

図 2.2.2-1i 195MPa, 850°C, 全岩含水量で 3.5wt.% (CG215, G251)の反射電子像写真

図 2.2.2-1j 195MPa, 800°C, 全岩含水量で 5.7wt.% (CG216, G252)の反射電子像写真

図 2.2.2-1k 195MPa, 800°C, 全岩含水量で 1.0wt.% (CG217, G252)の反射電子像写真

図 2.2.2-11 195MPa, 800°C, 全岩含水量で 3.5wt.%(CG218, G252)の反射電子像写真

Run#	Capsule#	phase	u	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Total	Mg#	An
															(Fe/(Fe+Mg)*100)	(Ca/(Ca+Na+K)*100)
G249	CG207	glass	31	64.89	14.63	0.53	2.19	0.05	0.57	1.99	3.28	5.01	0.15	93.28		
			lσ	0.33	0.09	0.10	0.32	0.01	0.02	0.03	0.06	0.04	0.02			
		mt	5	0.07	2.80	3.58	86.95	0.40	2.44	0.03	0.01	0.04	0.02	96.32		
			lσ	0.01	0.05	0.11	0.54	0.01	0.05	0.01	0.02	0.01	0.01			
		ilm	7	0.10	20.69	1.10	74.74	0.14	1.31	0.05	0.03	0.09	0.04	98.28		
			lσ	0.07	1.05	0.08	0.80	0.05	0.09	0.01	0.03	0.02	0.04			
	CG208	glass	10	73.63	0.48	13.31	1.83	0.05	0.41	0.70	2.79	6.40	0.18	99.78		
			lσ	0.49	0.05	0.10	0.11	0.01	0.12	0.03	0.07	0.07	0.02			
		lq	4	63.12	0.05	23.65	0.46	0.07	0.04	6.08	6.43	2.27	0.04	102.21		29.8
			lσ	1.72	0.05	0.75	0.09	0.07	0.04	0.56	0.42	0.21	0.05			
		xdo	1	57.74	0.45	3.43	22.57	0.80	19.77	0.84	0.60	0.77	0.29	107.26	61.0	
		mt	4	0.46	9.26	5.62	80.90	0.50	2.72	0.08	0.03	0.11	0.03	99.70		
			lσ	0.16	0.48	0.85	0.83	0.12	0.12	0.02	0.04	0.05	0.04			
	CG209	glass	Π	66.88	14.71	0.51	2.01	0.06	0.57	1.81	3.34	5.23	0.15	95.26		
			lσ	0.25	0.11	0.04	0.06	0.01	0.02	0.03	0.07	0.04	0.03			
		lq	5	57.20	0.06	28.42	0.41	0.06	0.05	10.82	5.47	0.81	0.10	103.39		49.9
			lσ	1.10	0.07	0.72	0.15	0.05	0.04	0.57	0.32	0.14	0.06			
		mt	9	0.16	4.12	4.46	85.67	0.42	2.72	0.04	0.02	0.07	0.02	97.68		
			lσ	0.07	0.18	0.11	2.45	0.02	0.10	0.02	0.03	0.02	0.01			
		ilm	С	0.18	25.38	1.14	71.23	0.17	1.84	0.07	0.01	0.16	0.05	100.23		
			lσ	0.12	0.31	0.07	0.93	0.08	0.13	0.01	0.01	0.04	0.04			
G250	CG210	glass	20	64.59	14.60	0.46	2.06	0.05	0.58	1.97	3.38	5.06	0.14	92.89		
			lσ	0.19	0.08	0.03	0.05	0.01	0.02	0.01	0.08	0.05	0.02			
		mt	7	0.08	6.07	3.08	85.31	0.41	2.16	0.03	0.02	0.04	0.01	97.21		
			lσ	0.03	0.11	0.05	0.44	0.02	0.05	0.01	0.02	0.02	0.01			
		ilm	ς	0.14	28.21	0.64	65.62	0.18	1.62	0.07	0.00	0.10	0.01	96.59		
			lσ	0.02	0.30	0.02	0.20	0.01	0.06	0.00	0.00	0.02	0.01			
	CG211	glass	6	74.15	0.35	13.13	1.60	0.05	0.24	0.54	2.54	6.71	0.19	99.50		
			lσ	0.54	0.07	0.41	0.22	0.01	0.04	0.11	0.09	0.13	0.03			
		pl	7	61.41	0.08	22.95	0.24	0.01	0.01	5.40	6.40	3.28	0.07	99.85		25.9
			lσ	0.30	0.01	0.04	0.02	0.01	0.01	0.25	0.32	0.44	0.04			
		K-feldspar	-	64.47	0.15	20.36	0.58	0.01	0.02	2.72	4.82	7.79	0.10	101.02		

