hele	Ь	d	Ca	C 700	CI	CII	CIII	C 3000	C 500	C 900	e	error
0 07	0 564	0 558	0 691	-0 00420	0 0085	-0 312	-0 639	-0 293	-0 320	-0 241	-0 880	-0 353	-0 583	0 324	0 156
0 10	0.606	0.504	0.665	-0 00480	0.0110	-0 354	-0 706	-0 332	-0 364	-0 297	-1 053	-0.425	-0 668	0 330	0 157
0.15	0.538	0.475	0.500	-0.00375	0.0070	0.057	-0 275	0.058	0.106	0.154	-0 674	-0.075	-0 224	0.319	0 158
0.10	0.515	0.306	0.505	-0.00369	0.0050	0.280	-0.035	0.260	0.410	0.104	-0.406	0.119	-0.023	0.306	0 152
0.20	0.515	0.390	0. 303	-0.00308	0.0030	0.205	0.035	0.209	0.410	0.404	-0.400	0.119	0.023	0.300	0.152
0.25	0. 504	0.300	0. 412	-0,00336	0.0040	0.313	0.030	0.281	0.400	0.403	-0.4/4	0.150	0.009	0.312	0.150
0.30	0.490	0. 323	0. 389	-0.00331	0.0035	0.404	0.191	0.420	0.639	0.055	-0. 243	0.319	0. 162	0.310	0.140
0.40	0.409	0.373	0.315	-0.00290	0.0025	0. 447	0.180	0.393	0.635	0.105	-0. 291	0. 324	0.163	0. 324	0.157
0.50	0.512	0.383	0.396	-0.00314	0.0025	0.057	-0. 193	-0.007	0. 240	0.447	-0. 743	-0.099	-0.240	0.338	0.100
0.60	0.490	0. 382	0. 388	-0.00249	0.0020	-0.012	-0.253	-0.075	0.155	0.452	-0.819	-0.139	-0. 292	0.335	0. 182
0.70	0.518	0.434	0. 434	-0.00229	0.0020	-0.336	-0. 555	-0.404	-0.168	0.179	-1.105	-0.458	-0.628	0.336	0.185
0.80	0.511	0. 548	0.533	-0.00179	0.0020	-0. 581	-0.800	-0.647	-0. 417	-0.090	-1.304	-0. 705	-0.841	0.335	0.188
0.90	0.514	0.630	0. 596	-0.00152	0.0015	-0.801	-1.024	-0.863	-0.642	-0. 345	-1.453	-0.929	-1.044	0.333	0.187
1.00	0.531	0.634	0.612	-0.00151	0.0015	-0.990	-1.222	-1.049	-0.834	-0.564	-1.622	-1.112	-1.211	0.331	0.183
1.50	0.553	0.541	0. 527	-0.00110	0.0020	-1.330	-1.486	-1.385	-1.168	-1.059	-2.071	-1. 447	-1.514	0.323	0.175
2.00	0.590	0.308	0.329	-0.00104	0.0020	-1.475	-1.639	-1.524	-1. 325	-1.255	-2.125	-1.566	-1.706	0.320	0.180
2.50	0.632	0.352	0.371	-0.00085	0.0015	-2.022	-2.168	-2.067	-1.888	-1.793	-2.536	-2.103	-2.276	0.316	0.173
3.00	0.676	0.434	0.432	-0.00119	0.0025	-2. 513	-2.637	-2.557	-2.389	-2.277	-3. 025	-2. 596	-2.770	0.316	0.168
4.00	0.693	0.335	0.325	-0.00128	0.0030	-2.677	-2.802	-2.716	-2.568	-2.461	-3.278	-2.741	-2.905	0.288	0, 166
5.00	0.721	0.309	0.303	-0.00159	0.0030	-2.957	-3.053	-2.995	-2.860	-2.717	-3. 433	-3. 024	-3.150	0.272	0.163
T	a	h sub	hsia	Ь	d	Co	C 700	CI	C11	C 111	C 3000	C 500	C 900	6	error
0.07	0.578	0.542	0.669	-0.00462	0.0090	-0.314	-0.651	-0.294	-0.323	-0.241	-0.882	-0.331	-0.582	0.335	0.160
0.10	0.591	0.516	0.653	-0.00486	0.0095	-0.246	-0.620	-0.223	-0.258	-0.186	-0.914	-0.311	-0.566	0.333	0.155
0.15	0.531	0.443	0.550	-0.00400	0.0070	0.203	-0.158	0.208	0.245	0.287	-0.601	0.091	-0.125	0.321	0.156
0.20	0.519	0.435	0.537	-0.00381	0.0050	0.228	-0.077	0.212	0.332	0.328	-0.535	0.086	-0.104	0.312	0.158
0.25	0.519	0.378	0, 452	-0.00397	0.0035	0, 309	-0,008	0.278	0,450	0,468	-0.454	0, 171	0.022	0.311	0.154
0.30	0.511	0, 421	0.475	-0.00374	0.0035	0.242	-0.077	0.197	0, 424	0.446	-0. 520	0.096	-0.089	0.321	0.153
0.40	0.467	0.376	0.399	-0.00266	0.0020	0, 394	0.099	0.338	0, 594	0,651	-0.385	0.265	0,093	0.332	0, 161
0.50	0.484	0.395	0.395	-0.00247	0.0025	0,153	-0.116	0.094	0.331	0, 528	-0.636	-0.001	-0.162	0.334	0,170
0.60	0.480	0.433	0.443	-0.00180	0.0020	-0.082	-0.300	-0.148	0.092	0.379	-0.913	-0. 225	-0.334	0.334	0.178
0.70	0.498	0.529	0.545	-0.00141	0.0020	-0.480	-0.714	-0.553	-0.299	0.054	-1.261	-0.641	-0.763	0.341	0.188
0.80	0.483	0.650	0.655	-0.00078	0.0020	-0.702	-0.946	-0.771	-0. 527	-0.192	-1.452	-0.850	-0.993	0.335	0, 191
0.90	0.449	0.645	0.646	-0.00025	0.0015	-0.608	-0.835	-0.674	-0.442	-0.123	-1.343	-0.729	-0.887	0.337	0.197
1 00	0 461	0.676	0 653	-0.00022	0.0020	-0 768	-0.978	-0 834	-0 603	-0 303	-1 476	-0.873	-1 032	0 335	0 196
1 50	0.505	0.657	0.625	-0.00008	0.0015	-1 306	-1 460	-1 361	-1 158	-0.981	-2 137	-1 406	-1 594	0 322	0 188
2 00	0.531	0.486	0.479	0.00056	0.0015	-1.516	-1 651	-1 569	-1 368	-1 230	-2 303	-1 597	-1 749	0 314	0 194
2 50	0.572	0.428	0.396	0.00019	0.0010	-1 781	-1 880	-1 829	-1 653	-1 527	-2 475	-1 853	-2 046	0 308	0 182
3 00	0.611	0.456	0.422	0.00003	0.0010	-2 200	-2 267	-2 246	-2 082	-1 953	-2 852	-2 267	-2 461	0.314	0 184
4 00	0.612	0.268	0.235	0.00063	0.0015	-2 207	-2 237	-2 241	-2 131	-2 018	-2 892	-2 242	-2 385	0 288	0 185
5.00	0.605	0.200	0.255	0.00003	0.0015	-2 003	-2 142	-2 122	-2 022	-1 917	-2 706	-2 143	-2 283	0.200	0.185
J. 00	0.005	6	6	0.00033	0.0015	2.035	6.146	6.166	6.046	1. 511	6.150	6. 140	6. 200	0.210	0.100
1	0 500	11 sub	"sla	0	0 0005	0	C 700	0 100	0.055	0.000	0 3000	0 500	0 707	0 000	error
0.07	0. 592	0. 387	0. 558	-0.00531	0.0025	-0. 402	-0.683	-0.403	-0.355	-0. 320	-0.768	-0. 506	-0. 707	0. 323	0.177
0.10	0.584	0. 420	0.579	-0.00488	0.0025	-0.442	-0. 702	-0.456	-0.366	-0.318	-0.804	-0. 561	-0.738	0.307	0.164
0.15	0. 529	0.418	0. 551	-0.00362	0.0020	-0.230	-0.454	-0.263	-0.100	-0.066	-0. 595	-0.359	-0. 527	0.294	0.157
0.20	0.512	0.308	0.432	-0.00347	0.0035	0.004	-0.228	-0.031	0.129	0.215	-0.391	-0.109	-0.267	0.285	0.150
0.25	0.501	0.315	0.408	-0.00317	0.0035	0.032	-0.175	-0.004	0.140	0.306	-0. 425	-0.070	-0. 197	0.288	0.150
0.30	0.482	0.253	0.316	-0.00284	0.0040	0.197	0.024	0.161	0.294	0.507	-0.337	0.104	-0.049	0.281	0.145
0.40	0.474	0.330	0.353	-0.00212	0.0040	-0.002	-0.127	-0.037	0.072	0.332	-0. 483	-0.083	-0.231	0.261	0.142
0.50	0.494	0.323	0.317	-0.00209	0.0045	-0.175	-0.294	-0.209	-0.111	0.174	-0.604	-0. 243	-0. 423	0.265	0.151
0.60	0.496	0.335	0.337	-0.00160	0.0045	-0.364	-0.457	-0.395	-0.303	-0.067	-0.834	-0.411	-0.556	0.276	0.171
0.70	0.514	0.385	0.382	-0.00111	0.0045	-0.675	-0.805	-0.702	-0.612	-0.400	-1.149	-0.703	-0.824	0.282	0.180
0.80	0.520	0.459	0.439	-0.00091	0.0040	-0.898	-1.039	-0.920	-0.838	-0.684	-1.388	-0.920	-1.054	0.289	0.184
0.90	0.515	0.462	0.420	-0.00054	0.0040	-0.935	-1.059	-0.953	-0.880	-0.767	-1.418	-0.951	-1.077	0.291	0.187
1.00	0.515	0.462	0.433	-0.00018	0.0030	-1.051	-1.166	-1.069	-0.992	-0.925	-1.503	-1.076	-1.180	0.290	0.184
1.50	0.496	0.271	0.260	0.00083	0.0025	-0.996	-1.113	-1.012	-0.926	-0.969	-1.558	-0.998	-1.076	0.288	0.175
2.00	0.533	0.127	0.146	0.00146	0.0020	-1.299	-1.397	-1.315	-1.233	-1.263	-1.793	-1.293	-1.425	0.283	0.179
2.50	0.584	0.176	0.183	0.00127	0.0020	-1.833	-1.887	-1.852	-1.770	-1.774	-2.274	-1.816	-1.988	0.275	0.174
3.00	0.610	0, 251	0.233	0.00103	0.0020	-2.200	-2.234	-2.226	-2.135	-2.072	-2.675	-2.191	-2.369	0.269	0.172
4.00	0.662	0.101	0.067	0.00022	0.0025	-2.416	-2.438	-2. 430	-2.381	-2.340	-2.932	-2.400	-2. 538	0.242	0.160
5 00	0 702	0 092	0 070	0 00020	0 0040	-2 834	-2 835	-2 843	-2 820	-2 754	-3 307	-2 810	-2 918	0 229	0 158

表6 フィリピン海プレートの海溝型地震の加速度応答スペクトルの回帰係数 (上段:Radial, 中段:Transverse, 下段:Vertical)

図 2.2.1-3 佐藤 (2010) によるプレート間地震とスラブ内地震の GMPE の例と既往の研究に よる GMPE との比較

(2) Skarlatoudis et al. (2013)

Skarlatoudis et al. (2013) は、エーゲ海の沈み込み帯で起ったプレート間地震とスラブ内地 震のGMPEを、Q値を領域ごとに分けることで求めた。表2.2.1-7にGMPEを求めるために用い たエーゲ海のプレート間地震とスラブ内地震を、図2.2.1-4にこれらの地震の震央を示す。ま た、Q値の領域分けを図2.2.1-5に示す。

Skarlatoudis et al. (2013) が用いたGMPEは、

$$log Y = c_{1} + c_{2}(\mathbf{M} - 5.5) + c_{31} log R + c_{32}(R - R_{ref}) + c_{41}(1 - ARC) * H(h - h_{0}) + c_{42}(1 - ARC) * H(h_{0} - h)f(h, R) + c_{51} ARC * H(h - h_{0}) + c_{52} ARC * H(h_{0} - h)f(h, R) + c_{61}S + c_{62}SS + \varepsilon$$

$$(2.2.1-2)$$

である。ここに、Yは最大加速度か最大速度もしくは周期0.01~4秒の5%減衰の擬似加速度 応答スペクトルである。また、Hはヘビサイドのステップ関数で、h0=100kmである。f(h,R) は、

$$f(h,R) = \begin{cases} & \text{if } 60 \,\text{km} \le h < 80 \,\text{km} \\ 0 & \text{if } R < 205 \,\text{km} \\ (205 - R) / 150 & \text{if } 205 \,\text{km} \le R < 335 \,\text{km} \\ 1 & \text{if } R > 355 \,\text{km}, \\ 0 & \text{or} & , \\ & \text{if } 80 \,\text{km} \le h < 100 \,\text{km} \\ 0 & \text{if } R < 140 \,\text{km} \\ (140 - R) / 100 & \text{if } 140 \,\text{km} \le R < 240 \,\text{km} \\ 1 & \text{if } R > 240 \,\text{km} \end{cases}$$
(2.2.1-3)

である。対数の底は10で、Mはモーメントマグニチュード、Rは震源、距離、hは震源深さ、 ARCは背弧側で0、島弧に沿ったところで1である。

*S*はsoil (Cクラス)のとき1で、*SS*はsoft-soil (Dクラス)のとき1で、それ以外のときは0である。

深さが45km~60kmの深いプレート間地震の場合は、

$$\log Y = c_1 + c_2 (\mathbf{M} - 5.5) + c_3 \log R$$

+ $c_{41} (1 - \text{ARC}) (R - R_{\text{ref}}) + c_{42} \text{ARC} (R - R_{\text{ref}})$
+ $c_{51} S + c_{52} SS + \varepsilon$ (2.2.1-4)

を用いる。

表2.2.1-7 Skarlatoudis *et al.* (2013) がGMPEを求めるために用いたエーゲ海のプレート間地 震とスラブ内地震

Dannquakes esee in the fresht study										
Id	Origin Time (yyyy/mm/dd hh:mm:ss.ss)	Latitude (°)	Longitude (°)	Depth (km)	M_w	CR*	Source [†]			
1	1994/05/23 06:46:12.00	35.5409	24.6968	68	6.1	0	ISC			
2	2003/04/29 01:51:20.20	36.9395	21.7314	66	5.1	1	ISC			
3	2003/09/13 13:46:21.68	36.6910	26.8488	134	5.2	0	CYG			
4	2004/03/28 14:54:38.26	35.5700	22.9900	55	4.7	1	HRVD			
5	2004/11/04 06/22/37.56	35.9633	23.1454	70	5.2	0	ISC			
6	2005/08/01 13:34:58.92	36.6092	26.6775	127	4.8	0	EGE			
7	2005/11/20 21:20:56.50	35.0332	27.2676	50	4.6	1	ISC			
8	2006/01/08 11:34:54.64	36.1853	23.4037	67	6.7	0	THE			
9	2006/05/11 01:47:47.61	36.1256	23.3697	72	4.5	0	ISC			
10	2006/05/15 04:22:39.87	35.7490	25.9830	68	4.7	0	EGE			
11	2006/07/09 03:12:54.22	36.4597	27.2451	118	4.6	0	ISC			
12	2006/12/02 10:26:54.60	34.7687	26.8962	52	4.7	1	ISC			
13	2007/02/03 13:43:22.10	35.8092	22.6367	47	5.4	1	EGE			
14	2008/01/06 05:14:20.18	37.2569	22.7037	84	6.2	0	ISC-NEIC			
15	2008/03/28 00:16:19.90	34.7922	25.3423	49	5.6	1	ISC			
16	2008/06/18 01:58:42.90	37.6700	22.7800	83	5.1	0	ISC			
17	2008/07/15 03:26:34.70	35.8500	27.9200	56	6.4	1	ISC			
18	2008/09/16 02:58:39.80	36.6900	24.0300	137	4.5	0	ISC			
19	2008/11/04 12:05:43.50	36.1900	23.3500	68	4.5	0	ISC			
20	2010/07/16 08:11:05.30	36.776	27.008	163	5.2	0	THE			
21	2011/02/25 21:33:29.90	36.645	27.011	118	4.4	0	THE			

Table 1 Earthquakes Used in the Present Study

*CR: 0 for in-slab events, 1 for interface events.

[†]Data source definitions: THE, Seismological Station of Aristotle University of Thessaloniki; EGE, EGELADOS temporary scismological network deployed in the Southern Acgean area, coordinated by the Ruhr-University of Bochum (Germany) and operated by a large working group involving University of Thessaloniki, National Observatory of Athens, Technical University of Chania (Gereace), Istanbul Technical University (Turkey), University of Hamburg and GeoForschungszentrum Potsdam (Germany); ISC, International Seismological Centre; HRVD, Global Centroid Moment Tensor database; NEIC, National Earthquake Information Center.

Figure 2. Acceleration- and velocity-sensor recording stations (see legend for symbols) and spatial distribution of the analyzed earthquakes, including their corresponding fault-plane solutions. White stars (black and white focal mechanism plots) correspond to epicenters of in-slab earthquakes, while black stars (gray and white focal mechanism plots) depict epicenters of earthquakes classified as interface. The white square and diamond denote the locations from two additional earthquakes used for result evaluation (see corresponding text). The color version of this figure is available only in the electronic edition.

図2.2.1-4 Skarlatoudis *et al.* (2013) がGMPEを求めるために用いたエーゲ海のプレート間地 震とスラブ内地震の震央

Figure 5. A schematic presentation of the main patterns of wave propagation for intermediate-depth events in the Hellenic arc, along a profile parallel to the subduction direction. The main geophysical features affecting the wave propagation (high-Q subducted slab, low-Q mantle wedge, and so forth) are also depicted. The color version of this figure is available only in the electronic edition.

図2.2.1-5 Skarlatoudis et al. (2013) が用いたQ値の領域区分

表2.2.1-8 Skarlatoudis et al. (2013) が求めたプレート間地震のGMPEの回帰係数

Table 3

<i>C</i> 1								
*1	c_2	c_{41}	C42	c_{51}	c ₅₂	σ	τ	ε
3.945	0.974	-0.00172	-0.00099	0.189	0.707	0.330	0.257	0.418
2.783	1.186	-0.00122	-0.00064	0.232	0.428	0.261	0.095	0.277
3.950	0.972	-0.00172	-0.00099	0.187	0.708	0.331	0.261	0.421
3.842	0.951	-0.00169	-0.00096	0.193	0.792	0.326	0.261	0.418
4.005	0.938	-0.00167	-0.00100	0.167	0.694	0.347	0.288	0.451
4.112	0.910	-0.00163	-0.00091	0.163	0.731	0.377	0.364	0.524
4.296	0.907	-0.00174	-0.00099	0.182	0.725	0.354	0.299	0.463
4.244	0.985	-0.00177	-0.00089	0.251	0.736	0.338	0.149	0.369
3.900	1.171	-0.00162	-0.00094	0.329	0.521	0.259	0.110	0.282
	3.945 2.783 3.950 3.842 4.005 4.112 4.296 4.244 3.900	01 02 3.945 0.974 2.783 1.186 3.950 0.972 3.842 0.951 4.005 0.938 4.112 0.910 4.296 0.907 4.244 0.985 3.900 1.171	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Regression Coefficients for Interface Events

The equation is $\log Y = c_1 + c_2(\mathbf{M} - 5.5) + c_3 \log R + c_{41}(1 - ARC)(R - R_{ref}) + c_{42}ARC(R - R_{ref}) + c_{51}S + c_{52}SS + \varepsilon$. See equation (4) for the variable definitions. Coefficients c_3 and R_{ref} have fixed values of -1.70 and 1 km, respectively.

(3) 司・他 (2016)

2011年*M*_w9.1東北地方太平洋沖地震などの観測記録から、海溝型巨大地震の地震動距離減 衰特性においては、距離の定義によって、既存の地震動予測式と観測記録の適合が大きく異 なることが分かってきた。司・他 (2016) は、断層最短距離と等価震源距離を用いた結果の 違いに注目して、海溝型巨大地震の地震動距離減衰特性に含まれる伝播特性の影響に関し て検討を行った。その結果、以下のことがわかった。

- 断層最短距離を用いる場合、M_W9クラスの東北地震による地震動最大値の平均的強さ はM_W8クラスのそれと同程度であり、M_Wに対する飽和現象が見られることが分かった。
 一方、等価震源距離を用いる場合、同様な現象は確認できなかった。
- Mw9クラスの巨大地震の場合、等価震源距離の断層最短距離に対する比率は近距離においてMw8クラスのそれより数倍大きくなることが分かった。この違いには断層最短距離において近距離やマグニチュードに対する飽和の影響が含まれているとみられる。
- M_W9クラスの超巨大地震の場合、断層面上のすべり分布によって近距離における等価 震源距離の推定値が大きく変動することもある。

(4) 大野 (2016)

大野 (2016) は、東北地方太平洋沖地震の強震動の距離減衰特性と地震動評価式の適用性 について述べた。主な知見は下記の通りである。

- Mw1次式を用いた場合は巨大地震を過大評価する傾向があり、断層最短距離、等価震源 距離どちらを採用した場合でもω²モデルに対応した震源項のモデル化が必要である。
- 2) 最短距離を用いた式では振幅の頭打ちの見直しが必要な場合がある。
- 5) 巨大地震では断層の広がりの影響が従来よりも遠方まで及ぶことから、距離の定義により、距離減衰特性の相違に加え、震源項のスケーリングが見かけ上異なる場合があることに注意が必要である。

(5) Ibrahim *et al.* (2016)

Ibrahim et al. (2016) は、日本で発生した地殻内地震、プレート間地震、スラブ内地震を対象として、最大速度と最大変位のGMPEを開発した。対象とした地震動の周期は5~30秒である。GMPEは、下の2通りを考えている。

$$\log_{10} A = b - \log_{10}(X + c) - kX \tag{2.2.1-5}$$

$$\log_{10} A = b - \log_{10} X_{eq} - kX_{eq}$$
(2.2.1-6)

ここに、Aは最大速度または最大変位、X(km)は断層最短距離、 $X_{eq}(km)$ は等価震源距離である。また、bは各地震のマグニチュード項で、cは、

$$c = 0.0028 \times 10^{0.5M_W} \tag{2.2.1-7}$$

(2.2.1-8)

である。kは、非弾性の減衰を表す項で、

k=0.002

である。

2011年東北地方太平洋沖地震の場合、c=39.55kmとした。この値は $M_W=8.3$ のときの値で、 $M_W>8.3$ の場合、強震動は飽和し、これ以上大きくはならない(Si *et al.*, 2011)からである。

また、マグニチュード項は、

$$b = aM_W + hD + \sum d_iS_i + e + \varepsilon, \qquad (2.2.1-9)$$

と書ける。ここに、D(km)は震源深さで、Siはダミー変数で、地殻内地震、プレート間地震、 スラブ内地震のとき1である。また、*c*は標準偏差、*a*, *h*, *d*_i, *e*は回帰係数である。

図2.2.1-6に、GMPEの作成に用いた日本の地震の震央とメカニズム解およびKiK-net観測点 を示す。また、表2.2.1-9に、GMPEの作成に用いた地震を示す。

表2.2.1-10に、GMPEの回帰係数を、図2.2.1-7に、Ibrahim et al. (2016) による地殻内地震お よびプレート間地震とスラブ内地震のGMPEの例を示す。図より、最大速度、最大変位とも、 地殻内地震が最も大きく、プレート間地震とスラブ内地震はほぼ等しいことがわかる。

Figure 1. Epicenters (black stars) and focal mechanisms of the earthquakes used in this study. The focal mechanisms were obtained from the Global Centroid Moment Tensor (CMT) project. Black triangles indicate the KiK-net station sites.

図2.2.1-6 Ibrahim *et al.* (2016) がGMPEの作成に用いた日本の地震の震央とメカニズム解お よびKiK-net観測点

表2.2.1-9 Ibrahim et al. (2016) がGMPEの作成に用いた日本の地震 Table 1

Earthquake Data Used to Develop Long-Period Ground-Motion Prediction Equations and Reference Source Model Used to Estimate the Fault Distance (FD) and Equivalent Hypocentral Distance (EHD)

Number	Earthquake	Origin time (yyyy/mm/dd hh:mm)	Longitude (°)	Latitude (°)	Depth (km)	Mw	Earthquake Type	Reference Source Model
1	Western Tottori	2000/10/06 13:30	133.55 E	35.27 N	11	6.7	Crustal	Iwata and Sekiguchi (2002)
2	Geiyo	2001/03/24 15:58	132.71 E	34.12 N	51	6.8	Intraplate	Yagi and Kikuchi (2002)
3	Miyagi-Oki	2002/11/03 12:37	142.14 E	38.89 N	46	6.4	Interplate	EIC Seismological Note Number 128
4	Miyagi-Oki	2003/05/26 18:24	141.68 E	38.80 N	71	7.0	Intraplate	Aoi et al. (2003)
5	Northern Miyagi	2003/07/26 07:13	141.17 E	38.40 N	12	6.0	Crustal	Hikima and Koketsu (2004)
6	Tokachi-Oki	2003/09/26 04:50	144.08 E	41.78 N	42	8.3	Interplate	Koketsu et al. (2004)
7	Chuetsu	2004/10/23 17:56	138.87 E	37.29 N	13	6.6	Crustal	Horikawa (2005)
8	Western Fukuoka	2005/03/20 10:53	130.18 E	33.73 N	9	6.6	Crustal	Asano and Iwata (2006)
9	Miyagi-Oki	2005/08/16 11:46	142.28 E	38.15 N	42	7.2	Interplate	Wu et al. (2008, 2009)
10	Chuetsu-Oki	2007/07/16 10:13	138.61 E	37.55 N	17	6.6	Crustal	Irikura (2008)
11	Ibaraki-Oki	2008/05/08 01:45	141.61 E	36.22 N	51	6.8	Interplate	Nagoya University (2008)*
12	Iwate-Miyagi Nairiku	2008/06/14 08:43	140.88 E	39.03 N	8	6.9	Crustal	Suzuki et al. (2010)
13	Northern Iwate	2008/07/24 00:26	141.64 E	39.73 N	108	6.8	Intraplate	Suzuki et al. (2009)
14	Suruga Bay	2009/08/11 05:07	138.50 E	34.78 N	23	6.2	Intraplate	Suzuki and Aoi (2009)
15	Tohoku	2011/03/11 14:46	142.86 E	38.10 N	24	9.1	Interplate	Y. Yokota et al. (2011)
16	Iwate-Oki	2011/03/11 15:09	142.78 E	39.84 N	32	7.4	Interplate	JMA
17	Ibaraki-Oki	2011/03/11 15:15	141.26 E	36.11 N	43	7.9	Interplate	Satoh [†]
18	Northern Nagano	2011/03/12 03:59	138.60 E	36.98 N	8	6.3	Crustal	Takeda (2011)
19	Eastern Shizuoka	2011/03/15 22:31	138.71 E	35.31 N	14	6.0	Crustal	JMA
20	Miyagi-Oki	2011/04/07 23:32	141.92 E	38.20 N	66	7.1	Intraplate	JMA

JMA, Japan Meteorological Agency.

*Research Center for Seismology, Volcanology and Disaster Mitigation, Graduate School of Environmental Studies, Nagoya University (2008). *Source model information obtained from T. Satoh (personal comm., 2012).
表2.2.1-10 Ibrahim et al. (2016) が日本の地震の記録を用いて求めたGMPEの回帰係数 Table 2

						D			
Ground Motion	$M_{\rm w}$	Distance Measure	а	h	Crustal	Interplate	Intraplate	е	ε
PGV	<7.5	FD	1.0061	0.0063	0.00	-0.6530	-0.5251	-4.5889	0.24
PGD	<7.5	FD	1.1099	0.0064	0.00	-0.6019	-0.5994	-5.0980	0.25
PGV	<7.5	EHD	1.0491	0.0047	0.00	-0.5844	-0.3964	-4.8037	0.23
PGD	<7.5	EHD	1.1382	0.0049	0.00	-0.5430	-0.4718	-5.2189	0.27
PGV	≥7.5	FD	0.3800	0.0063	0.00	-0.6530	-0.5251	0.2708	0.33
PGD	≥7.5	FD	0.4437	0.0064	0.00	-0.6019	-0.5994	0.1893	0.33
PGV	≥7.5	EHD	0.8174	0.0047	0.00	-0.5844	-0.3964	-3.1746	0.42
PGD	≥7.5	EHD	0.9277	0.0049	0.00	-0.5430	-0.4718	-3.6307	0.41

Resultant Regression Coefficients a, h, d, and e and the Values of ε (i.e., the Standard Deviation of the Estimate)

PGV, peak ground velocity and PGD, peak ground displacement.

Figure 12. Long-period GMPEs of crustal, interplate, and intraplate earthquakes with a reference magnitude of M_w 7.0 and a reference depth of 20 km for long-period (a) PGVs versus FDs, (b) PGDs versus FDs, (c) PGVs versus EHDs, and (d) PGDs versus EHDs. 図2.2.1-7 Ibrahim *et al.* (2016) による日本で発生した地殻内地震およびプレート間地震とス ラブ内地震のGMPEの例

(6) Garcia-Soto and Jaimes (2017)

Garcia-Soto and Jaimes (2017) は、メキシコのプレート間地震の岩盤サイトにおける上下 動のGMPEを提案している。手法としては、上下動のGMPEを直接評価する式と、水平動に 対する上下動の比率を評価する式の2つを求めている。

GMPEの形は、Ordaz et al. (1989) による下式を採用している。

$$\ln Y_{\rm V}(T) = \alpha_1(T) + \alpha_2(T) \times M_W + \alpha_3(T) \times \ln R + \alpha_4(T) \times R + \varepsilon_1(T)$$
(2.2.1-10)

$$\ln Y_{\rm H}(T) = \beta_1(T) + \beta_2(T) \times M_W + \beta_3(T) \times \ln R + \beta_4(T) \times R + \varepsilon_2(T)$$
(2.2.1-11)

ここに、 Y_V は上下動のスペクトルで、 Y_H は水平動の二乗和平均の平方根である。また、Tは 建物の一次固有周期、 M_W はモーメントマグニチュード、Rは M_W >6.5の大地震の場合は地表 断層からの最短距離、 $M_W \leq 6.5$ の小地震の場合は震源距離、 $\alpha_i \geq \beta_i$ は回帰係数、 $\alpha_i \geq \alpha_i$ は正 規誤差である。既往の研究 (例えばArroyo *et al.*, 2010) により、深さ依存性は見られなかっ たので、深さの項は入れていない。また、幾何減衰の係数は-0.5とした。

一方、上下動の水平動に対する比率は、

$$\ln(V/H) = (\alpha_1 - \beta_1) + (\alpha_2 - \beta_2) \times M_W + (\alpha_3 - \beta_3) \times \ln R + (\alpha_4 - \beta_4) \times R + \varepsilon$$

(2.2.1-12)

で表している。ここで、幾何減衰を上下動と水平動とで同じだとすると、α₃=β₃なので、

 $\ln(V/H) = \gamma_1 + \gamma_2 \times M_W + \gamma_3 R + \varepsilon$ (2.2.1-13)

となる。

表2.2.1-11に、Garcia-Soto and Jaimes (2017) がGMPEの作成に用いたメキシコのプレート 間地震を示す。図2.2.1-8にはこれらの地震の震央と観測点の位置を示す。また、図2.2.1-9に は、マグニチュードと距離の関係を示す。

表2.2.1-12に、Garcis-Soto and Jaimes (2017) が求めたメキシコのプレート間地震のGMPE の回帰係数を示す。

また、図2.2.1-10には、Garcia-Soto and Jaimes (2017) による水平動に対する上下動の比率 (黒実線) と既往の研究成果(黒実線以外)との比較を示す。(a)は、本研究のV/Hを、メキシコ のプレート間地震を対象としたPerea and Esteva (2005) のV/Hと比較したものである。両者 には大きな差が見られることがわかる。(b)は、本研究のV/Hを、メキシコのスラブ内地震を 対象としたGarcia *et al.* (2005) のV/Hと比較したものである。両者はほぼ一致していること がわかる。(c)は、本研究のV/Hを世界中で行われたBommer *et al.* (2011) とBozorgnia and Campbell (2016) のV/Hと比較したものである。両者は近い値を示していることがわかる。

2.2.1-13

Event Number	Date (yyyy/mm/dd)	M _w	Latitude (° N)	Longitude (° W)	H (km)*	Records
1	1985/09/19	8	18.14	102.71	17	10
2	1985/09/21	7.6	17.62	101.82	22	8
3	1988/02/08	5.8	17.45	101.19	22	9
4	1989/03/10	5.4	17.45	101.19	20	6
5	1989/04/25	6.9	16.61	99.43	16	10
6	1989/05/02	5.5	16.68	99.41	15	5
7	1990/01/13	5.3	16.82	99.64	16	8
8	1990/05/11	5.5	17.12	100.87	21	6
9	1990/05/31	5.9	17.12	100.88	18	9
10	1993/05/15	5.5	16.47	98.72	16	6
11	1993/10/24	6.6	16.65	98.87	26	12
12	1995/09/14	7.3	16.48	98.76	16	15
13	1996/03/13	5.1	16.59	99.12	25	10
14	1996/03/27	5.4	16.36	98.3	18	9
15	1996/07/15	6.6	17.33	101.21	27	17
16	1996/07/18	5.4	17.44	101.21	25	10
17	1997/01/21	5.4	16.42	98.21	28	12
18	1997/12/16	5.9	16.04	99.41	27	7
19	1998/05/09	5.2	17.5	101.24	23	12
20	1998/05/16	5.2	17.27	101.34	28	10
21	1998/07/05	5.3	16.81	100.14	25	15
22	1998/07/11	5.4	17.35	101.41	29	12
23	1998/07/12	5.5	16.85	100.47	26	14
24	2001/09/04	5.2	16.29	98.37	20	10
25	2001/11/10	5.4	16.09	98.32	17	11
26	2002/06/07	5.2	15.99	96.92	20	10
27	2002/06/07	5.5	15.96	96.93	19	12
28	2002/06/19	5.3	16.29	98.02	20	12
29	2002/08/05	5.4	15.94	96.26	15	7
30	2002/08/27	5	16.16	97.54	15	10
31	2002/08/30	5.2	16.76	100.95	15	6
32	2002/09/25	5.3	16.8	100.12	12	15
33	2002/11/08	5.2	16.28	98.12	16	10
34	2002/12/10	5.4	17.36	101.25	24	8
35	2003/01/10	5.2	17.01	100.35	28	15
36	2003/01/22	7.5	18.62	104.12	10	8
37	2004/01/01	6	17.27	101.54	17	15
38	2004/01/01	5.6	17.32	101.47	27	11
39	2004/02/06	5.1	18.16	102.83	12	8
40	2004/06/14	5.9	16.19	98.13	20	18

Table 1 Interplate Earthquakes with $M \ge 5$ Used in This Study

*H is the focal depth.

Figure 1. Map of Mexico showing epicenters of interplate earthquakes analyzed in this study. Each event is identified by a number, which is keyed to Table 1. Recording stations are shown with triangles. (Inset) Location of region of the considered earthquakes in the Pacific Coast of Mexico. The color version of this figure is available only in the electronic edition.

図2.2.1-8 Garcia-Soto and Jaimes (2017) がGMPEの作成に用いたメキシコのプレート間地震の震央と観測点

Figure 2. Magnitude versus distance distribution of records used in the model.

図2.2.1-9 Garcia-Soto and Jaimes (2017) がGMPEの作成に用いたメキシコのプレート間地震 のマグニチュードと震源距離

表2.2.1-12 Garcia-Soto and Jaimes (2017) が求めたメキシコのプレート間地震のGMPEの回帰係数

	2	Vertic	al	2940 - 2 	2 2	Horizo	ontal				V/H		
T (s)	<i>a</i> ₁	α2	α_4	σ	<i>a</i> ₁	<i>a</i> ₂	α_4	σ	γι	Ÿ2	Y 3	σ	$\rho_{\ln V, \ln H}$
0.01	-0.0390	0.9312	-0.0112	0.76	0.5115	0.9092	-0.0119	0.78	-0.5507	0.0220	0.0006	0.29	0.933
0.02	0.4238	0.8858	-0.0119	0.79	0.7949	0.8828	-0.0123	0.80	-0.3715	0.0031	0.0004	0.30	0.932
0.04	1.0682	0.8438	-0.0130	0.84	1.5066	0.8241	-0.0133	0.86	-0.4388	0.0198	0.0003	0.34	0.924
0.06	1.1706	0.8579	-0.0134	0.86	1.8411	0.8082	-0.0139	0.87	-0.6707	0.0498	0.0005	0.32	0.934
0.08	1.2909	0.8553	-0.0134	0.85	2.0248	0.8056	-0.0140	0.85	-0.7343	0.0497	0.0006	0.32	0.934
0.1	1.0479	0.8873	-0.0129	0.81	1.8188	0.8454	-0.0137	0.83	-0.7710	0.0419	0.0008	0.34	0.920
0.2	-0.1885	1.0360	-0.0105	0.70	0.6324	0.9828	-0.0112	0.76	-0.8208	0.0533	0.0007	0.38	0.873
0.3	-0.9797	1.1089	-0.0084	0.68	-0.3584	1.0822	-0.0094	0.73	-0.6211	0.0268	0.0010	0.38	0.864
0.4	-1.9681	1.2100	-0.0068	0.67	-1.1473	1.1551	-0.0081	0.73	-0.8204	0.0549	0.0013	0.41	0.839
0.5	-2.4437	1.2378	-0.0058	0.67	-1.8420	1.2211	-0.0069	0.73	-0.6012	0.0167	0.0012	0.43	0.820
0.6	-3.0581	1.3017	-0.0051	0.67	-2.4876	1.2893	-0.0063	0.72	-0.5700	0.0124	0.0012	0.43	0.813
0.7	-3.4186	1.3267	-0.0045	0.67	-2.9901	1.3359	-0.0057	0.72	-0.4281	-0.0092	0.0012	0.44	0.803
0.8	-3.9567	1.3773	-0.0037	0.68	-3.2235	1.3366	-0.0051	0.71	-0.7328	0.0408	0.0014	0.47	0.781
0.9	-4.2925	1.4017	-0.0034	0.65	-3.5729	1.3675	-0.0049	0.71	-0.7192	0.0342	0.0015	0.45	0.789
1	-4.6147	1.4213	-0.0030	0.64	-3.8785	1.3874	-0.0046	0.69	-0.7359	0.0339	0.0016	0.44	0.788
1.1	-4.8257	1.4314	-0.0029	0.64	-4.1747	1.4093	-0.0044	0.69	-0.6505	0.0221	0.0015	0.44	0.790
1.2	-4.9744	1.4346	-0.0028	0.62	-4.4787	1.4352	-0.0042	0.69	-0.4953	-0.0006	0.0014	0.44	0.788
1.3	-5.3671	1.4771	-0.0026	0.63	-4.7409	1.4555	-0.0041	0.70	-0.6258	0.0217	0.0014	0.46	0.771
1.4	-5.6725	1.5060	-0.0025	0.63	-4.9850	1.4750	-0.0041	0.70	-0.6869	0.0310	0.0016	0.46	0.769
1.5	-5.8824	1.5228	-0.0024	0.63	-5.2292	1.4958	-0.0040	0.70	-0.6526	0.0270	0.0017	0.47	0.764
1.6	-6.2376	1.5636	-0.0022	0.64	-5.5337	1.5293	-0.0040	0.69	-0.7034	0.0343	0.0018	0.47	0.761
1.7	-6.5230	1.5932	-0.0022	0.65	-5.8613	1.5691	-0.0040	0.68	-0.6612	0.0241	0.0019	0.46	0.760
1.8	-6.7107	1.6069	-0.0022	0.65	-6.1520	1.6006	-0.0040	0.66	-0.5581	0.0063	0.0018	0.46	0.759
1.9	-6.8762	1.6179	-0.0022	0.66	-6.3241	1.6100	-0.0039	0.66	-0.5515	0.0079	0.0017	0.47	0.754
2	-7.0862	1.6386	-0.0023	0.66	-6.5005	1.6227	-0.0039	0.64	-0.5851	0.0159	0.0016	0.47	0.749
2.1	-7.2569	1.6522	-0.0023	0.66	-6.7130	1.6429	-0.0039	0.64	-0.5433	0.0093	0.0016	0.47	0.739
2.2	-7.4400	1.6681	-0.0024	0.64	-6.9178	1.6639	-0.0040	0.63	-0.5216	0.0043	0.0016	0.46	0.740
2.3	-7.6374	1.6855	-0.0024	0.63	-7.1380	1.6862	-0.0040	0.64	-0.4988	-0.0006	0.0016	0.46	0.742
2.4	-7.8130	1.7015	-0.0025	0.63	-7.2735	1.6954	-0.0040	0.64	-0.5389	0.0062	0.0016	0.46	0.742
2.5	-7.9525	1.7121	-0.0025	0.62	-7.3843	1.7008	-0.0041	0.64	-0.5678	0.0113	0.0016	0.45	0.747
2.6	-8.0766	1.7211	-0.0025	0.62	-7.5089	1.7088	-0.0041	0.64	-0.5672	0.0124	0.0015	0.45	0.755
2.7	-8.1766	1.7263	-0.0026	0.62	-7.6366	1.7173	-0.0041	0.64	-0.5395	0.0090	0.0015	0.44	0.759
2.8	-8.3072	1.7372	-0.0027	0.62	-7.7566	1.7252	-0.0041	0.64	-0.5501	0.0120	0.0014	0.44	0.763
2.9	-8.4065	1.7424	-0.0027	0.62	-7.8637	1.7309	-0.0041	0.64	-0.5422	0.0115	0.0014	0.44	0.764
3	-8.4752	1.7433	-0.0027	0.62	-7.9826	1.7396	-0.0041	0.65	-0.4921	0.0038	0.0014	0.44	0.765
4	-9.3182	1.8103	-0.0032	0.63	-9.0775	1.8318	-0.0042	0.66	-0.2404	-0.0215	0.0010	0.44	0.769
5	-10.0740	1.8766	-0.0033	0.70	-9.8111	1.8811	-0.0041	0.70	-0.2629	-0.0045	0.0007	0.46	0.785
PGA	-0.1276	0.9384	-0.0111	0.75	0.4648	0.9125	-0.0118	0.77	-0.5926	0.0259	0.0007	0.29	0.933
PGV	-5.9708	1.3442	-0.0062	0.63	-5.2172	1.2987	-0.0075	0.69	-0.7534	0.0456	0.0013	0.35	0.872

 Table 2

 Regression Coefficients Obtained for Vertical, Horizontal, and Vertical-to-Horizontal (V/H) Components

The coefficient α_3 is fixed to -0.50 for the vertical and horizontal components; the correlation coefficients between residual of vertical and horizontal ground-motion prediction equations (GMPEs) are also included.

Figure 8. Comparison of median V/H response spectral ratios from the model of this study (solid lines) for (a) Mexican interplate earthquakes, (b) Mexican inslab earthquakes, and (c) other studies worldwide. The color version of this figure is available only in the electronic edition.

図2.2.1-10 Garcia-Soto and Jaimes (2017) による水平動に対する上下動の比率 (黒実線) と 既往の研究成果 (黒実線以外) との比較

(7) Montalva *et al.* (2017)

Montalva *et al.* (2017) は、チリの沈み込み帯で発生した地震の水平成分の応答スペクトルのGMPEを開発した。データベースは、2010年Maule地震 (*Mw* 8.8) や2014年Iquique地震 (*Mw* 8.1)、2015年Illapel地震 (*Mw* 8.3) を含む473地震による3774記録である。

応答スペクトルの中央値は下式で表されている。

$$\mu(\mathbf{Z}|\theta) = \ln \mathrm{SA}(T) = \theta_{\mathrm{I}} + f_{\mathrm{source}} + f_{\mathrm{path}} + f_{\mathrm{event/depth}} + f_{\mathrm{site}} + f_{\mathrm{FABA}}$$
(2.2.1-14)

$$f_{\text{source}} = \theta_4 \Delta C_1 + f_{\text{mag}}(M_W) \tag{2.2.1-15}$$

$$f_{\text{mag}}(M_W) = \begin{cases} \theta_4(M_W - (C_1 + \Delta C_1)), & \text{if } M_W \le C_1 + \Delta C_1 \\ \theta_5(M_W - (C_1 + \Delta C_1)), & \text{if } M_W > C_1 + \Delta C_1 \end{cases}$$
(2.2.1-16)

$$f_{\text{path}} = [\theta_2 + \theta_{14}F_{\text{event}} + \theta_3(M_W - 7.8)] \times \ln(R + C_4 \exp(\theta_9(M_W - 6))) + \theta_6 R \quad (2.2.1-17)$$

$$f_{\text{event/depth}} = [\theta_{10} + \theta_{11}(\min(Z_h, 120) - 60)]F_{\text{event}}$$
(2.2.1-18)

$$f_{\rm site}({\rm PGA}_{1000}, V_{S30})$$

$$= \begin{cases} \theta_{12} \ln\left(\frac{V_{S}^{*}}{V_{\text{lin}}}\right) - b \ln(\text{PGA}_{1000} + c) \\ + b \ln\left(\text{PGA}_{1000} + c\left(\frac{V_{S}^{*}}{V_{\text{lin}}}\right)^{n}\right), & \text{if } V_{S30} < V_{\text{lin}} \\ \\ \theta_{12} \ln\left(\frac{V_{S}^{*}}{V_{\text{lin}}}\right) + b \ln\left(\frac{V_{S}^{*}}{V_{\text{lin}}}\right), & \text{if } V_{S30} < V_{\text{lin}} \end{cases}$$
(2.2.1-19)

$$V_{S}^{*} = \begin{cases} 1000, & \text{if } V_{S30} > 1000 \\ V_{S30}, & \text{if } M_{W} \le C_{1} + \Delta C_{1} \end{cases}$$
(2.2.1-20)

$$f_{\text{FABA}}(R) = \begin{cases} \left(\theta_4 + \theta_8 \ln\left(\frac{\max(R, 85)}{40}\right)\right) \times F_{\text{FABA}}, & \text{if } F_{\text{event}} = 1\\ \left(\theta_{15} + \theta_{16} \ln\left(\frac{\max(R, 100)}{40}\right)\right) \times F_{\text{FABA}}, & \text{if } F_{\text{event}} = 0 \end{cases}$$
(2.2.1-21)

ここに、 $\mu(Z|\theta)$ は中央値、Zは変数、 θ は回帰係数、SAは減衰定数5%の加速度応答スペクトルか最大加速度で単位は重力加速度、 M_W はモーメントマグニチュード、 Z_h は震源深さで単位はkm、Rはプレート間地震の場合、断層最短距離で、スラブ内地震の場合、震源距離、PGA₁₀₀₀は V_s 30が1000m/sのときの最大加速度の中央値、 F_{event} はスラブ内地震のとき1で、プレート間地震のとき0である。 f_{FABA} の項は、背孤で1、前弧もしくは不明の場合に0である。 $\Delta C_1, \theta, C_4, V_{lin}, b, c, and n$ は、背孤の影響を表したBC Hydroモデルから直接採用される係数

である。

図2.2.1-11に、GMPEを求めるのに用いたチリのプレート間地震とスラブ内地震のモーメントマグニチュードと距離との関係およびモーメントマグニチュードと震源深さとの関係 を示す。

表2.2.1-13に、チリのプレート間地震とスラブ内地震の記録を用いて求めた回帰係数を示 す。また、図2.2.1-12に、プレート間地震のGMPEの例を示す。

Figure 1. Distribution of records and earthquakes from the strong ground motion database used for the regression. (a,b) Full dataset; (c,d) high-quality (HQ) dataset. The color version of this figure is available only in the electronic edition.

図2.2.1-11 Montalva et al. (2017) がGMPEを求めるのに用いたチリのプレート間地震とスラ ブ内地震のモーメントマグニチュードと距離との関係およびモーメントマグニ チュードと震源深さとの関係

表2.2.1-13 Montalva *et al.* (2017) がチリのプレート間地震とスラブ内地震の記録を用いて求めた回帰係数

Period (s)	Number of Data Points	θ_1	θ_4	05	02	03	06	θ_{14}	θ_{10}	θ_{11}	θ_{12}	г	\$525	ϕ_{SS}
0.00	3657	5 87504	0.80277	-0.33487	-1.75360	0.13125	-0.00039	-0.73080	4 53143	0.00567	1.01495	0.47462	0 56436	0 39903
0.02	3657	5 97631	0.84132	-0.28055	-1.77011	0 12246	-0.00039	-0.73869	4 57416	0.00565	1.03738	0.47632	0.57188	0.40261
0.05	3658	7 45297	1.03131	-0.03954	-2 03336	0.08332	0.00000	-0.69849	4 56071	0.00848	1 31034	0.53776	0.57850	0.39720
0.075	3656	8.04760	1.03437	-0.01295	-2.10610	0.08013	-0.00010	-0.65336	4.36639	0.00922	1.48158	0.56188	0.59937	0.38824
0.075	3652	7 76085	1.07565	0.00758	-1 99371	0.07303	-0.00079	-0.55051	3 90923	0.00630	1.65619	0 52707	0.63410	0.38365
0.15	3654	6.17192	1.17061	0.10491	-1.58654	0.05482	-0.00268	-0.42997	3.06236	0.00559	1.93944	0.50642	0.63022	0.39930
0.2	3657	4.83403	1.20531	0.17968	-1.29711	0.05250	-0.00338	-0.53088	3.50113	0.00320	2.08901	0.44619	0.61699	0.41782
0.25	3682	4.42688	1.37607	0.22912	-1.18774	0.02995	-0.00355	-0.58086	3.62816	0.00182	2.25003	0.45040	0.58609	0.43277
0.3	3673	4.57009	1.34991	0.15593	-1.24896	0.03866	-0.00245	-0.66281	3.87634	0.00213	2.28339	0.42549	0.57014	0.44123
0.4	3643	3.98311	1.37954	0.11671	-1.13377	0.04683	-0.00208	-0.72244	4.03388	0.00069	2.31409	0.42945	0.54796	0.45157
0.5	3591	4.86034	1.51950	0.18348	-1.38020	0.03822	-0.00002	-0.79644	4.31418	0.00065	2.33333	0.43334	0.49113	0.45476
0.6	3634	4.67510	1.66663	0.21968	-1.35362	0.02524	0.00000	-0.90120	4,75197	0.00087	2.23422	0.44599	0.49078	0.45219
0.75	3614	4.30862	1.85625	0.29783	-1.30800	0.00995	0.00000	-0.89829	4,70452	-0.00031	2.05217	0.46723	0.48213	0.45553
1	3685	3.57339	1.81217	0.24372	-1.23082	0.03605	0.00000	-0.87331	4.56020	-0.00101	1.63506	0.50143	0.45955	0.43828
1.5	3717	2.92216	2.03469	0.22521	-1.18750	0.02769	-0.00010	-0.94686	4.83343	0.00010	0.69338	0.51633	0.42573	0.42297
2	3648	2.39780	2.04340	0.27383	-1.16319	0.04011	-0.00033	-0.90845	4.59029	0.00109	-0.09762	0.50688	0.40179	0.40377
2.5	3583	1.64148	1.88987	0.18740	-1.06544	0.08310	-0.00121	-0.80518	4.13415	0.00035	-0.34932	0.51465	0.39825	0.38489
3	3525	1.66483	1.90504	0.13268	-1.12678	0.09404	-0.00088	-0.81689	4.18978	0.00073	-0.33270	0.50365	0.38493	0.37384
4	3283	0.90565	1.71178	0.01380	-1.07620	0.13838	-0.00062	-0.87331	4.50907	0.00084	-0.41321	0.45311	0.35579	0.37020
5	3102	0.61234	1.59359	0.06465	-1.13080	0.15259	0.00000	-0.87800	4.56386	0.00068	-0.42395	0.43900	0.34991	0.37674
6	2921	0.32672	1.69184	0.32368	-1.15734	0.12421	0.00000	-0.88436	4.55837	0.00137	-0.38760	0.42084	0.32048	0.37173
7.5	2780	-0.24140	1.71126	0.60252	-1.14070	0.10951	0.00000	-0.98803	5.08282	0.00167	-0.32638	0.41701	0.29895	0.36349
10	2473	-0.96314	1.67160	0.77621	-1.09295	0.11344	0.00000	-1.05008	5.49692	-0.00070	-0.25811	0.38872	0.28454	0.36173
Period (s)	σ	07	θ_8	θ_{15}	θ_{16}	θ_9	$\Delta C_{1,\text{interface}}$	$\Delta C_{1,\text{in-slab}}$	$V_{\rm lin}$	b	п	с	C_4	<i>C</i> ₁
Period (s) 0.00	σ 0.83845	07 1.0988	θ ₈ -1.420	θ ₁₅ 0.9969	θ ₁₆ -1.000	θ ₉ 0.4	$\Delta C_{1,\text{interface}}$ 0.200	$\Delta C_{1,in-slab}$ -0.300	V _{lin} 865.1	b -1.186	n 1.18	c 1.88	C ₄	C ₁
Period (s) 0.00 0.02	σ 0.83845 0.84618	07 1.0988 1.0988	θ_8 -1.420 -1.420	θ ₁₅ 0.9969 0.9969	θ ₁₆ -1.000 -1.000	θ ₉ 0.4 0.4	ΔC _{1.interface} 0.200 0.200	$\Delta C_{1,in-slab}$ -0.300 -0.300	V _{lin} 865.1 865.1	b -1.186 -1.186	n 1.18 1.18	c 1.88 1.88	C ₄ 10 10	C ₁ 7.2 7.2
Period (s) 0.00 0.02 0.05	σ 0.83845 0.84618 0.88409	<i>θ</i> ₇ 1.0988 1.0988 1.2536	θ_8 -1.420 -1.420 -1.650	<i>θ</i> ₁₅ 0.9969 0.9969 1.1030	θ ₁₆ -1.000 -1.000 -1.180	θ ₉ 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.200 0.200	ΔC _{1.in-slab} -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5	<i>b</i> -1.186 -1.186 -1.346	n 1.18 1.18 1.18	c 1.88 1.88 1.88	C ₄ 10 10 10	C ₁ 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075	σ 0.83845 0.84618 0.88409 0.90867	θ ₇ 1.0988 1.0988 1.2536 1.4175	θ ₈ -1.420 -1.420 -1.650 -1.800	<i>θ</i> ₁₅ 0.9969 0.9969 1.1030 1.2732	<i>θ</i> ₁₆ -1.000 -1.000 -1.180 -1.360	0,4 0.4 0.4 0.4 0.4	$\Delta C_{1.interface}$ 0.200 0.200 0.200 0.200 0.200	ΔC _{1.in-slab} -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7	<i>b</i> -1.186 -1.186 -1.346 -1.471	n 1.18 1.18 1.18 1.18	c 1.88 1.88 1.88 1.88	C ₄ 10 10 10 10	C ₁ 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1	σ 0.83845 0.84618 0.88409 0.90867 0.90944	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800	<i>θ</i> ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360	θ ₉ 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200	ΔC _{1.in-slab} -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624	n 1.18 1.18 1.18 1.18 1.18	c 1.88 1.88 1.88 1.88 1.88 1.88	C ₄ 10 10 10 10 10	$ \begin{array}{r} c_1 \\ 7.2 \\ $
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690	<i>θ</i> ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300	0,4 0,4 0,4 0,4 0,4 0,4 0,4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200	ΔC _{1.in-slab} -0.300 -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5 877.6	<i>b</i> -1.186 -1.346 -1.471 -1.624 -1.931	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C ₄ 10 10 10 10 10 10	C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490	<i>θ</i> ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250	0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	$\begin{array}{r} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2	<i>b</i> -1.186 -1.346 -1.471 -1.624 -1.931 -2.188	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.8	C ₄ 10 10 10 10 10 10 10	C1 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300	<i>θ</i> ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170	θ ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	ΔC _{1,in-slab} -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C ₄ 10 10 10 10 10 10 10 10	C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90944 0.90171 0.86853 0.85654 0.83713	θ ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300 -1.180	θ ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060	θ ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	ΔC _{1,in-slab} -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C ₄ 10 10 10 10 10 10 10 10 10	C ₁ 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2
Period (s) 0.00 0.02 0.05 0.175 0.1 0.15 0.2 0.25 0.3 0.4	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300 -1.180 -0.980	θ ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.250 -1.170 -1.060 -0.780	<i>θ</i> ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.144	ΔC _{1.in-slab} -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503	b -1.186 -1.346 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C4 10 10 10 10 10 10 10 10 10 10	C1 7.2
Period (s) 0.00 0.02 0.05 0.17 0.15 0.2 0.25 0.3 0.4 0.5	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799	θ_8 -1.420 -1.420 -1.650 -1.800 -1.800 -1.690 -1.490 -1.300 -1.180 -0.980 -0.820	θ ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620	θ_{16} -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780 -0.620	<i>θ</i> ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	ΔC _{1.in-slab} -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6	b -1.186 -1.346 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C4 10 10 10 10 10 10 10 10 10 10	C1 7.2
Period (s) 0.00 0.02 0.05 0.17 0.15 0.2 0.25 0.3 0.4 0.5 0.6	σ 0.83845 0.84618 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021	θ_8 -1.420 -1.650 -1.800 -1.800 -1.800 -1.690 -1.490 -1.300 -1.180 -0.980 -0.980 -0.700	θ ₁₅ 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800	$\begin{array}{r} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.180 \\ -1.360 \\ -1.360 \\ -1.250 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \end{array}$	0,4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.144 0.100 0.074	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3	<i>b</i> -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C4 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75	σ 0.83845 0.84618 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134	<i>θ</i> ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.490 -1.300 -1.180 -0.980 -0.820 -0.700 -0.540	θ15 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.8000 0.6620 0.5800 0.4800	$\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.180 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.340 \end{array}$	<i>θ</i> ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	ΔC _{Lin-stab} -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300 -0.300	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.657 -2.669 -2.599 -2.599	n 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C4 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.25 0.25 0.3 0.4 0.5 0.6 0.75 1	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914	θ ₇ 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.3687 0.1746	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.800 -1.490 -1.490 -1.490 -1.490 -1.490 -1.490 -1.490 -1.490 -1.490 -1.180 -0.980 -0.820 -0.540 -0.340	θ15 0.9969 0.03069 1.030 1.2732 1.3042 1.2200 1.1600 0.8000 0.6620 0.5800 0.3300	<i>θ</i> ₁₆ -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140	0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	ΔC _{1.isecface} 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.144 0.100 0.074 0.042 0.000	$\begin{array}{c} \Delta C_{1,in-shift} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400	<i>b</i> -1.186 -1.186 -1.346 -1.471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.518 -2.657 -2.669 -2.599 -2.499 -2.491 -1.955	n 1.18 1.1	c 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88 1.88	C ₄ 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168	θ ₇ 1.0988 1.2536 1.4175 1.3582 1.1648 0.9940 0.821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.490 -1.300 -1.490 -1.300 -0.980 -0.980 -0.820 -0.700 -0.540 -0.050	θ15 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 0.8000 0.6620 0.5800 0.3300 0.3100	<i>θ</i> ₁₆ -1.000 -1.000 -1.180 -1.360 -1.300 -1.250 -1.170 -1.060 -0.780 -0.620 -0.500 -0.340 -0.140 0.000	<i>0</i> ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0274 0.002 0.0000 0.000 0.0020 0.0000 0.0020 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400	b -1.186 -1.346 -1.346 -1.3471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.518 -2.669 -2.599 -2.401 -1.955 -1.025	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88 1.8	C4 10 10 10 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2	σ 0.83845 0.84618 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249	θη 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7099 0.5021 0.3687 0.1746 -0.8220	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.490 -1.490 -1.300 -1.180 -0.980 -0.980 -0.700 -0.540 -0.540 -0.340 -0.050 0.120	θ15 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.0500 0.6620 0.5800 0.4800 0.3100 0.3000	$\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.180 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.500 \\ -0.340 \\ -0.140 \\ 0.000 \\ 0.000 \end{array}$	<i>0</i> ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.074 0.042 0.000 0.0058 -0.05 -0.05	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	Viin 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400	b -1.186 -1.186 -1.346 -1.347 -1.931 -2.188 -2.381 -2.518 -2.657 -2.659 -2.599 -2.401 -1.955 -1.025 -0.299	n 1.18	c 1.88	C ₄ 10 10 10 10 10 10 10 10 10 10	c1 7.2 <
Period (s) 0.00 0.02 0.05 0.75 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605	θ ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.3687 0.1746 -0.0820 -0.2821 -0.4108	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.490 -1.490 -1.490 -0.980 -0.820 -0.540 -0.340 -0.540 -0.250	θ15 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.16500 0.8000 0.6620 0.4800 0.3300 0.3100 0.3000	θ ₁₆ -1.000 -1.000 -1.180 -1.360 -1.360 -1.300 -1.250 -1.170 -0.780 -0.620 -0.500 -0.340 -0.140 0.0000 0.0000	0,4 0.4	ΔC _{1.isserface} 0.200 0.074 0.042 0.005 -0.058 -0.100 -0.155	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \\ -0.300 \end{array}$	V _{lin} 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400	b -1.186 -1.346 -1.346 -1.347 -1.624 -1.931 -2.188 -2.657 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88	C ₄ 10 10 10 10 10 10 10 10 10 10	c1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.2 0.25 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.79168 0.76249 0.75605 0.73593	θ ₇ 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.3687 0.1746 -0.0820 -0.4261	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.800 -1.300 -1.490 -0.800 -0.980 -0.820 -0.540 -0.340 -0.050 0.250 0.300	θ15 0.9969 0.0969 1.1030 1.2732 1.3042 1.2200 1.2230 1.1600 0.5800 0.6620 0.3300 0.3100 0.3000 0.3000 0.3000	$\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.360 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.340 \\ -0.140 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	0,4 0.4	ΔC _{1.isecrace} 0.200 0.144 0.0042 0.000 -0.058 -0.155 -0.200	$\begin{array}{c} \Delta C_{1,in-shift} \\ -0.300 \\ -0.3$	Vin 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400 400 400	b -1.186 -1.346 -1.346 -1.3471 -1.624 -2.381 -2.518 -2.659 -2.669 -2.599 -2.409 -1.955 -1.025 -0.299 0 0	n 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.1	c 1.88	$\begin{array}{c} C_4 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.25 0.25 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3 4	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605 0.73593 0.68480	θ ₇ 1.0988 1.2536 1.4175 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.0820 -0.4108 -0.4344	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.490 -1.300 -1.300 -0.980 -0.820 -0.700 -0.340 -0.050 0.120 0.300	θ15 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 0.8000 0.5800 0.3800 0.3100 0.3000 0.3000 0.3000 0.3000	$\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.340 \\ -0.140 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	<i>0</i> , 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.144 0.002 0.002 0.005 0.0144 0.002 0.005 0.0144 0.000 0.005 0.000 0.0144 0.000 0.000 0.000 0.0144 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	$\begin{array}{c} \Delta C_{1,in-shift} \\ -0.300 \\ -0.3$	Viin 865.1 1053.5 1085.7 1032.5 877.6 877.6 877.6 430.3 456.6 430.3 410.5 400 400 400 400 400	b -1.186 -1.346 -1.346 -1.3471 -1.624 -1.931 -2.188 -2.381 -2.518 -2.518 -2.669 -2.599 -2.401 -1.955 -0.259 0 0 0 0	n 1.18	c 1.88	C4 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3 4 5	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.80914 0.79168 0.76249 0.75605 0.73593 0.684800 0.67609	θη 1.0988 1.2536 1.4175 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1764 0.40820 -0.4820 -0.4404 -0.4368	θ ₈ -1.420 -1.450 -1.800 -1.800 -1.800 -1.490 -1.300 -1.490 -1.300 -0.9820 -0.700 -0.540 -0.540 -0.050 0.120 0.250 0.300	θ15 0.9969 0.9969 1.1030 1.2732 1.3042 1.2600 1.2230 1.1600 1.2500 0.6620 0.5800 0.4800 0.3100 0.3000 0.3000 0.3000 0.3000	$\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.180 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.340 \\ -0.620 \\ -0.500 \\ -0.340 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	<i>0</i> ₉ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	ΔC _{1.interface} 0.200 0.0074 0.042 0.000 -0.058 -0.155 -0.200 -0.200 -0.205 -0.200 -0.205 -0.205 -0.200 -0.205 -0.200 -0.205 -0.200 -0.205 -0.200 -0.205 -0.200 -0.205 -0.200 -0	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.30$	Viin 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400 400 400 400 400 400 400	b -1.186 -1.346 -1.347 -1.624 -1.931 -2.188 -2.381 -2.577 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0 0 0 0 0 0	n 1.18	c 1.88	C4 10 10 10 10 10 10 10 10 10 10	C1 7.2 <
Period (s) 0.00 0.02 0.05 0.07 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.75 1 1.5 2 2.5 3 4 5 6	σ 0.83845 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.85654 0.83713 0.82982 0.79737 0.80265 0.81134 0.79168 0.75605 0.73593 0.68480 0.67609 0.64653	θ ₇ 1.0988 1.0988 1.2536 1.4175 1.3997 1.3582 1.1648 0.9940 0.8821 0.7046 0.5799 0.5021 0.3687 0.1746 -0.42821 -0.4108 -0.4466 -0.4344 -0.4586	θ ₈ -1.420 -1.650 -1.800 -1.800 -1.800 -1.800 -1.490 -1.490 -1.490 -0.980 -0.820 -0.740 -0.340 -0.550 0.300 0.300	θ15 0.9969 0.1030 1.2732 1.3042 1.2600 1.2230 1.10500 0.6620 0.3600 0.4800 0.3100 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000	$\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.360 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.700 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.500 \\ -0.340 \\ -0.140 \\ 0.000 \\ 0.0$	0,4 0.4	ΔC _{1.isserface} 0.200 0.074 0.042 0.005 -0.105 -0.100 -0.155 -0.200 -0.200 -0.200 -0.200 -0.205 -0.200 -0.125 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.100 -0.155 -0.2000 -0.200 -0	$\begin{array}{c} \Delta C_{1,in-slab} \\ -0.300 \\ -0.30$	Vin 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400	b -1.186 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -1.346 -2.518 -2.518 -2.557 -2.669 -2.590 -2.591 -1.025 -1.025 -0.299 0 0 0 0 0 0	n 1.18	c 1.88	C4 10	c1 7.2 <
Period (s) 0.00 0.02 0.05 0.075 0.1 0.25 0.3 0.4 0.5 0.6 0.755 1 1.5 2 2.5 3 4 5 6 7.5	σ 0.83845 0.84618 0.84618 0.88409 0.90867 0.90944 0.90171 0.86853 0.83654 0.83713 0.82652 0.79737 0.80265 0.81134 0.79168 0.75605 0.73593 0.68480 0.67609 0.64653 0.62881	θ ₇ 1.0988 1.2536 1.4175 1.3582 1.1648 0.9940 0.8821 0.7046 0.7046 0.7046 0.7046 0.7046 0.7046 0.7046 0.7048 -0.0820 -0.2821 -0.4108 -0.4466 -0.4368 -0.4458 -0.4433	θ ₈ -1.420 -1.420 -1.650 -1.800 -1.800 -1.800 -1.800 -1.420 -1.650 -1.800 -1.800 -1.300 -1.300 -0.820 -0.820 -0.540 -0.540 -0.550 0.120 0.250 0.300 0.300 0.300	θ15 0.9969 0.0969 1.1030 1.2732 1.3042 1.2200 1.2230 1.1600 0.5800 0.6620 0.3300 0.3100 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000	$\begin{array}{c} \theta_{16} \\ \hline \\ -1.000 \\ -1.000 \\ -1.360 \\ -1.360 \\ -1.360 \\ -1.300 \\ -1.250 \\ -1.170 \\ -1.060 \\ -0.780 \\ -0.620 \\ -0.500 \\ -0.340 \\ -0.140 \\ 0.00$	0,4 0.4	ΔC _{1.isserface} 0.200 0.144 0.002 -0.058 -0.100 -0.155 -0.200 -0.200 -0.200 -0.205 -0.200 -0.205 -0.155 -0.200 -0.200 -0.200 -0.200 -0.155 -0.200 -0.200 -0.200 -0.200 -0.155 -0.200 -0.200 -0.200 -0.200 -0.205 -0.200 -0.155 -0.200 -0.200 -0.200 -0.200 -0.205 -0.200 -0.200 -0.155 -0.2000 -0.	$\begin{array}{c} \Delta C_{1,in-shith} \\ -0.300 \\ -0.3$	Vin 865.1 1053.5 1085.7 1032.5 877.6 748.2 654.3 587.1 503 456.6 430.3 410.5 400	b -1.186 -1.346 -1.346 -1.471 -1.624 -2.381 -2.518 -2.557 -2.669 -2.599 -2.401 -1.955 -1.025 -0.299 0 0 0 0 0 0 0 0 0 0	n 1.18 1.1	c 1.88	$\begin{array}{c} C_4 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	C1 7.2 <

Table 1 Model Coefficients

Figure 3. Response spectra obtained for a fore-arc site with $V_{530} = 300 \text{ m/s}$ for an interplate earthquake. PGA, peak ground acceleration. The color version of this figure is available only in the electronic edition.