表 2.2.2-3a Aso-1 石基ガラス組成融解実験における各相分析値

	表 2.2.2-3t	Aso-1石	基ガ5	5 入組成融	的 解実験に	おける名	相分析	直								
Run#	Capsule#	phase	u	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Total	Mg#	An
															(Fe/(Fe+Mg)*100)	(Ca/(Ca+Na+K)*100)
	CG212	glass	14	67.41	14.33	0.38	1.84	0.05	0.51	1.46	3.32	5.51	0.15	94.96		
			Q	0.34	0.14	0.06	0.04	0.01	0.03	0.03	0.07	0.04	0.02			
		lq	5	57.32	0.08	26.33	0.50	0.01	0.06	9.12	5.45	1.08	0.04	66.66		45.0
			٩	0.62	0.05	0.80	0.14	0.01	0.03	0.60	0.37	0.23	0.03			
		xdo	5	50.98	0.33	3.23	21.81	0.66	22.48	0.75	0.03	0.05	0.02	100.34	64.8	
			Q	0.44	0.04	0.23	0.90	0.02	0.69	0.07	0.04	0.02	0.02			
		mt	5	0.19	7.47	3.94	82.29	0.43	2.23	0.06	0.01	0.08	0.01	96.72		
			٩	0.04	1.06	0.13	0.95	0.03	0.13	0.02	0.02	0.02	0.01			
		ilm	-	0.14	39.82	0.59	58.48	0.41	2.82	0.01	0.16	0.19	0.00	102.61		
G251	CG213	glass	13	65.92	14.77	0.39	1.52	0.05	0.40	2.02	3.37	4.95	0.15	93.53		
			Q	0.14	0.10	0.04	0.05	0.01	0.02	0.02	0.07	0.03	0.02			
		bt	9	36.55	5.43	14.58	17.58	0.11	12.14	0.04	0.54	9.88	0.01	96.86	55.2	
			Q	0.58	1.00	0.40	1.31	0.02	0.69	0.04	0.04	0.20	0.01			
		mt	5	0.11	6.95	3.29	84.71	0.48	1.72	0.03	0.00	0.05	0.01	97.35		
			Q	0.03	0.62	0.07	0.83	0.02	0.02	0.02	0.01	0.02	0.01			
		ilm	ω	0.13	33.98	0.54	60.36	0.34	1.90	0.20	0.01	0.11	0.11	97.67		
			٥	0.03	2.68	0.06	2.91	0.08	0.30	0.24	0.02	0.01	0.19			
	CG214	glass	9	75.19	0.24	12.44	1.27	0.03	0.19	0.41	2.26	6.77	0.20	99.01		
			٥	0.51	0.05	0.38	0.34	0.01	0.03	0.06	0.04	0.30	0.02			
		pl	2	62.19	0.08	21.87	0.52	0.00	0.07	4.25	5.52	5.64	0.10	100.25		20.3
			۵	0.15	0.01	0.34	0.19	0.00	0.02	0.63	0.61	1.40	0.00			
		K-feldspar	4	64.94	0.09	18.70	0.43	0.01	0.05	0.59	3.11	12.92	0.11	100.93		2.7
			٥	0.20	0.03	0.12	0.15	0.01	0.05	0.10	0.11	0.28	0.01			
	CG215	glass	17	69.37	13.67	0.30	1.35	0.05	0.29	1.15	3.17	5.67	0.18	95.21		
			٥	0.54	0.30	0.06	0.06	0.01	0.02	0.08	0.07	0.05	0.02			
		pl	18	58.63	0.03	25.57	0.27	0.01	0.02	7.93	6.46	0.92	0.04	99.88		38.3
			Q	1.00	0.03	0.69	0.06	0.01	0.01	0.71	0.33	0.11	0.02			
		bt	5	36.91	5.07	14.81	17.64	0.13	11.77	0.05	0.63	9.64	0.02	99.96	54.3	
			٥	1.13	1.13	0.16	1.06	0.02	1.27	0.06	0.07	0.19	0.02			
		mt	5	0.16	6.21	3.23	85.31	0.58	1.44	0.05	0.01	0.08	0.01			
		mt	Э	0.19	9.69	2.85	81.61	0.70	1.81	0.08	0.00	0.11	0.00			
		ilm	-	0.92	31.33	0.72	62.03	0.36	1.38	0.08	0.08	0.21	0.00	97.10		

Run#	Capsule#	phase	u	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K20	P_2O_5	Total	Mg#	An
															(Fe/(Fe+Mg)*100)	(Ca/(Ca+Na+K)*100)
G252	CG216	glass	43	66.41	0.32	14.56	1.20	0.05	0.25	1.97	3.31	4.85	0.14	93.06		
		1,	r	0.89	0.12	0.20	0.42	0.01	0.30	0.09	0.24	0.14	0.04			
		pl	9	57.45	0.02	25.74	0.15	0.00	0.01	8.59	6.32	0.65	0.04	98.98		41.3
		16	r	0.62	0.02	0.48	0.06	0.00	0.01	0.44	0.18	0.07	0.02			
		bt	8	37.76	4.56	14.35	20.14	0.15	9.23	0.26	0.62	8.98	0.02	96.07	45.0	
		10	r	1.79	1.16	0.33	0.72	0.02	0.95	0.14	0.12	0.50	0.01			
		ilm	1	5.04	48.48	1.50	42.52	1.08	1.80	0.20	0.39	0.43	0.03	101.46		
	CG217	K-feldspar	-	65.06	0.12	17.78	0.48	0.00	0.06	0.55	2.73	12.57	0.16	99.50		2.7
		quartz	0	96.93	0.14	0.96	0.39	0.02	0.07	0.07	0.07	0.09	0.02	98.76		
		- Ic	'n	1.13	0.04	0.12	0.08	0.01	0.02	0.00	0.05	0.04	0.01			
	CG218	glass	29	70.25	0.28	12.80	1.04	0.06	0.19	0.91	2.86	5.75	0.15	94.30		
		10	r	0.63	0.12	0.33	0.28	0.01	0.15	0.06	0.09	0.10	0.03			
		pl	23	59.55	0.02	24.57	0.21	0.01	0.01	6.99	6.77	1.21	0.06	99.40		33.8
		- 10	r	0.43	0.02	0.32	0.07	0.01	0.01	0.36	0.19	0.12	0.02			
		bt	С	40.09	5.13	14.45	21.56	0.19	6.07	0.16	0.70	9.03	0.03	97.39	33.4	
		10	r	2.56	0.45	0.16	2.25	0.02	1.50	0.09	0.11	0.49	0.03			
		ilm	-	0.70	51.67	0.26	43.28	1.92	2.15	0.05	0.05	0.10	0.01	100.19		

表 2.2.2-3c Aso-1 石基ガラス組成融解実験における各相分析値

図 2.2.2-2

実験により決定した阿蘇12014a-A石基ガラス組成の高温高圧下における相平衡図(195MPa). 各実線・破線は各結晶種が晶出し始める温度を示し,実線・破線はそれぞれ本研究の実験・MELTS に基づく.黒点は実験点で,各実験点における斜長石組成を合わせて記した.グレーの領域は, 産総研(2015)により示された鉄チタン斑晶鉱物の平衡温度範囲を示す.

図 2.2.2-3

阿蘇12014a-A石基ガラス組成を全岩組成とした,斜長石・斜方輝石・黒雲母の晶出温度圧力 変化. 各結晶の晶出温度は MELTS に基づく.

図 2.2.2-4 阿蘇4噴火前マグマ溜まりの模式図.本実験では阿蘇4噴出物の珪長質端成分を用いたので、マグマ溜まりにおける最上部の温度圧力含水量を決めたことに相当する.

議論なども必要不可欠になるだろう.

4) まとめ

阿蘇1メルト(石基ガラス)組成を対象に、マグマ溜まりの温度・圧力・含水量を決定するために 200MPaで高温高圧実験を行った.鉄チタン鉱物斑晶の平衡温度がおよそ900℃であることを利 用するとリキダス付近で斜長石の晶出する条件から、少なくとも水が全岩で4~5wt.%必要である ことがわかった.高含水量下における斜長石の晶出する温度は圧力変化に乏しいことを利用する と、より高圧で斜方輝石の晶出領域が拡大することから、阿蘇1メルトと平衡であったと考えら れる斜長石と斜方輝石が同時に晶出するのは200MPaよりも深いことが予想される.この結果よ り、阿蘇1から阿蘇4にかけて、マグマ溜まりが浅くなっていった可能性が示された.

引用文献

- Abe, Y., Ohkura, T., Shibutani, T., Hirahara, K., Kato, M. (2010) Crustal structure beneath Aso Caldera, Southwest Japan, as derived from receiver function analysis. J. Volcanol. Geotherm. Res., 195:1-12.
- Almeev, R. R., Bolte, T., Nash, B. P., Holtz, F., Erdmannm M., Cathey, H. E. (2012).
 High-temperature, low-H₂O Silicic Magmas of the Yellowstone Hotspot: an Experimental Study of Rhyolite from the Bruneau-Jarbidge Eruptive Center, Central Snake River

Plain, USA. J. Petrol. 53(9):1837-1866.

- Andersen, D. and Lindsley, D. (1985) New (and final!) models for the Ti- magnetite/ilmenite geothermometer and oxygen barometer. Eos, 66:416
- Chou, I., (1986) Permiability of precious metals to hydrogen at 2kb total pressure and elevated temperatures. Am. J. Sci., 286:638-658.
- Ghiorso, M. S. and Evans, B. W. (2008). Thermodynamics of Rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Amer. J. Sci. 308:957-1039.
- Ghiorso, M. S. and Sack, R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol., 119:197-212.
- Gualda G.A.R., Ghiorso M.S., Lemons R.V., and Carley T.L. (2012) Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol., 53:875-890.
- Hata, M., Takakura, S., Matsushima, N., Hashimoto, T., Utsugi, M. (2016). Crustal magma pathway beneath Aso caldera inferred from three-dimensional electrical resistivity structure. Geophys. Res. Lett., 43:10720-10727.
- Kaneko, K., Kamata, H., Koyaguchi, T., Yoshikawa, M., and Furukawa, K., (2007) Repeated large-scale eruptions from a single compositionally stratified magma chamber: An example from Aso volcano, Southwest Japan. J. Volcanol. Geotherm. Res., 167:160-180.
- Lepage, L. D. (2003) ILMAT: an excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Comput. Geosci., 29(5):673-678.
- 産業技術総合研究所(2015)平成26年度火山影響評価に係る技術的知見の整備.
- 産業技術総合研究所(2016)平成27年度火山影響評価に係る技術的知見の整備.
- 産業技術総合研究所(2017)平成28年度火山影響評価に係る技術的知見の整備.
- 産業技術総合研究所(2018)平成29年度火山影響評価に係る技術的知見の整備.
- Sudo, Y., Kong, L. S. L. (2001). Three-dimensional seismic velocity structure beneath Aso Volcano, Kyushu, Japan. Bull. Volcanol., 63:326-344.
- Tatsumi, Y., and Suzuki, T. (2009) Tholeiitic vs calc-alkalic differentiation and evolution ofarc crust: constraints from melting experiments on a basalt from the Izu-Bonin-Mariana arc. J. Petrol. 50(6):1575–1603.

2.2.3 阿蘇カルデラのマグマ起源物質

【実施内容】

平成 30 年度も前年度にひきつづき阿蘇カルデラのマグマの起源物質を把握する目的で,阿蘇 カルデラ噴出物と周辺火山の噴出物を対象に,同位体地球化学的研究を実施した.今年度は阿蘇 3 ステージを対象に分析を追加した.これまでに実施した阿蘇および阿蘇周辺の基盤岩の化学組 成・同位体比の分析と解析も合わせて解釈すると,阿蘇カルデラの大規模噴火をひきおこしたマ グマの起源物質は,基本的にマントルに由来する苦鉄質マグマに様々な割合で地殻が混染したも のを結晶分化させたものであることが示された.

【研究成果】

1) これまでの研究経緯

産業技術総合研究所は阿蘇のマグマ供給系の物理化学条件を推定する目的で地質調査による噴 火層序の確立と岩石学的解析(噴出物の組織観察,化学分析,熱力学解析,高温高圧実験,微量元 素と同位体比分析)を行なってきた.このうち,マグマ供給系のモデルを構築するうえで基本とな るマグマの起源物質に関する情報を得るため,平成 28 年度は阿蘇火山の予察的な地球化学的考 察を行なった.平成 29 年度は阿蘇火山におけるマントル由来マグマに対する地殻の混染につい て,主要・微量元素と同位体のデータを取得し,解釈を行なった.その結果阿蘇のマグマは基本 的に結晶分別作用と親子マグマ混合で説明でき,それに地殻の同化作用が加わったものと考えら れた.平成 30 年度は阿蘇 3 を対象に分析を追加することにより,昨年度までに得られた阿蘇の 各噴火エピソードのマグマ進化に関する追加の証拠を提示した.その結果,阿蘇 3 噴火ステージ 内でのマグマの組成変化は,基本的にマグマ混合を伴う結晶分別作用によって,コントロールさ れていると結論され,阿蘇の火山岩の地球化学的・同位体組成の範囲は,噴火期間を通じてほと んど変わらないこと,が確認できた.