図2.2.1-12 Montalva et al. (2017) によるプレート間地震のGMPEの例

2.2.2 プレート間地震のスケーリング則の調査

(1) Geller (1976)

Geller (1976) は、世界中で起こったプレート間地震と内陸地殻内地震の断層パラメータの相似則を求めた。表2.2.2-1に検討に用いた地震と断層パラメータを示す。

図2.2.2-1に、断層長さLと幅Wの関係を示す。図中、黒丸はプレート間地震、白丸は内陸地 設内地震である。図より、断層長さLと幅Wには、ほぼ

$$L = 2W$$
 (2.2.2-1)

の関係があることがわかる。図2.2.2-2には、横軸に記録から求めた立ち上がり時間*t*を、縦軸に

$$\tau^* = 16S^{1/2} / (7\pi^{3/2}\beta) \tag{2.2.2-2}$$

によって計算で求めた立ち上がり時間を示す。ここに、τ*は下の2つの式から導いたもので ある。

$$\tau^* = \frac{\mu \overline{D}}{\beta \Delta \sigma} \tag{2.2.2-3}$$

$$\Delta \sigma = 7\pi^{3/2} \mu \overline{D} / (16\sqrt{S}) = 7M_0 / (16(LW / \pi)^{3/2})$$
(2.2.2-4)

図より、上式で求めた立ち上がり時間は、記録から求めた立ち上がり時間と一致している ことがわかる。

一方、破壊伝播速度v_RとS波速度βとの関係を調べた結果、

$$v_R = 0.72\beta$$
 (2.2.2-5)

の関係があることがわかった。

表2.2.2-1 Geller (1976) が断層パラメータの相似則の検討に用いた世界で起こったプレート 間地震と内陸地殻内地震

				TA	BLE 1							<i>.</i> *
			EARTHQ	UAKE SC	OURCE PARAMET	ERS						
	Event	Date	M ₃	17.	× 10 ²⁷ dyr.e-cm	L (km)	W (km)	Ď (m)	[atc)	(sec)	V _R (km/sec)	Lo (bars)
1.	Kanto	1 Sep. 1923	8.2		7.6	130	70	2.1	7	10		21
2.	Tango	27 Mar. 1927	7.75	_	0.45	35	13	3	6	2.5	2.3	115
3.	North Izu	25 Nov. 1930	7.1	· · · ·	0.2	20	11	3	_	1.7		150
4.	Saitama	21 Sep. 1933	6.75		0.058	20	10	1	2	1.6	2.3	59
5.	Sanriku	2 Mar. 1933	8.3		43	185	100	3.3	7	12	3.2	42
6.	Long Beach	11 Mar. 1933	6.25		0.028	30	15	0.2	2	2.5	2.3	7
7.	Imperial Valley	19 May 1940	7.1		0.48	70	11	2	_	3.2		55
8.	Tottori	10 Sep. 1943	7.4	-	0.36	33	13	2.5	3	4.0	2.3	99
9.	Tonankai	7 Dec. 1944	8.2		15	120	80	3.1	-	9.2	-	39
10.	Mikawa	12 Jan. 1945	7.1		0.687	12	11	2.2	_	1.3		140
11.	Nankaido	20 Dec. 1946	8.2		15	120	80	3.1		9.2		39
12.	Fakui	28 Jun. 1948	7.3		0.33	30	13	2	2	1.9	2.3	100
13.	Tokachi-Oki	4 Mar. 1952	8.3		17	180	100	1.9		14	-	17
14.	Kern County	21 Jul. 1952	7.7	_	2	60	18	4.6	1	3.6	_	140
15.	Fairview	16 Dec. 1954	7.1		0.13	36	6	2	-	1.7	_	100
16.	Chile	22 May 1960	8.3		2400	800	200	21	_	36	3.5	91
17.	Kitamino	19 Aug. 1961	7.0	-	0.09	12	10	2.5	2	1.3	3.0	170
18.	Wasaka Bay	27 Mar. 1963	6.9		0.033	20	8	0.6	2	1.5	2.3	40
19.	North Atlantic I	3 Aug. 1963	6.7	6.1	0.12	32	11	1	<u> </u>	2.2		44
20.	Kurilc Islands	13 Oct. 1963	8.2	5.7	75	250	140	3	_	17	3.5	28
21.	North Atlantic II	17 Nov. 1963	6.5	5.9	0.038	27	9	0.48		1.8	· · · · · · · · · · · · · · · · · · ·	24
22.	Spain	15 Mar. 1964	7.1	6.2	0.13	95	10	0.42		3.6	1.4	11
23.	Alaska	28 Mar. 1964	8.5	6.2	520	500	300	7		35	3.5	22
24.	Niigata	16 Jun. 1964	7.4	6.1	3.2	80	30	3.3	-	5.3	_	66
25.	Rat Island I	4 Feb. 1965	7.9	6.0	140	500	150	2.5		25	4.0	17
26.	Rat Island II	30 Mar. 1965	7.5	5.7	3.4	50	80	1.2		5.8		33
27.	Parkfield	28 Jun. 1966	6.4	5.3	0.032	26	7	0.6	0.7	1.6	2.7	32
28.	Aleutian	4 Jul. 1966	7.2	6.2	0.226	35	12	1.6	-c	2.4	-	64
29.	Truckee	12 Sep. 1966	5.9	5.4	0.0083	10	10	0.3	_	1.2	_ 1	20
30.	Peru	17 Oct. 1966	7.5	6.3	20	80	140	2.6	_	9.6	-	41
31.	Borrego	9 Apr. 1968	6.7	6.1	0.063	33	11	0.58	_	2.2		22
32.	Tokachi-Oki	16 May 1968	8.0	5.9	28	150	100	4.1		12	3.5	37
3.3.	Saitama	1 Jul. 1968	5.8	5.9	0.019	10	6	0.92	1	0.9	3.4	100
34.	Portuguese Kurila lalan da	28 Feb. 1969	8.0	7.3	5.5	80	50	2.5		6.1		53
35.	Kurile Islands	11 Aug. 1969	1.8	1.1	22	180	85	2.9	<u> </u>	12	3.5	28
30.	Gilu	9 Sep. 1909	0.0	5.5	0.035	18	10	0.6	1	1.7	2.5	35
37.	Peru See Terrer Ja	31 May 1970	7.8	6.0	10	130	70	1.0	<u> </u>	8.7	2.5	28
38.	Sun rernando	9 Feb. 1971	0.0	6.2	0.12	20	100	1.4	1.	2.0	2.4	62
40	Turkey	17 Jun. 1975	7.1	6.0	0.7	80	20	1.0		1.5	_	35
40.	Iran	22 Jul. 1967	7.1	5.0	0.65	80	20	1.7	-	4.7		32
41.	tratt	51 Aug. 1908	7.5	5.9	i.	00	20	2.1		4./	-	38

TABLE 1

FIG. 1. Plot of fault length (along strike) versus fault width (along dip) for earthquakes in Table 1. Open circles are intraplate events; closed circles are interplate events. Numbers refer to Table 1. These conventions are used for all plots of earthquake data.

図2.2.2-1 Geller (1976) によるプレート間地震 (黒丸) と内陸地殻内地震 (白丸) の断層長 さと幅との関係

FIG. 2. Plot of observed rise time versus theoretical rise times from (5).

図2.2.2-2 Geller (1976) によるプレート間地震 (黒丸) と内陸地殻内地震 (白丸) の観測に よる立ち上がり時間と計算による立ち上がり時間 (2) Scholz (1982)

Scholz (1982) は、断層長さとすべり量との関係を調べ、物理的な解釈を行った。

表 2.2.2-2 に、Scholz (1982) が断層パラメータの相似則の検討に用いた横ずれ断層の地震 と衝上断層の地震を示す。また、図 2.2.2-3 には、Scholz (1982) が求めた衝上断層による地 震の断層長さとすべり量 u との関係を示す。図 2.2.2-3 では、すべり量が断層長さに比例し ている。このことの物理的解釈として、WモデルとLモデルが考えられている。

Wモデルでは、応力降下量とすべり量が断層幅Wで決定されるWモデルの解釈では、応 力降下量は断層アスペリティ比L/Wに比例し、したがって、地震モーメントにも比例する。 すべり量が断層長さに比例するということは、断層長さは動的応力降下量で決定されるこ とを意味している。しかし、このことは、断層長さが、既往の地震の破壊域やテクトニック な障害物で制御されているという観測事実とは反する。また、小地震では応力降下量がほぼ 一定という観測事実とも相入れない。

一方、Lモデルは、断層面が基盤で拘束されておらず、応力降下量とすべり量が断層長さ で決定される。Lモデルによると、すべり量が断層長さに比例することは、応力降下量が一 定、すなわちプレート間の横ずれ断層で 7.5bar、衝上断層で 12bar、日本プレート内地震で 60bar であることを意味している。

表 2.2.2-2 Scholz (1982) が断層パラメータの相似則の検討に用いた横ずれ断層の地震と衝上断層の地震

		Averaged from	A SYKES AND QUITTMEYE	R (1981)]				
No.	Date	Location	Ma (10 ²⁷ dyne-cm)	L (km)	W (km)	L/W	й (ст)	Δσ (bars)
		Str	ike-Slip Earthquakes					
1	10 Jul. 1958	SE Alaska	4.3	350	12	29	325	26
2	9 Jan, 1857	S. California	7	380	12	32	465	36
3	18 Apr. 1906	San Francisco	4	450	10	45	450	44
4	19 May 1940	Imperial Valley, Calif.	0.23	60	10	6	125	13
5	27 Jun. 1966	Parkfield, Calif.	0.03	37	10	4	30	4
6	9 Apr. 1968	Borrego Mountain, Calif.	0.08	37	12	3	25	3
7	15 Oct. 1979	Imperial Valley, Calif.	0.03	30	10	3	30	4
8	4 Feb. 1976	Guatemala	2.6	270	15	18	150	9
9	16 Oct. 1974	Gibbs Fault Zone	0.45	75	12	6	170	14
10	26 Dec. 1939	Ercincan, Turkey	4.5	350	15	23	285	18
11	20 Dec. 1942	Erbaa Niksar, Turkey	0.35	70	15	5	112	8
12	1 Feb. 1944	Gerede-Bolu, Turkey	2.4	190	15	13	275	18
13	18 Mar, 1953	Gönen-Yenice, Turkey	0.73	58	15	4	280	21
14	22 Jul. 1967	Mudurnu, Turkey	0.36	80	15	5	100	7
		1	hrust Earthquakes					
15	6 Nov. 1958	Etorofu, Kuriles	44	150	70	2.1	840	37
16	13 Oct. 1963	Eruppu, Kuriles	67	275	110	2.5	445	12
17	16 May 1968	Tokachi-oki, Japan	28	150	105	1.4	355	10
18	11 Aug. 1969	Shikotan, Kuriles	22	230	105	2.2	180	5
19	17 Jun. 1973	Nemuro-oki, Japan	6.7	90	105	0.86	140	5
20	4 Nov. 1952	Kamchatka	350	450	175	2.6	890	14
21	28 Mar. 1964	Prince Wm. Sound, Alaska	820	750	180	4.2	1215	18
22	4 Feb. 1965	Rat Island, Aleutians	125	650	80	8.1	480	10
23	10 Jan. 1973	Colima, Mexico	3	85	65	1.3	110	5
24	29 Nov. 1978	Oaxaca, Mexico	3	80	70	1.1	110	5
25	22 May 1960	S. Chile	2000	1000	210	4.8	1900	21
26	17 Oct. 1966	C. Peru	20	80	140	0.6	360	12

図2.2.2-3 Scholz (1982) が求めた衝上断層による地震の断層長さとすべり量uとの関係

(3) Scholz et al. (1986)

Scholz et al. (1986) は、プレート間地震の地震モーメントと断層長さとの相似則をプレート内地震の地震モーメントと断層長さとの相似則と比較した。結果を図2.2.2-4に示す。プレート間地震もプレート内地震も、

$$M_0 \propto L^2$$
 (2.2.2-6)

または、

$$u=\alpha L \tag{2.2.2-7}$$

の関係があることがわかる。αは比例定数であるが、プレート間地震では、

$$\alpha \approx 1 \times 10^{-5} \tag{2.2.2-8}$$

プレート内地震では,

 $\alpha \approx 6 \times 10^{-5}$

(2.2.2-9)

である。これはプレート内地震の方がプレート間地震より応力降下量が約6倍大きいことを 示している。

FIG. 1. Log fault length versus log moment for large interplate and intraplate earthquakes.

図2.2.2-4 Scholz et al. (1986) が求めたプレート間地震の地震モーメントと断層長さとの関係

(4) Kinoshita and Ohike (2002)

Kinoshita and Ohike (2002) は、関東地方で発生した*M*₀が10¹³~10¹⁸Nmの94のプレート間地 震と74のスラブ内地震による634記録を分析し、コーナー振動数の相似則を調べた。図2.2.2-5に、コーナー振動数の相似則を調べた関東地方のプレート間地震とスラブ内地震の震源を、 図2.2.2-6に、コーナー振動数の相似則を調べた関東地方のプレート間地震およびスラブ内地 震と北米プレートおよびフィリピン海プレートとの位置関係を、図2.2.2-7に、プレート間地 震のコーナー振動数と地震モーメントとの関係を示す。コーナー振動数と地震モーメント との関係は、

 $\log(M_0) = (16.05 \pm 0.09) - (2.18 \pm 0.16) \log(f_c)$ (2.2.2-10)

と求まった。また、円形クラックに基づく自己相似則を仮定し、 $M_0 \propto f_c^{-3}$ とした場合は、 $\log(M_0) = (16.40 \pm 0.53) - 3\log(f_c)$ (2.2.2-11)

と求まった。上式より、Bruneの応力降下量は2.31MPaとなる。

図2.2.2-5 Kinoshita and Ohike (2002) がコーナー振動数の相似則を調べた関東地方のプレー ト間地震とスラブ内地震の震源

Figure 2. A schematic model that explains the source regions of earthquakes that occurred in the boundary zone between the upper part of the Philippine Sca plate and the lower part of the North American plate (A1, A2, and A3 regions) and in the Philippine Sca plate (B1, B2, and B3 regions) beneath the Kanto region, central Japan.

図2.2.2-6 Kinoshita and Ohike (2002) がコーナー振動数の相似則を調べた関東地方のプレー ト間地震およびスラブ内地震と北米プレートおよびフィリピン海プレートとの位 置関係

Figure 6. Estimated relations between seismic moment and corner frequency: (left) interplate and (right) intraplate events.

図2.2.2-7 Kinoshita and Ohike (2002) が求めた関東地方のプレート間地震のコーナー振動数 と地震モーメントとの関係 (5) Murotani et al. (2008)

Murotani *et al.* (2008) は、プレート間地震の断層パラメータの相似則を調べた。表2.2.2-3 には、Murotani *et al.* (2008) が断層パラメータの相似則の検討に用いた日本におけるプレー ト間地震の諸元を示す。モーメントマグニチュードの範囲は6.7~8.4である。

図1には、Murotani *et al.* (2008) が求めた日本におけるプレート間地震の断層パラメータの相似則を示す。地震モーメント*M*₀(Nm)と断層面積*S*(km²)との間には、自己相似則を仮定すると、

$$S = 1.48 \times 10^{-10} M_0^{2/3} \tag{2.2.2-12}$$

という関係が求まった。円形クラックを仮定すると、平均応力量は、1.4MPaとなる。これは、 Kanamori and Anderson (1975)による3.0MPaやYamanaka and Shimazaki (1990)による4.9MPaよ り小さい。同様に、地震モーメント $M_0(Nm)$ と平均すべり量D(m)の間には、自己相似則を仮 定すると、

$$D = 1.48 \times 10^{-7} M_0^{1/3} \tag{2.2.2-13}$$

という関係が、地震モーメント $M_0(Nm)$ とアスペリティ総面積 $S_a(km^2)$ の間には、

$$S_a = 2.89 \times 10^{-11} M_0^{2/3} \tag{2.2.2-14}$$

という関係が求まった。また、アスペリティにおける平均すべり量*D*a'(m)と断層全体における平均すべり量*D*(m)と断層全体における平均すべり量との関係は、

$$D_a' = 2.2D$$
 (2.2.2-15)

となった。

表 2.2.2-3 Murotani et al. (2008) が断層パラメータの相似則の検討に用いた日本におけるプレート間地震

		Table 1	. Fault para	ameters retrieve	d from t	he heterogene	cous slip mod	els".					
No.	Earthquake	Reference	data	M_0 (N m)	M_{w}	S (km ²)	S_a (km ²)	S'_a (km ²)	S_a/S	D (m)	$D'_{\rm a}$ (m)	$D'_{\rm a}/D$	$\Delta \sigma$ (MPa)
1.	2003 Tokachi-oki	Yamanaka and Kikuchi (2003)	Т	1.0e+21	8.0	8800	3100	3200	0.35	2.05	3.78	1.84	3.0
2.	2003 Tokachi-oki	Honda et al. (2004)	S	2.9e+21	8.3	22400	3100	4800	0.14	2.41	4.64	1.93	2.1
3.	2003 Tokachi-oki	Koketsu et al. (2004)	S, G	2.2e+21	8.2	12000	1500	1700	0.13	3.09	5.54	1.79	4.1
4.	2003 Tokachi-oki	Tanioka et al. (2004)	Tu	1.0e+21	8.0	9600	N/A	N/A	N/A	1.53	N/A	N/A	2.6
5.	2003 Tokachi-oki	Yagi (2004)	S, T	1.7e+21	8.1	22100	5700	4900	0.26	1.46	3.44	2.36	1.3
6.	1996 Hyuga-nada Oct.	Yagi et al. (1999)	S, G	2.3e+19	6.8	1032	128	153.5	0.12	0.54	1.37	2.54	1.7
7.	1996 Hyuga-nada Dec.	Yagi et al. (1999)	S, G	1.5e+19	6.7	853	179	153.5	0.21	0.42	0.92	2.19	1.5
8.	1994 Sanriku-haruka-oki	Tanioka et al. (1996)	Tu, G	3.1e+20	7.6	9000	N/A	N/A	N/A	0.89	N/A	N/A	0.9
9.	1994 Sanriku-haruka-oki	Nakayama and Takeo (1997)	S	4.0e + 20	7.7	17000	5200	4600	0.31	0.64	1.66	2.59	0.4
10.	1994 Sanriku-haruka-oki	Nagai et al. (2001)	S, T	4.4e + 20	7.7	15400	2800	2800	0.18	0.71	1.93	2.72	0.6
11.	1993 Hokkaido-nansei-oki	Tanioka et al. (1995)	Tu, G	4.9e+20	7.7	4440	N/A	N/A	N/A	3.15	N/A	N/A	4.0
12.	1993 Hokkaido-nansei-oki	Mendoza and Fukuyama (1996)	S, T	3.4e+20	7.6	13300	2800	2600	0.21	0.65	2.60	4.00	0.5
13.	1983 Nihonkai-chubu	Fukuyama and Irikura (1986)	S	3.0e+20	7.6	2700	N/A	N/A	N/A	3.17	N/A	N/A	5.2
14.	1968 Hyuga-nada	Yagi et al. (1998)	Т	2.5e + 20	7.5	4536	1377	1053	0.30	1.32	2.90	2.20	2.0
15.	1968 Tokachi-oki	Nagai et al. (2001)	S, T	3.5e+21	8.3	31200	6800	5600	0.22	2.31	5.49	2.38	1.5
16.	1946 Nankai	Satake (1993)	Tu, G	3.9e+21	8.3	59400	N/A	N/A	N/A	1.32	N/A	N/A	0.7
17.	1946 Nankai	Kato and Ando (1997)	Tu, G	4.0e+21	8.3	54000	N/A	N/A	N/A	1.47	N/A	N/A	0.8
18.	1946 Nankai	Tanioka and Satake (2001a)	Tu	5.3e+21	8.4	52650	N/A	N/A	N/A	1.98	N/A	N/A	1.1
19.	1946 Nankai	Baba et al. (2002)	Tu	4.9e+21	8.4	52650	N/A	N/A	N/A	1.87	N/A	N/A	1.0
20.	1944 Tonankai	Satake (1993)	Tu, G	2.0e+21	8.1	48600	N/A	N/A	N/A	0.84	N/A	N/A	0.5
21.	1944 Tonankai	Kato and Ando (1997)	Tu, G	2.8c+21	8.2	43200	N/A	N/A	N/A	1.28	N/A	N/A	0.8
22.	1944 Tonankai	Tanioka and Satake (2001b)	Tu	2.0c+21	8.1	42525	N/A	N/A	N/A	0.93	N/A	N/A	0.6
23.	1944 Tonankai	Ichinose et al. (2003)	S, T	2.4e + 21	8.2	30800	4000	4800	0.13	1.05	1.78	1.70	1.1
24.	1944 Tonankai	Kikuchi et al. (2003)	S	1.0e+21	7.9	11200	N/A	N/A	N/A	2.36	N/A	N/A	2.1
25.	1923 Kanto	Wald and Somerville (1995)	T, G	7.6e+20	7.9	9100	2340	2210	0.26	2.54	5.60	2.20	2.1
26.	1923 Kanto	Kobayashi and Koketsu (2005)	S, T, G	1.1e+21	8.0	9100	2210	1690	0.24	3.97	7.78	1.96	3.1

*T: teleseismic data, S: strong motion data, G: geodetic data, Tu: tsunami data, M_0 : seismic moment, M_w : moment magnitude, S: rupture area, S_a : combined area of asperities retrieved by the procedure of Somerville *et al.* (1999), S'_b : combined area of asperities retrieved by the procedure in this study, D: average slip in S, D'_a : average slip in S'_a : $\Delta \sigma$: average stress drop for the rupture area.

Fig. 2. Scaling relationships of (a) rupture area, (b) average slip, and (c) combined area of asperities with respect to the seismic moment. (d) Relationship between combined area of asperities and rupture area. Shadow zones indicate standard deviations of (a) 1.61, (b) 1.72, (c) 1.78, and (d) 1.41. [22.2.2-8] Murotani *et al.* (2008) が求めた日本におけるプレート間地震の地震モーメントと

断層面積との関係、地震モーメントと平均すべり量との関係、地震モーメントと アスペリティの総面積との関係、および断層面積とアスペリティの総面積との関 係 (6) Murotani *et al.* (2013)

Murotani *et al.* (2013) は、世界の沈み込み帯におけるプレート間巨大地震 (*M*_W=6.7~9.2) の断層パラメータの相似則を求めた。

図2.2.2-9には、断層パラメータの相似則を求めるために用いたプレート間地震の震央位置 を、表2.2.2-4には、断層パラメータの相似則を求めるために用いたモーメントマグニチュー ド9クラスの地震を示す。

図2.2.2-10には、Murotani et al. (2013) が求めた断層パラメータの相似則を、表2.2.2-5には、 断層パラメータの相似則と標準偏差を示す。これらの図表では、地震モーメントM₀と断層 面積Sとの関係、地震モーメントM₀と平均すべり量との関係、地震モーメントM₀とアスペリ ティの総面積との関係、アスペリティとの面積比Sa/Sが、それぞれ

$S=1.34\times10^{-10}M_0^{2/3}$	(2.2.2-16)
$D=1.66\times 10^{-7} M_0^{1/3}$	(2.2.2-17)
$S_{a} = 2.81 \times 10^{-11} M_{0}^{2/3}$	(2.2.2-18)
$S_{a}/S=0.2$	(2.2.2-19)

と求まっている。

Figure 1. Plate-boundary earthquakes of $M_{\rm w} \ge 8.5$ (white stars) that have occurred since 1950 from USGS and the seven earthquakes compiled in this paper (black stars). Solid lines indicate transform and spreading plate boundaries. Dashed lines represent subduction boundaries.

図2.2.2-9 Murotani et al. (2013) が断層パラメータの相似則を求めるために用いたプレート 間地震の震央位置

表2.2.2-4 Murotani et al. (2013) が断層パラメータの相似則を求めるために用いたモーメン トマグニチュード9クラスの地震

Earthquake	Data ^a	Sori ^b	Sc	$M_0^{\rm d}$	$M_{ m w}^{\ m e}$	D^{f}	$S_a{}^g$	$\mu^{ m h}$	Reference
2011 Tohoku	Т	110	92.5	3.9	9.0	10.6	25	40	1
2010 Maule	T, G	90	62.5	1.7	8.8	5.4	10	50	2
2004 Sumatra-Andaman	Т	220	160	6.0	9.1	7.5	40	50	3
1964 Alaska	T, G	184.16	164.16	6.5	9.1	9.9	46	40	4
1960 Chile	T, G	135	135	7.2	9.2	10.6	40	50	2
1957 Aleutian	Т	172.5	93.75	1.2	8.6	3.1	30	40	5
1952 Kamchatka	Т	120	70	1.5	8.7	5.5	20	40	6

Table 1. Fault Parameters Obtained From Tsunami and Geodetic Inversion

^aT: tsunami data, G: geodetic data.

⁶Rupture area originally adopted by the tsunami and geodetic data inversion (10^3 km^2) . ⁶Rupture area (10^3 km^2) is defined in this paper. ^dSeismic moment (10^{22} N m) is defined in this paper.

^eMoment magnitude is defined in this paper.

^fAverage slip (m) is defined in this paper.

^gAsperity area (10³ km²) is defined in this paper. ^hRigidity (GPa) assumed in the references

1], Satake et al. [2013]; 2, Fujii and Satake [2013]; 3, Fujii and Satake [2007]; 4, Johnson et al. [1996]; 5, Johnson et al. [1994]; and 6: Johnson and Satake [1999].

Figure 4. Scaling relations of the source parameters of M-9 and smaller earthquakes using the method adopted in the present study (red lines) and those obtained by M08 using only smaller earthquakes. (a) Rupture area S versus seismic moment M_0 . (b) Average slip D versus seismic moment M_0 . (c) Asperity area S_a versus seismic moment M_0 . (d) Asperity area S_a versus rupture area 5. Black lines represent the regression lines of M08. Open circles indicate the earthquakes used in M08 with rupture and asperity areas delineated using the new definitions. Red dashed lines represent the standard deviation on a log-log scale.

図2.2.2-10 Murotani et al. (2013) が求めた地震モーメントと断層面積との関係、地震モーメ ントと平均すべり量との関係、地震モーメントとアスペリティの総面積との関 係および断層面積とアスペリティの総面積との関係

表2.2.2-5 Murotani et al. (2013) が求めた断層パラメータの相似則と標準偏差

Original Regression of Murotani et al. [2008]	$\mathrm{SD}_{M}^{\mathrm{a}}$	SD _{M32} ^b	New Regression of This Study	SD
$S = 1.48 \times 10^{-10} M_{0_{1/3}}^{2/3}$	1.61	1.55	$S = 1.34 \times 10^{-10} M_0^{2/3}$	1.54
$D = 1.48 \times 10^{-7} M_0^{-0.5}$ $S_2 = 2.89 \times 10^{-11} M_0^{-2/3}$	1.72	1.66	$D = 1.66 \times 10^{-10} M_0^{1/3}$ $S_0 = 2.81 \times 10^{-11} M_0^{2/3}$	1.64 1.72
$S_{a}/S = 0.2$	1.41	1.41	$S_{a}/S = 0.2$	1.41
Magnitude range, $M_{\rm w}$	6.7-8.4	6.7–9.2	6.7–9.2	

Table 2. Scaling Relations and Standard Deviations

^aStandard deviation of M08 used 26 earthquakes for M_0 -S and M_0 -D and 14 earthquakes for M_0 -S_a and S-S_a, respectively. ^bStandard deviation calculated for the 32 earthquakes (seven giant earthquakes in this paper and 25 earthquakes of M08 with definitions of this paper) with the fixed coefficients as those estimated by M08

(7) Ramirez-Gaytan et al. (2014)

Ramirez-Gaytan *et al.* (2014) は、メキシコの沈み込み帯の地震の断層パラメータの相似則 を求めた。

表 2.2.2-6 には、断層パラメータの相似則の検討に用いたメキシコの沈み込み帯の地震を、 図 2.2.2-11 には、これらの地震の震央とメカニズム解(地震番号 1~7 を用いており、地震 番号 8 と 9 は用いていない)を示す。

図 2.2.2-12 には、メキシコの沈み込み帯の地震の断層パラメータの相似則 (灰色の線は自 己相似則を仮定したとき)を示す。図 2.2.2-12 では、断層面積 A(km²)と地震モーメント M₀(N・ m)との関係は、

$$A = 1.87 \times 10^{-8} M_0^{0.570} \tag{2.2.2-20}$$

となった。断層長さと幅とすべり量が比例する自己相似則を仮定すると、

$$A = 1.99 \times 10^{-10} M_0^{2/3} \tag{2.2.2-21}$$

となった。また、平均すべり量D(m)と地震モーメントM₀(N・m)との関係は、

$$D = 8.45 \times 10^{-1} M_0^{0.099} \tag{2.2.2-22}$$

となった。自己相似則を仮定すると、

- ...

$$D = 1.43 \times 10^{-5} M_0^{1/3} \tag{2.2.2-23}$$

となった。アスペリティの総面積Aa(km²)と地震モーメントM₀(N・m)との関係は、

$$A_{\rm a} = 1.74 \times 10^{-11} M_0^{0.684} \tag{2.2.2-24}$$

となった。自己相似則を仮定すると、

$$A_{\rm a} = 3.99 \times 10^{-11} M_0^{2/3} \tag{2.2.2-25}$$

となった。アスペリティの応力降下量Δσ_aは、全体を円形クラックと仮定すると、

$$\Delta \sigma_{\rm a} = \left(\frac{7}{16}\right) \times \frac{M_0}{r^2 \times R} \tag{2.2.2-26}$$

で表される。ここに、rはアスペリティの半径で、Rは円形クラックの半径である。本検討で 扱った13のアスペリティの応力降下量は0.504MPa~3.284MPaとなった。また、アスペリテ ィの応力降下量の深さ依存性は明瞭には見られなかった。

最大アスペリティの面積 $A_L(km^2)$ と地震モーメント $M_0(N \cdot m)$ との関係は、

$$A_{\rm L} = 7.78 \times 10^{-9} M_0^{0.55} \tag{2.2.2-27}$$

となった。自己相似則を仮定すると、

$$A_{\rm L} = 3.25 \times 10^{-11} M_0^{2/3} \tag{2.2.2-28}$$

2.2.2-13

となった。破壊開始点と最も近いアスペリティの距離R_A(km)と地震モーメントM₀(N・m)と の関係は、

$$R_{\rm A} = 2.47 \times 10^{-3} M_0^{0.177} \tag{2.2.2-29}$$

となった。自己相似則を仮定すると、

$$R_{\rm A} = 1.81 \times 10^{-6} M_0^{1/3} \tag{2.2.2-30}$$

となった。

図2.2.2-13には、Ramirez-Gaytan et al. (2014) が求めた断層パラメータの自己相似則と既往 の研究者による自己相似則との比較を示す。

表 2.2.2-6 Ramirez-Gaytan et al. (2014) が断層パラメータの相似則の検討に用いたメキシコ の沈み込み帯の地震

Table 1

Clin Madal

			ra	un Parameter	s nom i	ne Heter	ogeneous	sup models						
Reference*	Event Name [†]	Date (yyyy/mm/dd) [‡]	Longitude; Latitude (°) [†]	$M_0 (\mathbf{N} \cdot \mathbf{m})^{\dagger}$	M_w^{\dagger}	Depth (km) [†]	S (km ²) [§]	Strike; Dip; Rake (°) [†]	$\frac{V_r}{(\text{km/s})^{\dagger}}$	S _c (km/s) ⁵	Average Slip (m) ⁵	S ₁ (km ²) ⁵	$L_{\rm e}$ $({\rm km})^{\dagger}$	W _e (km) [†]
1	Petatlán	1979/03/14	-101.46; 17.46	1.37×10^{20}	7.39	15.00	10	293; 14; 90	3.3	3800	0.288	3600	120	120
2	Playa Azul	1981/10/25	-102.24; 17.74	8.49×10^{19}	7.25	15.00	2700	300; 14; 90	2.6	400	0.746	400	60	70
3	Michoacán	1985/09/19	-102.57; 18.18	1.15×10^{21}	8.01	17.00	25020	300; 14; 72	2.6	5004	1.390	3127.5	180	139
4	Zihuatanejo	1985/09/21	-101.82; 17.6	1.53×10^{20}	7.42	20.00	3500	300; 14; 100	2.6	1250	1.028	1250	90	90
5	San Marcos	1989/04/25	-99.12; 16.83*	2.4×10^{19}	6.90*	17.30	2520 ^{II}	276; 10; 66*	-	324§	1.265\$	3248	60 ^{II}	421
6	Manzanillo	1995/10/09	-104.58; 18.86	9.67×10^{20}	7.96	16.55	17000	309; 14; 92	2.8	3400	1.355	2100	200	100
7	Tecomán	2003/01/22	-104.13; 18.71	2.30×10^{20}	7.50	20.00	5950	300; 22; 93	3.5	1075	0.607	700	70	85

 M_0 , seismic moment for slip subduction models; M_w , moment magnitude; S_i dimension of rupture area; V_r , rupture velocity; S_c , estimated combined area of asperities; S_i , estimated area of largest asperity; W_e and L_{cc} , estimated effective width and length fault dimensions. *1, Mendoza (1995); 2 and 4, Mendoza (1993); 3, Mendoza and Hartzell (1989); 5, Singh *et al.* (1989); 6, Mendoza and Hartzell (1999); 7, Yagi *et al.* (2004). [†]Information is from SRCMOD, Martin Mai's Database of Finite-Source Rupture Models (see Data and Resources). [‡]Information is from the Global Centroid Moment Tensor (CMT) project catalog (1976–2013).