2) 試料および分析手法

産総研が保有していた阿蘇3ステージ(3W, 3A, 3B, 3C)に加え,神戸大学の金子克哉氏の厚意 で分与された試料の分析を行なった. Kaneko et al., (2015)は阿蘇3ステージのマグマの地球化 学的性質について検討し,通常の結晶分化作用で生じる珪長質マグマのニッケルが分化前の苦鉄 質マグマよりも大幅に減少するのに対し,阿蘇3では珪長質マグマのほうがニッケルに富んでい ることを見出した. これに従い,阿蘇の珪長質マグマは通常の結晶分化作用によって生じたので はなく,ニッケルに富む苦鉄質鉱物を含む地殻物質を溶融させることにより生じたと考えた. し かしながら Kaneko et al., (2015)の論拠は XRF 法によるごく微量のニッケルの分析値に立脚し ており,より信頼性の高い手法で確認を行なう必要がある. そこで本研究は同論文と同じ試料に 対して,微量のニッケル分析に優れた ICP-MS を用いて再分析を行なった.

試料の分析手法は平成29年度に報告したとおりである.

3) 結果

昨年度までの分析により、阿蘇のマグマの主要元素は阿蘇1から阿蘇4にかけて玄武岩質安山

岩からデイサイトにわたる変化を示し、ソレアイトを主体とする阿蘇1および2からカルクアル カリを主体とする阿蘇4への変化もみられた.⁸⁷Sr/⁸⁶Sr,¹⁴³Nd/¹⁴⁴Nd,および²⁰⁶Pb/²⁰⁴Pb 同位 体比は、阿蘇1から阿蘇4および後カルデラ期の火山岩を通じて、それぞれ0.70389~7.0425, 0.5127~0.51285, 18.22~18.34の狭い範囲に重なるので、阿蘇のマグマの起源物質はこの期間 を通じてほぼ同じだと考えられる. Ba/Rbのような非常に不適合な微量元素の比は、阿蘇1が5 ~13、阿蘇2が5~17、阿蘇3が4~16、阿蘇4が4~10と、狭い範囲で変動する一方で、後カ ルデラ期には6~32と、変動範囲が広い.同様にBa/Nb比も、阿蘇1、阿蘇2、阿蘇3、阿蘇4 においてはそれぞれ22~39,40~51,35~47,および60~70とわずかに変化するのに対し、 後カルデラ期は24~98の非常に広い変動幅をもつ.しかしながら(1)阿蘇の各噴火シーケンスに おける大部分の火山岩の組成は、全体の阿蘇火山システムにおける組成と類似していることと、 (2)噴火系列に存在するマグマ進化トレンドとマグマ系列の変化が鉱物集合体と分別結晶・マグマ 混合・地殻同化の相対量を変化させることによって再現することができる(Hunter,1998; Miyoshi et al., 2007, 2009; Uto et al., 2007; Kaneko et al., 2007, 2015)ことから、阿蘇1から 阿蘇4そして後カルデラ期にかけて、阿蘇のマグマ供給系は基本的には地殻同化を伴う/伴わない マグマ混合と関連する分別結晶化によって制御されていると考えられる.

阿蘇 3 は約 12~10 万年の間に発生し,基底部の降下軽石層阿蘇 3W と,3 つのサブユニット 阿蘇 3A, -3B および-3C からなる火砕流堆積物から構成されている.阿蘇 3A の基底部は白色で 非熔結な斑晶に乏しく普通輝石を含む軽石流である.阿蘇 3B は,阿蘇 3A と阿蘇 3C 間の薄い (<0.5m)の混合部で,部分的溶結した褐色の普通輝石角閃石安山岩質スコリアと軽石流堆積物で ある.阿蘇 3C はスコリア流である.

最下部層(阿蘇 3W),下部相(阿蘇 3A),中間層(阿蘇 3B),上部層(阿蘇 3C)は,全体的にはシリ カが増えるとチタンが減る傾向を示しており(図 2.2.3-1),この相関は橄欖石,輝石,または角閃 石などの鉱物の分別を反映している.水が多い場合にはより多くの角閃石が晶出し,その結果メ ルトのチタン濃度は低くなり逆にシリカ濃度は高くなる可能性がある.シリカバリエーションダ イアグラムに部分的にみられる下に凹の形状は,水の影響を反映している可能性がある.最もチ タンに乏しい阿蘇 3W と阿蘇 3A は鉄チタン酸化物鉱物が分別したことを示唆する.阿蘇 3B は 角閃石あるいは黒雲母の分別を示唆し,阿蘇 3C は橄欖石や輝石の分別を示唆する.阿蘇 3 の全 岩化学組成の MgO と CaO/Al₂O₃比の変化は(図 2.2.3-2),橄欖石および/または斜方輝石(青い 矢印)の分別,および斜長石の分別(赤い矢印)によるものと解釈できる.このことから,阿蘇のマ グマの組成変化には,有色鉱物(おそらく橄欖石)の分別が必要だと考えられる.橄欖石を分別す るためには,阿蘇の苦鉄質マグマがマントルに由来する必要がある.