.....

⁸The source parameters determined in this study. Information is from Singh *et al.* (1989).

Figure 1. Distribution of Mexican earthquakes for which slip models were available as of the present study. Events 1–7 are the events used in this study. Events 8 and 9 represent the events excluded from the present analysis. The color version of this figure is available only in the electronic edition.

図2.2.2-11 Ramirez-Gaytan et al. (2014) が断層パラメータの相似則の検討に用いたメキシコ の沈み込み帯の地震の震央とメカニズム解(地震番号1~7を用いており、地震番 号8と9は用いていない)

0.1

1×101

1×10²

1×1022

1×10²

1×10²

Se

1×101

1×10²

smic Moment (N-m)

1×1022

Seismic Moment (N-m)

Figure 2. Regression results of the source-scaling relations of this study. In all cases (a–g), we show the relation between seismic moment versus the following: (a) rupture area, (b) average slip, (c) combined area of asperities, (d) area of largest asperity, (e) hypocentral distance to center of closest asperity, (f) hypocentral distance to center of largest asperity, and (g) overall slip duration. In all cases, filled circles indicate the events, black continuous lines are the results of this study (unconstrained), gray lines are the fit when self-similar scaling is assumed, and dashed lines are the $\pm 95\%$ confidence intervals for the mean when self-similar scaling is assumed.

図2.2.2-12 Ramirez-Gaytan et al. (2014) が求めたメキシコの沈み込み帯の地震の断層パラメ ータの相似則 (灰色の線は自己相似則を仮定したとき)

Figure 3. Comparison of scaling relations of this study with existing relations. In all cases (a-g) we show the relation between seismic moments versus the following: (a) rupture area, (b) average slip, (c) combined area of asperities, (d) area of largest asperity, (e) hypocentral distance to center of closest asperity, (f) hypocentral distance to center of largest asperity, and (g) overall slip duration. In all cases, gray lines are the results of this study, dotted lines are from Somerville *et al.* (2002), dashed-dotted lines are from Murotani *et al.* (2008), and dotted lines are from Strasser *et al.* (2010).

図2.2.2-13 Ramirez-Gaytan *et al.* (2014) が求めた断層パラメータの自己相似則と既往の研究 者による自己相似則との比較

(8) 室谷・他 (2014)

室谷・他 (2014) は、津波波形データから不均質すべり分布が得られている2011年東北地 方太平洋沖、2010年チリ地震、2004年スマトラ地震、1964年アラスカ地震、1960年チリ地震、 1957年アリューシャン地震、1952年カムチャツカ地震の7つのM9クラスの巨大地震と日本周 辺の10個の大地震を用いて、M9クラス地震の津波予測のための地震モーメント(*M*₀)、断層 面積(*S*)、平均すべり量(*D*)、アスペリティ面積(*S*_a)、アスペリティの平均すべり量(*D*_a)に関す る相似則の検討を行った。

図2.2.2-14に、室谷・他 (2014) がプレート間地震の断層パラメータの相似則の検討に用いた地震のうちM9クラスの地震の位置を示す。

室谷・他 (2014) は、断層面積を各地震の小断層のすべり量が0 m以上の領域の合計と定 義し、平均すべり量と地震モーメントを再計算した。また、破壊領域全体の平均すべり量の 1.5倍以上すべった小断層の合計をアスペリティ領域とした。表2.2.2-7に、このようにして 求めたプレート間地震の断層パラメータを示す。

図2.2.2-15に、室谷・他(2014) が求めたプレート間地震の断層パラメータの相似則を示す。 地震モーメントと破壊領域の関係は、

 $S = 1.34 \times 10^{-10} M_0^{2/3}, SD(\pm\sigma) = 1.54$ (2.2.2-31)

である。この関係式は、Murotani et al. (2008) で得られた係数1.48×10⁻¹⁰、標準偏差(SD) 1.61 とほぼ同じ結果が得られた。また、地震モーメントと平均すべり量の関係は、

 $D = 1.66 \times 10^{-7} M_0^{1/3}$, $SD(\pm\sigma) = 1.64$ (2.2.2-32) である。こちらもMurotani *et al.* (2008) で得られた係数1.48×10⁻⁷、標準偏差1.72とほぼ同じ 結果が得られた。地震モーメントとアスペリティ領域の関係は、

$$S_a = 2.81 \times 10^{-11} M_0^{2/3}, \quad SD(\pm\sigma) = 1.72$$
 (2.2.2-33)

である。こちらもMurotani *et al.* (2008) で得られた係数2.89×10-11、標準偏差1.78とほぼ同じ 結果が得られた。破壊領域とアスペリティ領域の関係は、

$$S_a / S = 0.2, \quad SD(\pm\sigma) = 1.41$$
 (2.2.2-34)

である。こちらはMurotani et al. (2008) で得られた結果と同じであった。アスペリティ領域 での平均すべり量と破壊領域での平均すべり量の関係は、

$$D_a = 2.2 \times D \tag{2.2.2-35}$$

となり、この係数2.2はMurotani et al. (2008) で得られた値と同じであった。

得られた*M*₀-*S*、*M*₀-*D*、*M*₀-*S*_a、*S*-*S*_a、*D*-*D*_aの関係は、日本周辺のM8クラスの大地震から得

2.2.2-16

られたMurotani *et al.* (2008) の結果とほぼ同じであった。海溝型地震では、地震の規模によらずに、同じスケーリング則が適用できることを示している。

図2.2.2-14 室谷・他 (2014) がプレート間地震の断層パラメータの相似則の検討に用いた 地震のうちM9クラスの地震の位置

表2.2.2-7 室谷・他 (2014) が求めたプレート間地震の断層パラメータ

	interes i service i s	13 11110 211	1012002 17			H		
地震 (データ ^a)	面積 ^b	S°	M_0^{c}	$M_{\rm w}{}^{\rm c}$	D°	S_a^c	$D_{\rm a}^{\rm c}$	引用文献
	km ²	km ²	10 ²² Nm		m	10^3 km ²	m	
2011 年東北(T)	110,000	92,500	3.9	9.0	10.6	25	24.3	7)
2010 年チリ(T,G)	90,000	62,500	1.7	8.8	5.4	10	14.2	8)
2004 年スマトラ(T)	220,000	160,000	6.0	9.1	7.5	40	18.6	9)
1964 年アラスカ(T,G)	184,160	164,160	6.5	9.1	9.9	46	20.0	10)
1960 年チリ(T,G)	135,000	135,000	7.2	9.2	10.6	40	22.8	8)
1957 年アリューシャン(T)	172,000	93,750	1.2	8.6	3.1	30	5.9	11)
1952 年カムチャツカ(T)	120,000	70,000	1.5	8.7	5.5	20	11.2	12)

表1:巨大地震のすべり分布から本研究の手法で得られた断層パラメータ

[◦]T:津波データ,G:測地データ;[◦]原論文;[◦]本研究で定義した破壊領域、地震モーメント、マグニチュ ード、平均すべり量、アスペリティ領域、アスペリティ領域の平均すべり量

図2.2.2-15 室谷・他 (2014) が求めたプレート間地震の断層パラメータの相似則

図5 本研究と既往研究で得られた地震モーメントと破壊領域の関係の比較

図2.2.2-16 室谷・他 (2014) による地震モーメントと断層の面積との関係式と既往式との比較

(9) Skarlatoudis et al. (2016)

表 2.2.2-8 に、Skarlatoudis *et al.* (2016) が断層パラメータの相似則の検討に用いたプレート間地震を、図 2.2.2-17 に、これらの地震の震央位置を示す。モーメントマグニチュード *M*_W は 6.75 から 9.1 である。

図2.2.2-18には、Skarlatoudis et al. (2016) が求めたプレート間地震の地震モーメントと断 層面積との関係および地震モーメントとアスペリティの総面積との関係を、図2.2.2-19には、 Skarlatoudis et al. (2016) が求めたプレート間地震の地震モーメントと平均すべり量との関 係および地震モーメントと最大すべり量との関係を、図2.2.2-20には、Skarlatoudis et al. (2016)が求めたプレート間地震の断層面積とアスペリティの総面積との関係を、図2.2.2-21 には、地震モーメントと断層幅との関係を示す。これらの図には、Tajima et al. (2013) を参 考にして、あるマグニチュードを超えると断層幅が一定となる線も入れられている。

Skarlatoudis *et al.* (2016) は、断層幅に上限があることに対して、確定的なことはいえないが、多分200km程度の上限が存在するであろうと述べている。ただし、この上限値は沈み込み帯ごとに変わる可能性があるとも述べている。

表2.2.2-8 Skarlatoudis *et al.* (2016) が断層パラメータの相似則の検討に用いたプレート間 地震

		Date	Seismic Moment									
	Region	(yyyy/mm/dd)	(N·m)	м	5 (km²)	S_a (km ²)	D (m)	D_{α} (m)	W (km)	Kc_x (km ⁻¹)	Kc_y (km ⁻¹)	References
1	Hyuga-nada, Japan	1996/12/02	$1.50 \times 10^{+19}$	6.72	179	154	0.42	0.92		_	_	Yagi et al. (1999)
2	Peru	1974/11/09	$5.40 \times 10^{+19}$	7.09	3000	600	0.54	1.16	50	_	_	Somerville et al. (2002)
3	Playa Azul ^a	1981/10/25	$7.14 \times 10^{+19}$	7.17	2700	400	0.74	2.37	60	0.010560	0.010310	Somerville et al. (2002)
4	Zihuatanejo ⁿ	1985/09/21	$1.35 \times 10^{+20}$	7.35	3150	1350	1.02	1.54	60	0.005160	0.005100	Somerville et al. (2002)
5	Near coast of Guerrero, Mexico*	2012/03/03	$1.41 \times 10^{+20}$	7.37	4125	1050	0.41	0.20	100	0.010690	0.010430	Wei (Caltech, Oaxaca 2012)
6	Honshu, Japan	2005/08/16	$2.00 \times 10^{+20}$	7.47	3584	960	0.15	0.70	72			Shao and Ji (UCSB, Honshu 2005)
7	Colima, Mexico*	2003/01/22	$2.30 \times 10^{+20}$	7.51	5950	1350	0.61	1.30	85	0.011000	0.010400	Yagi et al. (2004)
8	Hyuga-nada, Japan	1968/04/01	$2.50 \times 10^{+20}$	7.53	1377	1053	1.32	2.90		_	_	Yagi et al. (1998)
9	Costa Rica*	2012/09/05	$2.54 \times 10^{+20}$	7.54	18,000	3520	0.29	0.95	120	0.007085	0.005098	Hayes (NEIC, Costa Rica 2012)
10	East of Sulangan, Philippines®	2012/08/31	$2.72 \times 10^{+29}$	7.56	4608	1440	0.42	1.90	90	0.006147	0.005599	Hayes (USGS, Philippines 2012)
11	Papua*	2009/01/03	$2.82 \times 10^{+29}$	7.57	11,520	1680	0.59	2.00	96	0.008140	0.006630	Hayes (NEIC, Papua 2009)
12	Vanuatu*	2009/10/07	$2.82 \times 10^{+29}$	7.57	4200	1680	0.87	2.05	60	0.010070	0.006136	Sladen (Caltech, Vanuatu 2009)
13	Fiordland, New Zealand*	2009/07/15	$2.82 \times 10^{+20}$	7.57	10,752	2560	0.63	2.60	96	0.008290	0.006740	Hayes (NEIC, New Zealand 2009)
14	Nihonkai-chubu, Japan	1983/05/26	$3.00 \times 10^{+20}$	7.58	2700	_	3.17	_			_	Fukuyama and Irikura (1986)
15	Hokkaido-Nansei*	1993/11/12	$3.40 \times 10^{+29}$	7.62	14,000	2300	0.64	1.64	70	0.008071	0.004121	Mendoza and Fukuyama (1996)
16	Tocopilla, Chile*	2007/11/14	$3.98 \times 10^{+29}$	7.67	18,954	7695	0.88	1.75	126	0.005000	0.002400	Sladen (Caltech, Tocopilla 2007)
17	Sanrikuki, Japan*	1994/12/28	$3.99 \times 10^{+20}$	7.67	15,400	2600	0.71	1.95	140	0.007000	0.003261	Nagai et al. (2001)
18	Masset, Canada [®]	2012/10/28	$4.27 \times 10^{+20}$	7.69	4800	1440	1.57	4.80	60	0.015029	0.004176	Shao and Ji (UCSB, Masset 2012)
19	Sanriku-haruka-Oki, Japan	1994/12/28	$4.40 \times 10^{+20}$	7.70	2800	2800	0.71	1.93	_	_	_	Nagai et al. (2001)
20	Kanto, Japan ^a	1923/09/01	$7.60 \times 10^{+20}$	7.85	2340	2210	2.54	5.60	_	0.008057	0.005088	Wald and Somerville (1995)
21	Pagai, Indonesia*	2007/09/12	$7.94 \times 10^{+20}$	7.87	21,875	6500	0.55	1.47	90	0.006500	0.004000	Ji and Zeng (Pagai 2007)
22	Colima, Mexico*	1995/10/09	$9.67 \times 10^{+29}$	7.92	17,000	2800	1.18	2.80	100	0.007164	0.003320	Mendoza and Hartzell (1999)
23	Pisco, Peru*	2007/08/15	$1.12 \times 10^{+21}$	7.97	20,736	5508	1.63	3.80	108	0.006670	0.005190	Ji and Zeng (Peru 2007)
24	Samoa*	2009/09/29	$1.12 \times 10^{+21}$	7.97	7243	1983	3.33	8.98	49	0.010369	0.005690	Hayes (NEIC, Samoa 2009)
25	Michoacan, Mexico*	1985/09/19	$1.15 \times 10^{+21}$	7.97	25,020	5004	1.40	2.95	139	0.004800	0.003900	Mendoza and Hartzell (1989)
26	Peru	1974/10/03	$1.20 \times 10^{+21}$	7.99	28,000	6066	1.30	2.19	112	_	_	Somerville et al. (2002)
27	Nazca ridge, Peru*	1996/11/12	$1.38 \times 10^{+21}$	8.03	36,000	9072	0.77	1.53	120	0.004300	0.003300	Spence et al. (1999)
28	Solomon Islands	2007/04/01	$1.58 \times 10^{+21}$	8.07	21,600	6600	1.47	2.70	80			Ji (UCSB, Solomon Islands 2007)
29	Tokachi-Oki, Japan*	2003/09/25	$1.92 \times 10^{+21}$	8.12	22,100	5600	1.46	3.15	170	0.004694	0.004377	Yagi (2004)
30	Central Chile*	1985/03/03	$1.96 \times 10^{+21}$	8.13	34,425	9675	1.92	1.75	165	0.004100	0.003300	Mendoza et al. (1994)
31	Tonankai, Japan*	1944/12/07	$2.40 \times 10^{+21}$	8.19	4000	4800	1.05	1.78		0.003300	0.002800	Ichinose et al. (2003)
32	Kuril Islands [#]	2006/11/15	$3.16 \times 10^{+21}$	8.27	35,750	10,000	1.69	5.10	138	0.005216	0.001898	Ji (UCSB, Kuril 2006)
33	Tokachi-Oki, Japan	1968/05/16	$3.50 \times 10^{+21}$	8.30	6800	5600	2.31	5.49	_		_	Nagai et al. (2001)
34	Arequipa*	2001/06/23	$3.70 \times 10^{+21}$	8.31	80,000	20,800	1.22	2.48	200	0.002770	0.001860	Somerville et al. (2003)
35	Nankai, Japan	1946/12/21	$3.90 \times 10^{+21}$	8.33	52,650	_	1.98	_	_	_	_	Tanioka and Satake (2001)
36	Benkulu, Indonesia*	2007/09/12	$4.47 \times 10^{+21}$	8.37	73,140	28,331	0.90	1.85	160	0.003772	0.002229	Ji (UCSB, Benkulu 2007)
37	Sumatra*	2005/03/28	$1.17 \times 10^{+22}$	8.65	86,400	27,200	2.56	5.45	260	0.002895	0.002280	Shao and Ji (UCSB, Sumatra 2005)
38	Aleutian	1957/03/09	$1.20 \times 10^{+22}$	8.65	93,750	30,000	3.10	_	_	_	_	Johnson et al. (1994)
39	Kamchatka	1952/11/04	$1.50 \times 10^{+22}$	8.72	70,000	20,000	5.50	_	_	_	_	Johnson and Satake (1999)
40	Maule, Chile*	2010/02/27	$1.55 \times 10^{+22}$	8.73	115,000	31,875	4.13	9.00	200	0.003232	0.002274	Lorito et al. (2011)
41	Tohoku-Oki, Japan*	2011/03/11	$4.20 \times 10^{+22}$	9.02	81,000	18,900	10.51	22.97	180	0.002402	0.003285	Yokota et al. (2011)
42	Alaska ^o	1964/03/27	$5.52 \times 10^{+22}$	9.09	225,000	30,000	4.00	11.30	265.6	0.003010	0.002441	Ichinose et al. (2007)
43	Sumatra, Indonesia®	2004/12/26	$6.50 \times 10^{+22}$	9.14	265,237	27,571	3.90	6.70	193	0.002401	0.001900	Ammon et al. (2005)
44	Chile	1960/05/22	$7.20 \times 10^{+22}$	9.17	135,000	40,000	10.60	_	_	_	_	Fujii and Satake (2013)

Table 1 Earthquakes Used for Source Characterization in Present Study

USGS, U.S. Geological Survey; UCSB, University of California, Santa Barbara; NEIC, National Earthquake Information Center. *Events used in the corner wavenumber analysis.

Figure 1. Locations of the earthquakes listed in Table 1.

図2.2.2-17 Skarlatoudis et al. (2016) が断層パラメータの相似則の検討に用いた震央位置

Figure 2. Scaling of the rupture area and the combined area of asperities area with seismic moment, plotted together with data from various studies: (Sea2002, Somerville *et al.*, 2002; Mea2013, Murotani *et al.*, 2013; and Mea2008, Murotani *et al.*, 2008). The shaded area indicates the ± 1 standard deviation limits. The color version of this figure is available only in the electronic edition.

図2.2.2-18 Skarlatoudis et al. (2016) が求めたプレート間地震の地震モーメントと断層面積 との関係および地震モーメントとアスペリティの総面積との関係

Figure 3. Scaling of average and maximum slip with seismic moment, plotted together with data from various studies; symbols are the same as in Figure 2. The shaded area indicates the ± 1 standard deviation limits. The color version of this figure is available only in the electronic edition.

図2.2.2-19 Skarlatoudis et al. (2016) が求めたプレート間地震の地震モーメントと平均すべり量との関係および地震モーメントと最大すべり量との関係

Figure 4. Relationship between combined area of asperities and rupture area; symbols are the same as in Figure 3. The color version of this figure is available only in the electronic edition.

図2.2.2-20 Skarlatoudis et al. (2016) が求めたプレート間地震の断層面積とアスペリティの 総面積との関係

Figure 9. Scaling relation of fault width with respect to seismic moment. Symbols are the same as in Figure 2. The dashed line corresponds to the bilinear model used in the regressions (model number 2 in figure legend). The shaded area indicates the ± 1 standard deviation limits of the linear model. The color version of this figure is available only in the electronic edition.

図2.2.2-21 Skarlatoudis et al. (2016) が求めたプレート間地震の地震モーメントと断層幅との関係

(10) Allen *et al.* (2017)

Allen et al. (2017) は、モーメントマグニチュードが7.1~9.5のプレート間地震の断層モデルから、断層面積、断層長さ、断層幅、最大すべり量、および平均すべり量の各量とモーメントマグニチュードとの関係を求めた。

図2.2.2-22には、検討に用いた世界の地震の震央位置と断層タイプ (プレート間地震、ス ラブ内地震、アウターライズ地震)を示す。

また、図2.2.2-23にはAllen *et al.* (2017) が求めた世界のプレート間地震のモーメントマグ ニチュードと断層長さとの関係、モーメントマグニチュードと断層幅との関係、モーメント マグニチュードと破壊面積との関係、モーメントマグニチュードと最大すべり量との関係、 モーメントマグニチュードと平均すべり量との関係、断層長さと幅との関係を示す。表2.2.2-9には、これらの相似則の回帰係数を示す。相似則は、断層長さと幅とすべり量が比例する 第一ステージの場合と、断層幅が200 kmで飽和し、断層長さとすべり量が比例する第二ステ ージの場合が示されている。

図2.2.2-22 Allen *et al.* (2017) が断層パラメータの相似則の検討に用いた世界の地震の震央 位置と断層タイプ

Figure 3. Orthogonal regressions for subduction interface rupture parameters from the present study (AH17). Relationships are shown between earthquake magnitude M_w and (a) rupture length L, (b) rupture width W, (c) rupture area S, (d) maximum slip D_{max} , and (e) average slip D_{av} , where appropriate, both linear (dashed) and bilinear (solid) fault-scaling relations are provided for width and area scaling. (f) The W-L relationship for interface earthquakes is also shown together with 1:1 L-W scaling (dashed line). The regressions were performed using interface and other interface data classes, and the coefficients for these relationships are given in Table 2. Although not used in the regressions, data points for intraslab, outer-rise, and offshore strike-slip events are also shown. Where applicable, the AH17 scaling relationships are compared with other published models, including Wells and Coppersmith (1994; WC94) (a-c) reverse-slip and (d,e) all rupture types; Blaser *et al.* (2010; Bea10) reverse-slip; Leonard (2010; L10) dip-slip; Strasser et al. (2010; Sea10) interface; Murotani et al. (2013; Mea13); and Skarlatoudis et al. (2016; Sea16) (b) non-self-similar for W and self-similar otherwise.

- 図2.2.2-23 Allen et al. (2017) が求めた世界のプレート間地震のモーメントマグニチュード と断層長さとの関係、モーメントマグニチュードと断層幅との関係、モーメント マグニチュードと断層面積との関係、モーメントマグニチュードと最大すべり 量との関係、モーメントマグニチュードと平均すべり量との関係、断層長さと幅 との関係
- 表2.2.2-9 Allen et al. (2017) が求めた世界のプレート間地震の断層パラメータの相似則の 回帰係数

Function	Α	b	σ_{χ}^{*}	σ_y^*	Condition [†]		
$\log L = a + b \times M_{\rm w} (\rm km)$	-2.90	0.63	0.182	0.289	-		
$\log W_1 = a + b \times M_w \text{ (km)}$	-0.86	0.35	0.142	0.405	-		
$\log W_2 = a + b \times M_w \text{ (km)}$	-1.91	0.48	0.137	0.294	$M_{\rm w} \le 8.67$ and $W_2 \le 196$		
	2.29	0.00			$M_{\rm w} > 8.67$		
$\log S_1 = a + b \times M_{\rm w}(\rm km^2)$	-3.63	0.96	0.255	0.266	-		
$\log S_2 = a + b \times M_{\rm w}(\rm km^2)$	-5.62	1.22	0.256	0.267	$M_{\rm w} \leq 8.63$ and $S_2 \leq 74,000$		
	2.23	0.31			$M_{\rm w} > 8.63$ and 74,000 < $S_2 \le 137,000$		
$\log D_{\max} = a + b \times M_{\mathrm{w}} \ \mathrm{(m)}$	-4.94	0.71	0.179	0.254	_		
$\log D_{\rm av} = a + b \times M_{\rm w}$ (m)	-5.05	0.66	0.209	0.315	-		
$\log W = a + b \times \log L \ (\mathrm{km})$	0.39	0.74	0.156	0.098	$W \leq 196$ or $L \leq 369$		
	2.29	0.00			L > 369		

 Table 2

 Interface-Rupture-Scaling Coefficients Determined from Orthogonal Regression

All logarithms are to base 10.

 $*\sigma_x$ and σ_y refer to the standard deviation of the variables on the left and right side of the equation from the orthogonal regression, respectively. Standard deviations for rupture geometries are in \log_{10} units, whereas magnitudes are linear.

[†]All interface relationships are valid from $7.1 \le M_w \le 9.5$.

本項では、昨年度および今年度に調査した、国内外のプレート間地震の断層パラメータ、 特に断層長さ、断層幅、断層面積および短周期レベルの地域性について調べるために、調 査対象とした地震の地域分けを行った(図 2.2.3-1)。その際、原子力規制庁(2015)による地 域区分を参照とした。具体的には、下記の26区分に分類し、地域区分が不明な地震は、地 域性の分析対象から除いた。

- 1. Sumatra
- 2. Java
- 3. Banda Sea
- 4. New Zealand
- 5. Kermadec
- 6. Tonga
- 7. Vanuatu
- 8. Solomon Islands
- 9. Philippine
- 10. Marianas
- 11. Izu Bonin
- 12. N.E.Japan (太平洋プレート)
- 13. Kuriles
- 14. Kamchatka
- 15. Aleutians
- 16. Alaska
- 17: Cascadia
- 18. Central America
- 19. Caribbean
- 20. Colombia
- 21. Peru
- 22. Central Chile

- 23. So. Chile
- 24. Scotia
- 25. Ryukyus
- 26. S.W.Japan (フィリピン海プレート)

2.2.3-3

本検討で対象とした、国内のプレート間地震の震源位置を図2.2.3-2に、断層パラメータ の調査結果を表2.2.3-1に示し、国外のプレート間地震の震源位置を図2.2.3-3に、断層パラ メータの調査結果を表2.2.3-2に示す。ここでは、主に昨年度に調査した、国内外のプレー ト間地震の断層パラメータの分析に用いたデータをベースとし、今年度調査した地震やデ ータを新たに追加した。

対象とした調査項目を下記に示す。

- ·地域区分
- ・地震名、発生日
- ・震源位置
- ・モーメントマグニチュード
- ・地震モーメント
- 断層長さ
- 断層幅
- ·断層面積
- ·平均応力降下量
- ・短周期レベル
- ・アスペリティの応力降下量、アスペリティの面積
- ・コーナー振動数
- •*S* 波速度

図2.2.3-2 調査対象とした国内のプレート間地震

(★印:太平洋プレートの地震、▲印:フィリピン海プレートの地震)

図2.2.3-3 調査対象とした海外のプレート間地震 2.2.3-6

表 2.2.3-1 国内のプレート間地震の断層パラメータの調査結果

地域番号	地域名	地震番号	地震名	発生日		震源位置		モーメント マグニ チュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	平均 応力 降下量	短周期レベ ル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コー ナー 振動数	アスペリ ティの 応力降 下量	アスペリ ティの 面積	アスペリ ティの 面積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M0から 求めた)	M ₀ (Nm)	L (km)	W (km)	S (km ²)	$\Delta\sigma~({\rm MPa})$	A (N·m/s ²)	A (N·m/s ²)	f _c (Hz)	$\Delta \sigma_a$ (MPa)	S_a (km ²)	<i>S</i> _a /S		
	太平洋 (N.E.JAPAN)	1	文久の地震	1861/10/21	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	神田·武村 (2005)	 霊度インバージョンで最適Mと短周 期波源域(エネル ギー値が平均の10 倍以上を示す区 域)を推定 豊適M7.6 ・短周期波源域 (O)の読取り数26 (O1つを10km× 10kmとすると 2600km2)
	太平洋 (N.E.JAPAN)	2	三陸沖	1896/6/15	39.5	144.0	*	*	2.62.E+21	*	*	*	*	*	*	*	*	*	*	宇津 (1994)	 Mw=8.2 Moは余震の総数 から算定する式を 用いた
	太平洋 (N.E.JAPAN)	3	宮城県沖	1897/2/20	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	神田·武村 (2005)	 (表長セクハーンランで最適Mと短周期波源域(エネル ギー値が平均の10 信以上を示す区域を推定・最適M7.3 ・最適M7.3 ・短周期波源域(Figl4(c)点線M (O)の読取り数21 (O1つを10km× 10kmとすると 2100km2)
	太平洋 (N.E.JAPAN)	4	宮城県沖	1897/8/5	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	神田•武村 (2005)	 ・
12	太平洋 (N.E.JAPAN)	5	宫城県沖	1898/4/23	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	神田•武村 (2005)	 ・ 震度インパージョンで最適Mと短周 期波源域(エネル) ギー値が均の10 倍以上を示す区 域)を推定 ・ 短周期波源域 (C)の法取り数16 (O)つを10km× 10kmとすると 10kmとすると 10kmとすると 10kmとすると 10kmとすると
	太平洋 (N.E.JAPAN)	6	宮城県沖	1898/4/24	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	神田•武村 (2006)	 濃度インバージョンで最適Mと短周期波源域(エネル ギー値が平均の10 倍以上を示す区域)を推定 ・透周期波源域 ・透周期波源域 ・返周期波源域 (O1つを10km× 10kmとすると 1600km3)
	太平洋 (N.E.JAPAN)	7	宮城県沖	1933/6/19	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Umino et al. (2006)	M=7.1
	太平洋 (NEJAPAN)	8	宫城県沖	1936/11/3	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	武村·神田 (2006)	 神田・武村(2005) の震度インバー の震度インバー フォ結果から短 周期波域(短周期) 地震波エネルギー の50%以上が発生 した領域)を推定 金周期波域 ・短周期波域 (〇日1つを10km マ10kmとすると 2500km2)
	太平洋 (N.E.JAPAN)	9	宫城県沖	1937/7/27	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	神田•武村 (2005)	 ・ 震度インバージョンで最適Mと短周 期変源域(エネル ギー値が平均の10 信以上を示す区 域)を推定 ・ 透圖期波源域(「Fig13(G)高線内 〇)の読取り数19 (〇1つを10km× 10kmとすると 1900km2)

表 2.2.3-1 国内のプレート間地震の断層パラメータの調査結果(つづき) (赤字:作図で使用した値、青文字:今年度業務で新たに追加したデータ)