Kaneko et al., (2015)は阿蘇の珪長質マグマが比較的ニッケルに富む性質を示したことから, 珪長質マグマは苦鉄質マグマの結晶分化作用によって生じたのではなく,ニッケルに富む橄欖石 を含む地殻の部分溶融により生じたと考えた.しかしながら同じ試料を ICP-MS で測定し直した ところ,同論文とは逆に,分化したマグマほどニッケルに乏しくなることが判明した(図 2.2.3-3). 同様に,分化したマグマほどルビジウム濃度が高くなることが判明した(図 2.2.3-4).これらのこ とからも,阿蘇の珪長質マグマは,マントルに由来する苦鉄質マグマ(様々な割合で地殻が混染) を結晶分化することで生成することができると結論する.

図 2.2.3-1 阿蘇 3 の3つのサブユニットの全岩チタンシリカバリエーションダイアグラム. Hunter (1998)および Kaneko et al. (2015)のデータを使用.

図 2.2.3-2 阿蘇3の3つのサブユニットの全岩化学組成(MgO に対する CaO/Al₂O₃比).

図 2.2.3-3 阿蘇 3 の全岩化学組成(MgO に対するニッケル濃度). Kaneko et al., (2015)が XRF で分 析したものと同じ試料セットから 8 試料を抜き出し, ICP-MS で再測定した.

図 2.2.3-4 阿蘇 3 の全岩化学組成(MgO に対するルビジウム濃度). Kaneko et al., (2015)が XRF で 分析したものと同じ試料セットから 8 試料を抜き出し, ICP-MS で再測定した.

まとめ・今後の課題

平成 30 年度までに実施した阿蘇および阿蘇周辺の基盤岩の化学組成・同位体比の分析と解析 により,阿蘇の大規模噴火をひきおこしたマグマの起源物質が基本的に,マントルに由来する苦 鉄質マグマに様々な割合で地殻が混染したものを,結晶分化(あるいは親子マグマ混合)させたも のであることが示された.

今後の阿蘇の火山活動をより的確に理解するためには、大規模噴火に至るまでのマグマの蓄積 プロセスに関する情報を収集するため、大規模火砕流で放出されたマグマそのものではなく、大 規模噴火の間に放出された比較的小規模な噴火において、化学組成・同位体比組成の時間変化を 知る必要がある.具体的には、阿蘇3、阿蘇4/3間、阿蘇4、ポスト阿蘇4(2014年の活動も含 む)の一連の噴出物に対して、今年度までに実施した同位体地球化学的研究手法を適用すること により、阿蘇で最大かつ最新の大規模噴火である阿蘇4のマグマがどのように蓄積したのかを 理解できると期待される.

引用文献

- Hunter, A.G., 1998. Intracrustal controls on the coexistence of tholeiitic and calc-alkaline magma series at Aso volcano, SW Japan. Journal of Petrology 39, 1255-1284.
- Kaneko, K., Kamata, H., Koyaguchi, T., Yoshikawa, M., Furukawa, K., 2007. Repeated largescale eruptions from a single compositionally stratified magma chamber: an example from Aso volcano, Southwest Japan. Journal of Volcanology and Geothermal Research 167, 160-180
- Kaneko, K., Inoue, K., Koyaguchi, T., Yoshikawa, M., Shibata, T., Takahashi, T., Furukawa, K., 2015. Magma plumbing system of the Aso-3 large pyroclastic eruption cycle at Aso volcano, Southwest Japan: Petrological constraint on the formation of a compositionally stratified magma chamber. Journal of Volcanology and Geothermal Research 303, 41-58.
- Lipman, P.W., 1967. Mineral and chemical variations within an ash-flow sheet from Aso caldera, south-western Japan. Contribution to Mineralogy and Petrology 16, 300-327.
- Machida,H., Arai, F., 2003. Atlas of Tephra in and Around Japan. University of Tokyo Press, p. 336 (in Japanese).
- Ono, K., Watanabe, K., 1983. The Aso caldera. The Earth Monthly 5, 73-82 (in Japanese).
- Miyoshi, M., Furukawa, K., Shinmura, T., Shimono, M., Hasenaka, T., 2009. Petrography and whole-rock geochemistry of pre-Aso lavas from the caldera walls of Aso volcano, central Kyushu. Journal of Geological Society of Japan, 115, 672-687 (in Japanese with English abstract)
- Miyoshi, M., Hasenaka, T., Mori, Y., Yamashita, S., 2007. Original of compositional heterogeneity within Tochinoki andesitic lava flow from the western part of Aso

caldera. Japanese Magazine of Mineralogical and Petrological Sciences 36, 15-29 (in Japanese with English abstract)

- Miyoshi, M., Shibata, S., Yoshikawa, M., Sano, T., Shinmura, T., Hasenaka, T., 2011. Genetic relationship between post-caldera and caldera-forming magmas from Aso volcano, SW Japan: Constraints from Sr isotope and trace element compositions. Journal of Mineralogical and Petrological Sciences, 106, 114-119.
- Ono, K., Watanabe, K., 1985. Geological map of Aso volcano, 1:50000. Tokyo: Geological Survey of Japan.
- Ono, K., Matsumoto, Y., Miyahisa, M., Teraoka, Y., Kambe, N., 1977. Geology of the Taketa district. With Geological Sheet Map at 1:50000, Geological Survey of Japan, p157. (in Japanese with English abstract 8p.).
- Ono, K., Watanabe, K., Komazawa, M., 1993. Structure of the Aso caldera implied by gravitational data. The Earth Monthly 15, 686–690 (in Japanese).
- Uto, K., Sakaguchi, K., Hoshizumi, H., Matsumoto, A., 2007. Repealing the intracaldera structure from the existing drill cores: a case study of the Aso volcano, Southern Japan. Cities on volcanoes 5, Shimabara, Japan.
- Watanabe, K., 1978. Studies on the Aso Pyroclastic Flow Deposits in the region to the west of Aso caldera, southwest Japan. Geology Memorial of the Faculty of Education, Kumamoto University, Natural Sciences 27, 97-120.