地域番号	地域名	地震	地震名	発生日		震源位置	t	モーメント マグニ チュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	平均 応力 降下量	短周期レベ ル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コー ナー 振動数	アスペリ ティの 応力降 下量	アスペリ ティの 面積	アスペリ ティの 面積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M0から 求めた)	M ₀ (Nm)	L (km)	W (km)	S (km ²)	$\Delta\sigma$ (MPa)	$A (N \cdot m/s^2)$	A (N·m/s ²)	f _c (Hz)	$\Delta \sigma_a$ (MPa)	<i>S</i> _{<i>a</i>} (km ²)	<i>S _a /S</i>		
	太平洋 (N.E.JAPAN)	10	塩屋崎沖 (福島県沖)	1938/5/23	36.6	141.3	0	7.5	2.50.E+20	*	*	3540	*	*	9.9E+19 (背景領域 含む)	*	37	687 (312, 167, 208)	*	池田 • 他 (2008)	 ・通竹・他(2006)の 辺形イン/(-ジョン 就形ナン/(-ジョン) 就形ナス)量が ・平均すスり量が の125億となる領 している・ アススリティの面 相ば「全体(アスペ) ・アススリティの面 相ば「全体(アスペ) ・アススリティの面 和ないから、 ・ す書意識を含む 各領要のパラメー ・ 学書意識を含む 各領要のパラメー タと要素を総定のバラメー タとのまた をので 、 の たの」 ・ 常書意識を含む 各領要のから スペリティレいる・ * 書意識を含む 名領要のたか の 、 の と の たの 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、
	太平洋 (NEJAPAN)	11	塩夏崎沖 (福島県沖)	1938/11/5 17:43	36.9	141.9	43	7.6	3.70.E+20	*	*	5100	*	*	8.1E+19 (背景領域 含む)	*	22	1380 (900, 480)	*	池田 · 他 (2008)	・値竹・他(2008)の 波形インパージョン 脳界を等性化して いる ・平均すべり量が の1.25倍となる領 埋をアスペリティの している ・アスペリティの面 積は「全体(アスペ リティ1.2)で表示 「そんで「気」地点 でする ・「言葉領域のからか ・「背景領域のからが再 現てきない) ボーク 、「音ない) が の が の が の に の い る ・ で 数 に の い う 、 の た の い う 、 の た の で 、 の 計 の ま の た の で 、 の に の で 、 で の で している ・ っ た の で 、 す る ー に で い て 、 してい う で 、 で 、 で 、 で 、 で の 二 で 、 で 、 の た の で 、 で 、 の い う 、 、 に 、 の た の で 、 、 の た の で 、 の た の た の で 、 の 、 う た してい の た の た で 、 の た の た の に の い つ た の た の た の た の で の 、 の 、 う た の た の で の 、 う た の た の 、 の い う 、 の た の た の 、 う た の う た の 、 の 、 の う た の う ん の う た の の う が 、 う の 、 う た の う ん の う の 、 の う の 、 う の う ん の う の 、 う の う た の つ の つ の う の つ の う ん い う の う の つ の う し い う ろ い う
12	太平洋 (N.E.JAPAN)	12	十勝沖	1952/3/4	*	*	*	8.1	1.70.E+21	*	*	19000	*	*	*	*	*	*	*	Kanamoriand Anderson (1975)	Ms=8.3
	太平洋 (N.E.JAPAN)	13	十勝沖	1968/5/16	40.7	143.6	0	*	2.80.E+21	*	*	15000	*	*	*	*	*	*	*	加藤·他 (1999)	 ・M0はKanamori (1971) ・平均すべり量4.1m (面積とすべり量は 断層パラメターハン ドブックを引用)
	太平洋 (N.E.JAPAN)	同上	同上	1968/5/16	40.7	143.6	0	8.2	2.80.E+21	270	130	35100	*	*	*	*	*	*	*	武村·他 (2008)	・断層規模は永井 他(2001) ・M0-S図のM0は、 Kanamori and Anderson (1975)を 用いた
	太平洋 (N.E.JAPAN)	同上	同上	1968/5/16	*	*	*	*	2.80.E+21	*	*	15000	*	*	*	*	*	*	*	Kanamoriand Anderson (1975)	Ms=8
	太平洋 (N.E.JAPAN)	同上	同上	1968/5/16	*	*	*	*	3.50.E+21	*	*	6800	*	*	*	*	*	5600	*	Skarlatoudis et al. (2016)	M=8.30
	太平洋 (N.E.JAPAN)	14	北海道東方 沖	1969/8/12	42.7	147.6	20	*	1.50.E+21	*	*	*	2.9	*	*	*	*	*	*	森川・笹谷 (2000)	・lable1。 ・深さとMOは Kikuchi and Fukao(1987)、⊿σ はAbe(1973)によ る。
	太平洋 (N.E.JAPAN)	15	Nemuro-Oki	1973/6/16	*	*	*	7.8	6.70.E+20	*	*	6000	*	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=7.7
	太平洋 (N.E.JAPAN)	16	宮城県沖	1978/6/12	38.2	142.2	40	*	3.37.E+20	*	*	*	*	*	*	*	*	*	*	加藤・他 (1999)	・M0はハーバード 大学のCMT解
	太平洋 (N.E.JAPAN)	17	福島県沖	1982/7/23	36.2	142.0	30	7.0	3.92.E+19	*	*	*	41.9	6.15E+19	*	*	*	*	*	加藤·他 (1998)	 Aは加速度観測スペクトルから推定
	太平洋 (N.E.JAPAN)	18	明治三陸沖	1986/6/15	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Lay et a. (2011)	M~8.5; thrust fault;
	太平洋 (N.E.JAPAN)	19	北海道南西 沖	→日にち確 認	*	*	*	*	3.40.E+20	200	70	14000	*	*	*	*	*	2300	*	Skarlatoudis et al. (2016)	M=7.62
	太平洋 (N.E.JAPAN)	同上	同上	1993/07/12	*	*	*	7.6	3.40.E+20	200	70	14000	0.5	*	2.14.E+19	*	5.1	•	*	増・1世(2001), Mendoza et al(1993)), Seno(2014)	L, W, ⊿σ, ⊿σ asp→Seno(2014)

表 2.2.3-1 国内のプレート間地震の断層パラメータの調査結果(つづき) (赤字:作図で使用した値、青文字:今年度業務で新たに追加したデータ)

地域番号	地域名	地震番号	地震名	発生日		震源位置		モーメント マグニ チュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	平均 応力 降下量	短周期レベ ル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コー ナー 振動数	アスペリ ティの 応力降 下量	アスペリ ティの 面積	アスペリ ティの 面積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M0から 求めた)	M ₀ (Nm)	L (km)	W (km)	S (km ²)	Δσ (MPa)	$A (N \cdot m/s^2)$	A (N·m/s ²)	f _c (Hz)	Δσ _a (MPa)	S _a (km ²)	<i>S</i> _a /S		
	太平洋 (N.E.JAPAN)	20	三陸はるか 沖	1994/12/28	*	*	*	*	4.40.E+20	*	*	2800	*	*	*	*	*	2800	*	Skarlatoudis et al. (2016)	M=7.70
	太平洋 (N.E.JAPAN)	同上	同上	1994/12/28	40.5	143.5	26.0	7.7	4.89.E+20	71	71	5070	*	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.72、M0は GMTのデータを用 いた
	太平洋 (N.E.JAPAN)	同上	同上	1994/12/28	*	*	*	7.7	4.00.E+20	110	35	3850	4.5		9.83.E+19		43.5			佐藤(2010), Seno(2014)	L, W, ⊿σ, ⊿σ asp→Seno(2014)
	太平洋 (N.E.JAPAN)	同上	同上	1994/12/28	*	*	*	*	3.99.E+20	*	140	15400	*	*	*	*	*	2600	*	Skarlatoudis et al. (2016)	M=7.67
	太平洋 (N.E.JAPAN)	同上	同上	1994/12/28	40.4	143.7	0.0	*	*	110	140	15400	*	*	*	*	*	*	*	武村·他 (2008)	・断層規模は永井 他(2001)
	太平洋 (N.E.JAPAN)	21	宮城県沖	2003/5/26	38.8	141.7	72.0	*	*	*	*	*	*	*	*	*	*	*	*	神田•武村 (2005)	 震度インバージョンで最適体と超点 アで最適体と超点 開波源域(エネル ギー値が平均の10 倍以上を示す区 域)を推定 最適M7.1 ・最適M7.1 ・短周期源源域 (Fig740村き〇)の 総取り数22 (〇1つを10km× 10kmとすると 3200km2)
	太平洋 (N.E.JAPAN)	22	-	2003/9/25	*	*	*	8.1	1.92.E+21	130	170	22100	*	*	*	*	*	5600	*	Skarlatoudis et al. (2016)	M=8.12
	太平洋 (N.E.JAPAN)	同上	同上	同上	41.8	143.9	27.0	8.3	3.05.E+21	96	98	9390	*	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.24、M0は GMTのデータを用
	太平洋 (N.E.JAPAN)	23	十勝沖	2003/9/26 04:50	*	*	*	*	*	*	*	*	*	*	8.57E+19	*	*	*	*	田島・他 (2013)	・金 ・釜江・川辺 (2004) のEGFフォワードモ デリング SMGA総 面積1392km2 SMGAモーメント 3.51E+20Nm
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	*	*	*	*	*	*	*	*	1.15E+20	*	*	*	*	田島・他 (2013)	・纐纈・他 (2006)の EGFフォワードモデ リング SMGA総面 積1536km2 SMGA モーメント 3.95E+20Nm
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	*	*	*	*	*	*	*	*	6.50E+19	*	*	*	*	田島・他 (2013)	・Morikawa et al. (2006)のEGFフォ ワードモデリング SMGA総面積 800km2 SMGAモー メント2.06E+20Nm
12	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	42.33 (基準 点)	145.22 (基準 点)	0 (基準 点)	8.2	2.20.E+21	130	100	13000	25	*	*	*	*	*	*	中村・他 (2015)	 ・断層形状と位置 ・断層形状と位置 (は1552年十勝沖地 意の笠原(1975)モデルを参考 ・地震モーメントは Koketsu et al.(2004)のインバージョン結果を使用 ・走向220度、傾斜 20度 ・Vr=2.7km/s((中央) 防災会議)
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	*	*	2.90.E+21	*	94	22400	*	*	*	*	*	4800	0.14	田島·他 (2013)	 Honda et al. (2004) 遠地データ 使用 平均すべり 2.4m アスペリティ すべり4.6m W(は室 谷式の面積を平方 根して算定
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	*	*	2.20.E+21	*	150	12000	*	*	*	*	*	1700	0.13	田島·他 (2013)	 Koketsu et al. (2004) 強震データ 使用 平均すべり 3.1m アスペリティ すべり5.5m Wは室 谷式の面積を平方 根して算定
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	*	*	1.70.E+21	*	110	22100	*	*	*	*	*	4900	0.26	田島•他 (2013)	 Yagi (2004) 強震 データと測地データ 使用 平均すべり 1.5m アスペリティ すべり3.4m Wは室 谷式の面積を平方 根して算定
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	*	*	1.00.E+21	*	149	8800	*	*	*	*	*	3200	0.35	田島・他 (2013)	 Yamanaka and Kikuchi (2003) 強 震データと遠地 データ使用 平均す ベリ2.1m アスペリ ティすべり3.8m W は室谷式の面積を 平方根して算定
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	*	*	1.00.E+21	*	149	8800	*	*	*	*	*	3200	0.35	田島•他 (2013)	 Yamanaka and Kikuchi (2003) 強 震データと遠地 データ使用 平均す ベリ2.1m アスペリ ティすべり3.8m W は室谷式の面積を 平方根して算定
	太平洋 (N.E.JAPAN)	同上	同上	2003/9/26 04:50	*	*	45	*	2.20.E+21	70	120	8400	*	1.33.E+20	*	*	30.4	*	*	佐藤(2010a), Seno(2014)	L, W, ⊿σ, ⊿σ asp→Seno(2014)
	太平洋 (N.E.JAPAN)	24	十勝南東沖	2003/9/26 06:08	*	*	21.0	*	1.15.E+20	*	*	*	*	*	*	*	*	*	*	佐藤(2010a)	表1。

表 2.2.3-1 国内のプレート間地震の断層パラメータの調査結果(つづき)

 地域番号	地域名	地震番号	地震名	発生日		震源位置	t	モーメント マグニ チュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	平均 応力 降下量	短周期レベ ル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コー ナー 振動数	アスペリ ティの 応力降 下量	アスペリ ティの 面積	アスペリ ティの 面積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M0から 求めた)	M ₀ (Nm)	L (km)	W (km)	S (km ²)	⊿σ (MPa)	A (N·m/s ²)	A (N·m/s ²)	f _c (Hz)	$\Delta \sigma_a$ (MPa)	<i>S</i> _{<i>a</i>} (km ²)	S "/S		
	太平洋 (N.E.JAPAN)	25	釧路沖	2004/11/29	42.9	145.3	48.2	*	*	*	*	*	*	*	*	*	*	*	*	Suzuki and Iwata (2007)	Mw=7.0, interplate
	太平洋 (N.E.JAPAN)	26	宮城県沖	2005/8/16	*	*	*	7.5	2.00.E+20	50	72	3584	*	*	*	*	*	960	*	Skarlatoudis et al. (2016)	M=7.47
	太平洋 (N.E.JAPAN)	同上	同上	2005/8/16	38.2	142.3	42.0	*	*	*	*	*	*	*	*	*	17.6; 34.1	92.16;,5 1.84	*	Suzuki and Iwata (2007)	M(JMA)=7.2, between the subducting pacific plate and the North A.orican plate, interplate,カッコ内 (SMGA1,SMGA2)
	太平洋 (N.E.JAPAN)	同上	同上	2005/8/16	38.3	142.0	36.0	7.2	7.64.E+19	36	35	1250	*	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.18、M0は GMTのデータを用 いた
	太平洋 (N.E.JAPAN)	27	宮城県沖	2011/3/9	*	*	23	7.2	7.97.E+19	*	*	*	*	5.97E+19	*	*	*	*	*	佐藤(2012)	表1。スペクトルイ ンバージョン。
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/9	38.4	142.8	32.0	*	*	48	36	1740	*	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.32 ・M0は、佐藤(2012) で作図した
	太平洋 (NEJAPAN)	28	東北地方太平洋沖	2011/3/11	38.1	142.9	24	9.0	4.22.E+22	*	*	*	*	*	1.71E+20	*	20.4, 21.6, 15.7, 10.5, 23.1	40km × 40km, 50km × 50km, 21km × 21km, 28km × 28km, 30km ×	*	川辺・釜江 (2013)	100001 ・GOPを用したフォ フードモデリング、 アスペリティ欄に はSMGA1~ SMGA5の値を記入 *SMGA6の値を記入 *SMGA6の値を記入 *SMGA6の値のを記入 *SMGA6のMOの設 がして、JMAのCMT解 (4.22E22Nm)の 5% *少に28km/s *定周期しペル(論 SMGA*(ラメータから) 5第定 *MG1、道・他 (2013)でを照した
12	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	*	*	*	*	*	*	1.74E+20	*	*	*	*	田島・他 (2013)	*Kurahashi and Irikura (2013)の EGFフォワードモデ リング SMGA総面 積5628km2 SMGA モーメント 1.76E+21Nm
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	*	*	*	*	*	*	1.67E+20	*	*	*	*	田島·他 (2013)	・Asano and Iwata (2012)のEGFフォ ワードモデリング SMGA総面積 5042km2 SMGA モーメント 1.41E+21Nm
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	*	*	*	*	*	*	3.51E+20	*	*	*	*	田島・他 (2013)	・佐藤 (2012)の EGFフォワードモデ リング SMGA総面 積11475km2 SMGAモーメント 9.62E+21Nm
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	*	*	*	*	*	*	1.74E+20	*	*	*	*	田島·他 (2013)	・川辺・釜江 (2013) のEGFフォワードモ デリング SMGA総 面積6300km2 SMGAモーメント 2.06E+21Nm
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	4.81.E+22	*	187	85082	*	*	2.05E+20	*	*	19167	0.23	田島·他 (2013)	-Hypes (2011). Koketzu et al. (2011), Shao et al. (2011), Yagi and Kakahata (2011), Yagi and Dirabidi Ptishi Augusti (2011), Hiom アスペリ (2012), Hiom アスペリ (2012), Hioz - Sari (2012), Hioz - Sari (2012), Hioz - Sari (2012), Hioz - Sari (2012), Mioz - SMGA (30/m 2 SMGA)
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	(38.036, 37.863, 36.892, 36.937)	(141.72 9, 142.168 141.093 140.941	(48.0, 36.6, 50.9, 54.8)	*	*	*	*	*	*	*	3.51E+20 (2.03E+20, 2.64E+20, 9.90E+19, 4.95E+19)	*	(39.77, 25.85, 29.10, 20.57)	11475 (2025, 8100, 900, 450)	*	佐藤(2012)	 ・4つのSMGAモデル。 ・SMGAのパラメータは表2。 ・経験的グリーン関数法による推定。

表 2.2.3-1 国内のプレート間地震の断層パラメータの調査結果(つづき) (赤字:作図で使用した値、青文字:今年度業務で新たに追加したデータ)

地域 番号	地域名	地震	地震名	発生日		震源位置	1	モーメント マグニ チュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	平均 応力 降下量	短周期レベ ル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コー ナー 振動数	アスペリ ティの 応力降 下量	アスペリ ティの 面積	アスペリ ティの 面積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M0から 求めた)	M ₀ (Nm)	L (km)	W (km)	S (km ²)	Δσ (MPa)	A (N*m/s ²)	$A (N \cdot m/s^2)$	f _c (Hz)	$\Delta \sigma_a$ (MPa)	S _a (km ²)	\$ _a /\$		
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	39.0 (基準 点)	143.8 (基準 点)	5 (基準 点)	*	4.00.E+22	400	200	400 × 200	25	*	*	*	*	*	*	中村・他 (2015)	•走向200度,傾斜 15度 •Vr=2.5km/s
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	4.90.E+22	*	260	143000	*	*	*	*	*	32000	0.22	田島·他 (2013)	 ・Hayes (2011) 遠 地データ使用 平均 すべり6.2m アスペ リティすべり17.2m 最大すべり33.5m
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	3.80.E+22	*	150	72000	*	*	*	*	*	16200	0.23	田島・他 (2013)	・Koketsu et al. (2011) 強震データ と遠地データと測 地データと津波 データ使用 平均す ベリ10.0m アスペリ ティすべり22.5m 最 大すべり35.5m
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	5.75.E+22	*	180	67500	*	*	*	*	*	16500	0.24	田島・他 (2013)	 Shao et al. (2011) 遠地データ使用 平均すべり16.8m アスペリティすべり 41.3m 最大すべり 59.8m
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	5.70.E+22	*	180	79200	*	*	*	*	*	16800	0.21	田島・他 (2013)	 Yagi and Fukahata (2011) 遠地データ 使用 平均すべり 15.2m アスペリティ すべり35.1m 最大 すべり51.2m
12	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	4.20.E+22	*	180	81000	*	*	*	*	*	18000	0.22	田島・他 (2013)	 Yokota et al. (2011) 強震データ と遠地データと測 地データと津波 サータと津波 マータを便用 平均す べり10.0m アスペリ ティすべり24.6m 最 大すべり25.3m
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	38.3	142.4	24.4	*	*	369	176	45300	*	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=9.04
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	*	*	*	200 × 500	*	*	*	*	*	*	*	小山・都筑 (2014)	•Mw9.0
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	4.20.E+22	*	180	81000	*	*	*	*	*	18900	*	Skarlatoudis et al. (2016)	M=9.02
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	38.3	142.4	24.4	*	4.00.E+22	380	200	76000	*	*	*	*	*	*	*	Lay et al. (2011)	Mw=9.0; Dave=15.9m, Dmax=63m; 傾斜角 =10°
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	38.3	142.3	30以浅	*	3.90.E+22	300	150	*	*	*	*	*	*	*	*	Ammon et al. (2011)	plate boundary、 Mw=9.0, MOltW- phase inversionの 結果、moment rate function の結果 MO=3.6E+22、L& Wltslip大の範囲よ り、余震域では L=500km & W=200km
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	*	3.80.E+22	500	200	*	*	*	*	*	*	*	*	Fujii et al. (2011)津波	interplate earthquake、 Mw=9.0、剛性率= 5.0E+10 N/m2を仮 定
	太平洋 (N.E.JAPAN)	同上	同上	2011/3/11	*	*	*	9.0	4.22.E+22	500	200	100000	*	*	*	*	*	*	*	壇・他(2013)	
	太平洋 (N.E.JAPAN)	29	茨城県沖	2011/3/11	*	*	35	7.8	5.66.E+20	8	*	*	*	6.19E+19	*	*	*	*	*	佐藤(2012)	
	太平洋 (N.E.JAPAN)	30	岩手県沖	2011/3/11	*	*	35	7.4	1.40.E+20	7	*	*	*	3.35E+19	*	*	*	*	*	佐藤(2012)	表1。スペクトルイ ンバージョン。

表 2.2.3-1 国内のプレート間地震の断層パラメータの調査結果(つづき) (赤字:作図で使用した値、青文字:今年度業務で新たに追加したデータ)

地址番号	戌 号 地域名	地震	地震名	発生日		震源位置	1	モーメント マグニ チュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	平均 応力 降下量	短周期レベ ル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コー ナー 振動数	アスペリ ティの 応力降 下量	アスペリ ティの 面積	アスペリ ティの 面積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M0から 求めた)	M ₀ (Nm)	L (km)	W (km)	S (km ²)	Δσ (MPa)	$A (N \cdot m/s^2)$	A (N·m/s ²)	f _c (Hz)	$\Delta \sigma_a$ (MPa)	<i>S</i> _{<i>a</i>} (km ²)	<i>S</i> _{<i>a</i>} /S		
	フィリピン海 (S.W.JAPAN)	1	1703年元禄 地震	1703	*	*	*	*	*	*	*	*	*	*	2.57E+20 (SPGAの短 周期レベ ル)	*	*	4.5 × 4.5 6.4 × 6.4 7.4 × 7.4	*	野津(2014)	 震度分布を満足するSPGAモデルを するSPGAモデルを *Mw=8.2 ・アスペリティの欄 にはSPGAのパラ ×ータを記載する ・SPGAの短周期レ ペルレはMwとの経験 的関係式から算定
	フィリビン海 (SWJAPAN)	2	宝永地震	1707/10/28	*	*	*	8.8	1.80.E+22	*	*	59700	3.0	*	*	*	*	*	*	武村 · 神田 (2007)	・ 特征 (2004)の 置気果スから五した・ション 置気まったったション 気気また。 (1000)の 支払した場所)を拒 (1000)の またいな場所)を推 (1001)の にないないないないないないないない (1001)の にないないないないないないない (1001)の にないないないないないない (1001)の にないないないないない (1001)の にないないないないない (1001)の にないないないないない (1001)の にないないないないない (1001)の にないないないないない (1001)の (1002) (1002)
26	フィリピン海 (S.W.JAPAN)	3	安政東海地震	1854/12/23	*	*	*	8.4	4.55.E+21	*	*	23900	3.0	*	*	*	*	*	*	武村 - 神田 (2007)	・神田・他(2004)の 富度インバージョン 富度インバージョン 地域(新賀西上の平 地方な短周期波、 れルギーの2倍以上 を出した4冊所を推 を出した4冊所を推 をごし周期波域(Fucl 右中図大線内の 0)の読む少数 8+25+10+20 (0)の読む少数 8+25+10+20 (0)の読む少数 8+25+10+20 (0)の読む受き 2-300km2) 会講(2002)の値、 地震下量よ中央読災 地震下量よ中央読災 地震テージントは円 形を力型から算定し ト価
	フィリビン海 (S.W.JAPAN)	4	安政南海地震	1854/12/24	*	*	*	8.5	8.34.E+21	*	*	35800	3.0	*	*	*	*	*	*	武村 ·神田 (2007)	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	フィリピン海 (S.W.JAPAN)	5	関東地震	1923/9/1	*	*	*	7.9	1.00.E+21	130	70	9100	*	*	6.40E+19 (SMGA+背 景) 6.00E+19(S MGAのみ)	*	(14.5, 21.8)	1350 (600, 750)	0.148	佐藤(2016c)	 ・2つのSMGAと背 景領域のモデル。 ・SMGAのパラメー タはTable1。 ・統計的グリーン関 数法による震度の 推定。
	フィリピン海 (S.W.JAPAN)	同上	同上	1923/9/1	*	*	*	*	7.60.E+20	*	*	2340	*	*	*	*	*	2210	*	Skarlatoudis et al. (2016)	M=7.85
	フィリピン海 (S.W.JAPAN)	同上	同上	1923/9/1	34.92	139.89	*	*	*	93	53	4929	*	*	*	*	*	*	*	Kuroki et al. (2004)	M=7.9; fault parameters by Matsuura and Iwasaki (1983);
	フィリピン海 (S.W.JAPAN)	同上	同上	1923/9/1	*	*	*	*	8.50.E+20	*	*	6900	*	*	*	*	*	*	*	Kanamoriand Anderson (1975)	Ms=8.2
	フィリピン海 (S.W.JAPAN)	同上	同上	1923/9/1	35.4	139.2	14.6	*	1.10.E+21	130	70	9100	*	*	*	*	*	*	*	Kobayashi and Koketsu (2005)	interplate event、 Mw=8.0、M0は測地 学、遠地地震、強 震動のインパージョン 結果より

表 2.2.3-1 国内のプレート間地震の断層パラメータの調査結果(つづき) (赤字:作図で使用した値、青文字:今年度業務で新たに追加したデータ)

地域番号	地域名	地震 番号	地震名	発生日		震源位置	270	モーメント マグニ チュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	平均 応力 降下量	短周期レベ ル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コー ナー 振動数	アスペリ ティの 応力降 下量	アスペリ ティの 面積	アスペリ ティの 面積比	参考文献	備考
				年月日	禅 度 [N]	程 度 [E]	深 さ [km]	Mw (M0から 求めた)	M ₀ (Nm)	L (km)	W (km)	S (km ²)	$\Delta\sigma$ (MPa)	$A (N \cdot m/s^2)$	$A (N \cdot m/s^2)$	f _c (Hz)	$\Delta \sigma_a$ (MPa)	S _a (km ²)	<i>S</i> _a /S		
	フィリピン海 (S.W.JAPAN)	6	昭和東南海地震	1944/12/7	*	*	*	8.2	2.15.E+21	*	*	14500	3.0	•	•	*	*	*	*	武村•神田 (2007)	 神田・他(2004)の 雷度インバーラコン 戦業から近回期波 戦策から近回期波 地局第5回上の平 シロロ第5回第5回、 シロロ第5回第5回、 シロロ第5回 と40210-40 にした他
	フィリピン海 (S.W.JAPAN)	同上	同上	1944/12/7	*	*	*	*	*	120	60	7200	*	*	*	*	*	*	*	古村・他 (2006)	Table.3 _° Mw=8.1
26	フィリピン海 (S.W.JAPAN)	同上	同上	1944/12/7	*	*	*	*	*	164, 124	60, 60	17280	*	*	*	*	*	*	*	日野・都司 (1996)	 ・地殻変動記録と 津波の検潮記録から一様すべりモデルを推定 ・Model Bの方が津波記録を再現できているらしい
	フィリピン海 (S.W.JAPAN)	同上	同上	1944/12/7	*	*	*	*	2.40.E+21	*	*	4000	*	*	*	*	*	4800	*	Skarlatoudis et al. (2016)	M=8.19
	フィリピン海 (S.W.JAPAN)	同上	同上	1944/12/7	33.52 34.14	137.25 137.92	*	8.2	2.15.E+21	110 80	70 80	14100	*	*	*	*	*	*	*	Kuroki et al. (2004)	M=7.9; fault parameters by Ishibashi (1981);L (190)-W(74.2)とし て作図した ・MO-S図のMOは、 武村・神田(2007)を 用いた
	フィリピン海 (S.W.JAPAN)	同上	同上	1944/12/7	*	*	•	*	1.50.E+21	*	*	9600	*	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=8.2
	フィリピン海 (S.W.JAPAN)	7	昭和南海地 震	1946/12/21	*	*	*	*	8.34.E+21	*	*	35800	3.0	*	*	*	*	*	*	武村・神田 (2007)	MOは、Skarlatoudis et al. (2016)を用い た
	フィリピン海 (S.W.JAPAN)	同上	同上	1946/12/21	*	*	*	8.3	3.90.E+21	*	*	52650	*	*	*	*	*	*	*	Skarlatoudis et al. (2016)	M=8.33
	フィリピン海 (S.W.JAPAN)	同上	同上	1946/12/21	*	*	*	*	1.50.E+21	*	*	9600	*	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=8.2
	フィリピン海 (S.W.JAPAN)	同上	南海地震	1946/12/20	*	*	*	8.5	6.00.E+21	270	92	24840	3.7	1.05E+20	*		9.2			Seno(2014), 釜江(1996)	Mw=8.5
	フィリピン海 (S.W.JAPAN)	9	日向灘	1968/4/1	*	*	*	7.5	2.50.E+20	*	*	1377	*	*	*	*	*	1053	*	Skarlatoudis et al. (2016)	M=7.53

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果

地域 番号	地域名	地震	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	短周期レベ ル (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (Moから 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	S (km²)	<i>A</i> (N•m∕s²)	A (N·m/s²)	<i>f_e</i> (Hz)	Ds " (MPa)	$S_{g}(\mathrm{km}^{2})$	<i>s</i> ,/s	1	
	Sumatra	165	-	1935/12/28	*	*	27±2	7.6	3.30.E+20	65	30	1950	*	*	*	*	*	*	Rivera et al. (2002)	Mw=7.7; D=3m; Vp=8.1km/s, Vp/Vs=1.73; 傾斜角=12°
	Sumatra	13	スマトラ・ アンダマ ン Indian ocean earthquak e and tsunami	2004/12/26	3.09	94.26	28.6	9.0	3.95.E+22	420. 570	240, 160	192000	*	*	*	*	*	*	小山・都筑(2014)	・Mw93 ・全体の断層破壊は 1300km(Lay et al.2005) ・L(990)-W(194)とし で作図した、M0は GMTのデータを用い た ・メカニズム解は globalCMT参照 ・濃薄位置globalCMT 参照
	Sumatra	同上	2004 Sumatra- Andaman	2004/12/26	*	*	*	*	6.50.E+22	*	*	*	*	*	*	*	*	*	Ammon et al. (2005)	• Mw9.1
	Sumatra	同上	-	2004/12/26	3.3	95.78	35.0	*	2.46.E+22	450	180	81000	*	*	*	•	*	*	Ji et al.(2005)	SRCMOD web サイト http://equake- rc.info/SRCMOD/sea rchmodels/viewmode l/s2004SUMATR01JI xx/ .2018.11.26確認, Mw=8.89
	Sumatra	同上	Dec.26,20 04, Sumatra- Andaman	2004/12/26	3.3	95.96	*	*	7.12.E+22	1300	*	*	*	*	*	*	*	*	Rhie,J., D.Dreger, R.Burgmann, and B.Romanowicz (2007)	Mw=9.2 Vr=2.5km/s Banerjee <i>et al.</i> (2005) 記載モデル及びそれ を一部変更したモデ ルを使用
	Sumatra	同上	スマトラ・ アンダマ ン Indian ocean earthquak e and	2004/12/26	*	*	*	*	6.85.E+22	1157	208	240640	*	*	*	*	56640.0	0.2	田島・他(2013)	 Chlieh et al. (2007) 測地データ使用 平均 すべり5.3m アスペリティすべり 11.4m 最大すべり 17.0m
	Sumatra	同上	スマトラ・ アンダマ ン Indian ocean earthquak e and	2004/12/26	*	*	*	*	3.57.E+22	435	180	78300	*	*	*	*	15840.0	0.2	田島・他(2013)	・Ji (2004) 遠地デー タ使用 平均すべり 6.9m アスペリティすべり 14.0m 最大すべり 19.8m
1	Sumatra	同上	スマトラ・ アンダマ ン Indian ocean earthquak	2004/12/26	*	*	*	*	4.95.E+22	708	194	137267	*	*	*	*	29953.0	0.2	田島・他(2013)	・Chlieh et al. (2007) と Ji (2004)の平均値 平均すべり6.0m アス ペリティすべり12.6m 最大すべり18.4m
	Sumatra	同上	スマトラ・ アンダマ ン Indian ocean earthquak e and	2004/12/26	*	*	*	9.1	6.50.E+22	1374	193	265237	*	*	*	*	27571.0	*	Skarlatoudis et al. (2016)	M=9.14
	Sumatra	14	スマトラ 島沖 (インドネ シア)	2005/03/28	*	*	*	8.6	1.00.E+22	384	320	122880	*	*	*	*	43680	0.36	田島・他(2013)	 ·Konca et al. (2007) 遠地データと測地 データ使用 平均すべり1.3m アス ペリティすべり4.3m 最大すべり5.2m ・メカニズム解は globalCMT参照
	Sumatra	同上	スマトラ 島沖 (インドネ シア)	2005/03/28	*	*	*	*	1.35.E+22	523	156	81600	*	*	*	*	18800	0.23	田島・他(2013)	・Shao and Ji (2005a) 遠地データ使用 平均 すべり3.0m アスペリティすべり 7.3m 最大すべり 12.5m
	Sumatra	同上	スマトラ 島沖 (インドネ シア)	2005/03/28	*	*	*	8.6	1.16.E+22	449	223	100135	*	*	*	*	28656	0.29	田島・他(2013)	・Konca et al. (2007) と Shao and Ji (2005a)の平均値 平均すべり1.9m アス ペリティすべり5.6m 最大すべり13.8m
	Sumatra	同上	-	2005/03/28	*	*	*	*	1.17.E+22	332	260	86400	*	*	*	*	27200	*	Skarlatoudis et al. (2016)	M=8.65
	Sumatra	同上	スマトラ 島沖 (インドネ シア)	2005/03/28	1.95	96.91	28.50	*	1.05.E+22	352	227	72600	*	*	*	*		*	Allen and Hayes (2017)	Mw=8.59,M0はGMT のデータを用いた
	Sumatra	同上	Nias- Simeulue Earthqua ke	2005	2.074	97.013	30	•	1.24.E+22	417	413	•	*	*	*	*	*	*	Konca_etal(2007)	dip angleが8°のとき のモーメント。論文に 頃場面積(サイズ)が ないがにとWを断層面 の4つの角の医構か ら計算したら(Table 2)416.650×413.137 になる。層ごとのvsが 論文の中にある (Table3)
	Sumatra	同上	Nias- Simeulue Earthqua	2005	2.074	97.013	30		1.00.E+22		*		*	*		*			Konca_etal(2007)	dip angleが10°のと きのモーメント。層ご とのvsが論文の中に ある(Table3)

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

地番	域 号 地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	JL (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (Moから 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	S (km²)	A (N•m/s²)	A (N·m/s²)	<i>f_c</i> (Hz)	Ds " (MPa)	$S_{s}(\mathrm{km}^{2})$	<i>s</i> "/s		
	Sumatra	15	スマトラ 島沖 (インドネ シア)	2007/9/12	-3.78	100.99	24.4	8.4	5.44.E+21	459	160	73370	*	*	*	*	22620	0.31	田島・他(2013)	 ・Ji(2007a) 遠地 データ使用 平均すべり1.1m アスペリティすべり 2.2m 最大すべり3.6m ・震源位置globalCMT 参照
	Sumatra	同上	-	2007/9/12	*	*	*	8.4	4.47.E+21	457	160	73140	*	*	*	*	28331	*	Skarlatoudis et al. (2016)	M=8.37
	Sumatra	同上	-	2007/9/12	-4.52	101.4	30.0	8.5	6.71.E+21	200	176	35200	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.44,M0はGMT のデータを用いた
	Sumatra	同上	-	2007/09/12	*	*	*	7.9	7.94.E+20	243	90	21875	*	*	*	*	6500	*	Skarlatoudis et al. (2016)	M=7.87
	Sumatra	同上	-	2007/9/12	-2.62	100.8	35.0	7.9	8.13.E+20	154	49	7490	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.86.M0はGMT のデータを用いた ・メカニズム解は globalCMT参照
	Sumatra	同上	Bengkulu earthquak e	2007/09/12	-4.520	101.374	*	*	6.70.E+21	400	250	100000	*	*	*	*	*	*	Gusman_etal (2010)	すべり分布から計 算。[CMT M0=6.71e+21,Mw=8.5]. Indo- Australian/sunda plate, thrust fault
	Sumatra	同上	Kepulaua n earthquak	2007/9/12	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Lay et al. (2011)	Mw=7.9;
	Sumatra	同上	Sumatra earhtquak e	2007/9/12	*	*	*	•	*	*	*	*	*	*	•	*	*	*	Lay et al. (2011)	Mw=8.4;
	Sumatra	同上	-	2007/09/12	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Konca_etal(2008)	Sumatra megathrust
	Sumatra	同上	スマトラ 島沖 (インドネ シア)	2007/9/12	*	*	*	8.4	5.44.E+21	459	160	73370	*	*	*	*	22620	0.31	田島・他(2013)	・Ji (2007a) 遠地 データ使用 平均すべ り1.1m アスペリティすべり 2.2m 最大すべり3.6m
	Sumatra	同上	スマトラ 島沖 (インドネ シア)	2007/9/12	*	*	*	*	5.05.E+21	440	145	63800	*	*	*	*	17690	0.28	田島・他(2013)	・Ji (2007b) 遠地 データ使用 平均すべ り1.1m アスペリティすべり 2.6m 最大すべり4.4m
	Sumatra	同上	スマトラ 島沖 (インドネ シア)	2007/9/12	*	*	*	*	5.13.E+21	288	352	101376	*	*	*	*	23808	0.23	田島・他(2013)	 Konca et al. (2008) 遠地データと測地 データ使用 平均すべり0.8m アス ペリティすべり3.0m 最大すべり9.6m
	Sumatra	同上	スマトラ 島沖 (インドネ シア)	2007/9/12	*	*	*	*	5.20.E+21	388	201	77999	*	*	*	*	21199	0.27	田島・他(2013)	- Ji (2007a), Ji (2007b), Konca et al. (2008)の平均値 平均すべり1.0m アス ペリティすべり2.6m 最大すべり5.3m
	Sumatra	175	-	2008/2/20	2.77	96.0	26.0	7.3	1.12.E+20	66	53	3470	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.39,M0はGMT のデータを用いた
	Sumatra	176	-	2010/4/6	2.36	97.1	31.0	7.8	6.59.E+20	84	72	6050	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.81,M0はGMT のデータを用いた
	Sumatra	177	-	2010/5/9	3.75	96.0	38.0	7.2	9.41.E+19	48	33	1550	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.24,M0はGMT のデータを用いた ・メカニズム解は globalCMT参照
	Sumatra	178	-	2010/10/25	-3.46	100.1	15.0	7.8	6.77.E+20	184	123	22500	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.76,M0はGMT のデータを用いた
	Sumatra	同上	Mentawai earthquak e	2010/10/25	-3.484	100.114	*	*	6.70.E+20	*	*	*	*	*	*	*	*	*	Lay et al. (2011)	Global CMTウェブ ページ情報; Mw=7.8;
	Sumatra	同上	Mentawai earthquak e	2010/10/25	*	*	12	*	5.00.E+20	*	*	*	*	*	*	*	*	*	Lay et al. (2011)	Mw=7.7; dip=10°; W- phaseのインバージョ ン結果
	Sumatra	同上	Mentawai earthquak e	2010/10/25	*	•	•	•	6.20.E+20	180	110	19800	*	•	•	•	•	•	Lay et al. (2011)	Mw=7.7; dip=10°; strike=324°; P.SH.R1 波のインバージョン 結果; 断層サイズは Fig.S3より読み取っ <i>†</i> ₂ :β=2.9
	Sumatra	同上	Mentawai earthquak e	2010/10/25	*	*	12	*	5.00.E+20	180	120	21600	*	*	*	*	*	*	Lay et al. (2011)	平方成層地盤: P.SH 波インパージョン: 断 層のサイズはFig.S5 より読み取った:
	Sumatra	同上	Mentawai earthquak e	2010/10/25	-3.487	100.082	20.1	*	5.70.E+20	225	140	31500	*	*	*	*	*	*	USGS	USGSウェブページ; strike=325°; dip=11.6 °; L=15x15=225km; W=10x14=140km;
	Sumatra	179	-	2016/3/2	-4.91	94.2	24.0	7.8	5.93.E+20	83	28	2300	*	*	•	*		•	Allen and Hayes (2017)	Mw=7.77,M0はGMT のデータを用いた

表 2.2.3-2 国外のプレ	ート間地震の断層ノ	パラメータの調査結果	(つづき)
-----------------	-----------	------------	-------

地域番号	地域名	地震番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	JU (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経度	深 さ	Mw (Moから	M ₀ (Nm)	L (km)	W (km)	<i>S</i> (km ²)	<i>A</i> (N•m∕s ²)	A (N•m/s²)	f_{c} (Hz)	Ds , (MPa)	$S_{g}(\mathrm{km}^{2})$	s,/s]	
	Java	169	-	1994/6/2	-10.48	112.8	20.0	7.8	5.34.E+20	80	108	8620	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.74,M0はGMT のデータを用いた
2	Java	172	-	2006/7/17	-9.25	107.4	12.0	7.7	4.61.E+20	180	80	14400	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.70,M0はGMT のデータを用いた
	BandSea	168	-	1992/12/12	-8.51	121.9	28.0	7.7	5.06.E+20	168	54	9050	•	•	•	*	•	*	Allen and Hayes (2017)	Mw=7.73,M0lよGMT のデータを用いた
3	BandSea	193	-	2004/11/11	-8.15	124.9	10.5	7.5	2.12.E+20	70	62	4310	*	*	*	*		*	Allen and Hayes (2017)	Mw=7.47,M0lはGMT のデータを用いた
5	Kermadec	53	-	2011/10/21	-29.0	-176.2	45.0	7.4	1.48.E+20	42	46	1920	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.37、M0はGMT のデータを用いた
	Vanuatu	142	-	2009/9/29	-15.13	171.97	12.0	8.0	1.12.E+21	148	49	7243	*	*	*	*	1983	*	Skarlatoudis et al. (2016)	M=7.97 ・震源位置globalCMT 参照
	同上	同上	Sep.29,20 09, the Samoa- Tonga earthquak e	2009/9/29	-15.94	-172.718	18		1.19E+21	109	90	*	*	*	*	*	*	*	J.Beavan, X.Wang, C.Holden, K.Wilson, W.Power, G.Prasetya, M.Bevis & R.Kautoke (2010)	plate boundary earthquake, strike θ =175deg, dip δ =16deg, rake λ =85deg, Mw=8.0, rigidity μ =30GPa, slip D=4.1m S=109 × 90=9810km ² 2
	同上	同上	Sep.29,20 09, the Samoa- Tonga earthquak e	2009/9/29	-15.75 -16.00	-172.25 -172.25	•		5.2E+20 5.3E+20		*	•	•	•	•	*		*	Thorne Lay, Charles J. Ammon Hiroo Kanamori, Luis Rivera, Keith D. Koper & Alexander R. Hutko (2010)	plate boundary earthquake, strike θ =185deg, dip δ =29deg, rake λ =90deg, Mw=7.8&7.8, 8.0(total)
7	Vanuatu	181	-	2009/10/7	-13.0	166.5	45.0	7.6	3.16.E+20	60	66	3940	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.60,M0はGMT のデータを用いた
	Vanuatu	同上	-	2009/10/7	*	*	*	*	2.82.E+20	*	60	4200	*	*	*	*	1680.0	*	Skarlatoudis et al. (2016)	M=7.57
	Vanuatu	182	-	2010/8/10	-17.5	168.1	25.0	7.3	1.01.E+20	35	40	1400	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.26,M0はGMT のデータを用いた
	Vanuatu	183	-	2011/8/20	-18.4	168.1	32.0	7.1	6.31.E+19	25	25	625	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.12,M0はGMT のデータを用いた
	Vanuatu	131	-	2012/3/3	-22.33	170.22	24.1	7.4	1.41.E+20	41	100	4125	*	*	*	*	1050	*	Skarlatoudis et al. (2016)	M=7.37 ・震源位置globalCMT 参照
	Vanuatu	184	-	2013/2/6	-10.738	165.138	28.7	7.9	9.37.E+20	156	88	13700	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.03,M0はGMT のデータを用いた
	Vanuatu	同上	Santa Cruz Islands earhquak e	2013/2/6	-10.738	165.138	28.7	•	•	•	*	*	•	•	*	*	•	*	Lay et al. (2013a)	USGS: Mw=8.0; Vanuatu subduction zone; strike=314°; dip=21°; rake=74°; thrust fault;
	Vanuatu	同上	同上	-	*	*	12.7	*	1.50.E+21	144	90	12960	*	*	*	*		*	Lay et al. (2013a)	Mw=8.1; strike=309°; dip=17°; rake=61°; 速 度構造Crust2.0;
	Solomon Island	143	-	1995/8/16	-5.79	154.2	30.0	7.7	4.62.E+20	119	71	8390	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.70,M0はGMT のデータを用いた
	Solomon Island	144	4:55:36.5 GMT	2000/11/16	-3.98	152.2	33.0	8.0	1.24.E+21	120	36	4320	*	*	*	*	•	*	Allen and Hayes (2017)	Mw=8.07,M0はGMT のデータを用いた
	Solomon Island	145	7:42:44.5 GMT	2000/11/16	-5.23	153.1	30.0	7.8	6.47.E+20	93	60	5580	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.76,M0はGMT のデータを用いた
	Solomon Island	146	-	2000/11/17	-5.50	151.8	33.0	7.8	5.64.E+20	108	80	8670	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.72,M0はGMT のデータを用いた
	Solomon Island	147	-	2007/4/1	-8.46	157.0	10.0	8.1	1.57.E+21	192	113	17600	*	•	*	*	*	*	Allen and Hayes (2017)	Mw=8.20,M0はGMT のデータを用いた
8	Solomon Island	同上	Solomon Islands	2007/4/1	•	•	•	•	3.70.E+21	294	82.5? (δ29 度で深 さ 40km)	*	•	•	•	*	•	*	Chen et al. (2009)	 上下の地殻変動 データより傾斜方向 のすべり量分布モデル ルを推定 ● Ma8.1 ● A30GPa ● x 30GPa ● x 1000のモデル が最適解 ● 平均すべり量 502m、すべり量30m ★ 上限
	Island	同上	-	2007/04/01	*	*	*	*	1.58.E+21	270	80	21600	*	*	*	*	6600	*	(2016)	M=8.07
	Island	148	-	2014/4/12	-11.32	162.2	29.3	7.6	3.28.E+20	80	62	4970	*	*	*	*	*	*	(2017)	のデータを用いた Mw=7.47 M0はCMT
	Island	149	-	2014/4/19	-6.72	154.9	30.8	7.5	2.29.E+20	44	60	2600	*	*	*	*	*	*	(2017)	のデータを用いた Mw=7.53 M0はGMT
	Island Solomon	150	-	2015/3/29	-4.88	152.6	41.0	7.5	1.89.E+20	117	54	5440	*	*	*	*	*	*	(2017) Allen and Hayes	のデータを用いた Mw=7.47,M0はGMT
-	Island	100	-	2013/3/3	-5.50	124.2	42.0	7.5	1.94.E+20	70	70	5430					•	, * ,	(2017) Allen and Hayes	のデータを用いた Mw=7.45,M0はGMT
9	Philippine	48	-	2012/8/31	10.85	124.3	45.2	7.6	2.72.E+20	51	90	4608	*	*	*	*	1440	*	(2017) Skarlatoudis et al. (2016)	のデータを用いた M=7.56 ・震源位置globalCMT
	Kuriles	56	Kuril islando	1963/10/13	*	*	*	8.5	6.70.E+21	*	*	44000	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=8.2
	Kuriles	57	Kuril islands	1969/8/11	*	*		8.2	2.20.E+21	•	*	15300		•	*	*	•	*	Kanamori and Anderson (1975)	Ms=7.8
13	Kuriles	58	-	1991/12/22	45.5	151.1	25.0	7.6	2.77.E+20	100	84	8400	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.54、M0はGMT のデータを用いた
	Kuriles	61	Off- Etorofu EQ	1995/12/3	44.6	149.3	24.0	7.9	8.24.E+20	91	144	13100	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.86、M0lはGMT のデータを用いた
	Kuriles	同上	Off- Etorofu EQ	1995/12/3	44.7	149.0	•	•	*	140	90	12600		*	*	*	•	*	Hurukawa (1998)	interplate earthquake、 Mw=7.9、傾斜角30度 レ原宗

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

地域 番号	地域名	地震番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	短周朔 レベル (SI: Spectral Inversion)	JU (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯度	経 度 [F]	深 [km]	Mw (Moから 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	<i>S</i> (km²)	A (N•m/s²)	A (N•m/s²)	f_{c} (Hz)	Ds " (MPa)	$S_{g}(\mathrm{km}^{2})$	<i>s</i> "/s		
	Kuriles	65	-	2006/11/15	46.71	154.33	13.5	8.3	3.16.E+21	259	138	35750	*	*	*	*	10000	*	Skarlatoudis et al. (2016)	M=8.27、M0はGMTの データを用いた ・震源位置globalCMT 参照
	Kuriles	同上	central Kuril islands	2006/11/15	46.592	153.266	*	*	4.60.E+21	250	*	*	*	*	*	*	*	*	Ammon et al. (2008a)	●遠地記録の波形イ ンパージョン ●Mw8.4 ● Ø 215、 δ 15、 λ 92 ●Vr=2.0km/s
	Kuriles	同上	central Kuril islands	2006/11/15	*	*	11	*	4.60.E+21	320	140	*	*	*	*	*	*	*	Ammon et al. (2008b)	 Vr=2.0km/s, μ = 40GPa, Vp=6.7km/s, ρ 2.9g/cm3 平均すべり4.6m Mw8.4 Ammon他(2008a)
	Kuriles	同上	-	2006/11/15	46.510	153.390	15.2	*	3.51.E+21	260	86	22400	*	*	*	*	*	*	Allen and Hayes (2017)	と同じ? Mw=8.29,M0はGMT のデータを用いた
13	Kuriles	同上	-	2006/11/15	46.592	153.266	15	*	5.00.E+21	240	100	24000	*	*	*	*	*	*	Lay et al. (2009)	Mw=8.4 (MwどMola 本検討のP波イン パージョンから; likely overestimated); interplate thrust event: mb=6.5;
	Kuriles	同上	-	2006/11/15	*	*	*	8.3	3.16.E+21	259	138	35750	*	*	*	*	10000.0	*	Skarlatoudis et al. (2016)	M=8.27、M0はGMTの データを用いた
	Kuriles	同上	-	2006/11/15	*	*	*	*	2.00.E+21	200, 250	100	45000	*	*	*	*	*	*	Fujii and Satake津 波 (2008)	interplate earthquake、 M(JMA)=7.9、 Mw=8.1、 則性率=5.0E+10 N/m2を仮定
	Kuriles	同上	2006 Kuril earthquak e	2006/11/16 (15?)	*	*	*	*	*	200	*	*	*	*	*	*	*	*	Lay et a. (2011)	Mw=8.4; thrust fault;
	Kuriles	同上	-	2006/11/26 (15?)	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Andrade and Rajendran (2011)	megathrust earthquake、Mw8.3
	Kamchatka	10	-	1952/11/4	*	*	*	8.7	1.50.E+22	*	*	70000	*	*	*	*	20000	*	Skarlatoudis et al. (2016)	M=8.72
14	Kamchatka	59	-	1993/6/8	51.2	157.8	46.0	7.5	2.02.E+20	126	99	12500	*	*	*	*	•	*	Allen and Hayes (2017)	Mw=7.47、M0はGMT のデータを用いた
	Kamchatka	62	-	1997/12/5	54.8	162.0	34.0	7.8	5.32.E+20	141	83	11600	•	*	*	*	•	*	Allen and Hayes (2017)	Mw=7.75、M0はGMT のデータを用いた
	Aleutians	11	アンドレ アノフ島	1957/3/9	*	*	*	*	1.00.E+22	900	100	90000	*	*	*	*	*	*	小山・都筑(2014)	・Mw8.6 ・断層面はLay et al.(1982)
	Aleutian	17	-	1957/3/9	*	*	*	8.7	1.20.E+22	*	*	93750	*	*	*	*	30000	*	Skarlatoudis et al. (2016)	M=8.65
15	Aleutian	18	Rat Islands-1 Rat	1965/2/4	*	*	*	8.7	1.25.E+22	*	*	78000	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=7.9
	Aleutian	19	Islands-2	1965/3/30	*	*	*	7.6	3.40.E+20	*	*	4000	*	*	*	*	*	*	Anderson (1975) Kanamori and	Ms=7.5
	Aleutian	20	-	1996/6/10	51.6	-177.6	28.0	7.9	8.05.E+20	78	109	420 8520	•	*	*	*	•	*	Anderson (1975) Allen and Hayes	Ms=7.2 Mw=7.86、M0/よGMT
	Aleutian	22	_	2003/11/17	51.2	178.7	30.0	7.7	5.29.E+20	108	119	12800	*	*	*	*	*	*	(2017) Allen and Hayes	のデータを用いた Mw=7.73、M0はGMT
	Alaska	16	-	1964/3/27	*	*	*	9.1	5.52.E+22	847	266	225000	•	*	*	*	30000	*	(2017) Skarlatoudis et al. (2016)	のテータを用いた M=9.09
16	Alaska	同上	-	1964/3/28?	*	*	*	*	8.20.E+22	*	*	130000	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=8.5
	Alaska	同上		1964/3/28	*	*	*	*	*	500	300	150000	*	*	*	*	*	*	小山・都筑(2014)	・Mw9.2 ・断層面はLay et al.(1982)
	Cascadia	28		1700/1/26	*	*	*	9.0	3.98.E+22	1100	70	77000	*	*	*	*	*	*	Obana et al. (2014)	Mw=9.0 (more info in Satake et al.(2003) and Wang et al.(2013), Seno(2014)
	Cascadia	69	-	2012/10/28	52.7	-132.1	15.0	7.8	5.68E+20	168	44	7430	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.83、M0はGMT のデータを用いた
17	Cascadia	同上	Haida Gwaii earthquak e	2012/10/28	52.788	-132.101	12	*	6.70.E+20	~150	63	•	•	•	*	•	•	•	Lay et al. (2013b)	Mw=7.8;thrust faulting: 断層幅は Fig.3,5,9より読み取っ た:
	Cascadia	同上		2012/10/28	*	*	*	*	4.27E+20	80	60	4800	*	*	*	*	1440	*	Skarlatoudis et al. (2016)	M=7.69
	Central America	82	-	1900/1/20	20.0	-105.0	*	*	*	80	40	3160	•	*	*	*	•	*	Santoyo et al. (2005)	Ms=7.6; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
	Central America	83	-	1900/5/16	20.0	-105.0	*	*	*	45	22	999	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.1; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
	Central America	85	-	1907/4/15	16.6	-99.2	*	7.9	8.91.E+20	151	75	11340	*	*	*	*	*	*	Santoyo et al. (2005)	mw-7.3, L-2W, 両任 率3.5e11dyne.cm ² ; ポアソン比 0.25;logM0=1.5MW+9.
18	Central America	86	-	1908/3/26	16.7	-99.2	*	*	*	100	50	5010	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.8; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
	Central America	87	-	1908/3/27	17.0	-101.0	*	*	*	50	25	1260	*	*	*	*	*	*	Santoyo et al. (2005)	ms=7.2; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
	Central America	88	-	1909/7/30	16.8	-99.9	*	*	*	71	35	2513	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.5; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
	Central America	89	-	1909/7/31	16.6	-99.5	*	*	*	45	22	999	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.1; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
	Central America	90	-	1911/6/7	17.1	-101.1	*	*	*	112	56	6306	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.9; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

1 7	也域 番号	地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	JL (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
					年月日	緯度	経度	深さ	Mw (M ₀ から	M ₀ (Nm)	L (km)	W (km)	<i>S</i> (km ²)	A (N·m/s ²)	A (N•m/s ²)	f _c (Hz)	Ds " (MPa)	$S_s(km^2)$	<i>s</i> "/s	1	
		Central America	91	-	1911/12/16	17.0	-100.7	[Km] *	*	*	80	40	3160	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.6; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
		Central America	92	-	1928/3/22	15.7	-96.1	*	*	*	71	35	2513	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.5; L=2W; 剛性 率3.5e11dyne.cm^2; ポアソン比0.25;
		Central America	93	-	1928/6/17	15.8	-96.9	*	*	*	100	50	5010	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.8; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25;
		Central America	95	-	1928/8/4	16.1	-97.4	*	*	*	63	32	1997	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.4; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25;
		Central America	同上	-	1928/8/4	16.8	-97.6	*	*	*	*	*	*	*	*	*	*	*	*	Singh et al. (1981)	S=shallow(≦60km) Ms=7.4
		Central America	96	-	1928/10/9	16.3	-97.3	*	*	*	80	40	3160	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.6; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25;
		Central America	99	-	1932/6/3	19.8	-105.4	*	8.0	1.26.E+21	222	111	24642	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=8.0; L=2W; 開1生 率3.5e11dyne.cm ² ポアソン比0.25 logM0=1.5MW+9.1
		Central America	100	-	1932/6/18	19.0	-104.6	*	7.9	8.91.E+20	71	36	2521	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.9; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25 logM0=1.5MW+9.1
		Central America	101	-	1934/11/30	19.0	-105.3	*	*	*	40	20	796	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.0; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25;
		Central America	102	-	1937/12/23	16.4	-98.6	*	7.5	2.24.E+20	61	31	1873	*	*	•	*	*	*	Santoyo et al. (2005)	Mw=7.5; L=2W; 剛性 率3.5e11dyne.cm ² ポアソ比0.25 logM0=1.5MW+9.1
		Central America	103	-	1941/4/15	18.9	-102.9	*	*	*	112	56	6306	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.9; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25;
		Central America	104	-	1943/2/22	17.6	-101.2	*	*	*	89	45	3978	*	*	*	*	*	*	Santoyo et al. (2005)	Ms=7.7; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25;
		Central America	107	-	1950/12/14	16.61	-98.8	*	7.3	1.12.E+20	58	29	1694	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.3; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25; logM0=1.5MW+9.1
		Central America	109	-	1957/7/28	16.6	-99.4	*	7.8	6.31.E+20	92	46	4232	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.8; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25 ;logM0=1.5MW+9.1
		Central America	110	-	1962/5/11	16.9	-100.0	*	7.1	5.62.E+19	40	20	800	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.1; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25; logM0=1.5MW+9.1
	18	Central America	111	-	1962/5/19	16.9	-99.9	*	7.0	3.98.E+19	35	18	613	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.0; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25; logM0=1.5MW+9.1
		Central America	112	-	1965/8/23	15.6	-96.0	*	7.5	2.24.E+20	109	54	5886	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.5; L=2W; 開性 率3.5e11dyne.cm ² ポアソン比0.25 ;logM0=1.5MW+9.1
		Central America	113	-	1968/8/2	16.0	-98.0	*	7.3	1.12.E+20	70	35	2450	*	*	•	*	•	*	Santoyo et al. (2005)	Mw=7.3;L=2W;剛性 率3.5e11dyne.cm ² ポアソン比0.25; logM0=1.5MW+9.1 Ms=7.2,Δσは余震
		Central America	114	-	1970/4/29	14.5	-92.7	*	7.3	1.00.E+20	*	*	15000	*	*	*	*	*	*	Singh et al. (1981)	域の過剰推定によ り、 過小評価されている 可能性がある。
		Central America	115	-	1973/1/30	18.4	-103.2	*	7.6	3.00.E+20	90	70	6300	*	*	*	*	*	*	Singh et al. (1981)	Ms=7.5
		Central America	同上	-	1973/1/30	18.3	-103.4	*	*	4.47.E+20	90	45	4050	*	*	*	*	•	*	Santoyo et al. (2005)	Mw=7.7; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25; logM0=1.5MW+9.1
		Central America	116	-	1978/11/29	15.8	-97.1	*	7.7	5.27.E+20	84	42	3528	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.8; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25 ;M0はGMTのデータ を用いた
		Central America	同上	-	1978/11/29	15.8	-96.8	*	*	2.75.E+20	90	70	6300	*	*	*	*	*	*	Singh et al. (1981)	Ms=7.8
		Central America	117	-	1979/3/14	17.78	-101.37	26.7	7.4	1.50.E+20	95	95	9025	8.14E+18	*	*	1.3	*	*	壇•他(2001), Seno(2014)	L, W, ⊿σ, ⊿σasp →Seno(2014) •震源位置globalCMT 参照
		Central America	同上	Mar.14,19 79, Petatlan	1979/3/14	17.46	-101.46	15	•	1.50.E+20	•	*	5027	*	•	•	•	•	•	Mendoza, C. (1995)	Ms=7.6, Mw=[00;1.5e+27)- 16.1//1.5=7.4 解析領域:120× 120km,全すべり領 域半径40km,
		Central America	同上	-	1979/3/14	17.31	-101.35	*	*	1.75.E+20	70	64	4480	*	*	*	*	*	*	Singh et al. (1981)	Ms=7.6
		Central America	同上	-	1979/3/14	17.46	101.46	15	*	5.50.E+20	120	120	14400	*	*	*	*	*	*	Mikumo et al. (1998)	Mw7.62; Depth 2km- 30km, Dmax=1.2m
		Central America	同上	-	1979/3/14	17.46	101.46	15	*	1.37.E+20	120	120	14400	*	*	*	(1asp) 0.504 (2asps)	3.8E+03	*	Ramirez-Gaytan et al.(2014)	Mw=7.39; D=0.288m; 傾斜角=14°
		Central America	同上	-	1979/3/14	17.46	-101.45	*	*	*	95	48	4513	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.4; L=2W; 剛性 率3.5e11dyne.cm ² ; ポアソン比0.25:

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

ţ	也城 番号	地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	ル (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
					年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (Moから 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	S (km²)	A (N•m/s²)	A (N·m/s²)	<i>f_c</i> (Hz)	Ds , (MPa)	$S_s(\mathrm{km}^2)$	<i>s</i> "/s		
		Central America	118	Playa Azul	1981/10/25	18.28	-102	31.8	7.4	1.35.E+20	53	53	2809	5.19E+19	*	*	33.7	•	*	壇•他(2001), Seno(2014)	L.W. ⊴σ. ⊴σasp →Seno(2014) MOはGMTのデータを 用いた ・ 意源位置globalCMT 参照
		Central America	同上	Oct.25,19 81,Playa Azul Sep.21,19 85,Zihuat anejo	1981/10/25	*	*	*	*	7.14.E+19	*	*	707	*	*	•	*	*	*	Mendoza, C. (1993)	Vr=0.7 β = 2 6km/s, β = 3,7km/s, β = 3,7km/s, g = 3
		Central America	同上	Playa Azul	1981/10/25	17.75	102.25	1.4E+01	*	8.50.E+20	60	70	4200	*	*	*	*	*	*	Mikumo et al. (1998)	Mw7.43; Depth 6km- 23km, Dmax=3.5m
		Central America	同上	Playa Azul	1981/10/25	17.74	102.24	1.5E+01	*	8.49.E+19	60	70	4200	*	*	*	3.049 (1asp)	4.0E+02	*	Ramirez-Gaytan et al.(2014)	Mw=7.25; D=0.746m; 傾斜角=14°
		Central America	同上	Playa Azul	1981/10/25	17.75	-102.25	*	*	*	48	24	1152	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.2; L=2W; 剛性 率3.5e11dyne.cm [*] 2 ポアソン比0.25;
		Central America	141	-	1981/10/25	18.28	-102.00	31.8	7.2	7.14.E+19	45	60	2700	*	*	*	*	400	*	Skarlatoudis et al. (2016)	M=7.17 •震源位置globalCMT 参照
		Central America	120	Michoaca n	1985/9/19	17.91	-101.99	21.3	8.1	2.00.E+21	135	90	12150	*	4.16E+19	3.0	*		*	壇-他(2001), Seno(2014)	·震源位置globalCMT 参照
	18	Central America	同上	Sep.19,19 85, Michoaca n	1985/9/19	18.18	-102.57	17		1.50.E+21	180	139	*	*	*		*		•	Mendoza and Hartzell (1989)	$\begin{array}{l} Vr^{\pm}0.7 \ \beta=2.6 \mbox{km/s}, \\ \beta=3.7 \mbox{km/s}, \\ \beta=3.7 \mbox{km/s}, \\ Asp1=80 \times 55, \\ Asp2=30 \times 55, \\ Asp3=30 \times 60 \mbox{km/s}, \\ S=18400, \ Sa2=2700, \\ Sa=4400, \ Sa2=2700, \\ Sa=4400, \ Sa2=2700, \\ Sa=4400, \ 200 \times 100, \\ Sa=4800, \ Sa2=200, \\ Sa=510, \ Sa=510, \\ Sa=510, \ Sa2=200, \\ Sa=510, \ Sa=510, \\$
		Central America	同上	メキシコ・ Michoaca n 地震	1985/9/19	*	*	*	*	1.10.E+21	*	*	*	2.41E+19	*	0.024	*	*	*	友澤・他(2018)	16.1/1.13=835 スペクトルインバー ジョン解析による賞 激スペクトルの推定。 ・地蔵モージンドは、 Global GMT幕 震激スペクトルと当 にはめてたを評価。 反力解下量 Δ σ は Brune(1970)による。 ・メギキシコ地域の軸 度、 β =3.7. Δ σ=1.85
		Central America	同上	Michoaca n	1985/9/19	18.1	102.7	17.0	*	3.90.E+21	180	140	25200	*	*	*	*	80km × 55km 45km × 60km 30km × 60km	*	Mikumo et al. (1998)	Mw8.05; Depth 6km- 40km: Dmax=4m M0はGMTのデータを 用いた
		Central America	同上	Michoaca n	1985/9/19	18.2	102.6	17.0	*	1.15.E+21	180	139	25020	*	*	*	1.577 (1asp) 1.442 (2asps)	3127.5	*	Ramirez-Gaytan et al.(2014)	Mw=8.01; D=1.39m; 傾斜角=14°
		Central America	同上	Michoaca n	1985/9/19	17.8	-102.5	*	*	1.10.E+21	180	90	16200	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=8.1; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25 MOはLGMTのデータを 用いた
		Central America	同上	Michoaca n	1985/9/19	*	*	*	*	*	180	140	25200	*	*	*	*	*	*	Mikumo et al. (1999)	Mw=8.1; thrust; 傾斜 角=14°
		Central America	同上	Michoaca n	1985/9/19	*	*	*	*	1.15.E+21	180	139	25020	*	*	*	*	5004.0	*	Skarlatoudis et al. (2016)	M=7.97
		Central America	同上	Michoaca n	1985/9/19	*	*	*	*	*	170	80	13600	*	*	*	*	*	*	Houston and Kanamori (1990)	subduction-zone earthquake, Mw=8.0