2.3 姶良カルデラ噴出物の岩石学的検討

【実施内容】

始良カルデラのマグマシステムの解析のため,3万年前の入戸火砕流噴火を含む過去約20万年の噴出物の系統的な調査・採取を行ない,岩石・地球化学的データを取得し,噴火 期ごとにマグマ供給系の生成プロセスや噴火に至るまでの変遷や、メルト包有物の組成分 析からマグマの温度・圧力・含水量を検討してきた.特に3万年前の破局噴火の初期噴出 物である大隅降下軽石に含まれる斑晶中のガラスインクルージョンの含水量からは、おお よそ1kbarの圧力が推定され、マグマ溜まりの天井の深さは約4~5km程度と推測されてい る.平成30年度は、始良カルデラに関連する噴出物のこれまでの岩石学的な検討結果を取 りまとめた.重要な観測事実は、以下の4つである.①3万年前の破局噴火の少なくとも 更に約3万年前から、入戸火砕流噴火で噴出した流紋岩マグマの蓄積が開始していた.②こ の蓄積期間中に、マグマ溜まりの深さには大きな変化がなかった.③斑晶組織の累帯構造 からは、入戸噴火直前のマグマ溜まりへの高温・苦鉄質マグマの注入を示唆する.④入戸 火砕流噴火後の流紋岩マグマの化学組成は、入戸火砕流噴火までの流紋岩マグマとは明瞭 に区別が可能であり、カルデラ下には別の流紋岩マグマが蓄積し噴出していることを示し ている.

【研究成果】

(1) 概要

始良カルデラのマグマシステムの解析のため,約3万年前の入戸火砕流噴火を挟む約10 万年前~1万5千年前までの姶良カルデラ噴出物を網羅的に採取し,その全岩組成・鉱物化 学組成および斑晶に含まれるメルト包有物の化学組成を測定した.全岩組成の時間変化か ら,3万年前の入戸火砕流噴火で噴出した流紋岩マグマとほぼ同組成の流紋岩マグマが,6 万年前の岩戸火砕流噴火以降姶良カルデラ直下のほぼ一定の深度のマグマ溜まりに駐留し ていたことが明らかになった.一方,入戸火砕流噴火以降,組成の異なる流紋岩マグマの 活動がみられる.

(2) 姶良カルデラにおける先カルデラ期—カルデラ形成期—後カルデラ期の噴出物の岩石 学的特徴

2.1) 分析試料

分析に用いた姶良カルデラの噴出物は,約3万年前に発生し姶良カルデラを形成したと 考えられる入戸火砕流噴火前後の噴出物の岩石学的特徴を解析した.入戸火砕流噴火に先 行する噴出物として,福山降下軽石,敷根溶岩,清水溶岩,牛根溶岩,岩戸火砕流堆積物, 大塚降下軽石,深港降下軽石,毛梨野降下軽石を用いた.本報告ではこれらを先入戸火砕 流期の噴出物と呼ぶ.また,入戸火砕流噴火の噴出物は,大隅降下軽石,妻屋火砕流堆積 物,大規模火砕流である入戸火砕流堆積物を用いた.入戸火砕流噴火後の珪長質噴出物と して新島軽石,薩摩軽石及び苦鉄質噴出物として住吉池・米丸マール噴出物を解析した. 本報告ではこれらを後入戸火砕流期の噴出物と呼ぶ.以下,それぞれの特徴を記載する.

これらの全岩化学組成,主要鉱物組成,および珪長質軽石噴出物の斑晶鉱物に含まれる ガラス包有物の含水量を測定した

[先入戸火砕流期の噴出物]

·福山降下軽石

福山降下軽石は姶良カルデラ北東部から噴出し,姶良カルデラ北東部を中心に北東方向に 分布するプリニー式噴火による降下軽石で,その見かけ体積は40km³と見積もられている (長岡ほか 2001).福山降下軽石は,はじめ荒牧(1969)により定義され,後述する岩戸 火砕流と同じ噴火の噴出物とみなされたが,のちに岩戸火砕流とは別の噴火の噴出物であ ると確認された.噴出したマグマの全岩組成は,SiO₂=70wt.%のデイサイト-流紋岩組成 である.斑晶組み合わせは,斜長石,石英,斜方輝石,単斜輝石のほか,多量の普通角閃 石を含む.分析に用いた試料は,姶良カルデラ北東縁の霧島市亀割坂付近で採取した.採 取地点における福山降下軽石は層厚 10m以上の粗粒の降下軽石層として分布し,その粒子 サイズは 3~5cm 程度である.

· 敷根溶岩

敷根溶岩は、姶良カルデラ北東部の霧島市国分敷根地区に分布する安山岩溶岩で、上野 原台地から若尊鼻にかけての高まりに厚さ 100m 以上の溶岩流として分布する(新エネル ギー総合開発機構、1987).敷根溶岩は福山降下軽石を覆い、また岩戸火砕流堆積物に覆わ れる.敷根溶岩の年代は、0.061±0.017Ma(周藤ほか 2000)とされる.敷根溶岩は、カンラ ン石単斜輝石玄武岩質安山岩である.その全岩組成は SiO₂=54wt.% FeO*/MgO 比~2 で、 先入戸火砕流噴火期の姶良カルデラ噴出物の中ではもっとも未分化である.分析に用いた 試料は、姶良カルデラ北東縁の霧島市敷根および亀割坂付近で採取した.