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

地番	城 号 地域名	地震番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	JL (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (Moから 求めた)	M ₀ (Nm)	L (km)	W (km)	<i>S</i> (km ²)	<i>A</i> (N•m/s²)	A (N•m/s²)	<i>f_o</i> (Hz)	Ds " (MPa)	$S_{s}(\mathrm{km}^{2})$	<i>S</i> ,/S		
	Central America	121	Zihuatane jo	1985/9/21	17.62	-101.82	20.0	*	9.00.E+20	90	90	8100	*	*	*	*	*	*	Mikumo et al. (1998)	Mw7.66; Depth 12km-26km;
	Central America	同上	Zihuatane jo	1985/9/21	17.60	-101.82	20.0	*	1.53.E+20	90	90	3500	*	*	*	3.284 (1asp)	1250	*	Ramirez-Gaytan et al.(2014)	Mw=7.42; D=1.028m; 傾斜角=14°; Le (effective length), We (effective width), S (dimension of rupture area)
	Central America	同上	Zihuatane	1985/9/21	17.62	-101.82	*		*	80	40	3200	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.5; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25;
	Central America	185	Zihuatane jo	1985/9/21	17.57	-101.42	20.8	7.4	1.35.E+20	53	53	2809	3.96E+19			33.7			壇・他(2001), Mendoza et al (1993))	・震源位置globalCMT 参照
	Central America	同上	Zihuatane jo	1985/9/21	*	*	*	7.4	1.35.E+20	53	60	3150	*	*	*	*	1350	*	Skarlatoudis et al. (2016)	M=7.35
	Central America	同上	1985,Zihu atanejo	1985/9/21	*	*	*	*	1.35.E+20	*	*	2827	*	*	*	*	*	*	Mendoza, C. (1993)	Vr=0.7 β =2.6km/s, β =3.7km/s f ~4.9[續域:半径15km (Playa Azu), 半径 30km(Zhuatanejo) Mw=7.3, Mw=[log(7.14e+26)- 16.1]/1.5=7.7(Playa Azu) Ms=7.6, Mw=[log(1.35e+27)- 16.1]/1.5=7.35 (Zihuatanejo).⊿σ
	Central America	同上	メキシコ・ Michoaca n 地震の 最大余震	1985/9/21	*	*	*	•	2.49.E+20	*	*	*	1.98E+19	*	0.045	*	*	*	友澤・他(2018)	・発生日は、論文不 記載より、glovalCMT 解で調査 スペクトルインバー ジョン解析による覆 激スペクトルインバー (global CMT解 ・意識スペクトルビω 二東スペクトルビω 二東スペクトルビ Brune(1970)による。 β =3.7. Δ σ=289
	Central America	125	San Marcos	1989/4/25	16.8	99.1	17.3	6.9	2.40.E+19	60	42	2520	*	*	*	1.066 (1asp)	324	*	Ramirez-Gaytan et al.(2014)	Mw=6.9; D=1.265m; 傾斜角=10°
	o America	126	-	1992/9/2	11.5	-87.6	9.5	7.6	3.40.E+20	300	62	18600	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.61,M0はGMT のデータを用いた
	o Central America	127	-	1995/9/14	16.5	-98.8	*	7.3	1.31.E+20	45	23	1013	*	*	*	*	*	•	Santoyo et al. (2005)	Mw=7.3 ; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25 M0はGMTのデータを 用いた
	Central America	同上	. Copala	1995/9/14	16.48	-98.76	16	•	7.31.E+19	45	35	*	*	*	*	*	*	*	Courboulex et al. (1997)	 ● 遠地,近地記録を 用したEGF波形合わ せ(グリッドサーチ, 最大周波数05H2) ● VF-25km/s ● 最大吉べり量 412m,平均すべり量 412m,平均すべり量 415m 長さ幅は応力障下量IMPa以上の領域
	Central America	同上	-	1995(/9/14)	*	*	17	*	1.31.E+20	*	*	2813	*	*	*	*	*	*	Furumura and Sing (2002)	interplate、Mw=7.3
	Central America	128	Manzanill o	1995/10/9	18.864	-104.579	16.0	8.0	1.15.E+21	263	98	21900	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.89,M0はGMT のデータを用いた
	Central America	同上	Manzanill o	1995/10/9	18.860	104.580	16.6	*	9.67.E+20	200	100	20000	*	*	*	2.728 (1asp) 2.258 (2asps) 2.159 (3asps) 1.984 (4asps)	2100.0	*	Ramirez-Gaytan et al.(2014)	Mw7.96; D=1.355m; 倾斜角=14 [°]
	Central America	同上	Manzanill o	1995/10/9	19.100	-104.900	*	*	*	175	88	15313	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=8.0; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25;
	Central America	同上	Manzanill o	1995/10/9	*	*	17.0	*	8.30.E+20	200	100	20000	*	*	*	*	*	*	Mendoza and Hartzell (1999)	Mw7.9; Dmax=~4m; thrust fault 傾斜角=14°;津波 4m.
	Central America	同上	Manzanill o	1995/10/9	*	*	*	*	8.30.E+20	200	100	20000	*	*	*	*	*	*	Mendoza et al. (2011)	Mw7.9.
	Central America	同上	Manzanill o	1995/10/9	*	*	*	*	9.67.E+20	170	100	17000	*	*	*	*	2800.0	*	Skarlatoudis et al. (2016)	M=7.92
	Central America	129	-	1996/2/25	15.8	-98.3	*	7.1	5.51.E+19	68	34	2312	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.1; L=2W; 剛性 率3.5e11dyne.cm ² ポアソン比0.25:M0は GMTのデータを用い た

表 2.2.3-2 国外のプレ	ート間地震の断層パラメ	ータの調査結果	(つづき)
-----------------	-------------	---------	-------

地域 番号	地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層 幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	JL (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 N	経 度 [E]	深 さ [km]	Mw (Moから 求めた)	M ₀ (Nm)	L (km)	W (km)	<i>S</i> (km ²)	A (N•m/s²)	A (N·m/s²)	<i>f_o</i> (Hz)	Ds " (MPa)	$S_{s}(\mathrm{km}^{2})$	<i>s</i> "/s		
	Central America	130	the 2003 Tecoman, Mexico earthquak e	2003/1/22	18.71	-104.13	20	*	2.30.E+20	70	85	*	*	*	*	最大値と して9.4~ 10.7	*	*	Yagi et al.(2004)	subduction interface between Rivera and Cocos plates and North American plate, Mw-7.5, Harvard CMT解では MO=1.62E+20Nmで覆 加算は18.80 ⁻⁷ N- 103.886 ⁺ E, 深さ 30km、アスペリティの 夏大すべり量は3.4m と3.1m
	Central America	同上	-	2003/1/22	18.71	104.13	20	7.5	2.30.E+20	70	85	5950	*	*	*	2.971 (1asp) 3.046 (2asps)	7.0E+02	*	Ramirez-Gaytan et al.(2014)	Mw=7.5; D=0.607m; 傾斜角=22°
	Central America	同上	-	2003/1/22	18.77	-104.10	24	7.5	2.05.E+20	47	58	2750	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.46,M0はGMT のデータを用いた
	Central America	同上	-	2003/1/22	18.70	-104.20	*	*	*	72	36	2592	*	*	*	*	*	*	Santoyo et al. (2005)	Mw=7.6; L=2W; 剛性 率3.5e11dyne.cm^2; ポアソン比0.25;
	Central America	同上	-	2003/1/22	*	*	15	*	2.05.E+20	100	100	10000	*	*	*	*	*	*	Mendoza et al. (2011)	Mw7.5; thurst fault; 傾斜角=12° Yagi et al.(2004)- LxW=70kmx85km, 傾斜角=20°
	Central America	同上	-	2003/1/22	*	*	*	*	2.30.E+20	70	85	5950	*	*	*	*	1.4E+03	*	Skarlatoudis et al. (2016)	M=7.51
18	Central America	132	-	2012/3/20	16.5	-98.2	20.0	7.5	1.98.E+20	30	37	1120	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.42,M0はGMT のデータを用いた
	Central America	同上	Mar.20,20 12, Ometepe c- Pinotepa Nacional	2012/3/20	*	*	17	•	1.90.E+20	*	*	2500	*	*	•	*	*	*	Mendoza, C. (2014)	Nw=74、Vr=25km/s, 被壊開始点位置新 層中央 解析領境:140× 70km,すべり領域:置 源の上下に並がる 2500km ² の楕円 USGS/NELC ₂ CMT等 で発表される諸元と 辺気のライナーマを用 いて、暫定的な一次 近似のラブチャーモ デルを素早く作成で きることを示すのが 目的の論文
	Central America	133	-	2012/8/27	12.1	-88.6	11.8	7.3	1.27.E+20	88	62	5440	*	*		*	*	*	Allen and Hayes (2017)	Mw=7.32,M0はGMT のデータを用いた
	Central America	47	-	2012/9/5	10.00	-85.64	29.7	7.5	2.54.E+20	150	120	18000	*	*	*	*	3520	*	Skarlatoudis et al. (2016)	M=7.54 •震源位置globalCMT 参照
	Central America	同上	-	2012/9/5	9.82	-85.5	15.0	7.6	3.42.E+20	120	98	9510	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.57,M0はGMT のデータを用いた
	Central America	同上	Nicoya, Costa Rica	2012/9/5	9.760	-85.56	13.1	•	3.46.E+20	168	112	18816	*	*	•	•	•	•	Liu et al. (2015)	Mw=7.6; thrust faulting; large slip patch 110km × 50kmR=30km, Ds=3.4MPa;
20	Colombia	162	-	2016/4/16	0.3	-80.0	20.0	*	6.76.E+20	119	120	14300	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.82,logM0=1.5M W+9.1
	Peru	4	Peru	1966/10/17	*	*	*	8.1	2.00.E+21	*	*	11200	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=7.5
	Peru	5	Peru	1970/5/31	*	*	*	7.9	1.00.E+21	*	*	9100	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=7.8
	Peru	6	-	1974/10/03	*	*	*	8.0	1.20.E+21	250	112	28000	*	*	*	*	6066	*	Skarlatoudis et al. (2016)	M=7.99
	Peru	7	-	1974/11/09	*	*	*	7.1	5.40.E+19	60	50	3000	*	*	*	*	600	*	Skarlatoudis et al. (2016)	M=7.09
	Peru	153	-	1996/2/21	-9.74	-79.7	10.0	7.5	2.23.E+20	130	79	10200	*	*		*	*	*	Allen and Hayes (2017)	Mw=7.49,M0はGMT のデータを用いた
21	Peru	154	Peru earthquak e	1996/11/12	-14.99	-75.63	28	*	4.40.E+20	180	120	*	*	*	*	*	*	*	J.Salichon et al.(2003)	subduction interface between the Nazca ridge and the South American plate, Mw=7.7, Harvard moment=4.57E+20Nm 、最大すべり量6~ 7m. β =3.8
	Peru	同上	Peruvian earthquak e	1996/11/12	-14.99	-75.63	21	*	1.50.E+21	200	*	12500	*	*	*	*	•	*	Spence et al.(1999)	subduction interface of the Nazca Ridge、 Mw=8.0、平均すべり 量1.4m、Harvardでは M0=4.4E+20Nm (Mw=7.7)
	Peru	同上	-	1996/11/12	-14.97	-75.57	21	7.7	4.57.E+20	140	68	9560	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.70,M0はGMT のデータを用いた
	Peru	同上		1996/11/12	*	*	*	8.0	1.38.E+21	300	120	36000	*	*	*	*	9072	*	Skarlatoudis et al. (2016)	M=8.03

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

地域 番号	地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	短周朔 レベル (SI: Spectral Inversion)	JL (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M ₀ から 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	S (km ²)	A (N∙m/s²)	A (N·m/s²)	<i>f_o</i> (Hz)	Ds " (MPa)	$S_{g}(\mathrm{km}^{2})$	<i>s</i> ,/s]	
	Peru	8	ペルー	2001/6/23	-17.28	-72.71	29.6	8.4	5.22.E+21	255	177	45084	*	*	*	*	10404	0.23	田島・他(2013)	 Shao and Ji (2001) 遠地データ使用 平均 すべり2.1m アスペリティすべり 5.2m 最大すべり7.9m (濃源位置globalCMT 参照
	Peru	同上	-	2001/6/23	*	*	*	8.3	3.70.E+21	400	200	80000	*	*	*	*	20800	*	Skarlatoudis et al. (2016)	M=8.31
	Peru	同上	-	2001/6/23	-16.3	-73.6	33.0	8.4	4.67.E+21	239	188	44900	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.38,M0はGMT のデータを用いた
	Peru	156	-	2001/7/7	-17.5	-72.1	33.0	7.6	3.20.E+20	68	68	4560	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.59,M0はGMT のデータを用いた
21	Peru	157	-	2007/8/15	-13.4	-76.6	39.0	8.0	1.12.E+21	138	150	19400	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.17,M0はGMT のデータを用いた
	Peru	同上		2007/8/15	*	*	*	8.0	1.12.E+21	192	108	20736	*	*	*	*	5508	*	Skarlatoudis et al. (2016)	M=7.97
	Peru	同上	Pisco, Peru earthquak e	2007/8/15	-13.35	-76.51	39	*	1.10.E+20	*	*	*	*	*	*	*	*	*	Sladen et al.(2010)	interplate earthquake, Mw=80.この規模の 地震としては例外的 に震調の広がりが 60kmと小さい、震源 での最大すべり量 11m(In-SAR only)を 果、最大津波高さ 10m、最大到達距離 2km
	Central Chile Central	32	-	1960/5/22	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Lorito et al. (2011) Kanamori and	Mw=9.5;
	Chile Central	同上	Chile	1960/5/22	*	*	*	9.5	2.00.E+23	*	*	200000	*	*	*	*	*	*	Anderson (1975) Skarlatoudis et al.	Ms=8.3
	Central Chile	31	Mar.3,198 5, Central Chile	1985/3/3	*	*	40	*	1.50.E+21	255	165	*	*	*	*	*	*	*	Mendoza, Hartzell, and Monfret (1994)	Nw=8.0, Ms=7.8 Vr=3.0km/s(max. allowable valueをイン バージョンに使用。 記載 記載 記載 記載 記載 に 面は Choy and Dewey(1988)の震源 に同じと記述
	Central Chile	同上	-	1985/3/3	*	*	*	8.1	1.96.E+21	209	165	34425	*	*	*	*	9.7E+03	*	Skarlatoudis et al. (2016)	M=8.13
	Central Chile	152	-	1995/7/30	-23.36	-70.3	36.0	8.0	1.21.E+21	135	114	15300	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.15,M0はGMT のデータを用いた
	Central Chile	同上	Antofagas ta, Chile	1995/7/30	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Spence et al.(1999) Motach M	subduction event、 Mw=8.0~8.1
	Central Chile	158	Nov.14,20 07, Tocopilla	2007/11/14	-22.33	-70.11	*	*	5.01.E+20	160	50	*	*	*	*	*	*	*	B.Schurr, J.Anderssohn, B.Cailleau, T.R.Walter, R.Wang, J.P.Villotte (2010)	Мw=7.8 µ=30GPa
	Central Chile	同上		2007/11/14	*	*	*	7.7	3.98.E+20	150	126	18954	*	*	*	*	7695	*	Skarlatoudis et al. (2016)	M=7.67
	Central Chile	同上	-	2007/11/14	-22.25	-69.89	4.0E+01	7.7	4.77.E+20	118	79	9250	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.68,M0はGMT のデータを用いた
	Central Chile	同上	Tocopilla	2007/11/14	*	*	*	*	*	150	*	*	*	*	*	*	*	*	Bejar-Pizzaro_et al. (2010)	 ●Mw7.7 ●地殻変動から震源 断層すべり分布を推定している
22	Central Chile	2	チリ	2010/2/27	-33.62	-72.29	23.2	8.7	1.55.E+22	575	200	115000	*	*	*	*	31875	*	Skarlatoudis et al. (2016)	M=8.73 •震源位置globalCMT 参照
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	*	*	*	200 × 500	*	*	*	*	*	*	小山・都筑(2014)	・Mw8.8 ・断層面はHayes (2010) ・メカニズム解は globalCMT参照
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	2.39.E+22	480	180	86400	*	*	*	*	24600	2.8E-01	田島・他(2013)	・Hayes (2010) 速地 データ使用 平均すべ り4.8m アスペリティすべり 9.7m 最大すべり 14.6m
	Central Chile	同上	チリ	2010/2/27	·	•	•	•	2.60.E+22	450	187	84150	*	•	•	•	15300	1.8E-01	田島•他(2013)	 Shao et al. (2010) 遠地データと測地 データ使用 平均すべり5.1m アス ペリティすべり9.8m 最大すべり12.9m
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	1.61.E+22	570	180	102600	*	*	*	*	22050	2.1E-01	田島·他(2013)	・Sladen (2010) 遠地 データ使用 平均すべ り2.3m アスペリティすべり 4.7m 最大すべり8.3m
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	2.15.E+22	498	182	90693	*	*	*	*	20246	2.2E-01	田島・他(2013)	・Hayes (2010), Shao et al. (2010), Sladen (2010)の平均値 平均すべり3.8m アス ペリティすべり7.6m 最大すべり11.6m
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	1.74.E+22	570	*	102600	*	*	*	*	23850	2.3E-01	Skarlatoudis et al. (2016)	Sladen(2010)
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	1.60.E+22	540	*	108000	*	*	*	*	26400	2.4E-01	Skarlatoudis et al. (2016)	Hayes(2010)
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	1.78.E+22	680	*	174148	*	*	*	*	18904	1.1E-01	Skarlatoudis et al. (2016)	Luttrel et al.(2011)

表 2.2.3-2 国外のプ	レート間地震の	断層パラメータの	の調査結果(つづき)
----------------	---------	----------	------------

地域 番号	地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層幅	断層 面積	短周期 レベル (SI: Spectral Inversion)	JU (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (Moから 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	S (km²)	A (N•m/s²)	A (N·m/s²)	<i>f_o</i> (Hz)	Ds, (MPa)	$S_{s}(\mathrm{km}^{2})$	<i>s</i> "/s]	
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	2.51.E+22	600	*	112200	*	*	*	*	18360	1.6E-01	Skarlatoudis et al. (2016)	Shao et al. (2010)
	Central Chile	同上	チリ	2010/2/27	*	*	*	*	1.55.E+22	650	*	130000	*	*	*	*	31875	2.5E-01	Skarlatoudis et al. (2016)	Lorito et al.(2011)
	Central Chile	同上	チリ	2010/2/27	-36.22	-73.174	25.0	8.8	1.86.E+22	475	249	78300	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.85,M0はGMT のデータを用いた
	Central Chile	同上	Maule	2010/2/27	-36.208	-72.963	32		1.80.E+22	500	深さ 50km (傾斜 18度で W=161. 8 km?)	•	*	*	*	•	•	•	Delouis et al. (2010)	 ●地殻変動データと 遠地表面波を用いた 震源インパージョン ●Mw=8.8 ●最大すべり量20m ●Vr=2.6km/s
	Central Chile	同上	The great 2010 Chile earthquak e	2010/2/27	-36.12	-72.9	*	•	1.55.E+22	625	200	125000	*	*	*	*		•	Lorito et al. (2011)	Mw=8.8; mega-thrust;
	Central Chile	同上	Maule, Chile	2010/2/27	*	*	*	*	*	~600	*	*	*	*	•	*	•	*	Luttrell et al. (2011)	Mw=8.8; mega-thrust; Dspeak=17MPa; Ds=-6MPa~17MPa;
22	Central Chile	同上	Feb.27,20 10 Maule, Chile	2010/2/27	*	*	*	*	1.97.E+22	650	195	*	*	*	*	*	*	*	Pollitz,F.F., Brooks B., Tong,X., Bevis,M.G., Foster,J.H., Bü rgmann,R., Smalley,R., Vigny,C., Socquet,A., Ruegg,J.C. and Campos,J. (2011)	Mw=8.83 水平面投影 幅185km, δ=18°→ W=185/cos18° =194.5km
	Central Chile	160	-	2014/4/1	-19.6	-70.9	25.0	8.1	1.90.E+21	72	99	5780	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.18,M0はGMT のデータを用いた
	Central Chile	同上	Iquique earhtquak e	2014/4/1	-19.642	-70.817	*	*	1.66.E+21	158	105	16538	*	*	*	*	*	*	Lay et al. (2014)	Mw=8.1; strike=357, dip=18; circular fault model; centroid depth=21.9km; interplate thrust fault; β =3.98
	Central Chile	161	-	2014/4/3	-20.5	-70.5	32.0	7.7	4.92.E+20	100	80	8000	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.78,M0はGMT のデータを用いた
	Central Chile	195	Sep.16,20 15, Illapel	2015/9/16	-31.637	-71.741	25	*	3.30.E+21	200	140	28000	*	*	*	*	*	*	Okuwaki,R., Yagi,Y., Ará nguiz,R., Gonzá lez,J., and Gonzá lez,G. (2016)	Mw=8.3 解析領域:長さ200km ×幅140km (electronic supplementary material)
	Central Chile	同上	チリ・ Illapel 地 震	2015/9/16	*	*	*	*	3.23.E+21	*	*	*	7.18E+19	*	0.024	*	*	*	友澤・他(2018)	・スペクトルインパー ジョン解析による震 源スペクトルの推定・ ・地震モーンントは、 Global CMT解 ・震源スペクトルと当 てはめていを評価。 広力降下量ム σ は Brune(1970)による。 ・チリ地域の結果、 Q(f)=200 68 程度。 β =3.7. Δ σ 6.04
	-	204	-	1928	*	*	*	*	*	*	*	*	*	*	*	*		*	Lorito et al. (2011)	Mw=8.0;
	-	200	Vanuatu earthquak e	1934/7/18	-11.910	166.73	*	*	*	*	*	*	*	*	*	*	*	*	Lay et al. (2013a)	M [~] 7.8; M=7.8(Pacheco and Sykes, 1992);
	-	205	-	1939	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Lorito et al. (2011)	Mw=7.9; intra-plate event;
	-	197	-	1942/8/24	*	•	•	•	•	*	*	•	*	*	*	•	•	•	J.Salichon et al.(2003)	subduction interface between the Nazca ridge and the South American plate Mw=8.1or8.2
-	-	198	-	1942/xx/xx	*	•	•	•	•	240	*	•	*	•	•	•	•	•	Spence et al.(1999)	subduction interface of the Nazca Ridge、 Mw=7.9~8.2、雲源深 さは96.11.12地震とほ ぼ同じで規模はやや 大きい
	-	201	-	1949/8/22	*	*	*	*	*	~265	*	*	*	*	*	*	*	*	Lay et al. (2013b)	Ms=8.1; strike-slip faulting; the Queen Charlotte Fault; Mw=7.9:断層長さは Love波の初期位相よ りの値;
	-	206	-	1960/5/21	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Lorito et al. (2011)	Mw=7.9;
	-	137	Turkey	1967/7/22	*	*	*	7.2	8.30.E+19	*	*	1600	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=7.1
	-	202	-	1966/12/31	-11.890	166.44	*	*	*	*	*	*	*	*	•	*	•	*	Lay et al. (2013a)	Ms=7.9(Tajima et al., 1990);
	-	24	Iran	1968/8/31	*	*	*	7.3	1.00.E+20	*	*	1600	*	*	*	*	*	*	Kanamori and Anderson (1975)	Ms=7.3; strike-slip fault

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

(赤子:作図で使用した値、青文子:今年度業務で新たに追加したテータ	に追加したデータ)
-----------------------------------	-----------

地域 番号	地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層	断層 面積	短周期 レベル (SI: Spectral Inversion)	JL (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (Moから 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	<i>S</i> (km ²)	A (N·m/s²)	A (N·m/s²)	<i>f_o</i> (Hz)	Ds " (MPa)	$\mathcal{S}_{s}(\mathrm{km}^{2})$	<i>s</i> ,/s		
	-	208	Peru Earthqua ke	1974/9/3	*	*	11	*	1.50.E+28	*	58	*	*	*	•	*	•	*	Harzell_Langer(199 3)	Mw=8.0, TABLE 1. モ デルCm
	-	同上	Peru Earthqua ke	1974/9/3	*	*	15	*	1.20.E+28	*	49	*	*	*	*	*		*	Harzell_Langer(199 3)	Mw=8.0, TABLE 1. モ デルDm
	-	199	-	1974/10/3	*	*	*	*	*	*	*	*	*	*	*	*	*	*	J.Salichon et al.(2003)	subduction interface between the Nazca ridge and the South American plate, Mw=8.1
	-	167	-	1990/4/18	1.16	122.8	26.0	7.6	3.31.E+20	88	87	7660	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.59,M0はGMT のデータを用いた
	-	196	Bolivia earthquak e	1994/6/9	*	*	635	*	*	*	*	*	*	*	*	*	*	*	Spence et al.(1999)	deep thrust earthquake, Mw=8.2
	-	188	North Sakhalin EQ	1995/5/27	52.6	142.8	9	7.0	4.20.E+19	30~60	15	450~ 900	*	*	*	*	*	*	Katsumata et al. (2004)	near an uncertain plate boundary、震源 位置、MO値、Jord K インパージョン結果 / USGS 震源位置 52.534* N、 142.834* E、深さ 33km, strike-slip、 dip=79*、Mw=7.0、L (45)-W(15)-S(675) として作図した
-	-	170	-	1996/1/1	0.72	120.0	16.0	7.9	7.78.E+20	71	70	4990	*	*		*		*	Allen and Hayes (2017)	Mw=7.82,M0はGMT のデータを用いた
	-	189	 (ニューギ ニア島沖 地震)イン ドネシア の近く 	1996/2/17	-0.95	136.9	20.0	8.2	2.41.E+21	110	95	10400	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=8.14.M0はGMT のデータを用いた
	-	191	-	2002/9/8	-3.30	143.0	13.0	7.6	2.94.E+20	77	30	2300	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.54,M0はGMT のデータを用いた
	-	192	-	2003/8/21	-45.1	167.1	28.0	7.2	7.48.E+19	40	40	1600	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.17,M0はGMT のデータを用いた
	-	139	-	2009/1/3	-0.51	132.8	17.0	7.7	3.76.E+20	68	60	4100	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.65,logM0=1.5M W+9.1
		同上	West Papua,Ind onesia Earthqua ke	2009/1/3 19:44	-0.408	132.886	about 20	*	1.02.E+20	80	40	3200	*	*	*	*	*	*	Fujii_etal(2011)	PacificPlate/Australi anPlate, Mw=7.7(USGS), Mw=7.3(tsunami model), single fault model,thrust type
	-	同上	-	2009/1/3	*	*	*	*	2.82.E+20	120	96	11520	*	*	*	*	1680.0	*	Skarlatoudis et al. (2016)	M=7.57

表 2.2.3-2 国外のプレート間地震の断層パラメータの調査結果(つづき)

地域 番号	地域名	地震 番号	地震名	発生日		震源位置		モーメントマ グニチュード	地震 モーメント (論文)	断層 長さ	断層	断層 面積	短周期 レベル (SI: Spectral Inversion)	JL (SMGA: Strong Motion Generation Area)	コーナー 振動数	アスペリ ティの 応力降下 量	アスペリ ティの面積	アスペリ ティの面 積比	参考文献	備考
				年月日	緯 度 [N]	経 度 [E]	深 さ [km]	Mw (M ₀ から 求めた)	<i>M</i> ₀ (Nm)	L (km)	W (km)	S (km²)	A (N•m/s²)	A (N•m/s²)	<i>f_o</i> (Hz)	Ds " (MPa)	$S_s(\mathrm{km}^2)$	<i>s</i> ,/s		
	-	194	West Papua,Ind onesia Earthqua ke	2009/1/3 22:33	-0.408	132.886	about 20	•	1.11.E+20	100	40	4000	*	*	•	*	*	•	Fujii_etal(2011)	PacificPlate/Australi anPlate, Mw=7.4(USGS), Mw=7.3(tsunami model), fault with 5 subfaults model, thrust type
	-	49	-	2009/7/15	-45.8	166.6	12.0	7.8	5.79.E+20	66	40	2640	*	*	*	*	*	*	Allen and Hayes (2017)	Mw=7.82、M0はGMT のデータを用いた
	-	同上	-	2009/7/15	*	*	*	*	2.82.E+20	112	96	10752	*	*	*	*	2560	*	Skarlatoudis et al. (2016)	M=7.57
	-	同上	Dusky sound earthquak e	2009/07/15	*	*	38	*	2.72.E+20	140	80	*	*	*	*	*	*	*	Fry_etal(2010)	Australian/Pacific plate, low-angle reverse fault, 観測 データのインパージョ ンから出たモデル
-	-	207	Craig, Alaska, earthquak e	2013/1/5	55.394	-134.65	7.1		2.50.E+20	~120	24	*	*	*	*	*	+	*	Lay et al. (2013b)	Mw=7.5; strike-slip faulting; 断層幅は Fig.3より読み取った;
	-	203	2016 Kaikoura earthquak e	2016/11/14	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Litchfiled et al. (2018)	Hollingsworth et al. (2017), プレート間の 破壊は全体のM _o の 60%;
	-	同上	同上	-	*	*	*	*	*	*	*	*	*	*	*	*	+	*	Litchfiled et al. (2018)	Bai et al. (2017), プ レート間の破壊は全 体のM ₀ =7.25E+20Nm の41%;
	-	同上	同上	-	*	*	*	*	*	*	*	*	*	*	*	*	•	*	Litchfiled et al. (2018)	Wen et al. (2018), プ レート間の破壊は全 体のM ₆ =9.91E+20Nm の15%-25%;
	-	同上	同上	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Litchfiled et al. (2018)	Wang et al. (2018), プ レート間の破壊は全 体のM _e =1.04E+21Nm の45%;
	-	同上	同上	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	Litchfiled et al. (2018)	Hamling et al.(2017)&Clark et al.(2017), プレート間 の破壊は全体の M ₀ =7.7E+20Nmの9%;

2.2.4 プレート間地震の断層パラメータの分析

a) 国内外のプレート間地震の断層幅 Wと断層長さ L との関係の分析

図 2.2.4-1(1)に、表 2.2.3-1 および表 2.2.3-2 に示した国内外のプレート間地震の断層幅 W と断層長さ L との関係を、国内の地震については白丸印で、国外の地震については黒丸印 で示す。図中、赤線は渡辺・他(2002)による、プレート間地震の断層幅と断層長さの経験 的関係式である。

図 2.2.4-1(2)~(19)に地域区分ごとのプレート間地震の断層幅 Wと断層長さLとの関係を示す。

プレート間地震の断層長さと断層幅の関係において、断層長さが概ね 300km より大きい 地震に着目した場合、日本のプレート間地震と国外のプレート間地震による違いはほとん どなく、平均的に既往の経験則(渡辺・他, 2000)とよく整合していることが分かった。地域 ごとに見た場合、Sumatra、Alaska、Central Chile などの地域では断層幅が既往の経験則よ り大きく、Cascadia 地域では断層幅が既往の経験則より小さいなどの違いが見られた。

図 2.2.4-1(1) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係 2.2.4-1

O PacificPlate

図 2.2.4-1(2) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-12:日本 Pacific Plate

Watanabe et al.(2002)

O PhilippineSeaPlate

図 2.2.4-1(3) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-26:日本:Philippine Sea Plate

図 2.2.4-1(5) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-2: Java (国外) 2.2.4-3

図 2.2.4-1(7) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-5: Kermadec (国外)

図 2.2.4-1(9) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-8: Solomon Island (国外)

図 2.2.4-1(11) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-13: Kuriles (国外)

図 2.2.4-1(13) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-15: Aleutians (国外)

図 2.2.4-1(15) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-17: Cascadia(国外)

図 2.2.4-1(17) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-20: Colombia (国外)

図 2.2.4-1(19) 国内外のプレート間地震の断層幅 Wと断層長さLとの関係

地域番号-22: Central Chile (国外)

2.2.4-10

b) 国内外のプレート間地震の断層面積 Sと地震モーメント M₀と関係の分析

図 2.2.4-2(1)に、表 2.2.3-1 および表 2.2.3-2 に示した国内外のプレート間地震の断層面積 *S*と地震モーメント *M*₀と関係を、国内の地震については白丸印で、国外の地震については 黒丸印で示す。図中、黒線は(2.2.4-1)式で表される Murotani *et al.* (2008)による断層面積 *S* と地震モーメント *M*₀ との経験式で、赤線は(2.2.4-2)式で表される、田島・他(2013)による 断層幅が飽和する第 2 ステージのプレート間地震を対象とした、断層面積 *S*と地震モーメ ント *M*₀ との経験的関係式(式 2.2.4-2)である。参考として、(2.2.4-3)式で表される、地震調 査研究推進本部(2005)によるプレートの地震の強震動予測のためのレシピで採用されてい る宇津(2001)式も、青点線で示す。

$$S[\text{km}^{2}] = 1.48 \times 10^{-10} (M_{0}[\text{N} \cdot \text{m}])^{2/3}$$
(2.2.4-1)

$$S[\text{km}^{2}] = 5.82 \times 10^{-7} (M_{0}[\text{N} \cdot \text{m}])^{1/2}$$
(2.2.4-2)

$$S[\text{km}^{2}] = 8.58 \times 10^{-11} (M_{0}[\text{N} \cdot \text{m}])^{2/3}$$
(2.2.4-3)

図 2.2.4-2(2)~(18)に地域区分ごとのプレート間地震の断層面積 S と地震モーメント M₀ と関係を示す。

プレート間地震の地震モーメントと断層面積の関係においても、地震規模が比較的大き い地震(概ね Mw 8.4 以上)に着目した場合、日本のプレート間地震と海外のプレート間地 震による違いはほとんどなく、第2ステージ以降の既往の経験則(田島・他, 2013)とよく整 合していることが分かった。地域ごとに見た場合、Sumatra、Alaska などの地域では断層面 積が既往の経験則より大きく、Cascadia 地域では断層面積が既往の経験則より小さいなど の違いが見られた。

図 2.2.4-2(2) 国内外のプレート間地震の断層面積 S と地震モーメント M₀ との関係

地域番号-12:日本 Pacific Plate 2.2.4-12

図 2.2.4-2(3) 国内外のプレート間地震の断層面積 S と地震モーメント M₀ との関係

地域番号-26:日本 Philippine Sea Plate

図 2.2.4-2(4) 国内外のプレート間地震の断層面積 S と地震モーメント M₀ との関係

地域番号-1: Sumatra (国外)

図 2.2.4-2(6) 国内外のプレート間地震の断層面積 Sと地震モーメント Moとの関係

地域番号-3: Banda Sea (国外)

図 2.2.4-2(8) 国内外のプレート間地震の断層面積 S と地震モーメント M₀ との関係

地域番号-7: Vanuatu (国外) 2.2.4-15

図 2.2.4-2(10) 国内外のプレート間地震の断層面積 Sと地震モーメント M_0 との関係

地域番号-9: Philippine (国外)

2.2.4-16

図 2.2.4-2(12) 国内外のプレート間地震の断層面積 Sと地震モーメント Moとの関係

地域番号-14: Kamchatka (国外)

図 2.2.4-2(14) 国内外のプレート間地震の断層面積 Sと地震モーメント M₀との関係

地域番号-16: Alaska (国外)

2.2.4-18

図 2.2.4-2(16) 国内外のプレート間地震の断層面積 Sと地震モーメント M₀との関係

地域番号-18: Central America (国外) 2.2.4-19

図 2.2.4-2(18) 国内外のプレート間地震の断層面積 Sと地震モーメント Moとの関係

地域番号-21: Peru (国外) 2.2.4-20

図 2.2.4-2(19) 国内外のプレート間地震の断層面積 S と地震モーメント M₀ との関係 地域番号-22: Central Chile (国外)

c) 国内外のプレート間地震の地震モーメント M₀と短周期レベル A との関係の分析

図 2.2.4-3(1)に、表 2.2.3-1 およびに表 2.2.3-2 示した国内外のプレート間地震の地震モー メント M₀と短周期レベル A との関係を、国内の地震については白丸印で、国外の地震に ついては黒丸印で示す。図中、黒線は(2.2.4-4)式で表される、地震調査研究推進本部(2005) による強震動予測のためのレシピで採用されている壇・他(2001)の式で、黒実線は平均値 で、黒点線はその 2 倍と 1/2、灰色部分は外挿である。

$$A[N \cdot m/s^{2}] = 2.46 \times 10^{10} \times (M_{0}[N \cdot m] \times 10^{7})^{1/3}$$
(2.2.4-4)

図 2.2.4-3(2)~(4)に地域区分ごとのプレート間地震の地震モーメント M₀と短周期レベル A との関係を示す。

図より、プレート間地震の地震モーメントと短周期レベルの関係において、日本のプレ ート間地震と海外のプレート間地震による断層パラメータの違いはほとんどなく、平均的 に壇・他(2001)の 0.5 倍から 2 倍の間であることが分かる。地域ごとに見た場合、日本の太 平洋プレートでは、壇・他(2001)の 1 倍から 2 倍で、ほかの地域に比べて大きいことが分 かった。

図 2.2.4-3(1) 国内外のプレート間地震の短周期レベルAと地震モーメント Moとの関係

図 2.2.4-3(2) 国内外のプレート間地震の短周期レベルAと地震モーメント Moとの関係

地域番号-12:日本 Pacific Plate

図 2.2.4-3(3) 国内外のプレート間地震の短周期レベル A と地震モーメント M₀ との関係 地域番号-26: 日本 Philippine Sea Plate

図 2.2.4-3(4) 国内外のプレート間地震の短周期レベルAと地震モーメント M₀との関係

地域番号-18: Central America (国外)

図 2.2.4-3(5) 国内外のプレート間地震の短周期レベルAと地震モーメント M₀との関係 地域番号-22: Central Chile (国外)

2.2節の参考文献(英文:アルファベット順、和文:五十音順)

2.2.1

- Garcia-Soto, A. D. and M. A. Jaimes (2017): Ground-Motion Prediction Model for Vertical Response Spectra from Mexican Interpolate Earthquakes, Bulletin of the Seismological Society of America, Vol. 107, No. 2, pp. 887-900.
- Ibrahim, R., H. Si, K. Koketsu, and H. Miyake (2016): Long-Period Ground-Motion Prediction Equations for Moment Magnitude Estimation of Large Earthquakes in Japan, Bulletin of the Seismological Society of America, Vol. 106, No. 1, pp. 54-72.
- Montalva, G. A., N. Bastias, and A. Rodriguez-Marek (2017): Ground-Motion Prediction Equation for the Chilean Subduction Zone, Bulletin of the Seismological Society of America, Vol. 107, No. 2, pp. 901-911.
- 4) Skarlatoudis, A. A., C. B. Papazachos, B. N. Margaris, C. Ventouzi, I. Kalogeras, and the EGELADOS Group (2013): Ground-Motion Prediction Equations of Intermediate-Depth Earthquakes in the Hellenic Arc, Southern Aegean Subduction Area, Bulletin of the Seismological Society of America, Vol. 103, No. 3, pp. 1952-1968.
- 5) 大野晋 (2016): 東北地方太平洋沖地震の強震記録の距離減衰特性と地震動評価式の適 用,日本地震工学会論文集,第16巻,第4号,pp.2-11.
- 6) 佐藤智美 (2010): 日本のスラブ内地震とプレート境界地震の水平・上下動の距離減衰式, 日本建築学会構造系論文集,第75巻,第647号,pp.67-76.
- 7) 司宏俊・纐纈一起・三宅弘恵 (2016): プレート境界巨大地震の地震動距離減衰特性-伝播特性に着目した検討-,日本地震工学会論文集,第16巻,第1号,pp.96-105.

2.2.2

- Allen, T. I. and G. P. Hayes (2017): Alternative Rupture-Scaling Relationships for Subduction Interface and Other Offshore Environments, Bulletin of the Seismological Society of America, Vol. 107, No. 3, pp. 1240-1253.
- 9) Geller, R. J. (1976): Scaling relations for earthquake source parameters and magnitudes, Bulletin

of the Seismological Society of America, Vol. 66, No. 5, pp. 1501-1523.

- 10) Kinoshita, S. and M. Ohike (2002): Scaling Relations of Earthquakes That Occurred in the Upper Part of the Philippine Sea Plate beneath the Kanto Region, Japan, Estimated by Means of Borehole Recordings, Bulletin of the Seismological Society of America, Vol. 92, No. 2, pp. 611-624.
- Murotani, S., H. Miyake, and K. Koketsu (2008): Scaling of characterized slip models for plateboundary earthquakes, Earth Planets Space, No. 60, pp. 987-991.
- 12) Murotani, S., K. Satake, and Y. Fujii (2013): Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes Geophysical Research Letters, Vol. 40, pp. 1-5.
- 13) Ramirez-Gaytan, A., J. Aguirre, M. A. Jaimes, and V. Huerfano (2014): Scaling Relationships of Source Parameters of Mw 6.9-8.1 Earthquakes in the Cocos-Rivera-North American Subduction Zone, Bulletin of the Seismological Society of America, Vol. 104, No. 2, pp. 840-854.
- Scholz, C. H. (1982): Scaling laws for large earthquakes: consequences for physical models, Bulletin of the Seismological Society of America, Vol. 72, No. 1.
- Scholz, C. H., C. A. Aviles, and S. G. Wesnousky (1986): Scaling differences between large interpolate and intraplate earthquakes, Bulletin of the Seismological Society of America, Vol. 76, No. 1, pp. 65-70.
- 16) Skarlatoudis, A. A., P. G. Somerville, and H. K. Thio (2016): Source-scaling relations of interface subduction earthquakes for strong ground motion and tsunami simulation, Bulletin of the Seismological Society of America, Vol. 106, No. 4, pp. 1652-1662.
- 17) 室谷智子・佐竹健治・藤井雄士郎 (2014): プレート境界で発生するM9クラス巨大地震のスケーリング則, 第14回日本地震工学シンポジウム, OSI-Sat-PM1-3, pp. 2812-2820.

2.2.3

 Allen, T. I. and G. P. Hayes (2017): Alternative Rupture-Scaling Relationships for Subduction Interface and Other Offshore Environments, Bulletin of the Seismological Society of America, Vol. 107, No. 3, pp. 1240-1253.

- Ammon, C. J., J. Chen, H. K. Thio, D. Robinson, S. Ni, V. Hjorleifsdottir, H. Kanamori, T. Lay, S. Das, D. Helmberger, G. Ichinose, J. Polet, and D. Wald. (2005): Rupture process of the great 2004 Sumatra-Andaman earthquake, Science, 308, 1133-1139.
- 20) Ammon, C. J., H. Kanamori, and T. Lay (2008a): A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands, Nature, 451, 561–566, doi:10.1038/nature06521.
- Ammon, C. J., H. Kanamori, and T. Lay (2008b): A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands, Nature, Suplementary inofrmation, 1-10, doi:10. 1038/nature06521.
- 22) Ammon, C. J., T. Lay, H. Kanamori, and M. Cleveland (2011): A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, pp. 693-696.
- 23) Andrade, V. and K. Rajendran (2011): Intraplate Response to the Great 2004 Sumatra-Andaman Earthquake: A Study from the Andaman Segment, Bulletin of the Seismological Society of America, Vol. 101, No. 2, pp. 506-514.
- 24) Beavan, J., X. Wang, C. Holden, K. Wilson, W. Power, G. Prasetya, M. Bevis and R. Kautoke (2010): Near-simultaneous great earthquakes at Tongan megathrust and other rise in September 2009, Nature Letters, Vol 466 19 August 2010 doi:10.1038/nature09214.
- 25) Bejar-Pizzaro M., D. Carrizo, A. Socquet, and R. Armijo (2010): Asperities, barriers and transition zone in the North Chile seismic gap: State of the art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data, Geoph. Journ. Int., GJI-S-09-0648, doi:10.1111/j.1365-246X.2010.04748.x.
- 26) Chen T., A. V. Newman, L. Feng, and H. M. Fritz (2009): Slip distribution from the 1 April 2007 Solomon islands earthquake: A unique image of near-trench rupture, Geophysical Research Letters, Vol. 36, L16307, doi:10.1029/2009GL039496.
- 27) Courboulex, F., M. A. Santoyo, J. F. Pacheco, and S. K. Singh (1997): The 14 September 1995 (M=7.3) Copala, Mexico, Earthquake: A Source Study Using Teleseismic, Regional, and Local Data, Bull. Seismol. Soc. Am. 87, 999-1010.

- 28) Delouis B., J. M. Nocquet, M. Vallee (2010): Slip distribution of the February 27, 2010 Mw=8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data, Geophys. Res. Lett., 37, L17305, doi:10.1029/2010GL043899.
- 29) Fry B., S. Bannister, J. Beavan, L. Bland, B. Bradley, S. Cox, J.Cousins, N. Gale, G. Hancox, C. Holden, R. Jongens, W. Power, G. Prasetya, M. Reyners, J. Ristau, R. Robinson, S. Samsonov, K. Wilson and the GeoNet team (2010): The M_W 7.6 Dusky Sound Earthquake of 2009: Preliminary report, Bulletin of the New Zealand Society for Earthquake Engineering, Vol. 43, No. 1, March 2010.
- 30) Fujii, Y. and K. Satake (2008): Tsunami Sources of the November 2006 and January 2007 Great Kuril Earthquakes, Bulletin of the Seismological Society of America, Vol. 98, No. 3, pp. 1559-1571.
- Fujii, Y., K. Satake, and Y. Nishimae (2011): Observation and Modeling of the January 2009 West Papua, Indonesia Tsunami, Pure Appl. Geophys. 168, 1089-1100, doi:10.1007/s00024-010-0220z.
- 32) Fujii, Y., K. Satake, S. Sakai, M. Shinohara, and T. Kanazawa (2011): Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, pp. 815-820.
- 33) Furumura, T. and S. K. Singh (2002): Regional Wave Propagation from Mexican Subduction Zone Earthquakes: The Attenuation Functions for Interplate and Inslab Events, Bulletin of the Seismological Society of America, Vol. 92, No. 6, pp. 2110-2125.
- 34) Gusman, A. R., Y. Tanioka, T. Kobayashi, H. Latief, and W. Pandoe (2010): Slip distribution of the 2007 Bengkulu earthquake inferred from tsunami waveforms and InSAR data, Jour. Geophys. Res., 115, B12316, doi:10.1029/2010JB007565.
- 35) Hartzell, S., and C. Langer (1993): Importance of model parameterization in finite fault inversions; application to the 1974 Mw 8.0 Peru earthquake. J. Geophys. Res. 98 (12):22,123-22,134.
- 36) Houston, H. and H. Kanamori (1990): Comparison of strong-motion spectra with teleseismic spectra for three magnitude 8 subduction-zone earthquakes, Bulletin of the Seismological Society

of America, Vol. 80, No. 4, pp. 913-934.

- 37) Hurukawa, N. (1998): The 1995 Off-Etorofu Earthquake: Joint Relocation of Foreshocks, the Mainshock, and Aftershocks and Implications for the Earthquake Nucleation Process, Bulletin of the Seismological Society of America, Vol. 88, No. 5, pp. 1112-1126.
- 38) Ji et. al. (2005): http://equakerc.info/SRCMOD/searchmodels/viewmodel/s2004SUMATR01JIxx/
- 39) Kanamori, H. and D. L. Anderson (1975): THEORETICAL BASIS OF SOME EMPIRICAL RELATIONS IN SEISMOLOGY, Bulletin of the Seismological Society of America, Vol. 65, No. 5, pp. 1073-1095.
- 40) Katsumata, K., M. Kasahara, M. Ichiyanagi, M. Kikuchi, Rak-Se Sen, Chun-Un Kim, A. Ivaschenko, and R. Tatevossian (2004): The 27 May 1995 M_S 7.6 Northern Sakhalin Earthquake: An Earthquake on an Uncertain Plate Boundary, Bulletin of the Seismological Society of America, Vol. 94, No. 1, pp. 117-130.
- Kobayashi, R. and K. Koketsu (2005): Source process of the 1923 Kanto earthquake inferred from historical geodetic, teleseismic, and strong motion data, Earth Planets Space, 57, pp. 261-270.
- 42) Konca, A. O., V. Hjorleifsdottir, T. A. Song, J. Avouac, D. V. Helmberger, C. Ji, K. Sieh, R. Briggs, and A. Meltzner (2007): Rupture kinematics of the 2005, Mw 8.6, Nias- Simeulue earthquake from the joint inversion of seismic and geodetic data, Bull. Seism. Soc. Am., Sumatra special issue. Data accessible at http://www.tectonics.caltech.edu/slip_history/2005_sumatra/sumatra_update2. html.last accessed 01 July, 2013.
- Konca, A. O., J P. Avouac, A. Sladen, A. J. Meltzner, K. Sieh, P. Fang, Z. Li, J. Galetzka, J. Genrich, M. Chlieh, D. H. Natawidjaja, Y. Bock, E. Fielding, C. Ji, and D. V. Helmberger (2008): Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence, Nature, 456, 631-635, doi:10.1038/nature07572. Data accessible at http://www.tectonics. caltech.edu/slip_history/2007_s_sumatra/ssumatra-update.html, last accessed July 1, 2013.
- 44) Kuroki, H., H. M. Ito, and A. Yoshida (2004): Effects of nearby large earthquakes on the

occurrence time of the Tokai earthquake -An estimation based on a 3-D simulation of plate subduction-, Earth Planets Space, 56, pp. 169-178.

- 45) Lay, T., H. Kanamori, C. Ammon, A. R. Hutko, K. Furlong, and L. Rivera (2009): The 2006-2007 Kuril Islands great earthquake sequence, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 114, B11308, doi:10.1029/2008JB006280.
- 46) Lay, T., C. Ammon, H. Kanamori, L. Rivera, K. D. Koper, and A. R. Hutko (2010): The 2009 Samoa-Tonga great earthquake triggered doublet, Nature, Vol. 466, doi:10.1038/nature09214.
- 47) Lay T., C. J. Ammon, H. Kanamori, Y. Yamazaki, K. F. Cheung, and A. R. Hutko (2011): The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures, GEOPHYSICAL RESEARCH LETTERS, Vol. 38, L06302, doi:10.1029/2010GL046552.
- 48) Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheung, K. F., and Ammon, C. J. (2013a): The February 6, 2013 Mw 8.0 Santa Cruz Islands earthquake and tsunami. Tectonophysics, 608, 1109-1121.
- 49) Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheung, K. F., Kwong, K., and Koper, K. D. (2013b): The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: Slip partitioning along the Queen Charlotte Fault transpressional plate boundary. Earth and Planetary Sci. Lett., 375, 57-70.
- 50) Lay, T., H. Yue, E. E. Brodsky, and C. An (2014): The 1 April 2014 Iquique, Chile, M_W 8.1 earthquake rupture sequence, Geophys. Res. Lett., 41, doi:10.1002/2014GL060238.
- Litchfield et al. (2018): Surface Rupture of Multiple Crustal Faults in the 2016 M_w 7.8 Kaikoura, New Zealand, Earthquake, Bull. Seismol. Soc. Am., Vol. 108, No. 3B, pp. 1496-1520, doi:10.1785/0120170300.
- 52) Liu, C., Zheng, Y., Xiong, X., Wang, R., López, A. and Li, J. (2015): Rupture processes of the 2012 September 5 Mw 7.6 Nicoya, Costa Rica earthquake constrained by improved geodetic and seismological observations. Geophysical Journal International, 203(1), pp.175-183.
- 53) Lorito, S., F. Romano, S. Atzori, X. Tong, A. Avallone, J. McCloskey, M. Cocco, E. Boschi, and

A. Piatanesi (2011): Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake, Nature Geoscience, 4, 173-177, doi:10.1038/ngeo1073.

- 54) Luttrell, K. M., Tong, X., Sandwell, D. T., Brooks, B. A., & Bevis, M. G. (2011): Estimates of stress drop and crustal tectonic stress from the 27 February 2010 Maule, Chile, earthquake: Implications for fault strength. Journal of Geophysical Research: Solid Earth (1978-2012), 116(B11).
- 55) Mendoza, C. (1993): Coseismic Slip of 2 Large Mexican Earthquakes from Teleseismic Body Wave-Forms - Implications for Asperity Interaction in the Michoacan Plate Boundary Segment.
 J. Geophys. Res.-Solid Earth 98 (B5):8197-8210.
- 56) Mendoza, C. (1995): Finite-Fault Analysis of the 1979 March 14 Petatlan, Mexico, Earthquake Using Teleseismic P-Wave-Forms. Geophys. J. Int. 121 (3):675-683.
- 57) Mendoza, C., (2014): Near -realtime source analysis of the 20 March 2012 Ometepec- Pinotepa Nacional, Mexico earthquake, GEOFÍSICA INTERNACIONAL (2014) 53-2: 211-220.
- 58) Mendoza, C., and S. H. Hartzell (1989): Slip Distribution of the 19 September 1985 Michoacan, Mexico, Earthquake - near-Source and Teleseismic Constraints. Bull. Seis. Soc. Am 79 (3):655-669.
- 59) Mendoza, C., S. Hartzell, and T. Monfret. (1994): Wide-Band Analysis of the 3 March 1985 Central Chile Earthquake - Overall Source Process and Rupture History. Bull. Seis. Soc. Am 84 (2):269-283.
- 60) Mendoza, C. and S. Hartzell (1999): Fault-Slip Distribution of the 1995 Colima-Jalisco, Mexico, Earthquake, Bulletin of the Seismological Society of America, Vol. 89, No. 5, pp. 1338-1344.
- 61) Mendoza, C., S. Castro Torres, and J. M. Gomez Gonzalez (2011): Moment-Constrained Finite-Fault Analysis Using Teleseismic *P* Waves: Mexico Subduction Zone, Bulletin of the Seismological Society of America, Vol. 101, No. 6, pp. 2675-2684.
- 62) Mikumo, Takeshi, Takashi Miyatake, and Miguel A. Santoyo (1998): Dynamic Rupture of Asperities and Stress Change during a Sequence of Large Interplate Earthquakes in the Mexican Subduction Zone, Bulletin of the Seismological Society of America, Vol. 88, No. 3, pp. 686-702.

- 63) Mikumo, Takashi, Shri Krishna Singh, and Miguel A. Santoyo (1999): A Possible Stress Interaction between Large Thrust and Normal Faulting Earthquakes in the Mexican Subduction Zone, Bulletin of the Seismological Society of America, Vol. 89, No. 6, pp. 1418-1427.
- 64) Motag, M., B. Schurr, J. Anderssohn, B. Cailleau, T. R. Walter, R. Wang, J. P. Villotte (2010): Subduction earthquake deformation associated with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: Results from InSAR and aftershocks, Tectonophysics 490, 60-68.
- 65) Obana, K., S. Kodaira, Y. Nakamura, T. Sato, G. Fujie, T. Takahashi, and Y. Yamamoto (2014): Aftershocks of the December 7, 2012 intraplate doublet near the japan Trench axis, Earth, Planets and Space, http://www.earth-planets-space.com/content/66/1/24.
- 66) Obana, K., M. Scherwath, Y. Yamamoto, S. Kodaira, K. Wang, G. Spence, M. Riedel, and H. Kao (2015): Earthquake Activity in Northern Cascadia Subduction Zone Off Vancouver Island Revealed by Ocean-Bottom Seismograph Observations, Bulletin of the Seismological Society of America, Vol. 105, No. 1, pp. 489-495.
- 67) Okuwaki, R., Yagi, Y., Aránguiz, R., González, J., and González, G. (2016): Rupture Process During the 2015 Illapel, Chile Earthquake: Zigzag-Along-Dip Rupture Episodes. Pure and Applied Geophysics, 173(4), 1011-1020.
- Pollitz, F. F., Brooks, B., Tong, X., Bevis, M. G., Foster, J. H., Bürgmann, R., Smalley, R., Vigny, C., Socquet, A., Ruegg, J. C. and Campos, J. (2011): Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake, Geophys. Res. Lett., 38, L09309, doi:10. 1029/2011GL047065.
- 69) Ramirez-Gaytan, A., J. Aguirre, M. A. Jaimes, and V. Huerfano (2014): Scaling Relationships of Source Parameters of M_W 6.9-8.1 Earthquakes in the Cocos-Rivera-North American Subduction Zone, Bulletin of the Seismological Society of America, Vol. 104, No. 2, pp. 840-854.
- 70) Rhie, J., D. Dreger, R. Burgmann, and B. Romanowicz (2007): Slip of the 2004 Sumatra– Andaman Earthquake from joint inversion of long-period global seismic waveforms and GPS static Offsets, Bull. Seismo. Soc. Am., 97(1A):S115-S127.
- 71) Rivera, L., K. Sieh, D. Helmberger, and D. Natawidjaja (2002): A Comparative Study of the

Sumatran Subduction-Zone Earthquakes of 1935 and 1984, Bulletin of the Seismological Society of America, Vol. 92, No. 5, pp. 1721-1736.

- 72) Salichon, J., B. Delouis, P. Lundgren, D. Giardini, M. Costantini, and P. Rosen (2003): Joint inversion of broadband teleseismic and interferometric synthetic aperture radar (InSAR) data for the slip history of the Mw=7.7, Nazca ridge (Peru) earthquake of 12 November 1996. J. Geophys. Res. 108 (B2): 2085, doi:10.1029/2001JB000913.
- 73) Santoyo, M. A., S. K. Singh, T. Mikumo, and M. Ordaz (2005): Space–Time Clustering of Large Thrust Earthquakes along the Mexican Subduction Zone: An Evidence of Source Stress Interaction, Bulletin of the Seismological Society of America, Vol. 95, No. 5, pp. 1856-1864.
- 74) Sen, A. T., S. Cesca, D. Lange, T. Dahm, F. Tilmann, and S. Heimann (2015): Systematic Changes of Earthquake Rupture with Depth: A Case Study from the 2010 M_W 8.8 Maule, Chile, Earthquake Aftershock Sequence, Bulletin of the Seismological Society of America, Vol. 105, No. 5, pp. 2468-2479.
- 75) Seno, T. (2014): Stress drop as a criterion to differentiate subduction zones where MW 9 earthquakes can occur, Tectonophysics, Vol. 621, pp. 198-210.
- 76) Singh, S. K., L. Astiz, and J. Havskov (1981): SEISMIC GAPS AND RECURRENCE PERIODS OF LARGE EARTHQUAKES ALONG THE MEXICAN SUBDUCTION ZONE: A REEXAMINATION, Bulletin of the Seismological Society of America, Vol. 71, No. 3, pp. 827-843.
- 77) Skarlatoudis, A., P. G. Somerville, and H. K. Thio (2016): Source-Scaling Relations of Interface Subduction Earthquakes for Strong Ground Motion and Tsunami Simulation, Bulletin of the Seismological Society of America, Vol. 106, No. 4, pp. 1652-1662.
- 78) Sladen, A., H. Tavera, M. Simons, J. P. Avouac, A. O. Konca, H. Perfettini, L. Audin, E. J. Fielding, F. Ortega, and R. Cavagnoud (2010): Source model of the 2007 M_W 8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts, J. Geophys. Res., 115, B02405, doi:10.1029/2009JB006429.
- 79) Spence, W., C. Mendoza, E. R. Engdahl, G. L. Choy, and E. Norabuena. (1999): Seismic subduction of the Nazca Ridge as shown by the 1996-97 Peru earthquakes. Pure and Applied

Geophysics 154 (3-4):753-776.

- 80) Suzuki, W. and T. Iwata (2007): Source model of the 2005 Miyagi-Oki, Japan, earthquake estimated from broadband strong motions, Earth Planets Space, 59, pp. 1155-1171.
- 81) Umino, N., T. Kono, T. Okada, J. Nakajima, T. Matsuzawa, N. Uchida, A. Hasegawa, Y. Tamura, and G. Aoki (2006): Revisiting the three M~7 Miyagi-oki earthquakes in the 1930s: possible seismogenic slip on asperities that were re-ruptured during the 1978 M=7.4 Miyagi-oki earthquake, Earth Planets Space, 58, pp. 1587-1592.
- 82) USGS: https://earthquake.usgs.gov/earthquakes/eventpage/usp000hnj4/executive
- 83) Yagi, Y., T. Mikurno, J. Pacheco, and G. Reyes (2004): Source rupture process of the Tecoman, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bull. Seis. Soc. Am 94 (5):1795-1807.
- 84) 池田孝・加藤研一・植竹富一・敦賀隆史 (2008): 1938年塩屋崎沖地震群の震源モデルの 特性化と地震動評価,日本建築学会構造系論文集,第73巻,第633号,pp. 1951-1958.
- 85) 宇津徳治 (1994): 1896 年三陸沖地震の余震活動, 地震, 第2輯, 第47巻, pp. 89-92.
- 86) 加藤研一・武村雅之・八代和彦 (1998): 強震記録から評価した短周期震源スペクトルの 地域性, 地震, 第2輯, 第51巻, pp. 123-138.
- 87) 加藤研一・武村雅之・入代和彦 (1999): やや深発地震の短周期地震動の励起強さとその 地域性-最大加速度値に基づく検討-,日本建築学会構造系論文集,第521号, pp. 33-40.
- 88) 釜江克宏 (1996): 1946年南海地震のシミュレーション,日本建築学会第24回地盤震動シンポジウム, pp. 81-90.
- 89) 川辺秀憲・釜江克宏 (2013): 2011年東北地方太平洋沖地震の震源のモデル化,日本地震 工学会論文集,第13巻,第2号,pp. 75-87.
- 90) 神田克久・武村雅之 (2005): 震度データから検証する宮城県沖で発生する被害地震の繰り返し, 地震, 第2輯, 第58巻, pp. 177-198.

- 91) 武村雅之・神田克久 (2006): 宮城県沖で 2005 年 8 月 16 日に起こった地震(M=7.2)の深度分布の特徴と短周期地震波発生域, 地震, 第 2 輯, 第 59 巻, pp. 147-158.
- 92) 原子力規制庁 (2015): 第253回原子力発電所の新規制基準適合性に係る審査会合,資料
 2-1 浜岡原子力発電所海洋プレート内地震の地震動評価について, http://www.nsr.go.jp/data/000116083.pdf (2018年7月23日参照)
- 93) 古村孝志・中村操 (2006): 1944 年東南海地震記録の復元と関東の長周期地震動,物理探査,第59巻,第4号, pp. 337-351.
- 94) 小山順二・都筑基博 (2014): 超巨大地震発生前後の顕著な地震活動, 地震, 第2輯, 第66
 巻, pp. 83-95.
- 95) 佐藤智美 (2010a): 日本のスラブ内地震とプレート境界地震の水平・上下動の距離減衰 式,日本建築学会構造系論文集,第75巻,第647号,pp.67-76.
- 96) 佐藤智美 (2010b): 逆断層と横ずれ断層の違いを考慮した日本の地殻内地震の短周期レベルのスケーリング則,日本建築学会構造系論文集,第75巻,第651号,pp.923-932.
- 97) 佐藤智美 (2012): 経験的グリーン関数法に基づく2011年東北地方太平洋沖地震の震源 モデル-プレート境界地震の短周期レベルに着目して-,日本建築学会構造系論文集,第 77巻,第675号, pp. 695-704.
- 98) 佐藤智美 (2016): 改良統計的グリーン関数法に基づく1923年関東地震の強震動生成域 と強震動の推定,日本建築学会構造系論文集,第81巻,第719号, pp. 39-49.
- 99) 武村雅之・神田克久 (2006): 宮城県沖で2005年8月16日に起こった地震 (*M*=7.2) の震度 分布の特徴と短周期地震波発生域, 地震, 第2輯, 第59巻, pp. 147-158.
- 100) 武村雅之・神田克久 (2007): 南海トラフ沿いに発生する歴史的巨大地震の短周期地震波 発生の特徴, 地震, 第2輯, 第60巻, pp. 57-69.
- 101) 武村雅之・神田克久・水谷浩之 (2008): 1968年十勝沖地震(M=7.9) と1994年三陸はる か沖地震(M=7.6)の震度から推定される短周期地震波発生域, 地震, 第2輯, 第60巻, pp. 139-151.

- 102) 田島礼子・松元康広・司宏俊・入倉孝次郎 (2013): 内陸地殻内および沈み込みプレート 境界で発生する巨大地震の震源パラメータに関するスケーリング則の比較研究, 地震, 第2輯, 第66巻, pp. 31-45.
- 103) 壇一男・渡辺基史・佐藤俊明・石井透 (2001): 断層の非一様すべり破壊モデルから算定 される短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデ ル化,日本建築学会構造系論文集,第545号, pp. 51-62.
- 104) 壇一男・石井やよい・宮腰淳一・高橋広人・護雅史・福和伸夫 (2013): マグニチュード 9クラスのプレート境界地震による強震動予測のための断層モデルの設定方法-南海ト ラフ巨大地震への適用と東海地方における強震動の試算例-, 日本建築学会構造系論文 集, 第78巻, 第692号, pp. 1685-1694.
- 105)友澤裕介・加藤研一・渡部哲巳・川合佳穂 (2018): スペクトルインバージョン解析に基づく巨大プレート間地震の震源特性の検討-1985 年メキシコ地震と 2015 年チリ地震の発生域での検討-,第15回日本地震工学シンポジウム, pp. 2672-2679.
- 106) 中村亮一・植竹富一・引間和人 (2015): 三次元Q構造を考慮した統計的グリーン関数法 による強震動評価-プレート境界巨大地震の広域強震動予測-, 日本地震工学会論文集, 第15巻, 第7号, pp. 230-241.
- 107) 日野貴之・都司嘉宜 (1996): プレート境界面を考慮した東南海地震 (1944) の断層モデ ルと津波の数値シミュレーション, 地震, 第2輯, 第49巻, pp. 27-38.
- 108) 野津厚 (2014): 1703 年元禄地震の震度分布と整合的な SPGA モデルの作成事例, 土木 学会論文集 A1, Vol. 70, No. 4, pp. 11089-11095.
- 109) 森川信之・笹谷努 (2000): 1969 年と 1994 年北海道東方沖地震による強震動記録の比較, 地震,第2輯,第53巻, pp. 73-77.

2.2.4

- 110) Murotani, S, H. Miyake, and K. Koketsu (2008): Scaling of characterized slip models for plateboundary earthquakes, Earth Planets Space, 60, pp. 987–991.
- 111) 宇津徳治 (2001): 地震学 (第3版), 共立出版.

参 2.2 -12

- 112) 田島礼子・松元康広・司宏俊・入倉孝次郎 (2013): 内陸地殻内および沈み込みプレート 境界で発生する巨大地震の震源パラメータに関するスケーリング則の比較研究, 地震, 第2輯, 第66巻, pp. 31-45.
- 113) 壇一男・渡辺基史・佐藤俊明・石井透 (2001): 断層の非一様すべり破壊モデルから算定 される短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデ ル化,日本建築学会構造系論文集,第545号, pp. 51-62.
- 114) 佐藤智美 (2010): 逆断層と横ずれ断層の違いを考慮した日本の地殻内地震の短周期レベルのスケーリング則,日本建築学会構造系論文集, Vol. 75, No. 651, pp. 923-932.
- 115) 渡辺基史・壇一男・佐藤俊明 (2002): 巨視的断層パラメータの相似則, 日本建築学会大 会学術講演梗概集, B-II, pp. 117-118.
- 116) 地震調査研究推進本部(2005):「全国を概観した地震動予測地図」報告書(平成 17 年 3 月 23 日公表,平成 17 年 4 月 13 日更新,平成 17 年 12 月 14 日更新),分冊 2,震源 断層を特定した地震動予測地図の説明.