· 岩戸火砕流堆積物

岩戸火砕流は,複数のフローユニット・降下ユニットからなる岩戸テフラを構成する火 砕流堆積物である.岩戸火砕流は姶良カルデラの北縁に沿って分布し,部分的に溶結して いる.岩戸火砕流は本質物として白色の流紋岩質軽石(SiO₂=74~76 wt%)と,黒色の安 山岩質スコリア(SiO₂=58~60 wt%)を共に含む.流紋岩軽石は斜長石・石英・斜方輝石・ 単斜輝石を斑晶として含む.安山岩スコリアは斜長石・斜方輝石・単斜輝石およびカンラ ン石を斑晶として含む.分析に用いた試料は,姶良カルデラ北縁の霧島市岩戸付近および, 北東縁の霧島市亀割坂付近で採取した.層序から,採取した試料は長岡ほか(2001)によ る岩戸 7 火砕流堆積物に相当すると考えられる.採取地点の岩戸火砕流堆積物は弱く溶結 している. ·清水流紋岩

清水流紋岩(大塚・西井上, 1980)は, 姶良カルデラ北縁の加治木〜国分にかけての海 岸部に分布する流紋岩溶岩である. 清水溶岩の年代は, 0.036±0.003Ma(周藤ほか 2000)と される. 清水流紋岩は, 斜方輝石流紋岩からなり, その全岩組成は SiO2=76wt.%である. 分析に用いた試料は, 霧島市国分小浜付近で採取した.

· 牛根流紋岩

牛根流紋岩(小林ほか,1977)は、姶良カルデラ南東部の桜島口に隣接する早崎を構成 する火山岩類のうち最上部に位置する流紋岩溶岩である.牛根流紋岩の年代は、 0.033±0.004Ma(周藤ほか 2000)とされる.牛根流紋岩は、斜方輝石流紋岩からなり、その 全岩組成はSiO₂=75wt.%である.分析に用いた試料は、垂水市桜島口付近で採取した.

大塚降下軽石

大塚降下軽石は、長岡ほか(2001)により再定義された大塚テフラの降下軽石である. 大塚降下軽石の見かけ体積は0.9km³と見積もられている(長岡ほか2001).噴出したマグ マの全岩組成は、SiO₂=74-76wt.%の流紋岩組成である.斑晶組み合わせは、斜長石、石英、 斜方輝石である.少量の鉄チタン鉱物を含む.分析に用いた試料は、姶良カルデラ北縁の 霧島市国分岩戸付近および国分清水付近で採取した.採取地点における深港降下軽石は、 層厚約30cmの細粒の降下軽石層として分布する.粒子サイズは1~2cm程度である.

·深港降下軽石

深港降下軽石は、長岡ほか(2001)により再定義された深港テフラのうち、噴火前期に 現在の姶良カルデラ中央部から噴出したプリニー式噴火による降下軽石とそれに伴われる 火砕流堆積物である(長岡ほか2001).深港降下軽石の見かけ体積は約7km³と見積もられ ている(長岡ほか2001).また、長岡ほか(2001)は、姶良カルデラ南方の垂水市荒崎付 近に分布する荒崎火砕流堆積物も、深港降下軽石の噴火に伴う噴出物と考えた.

今回, 垂水市牛根麓地区に露出する深港降下軽石層直下の土壌から, 32.8~31.7ka calBP の炭素 14 年代が得られた.

噴出したマグマの全岩組成は, SiO₂=74-76wt.%の流紋岩組成である. 斑晶組み合わせは, 斜長石,石英,斜方輝石である. 少量の鉄チタン鉱物を含む.

分析に用いた試料は,姶良カルデラ北縁の霧島市国分岩戸付近および国分清水付近,および垂水市牛根麓付近で採取した.採取地点における深港降下軽石は,層厚約40cmの細粒の降下軽石層として分布する.粒子サイズは1~2cm程度である.

・毛梨野降下軽石

毛梨野降下軽石は,始良カルデラ北縁部から噴出したテフラで,火砕サージ堆積物とそれにともなう降下軽石・降下火山灰からなるテフラである(長岡ほか 2001).その分布から, 姶良カルデラ北東縁から噴出したと考えられる.毛梨野テフラ全体の見かけ体積は約 0.4km³ と見積もられている(長岡ほか 2001).噴出したマグマの全岩組成は, SiO₂=74-76wt.%の流紋岩組成である.斑晶組み合わせは,斜長石,石英,斜方輝石である. 少量の鉄チタン鉱物を含む.

分析に用いた試料は,姶良カルデラ北縁の霧島市国分岩戸付近および国分清水付近で採取した.採取地点における毛梨野降下軽石は,層厚約 30cm のやや淘汰の悪い火山灰~軽石層として分布する.

[入戸火砕流噴火噴出物]

入戸火砕流噴火噴出物は,約 30ka に発生した大規模噴火の噴出物である.入戸火砕流 噴火噴出物は,下位から大隅降下軽石,垂水火砕流堆積物,妻屋火砕流堆積物,入戸火砕 流堆積物(Aramaki 1984)およびその遠方相である降下火山灰である AT 火山灰層からな る.

大隅降下軽石

大隅降下軽石堆積物は,姶良カルデラを形成した約30kaの大規模噴火の噴出物のうち, 噴火初期に現在の桜島付近から発生した大規模なプリニー式噴火による降下軽石である

(Koyabashi et al., 1982). その見かけ体積は約 98km³と見積もられている(Kobayashi et al, 1982). 噴出したマグマの全岩組成は, SiO₂=74-76wt.%の流紋岩組成である. 斑晶 組み合わせは, 斜長石, 石英, 斜方輝石である. 少量の鉄チタン鉱物を含む. ごくまれに, 普通角閃石や黒雲母がみられる.

全岩組成分析に用いた試料は、垂水市海潟地区および垂水市新城麓地区で採取した.海 潟地区では大隅降下軽石の層厚は10m以上で、最大粒径は20cmを超える.新城麓地区で は大隅降下軽石の層厚は6mで、最大粒径は12cmである.

· 妻屋火砕流堆積物

妻屋火砕流堆積物は、姶良カルデラを形成した 29ka の大規模噴火の噴出物のうち、初 期の降下軽石である大隅降下軽石を覆って分布する火砕サージ堆積物である. その分布か ら、姶良カルデラの中心部あるいは北東部から噴出したと考えられている. その見かけ体 積は約 10km³と見積もられている(Aramaki, 1984). 層序から Aramaki(1984)や長岡ほ か(2001)は、妻屋火砕流堆積物は大隅降下軽石の噴出後、入戸火砕流の噴出に先立ち姶 良カルデラ中心部から噴出した火砕流と考えた. 福島(2015)は、層序及び岩相から妻屋 火砕流堆積物は垂水火砕流堆積物と同様に、大隅降下軽石の噴煙柱の部分崩壊によって生 じたと考えた. 噴出したマグマの全岩組成は、SiO₂=74-76wt.%の流紋岩組成である. 斑晶 組み合わせは、斜長石、石英、斜方輝石である. 少量の鉄チタン鉱物を含む. ごくまれに、

218

普通角閃石や黒雲母がみられる.

試料は,姶良カルデラ北東縁の霧島市国分川原で採取した.採取地点における妻屋火砕 流堆積物は,層厚 20m 以上の非溶結の軽石混じり火山灰流堆積物として堆積している.軽 石の最大径は 5cm である.

·入戸火砕流堆積物

入戸火砕流堆積物は,姶良カルデラを形成した 29ka の大規模噴火の噴出物のうち,最 大の噴出ユニットである大規模火砕流堆積物である.その分布から,姶良カルデラの中心 部あるいは北東部から噴出したと考えられている.その見かけ体積は約 250km³ と見積もら れている(Aramaki, 1984).噴出したマグマの全岩組成は,SiO₂=74-76wt.%の流紋岩組 成である.斑晶組み合わせは,斜長石,石英,斜方輝石である.少量の鉄チタン鉱物を含 む.ごくまれに,普通角閃石や黒雲母がみられる.

試料は, 桜島から東南東に約 40km 離れた志布志市で採取した. 採取地点における入戸 火砕流堆積物は, 層厚 30m 以上の非溶結の軽石流堆積物として堆積している. 軽石の最大 径は 35cm である. 分析に用いた試料は, 大型の軽石塊を破砕し, 水簸により斑晶鉱物を分 離したものを用い, 樹脂包埋したものを研磨し露出した斑晶鉱物を分析した. 分析に用い た入戸火砕流堆積物に含まれる斑晶鉱物のガラス包有物の多くは, 火砕流堆積物の徐冷の ため結晶化が進行していた. そのため, 入戸火砕流堆積物のガラス包有物の分析結果は解 析から除外した.

[後入戸火砕流噴火噴出物]

新島軽石

新島軽石は,新島(燃島)に分布する海底堆積の軽石流堆積物であり(Kano et al., 1996), 層序からその噴出年代は 13cal ka と推測される(森脇ほか, 2017).噴出物の岩石学的特 徴からこの軽石の噴出源は,姶良カルデラの後カルデラ火山である桜島ではなく姶良カル デラ内の若尊カルデラから噴出したと考えられている.新島軽石の全岩組成は SiO₂約 73wt.%の斜方輝石流紋岩である(西村・小林, 2015).分析に用いた試料は新島北西海岸 の海食崖から採取した.

・桜島-薩摩降下軽石

桜島・薩摩テフラ(P14)は、桜島付近から 13ka に噴出した降下軽石及び軽石質の火砕 サージ堆積物である.山元ほか(2013)により、桜島北岳西部付近がその噴出源と考えら えている.その見かけ体積は約 11km³と見積もられており(小林・溜池,2002)、入戸火 砕流噴火以降、姶良カルデラから発生した最大の噴火である.層序および炭素14年代か らその噴出年代は新島軽石の直後の12.9cal kaと推測される(森脇ほか,2017).噴出した マグマの全岩組成は、SiO₂=66-68wt.%のデイサイト組成である.斑晶組み合わせは、斜長 石,単斜輝石および斜方輝石である.少量の鉄チタン鉱物を含む.

試料は, 桜島から北西に約 10km 離れた鹿児島市吉野町および南東に 7km はなれた垂水 市海潟で採取した.採取地点における桜島薩摩テフラは,風化火山灰質土を覆って基底部 に径 5-6cm の軽石粒からなる淘汰の良い降下軽石堆積物と,その上部の成層した軽石質の 火砕サージ堆積物と降下軽石の互層からなる,全層厚約 1.5m の堆積物として分布している.

米丸・住吉池噴出物

米丸・住吉池噴出物は、姶良カルデラ北西の姶良市蒲生付近にある米丸および住吉池マ ールから噴出した苦鉄質噴出物である(森脇ほか1986). 層序および炭素14年代からその 噴出年代は8cal ka と考えられる. 今回、姶良市春花の蒲生川右岸に露出する米丸マールか ら噴出した火砕サージ堆積物に含まれる木片3片について年代測定を実施した.その結果、 暦年較正年代で8157~7937calBPの値(2o値)を得た.また、米丸マールからのサージ直 下の海成シルト層から得られた木片4片および貝殻片1点の年代はそれぞれ8.6~8.5,8.4 ~8.3、8.4~8.2、8.4~8.3(貝殻) calBPであり、層序的に矛盾しないことが分かった. 以上の結果から、米丸・住吉池噴出物の年代は従来の年代と同じくおよそ8千年前である ことが確認できた.

噴出したマグマはカンラン石単斜輝石玄武岩で,その全岩組成は SiO₂=48wt.%, FeO*/MgO 比 1.9 の玄武岩組成である.分析に用いた試料は,住吉池南縁から採取した火 山弾および米丸マール南縁で採取した火山礫である.

2.2) 全岩化学組成

·分析手法

姶良カルデラ噴出物の全岩主要元素化学組成を,波長分散型蛍光エックス線分析装置を 用いて分析した.分析手法は四ホウ酸リチウムを希釈融剤として用いるガラスビード法を 用いた.火砕流・降下軽石試料は、それぞれの軽石塊から約10~20gを鉄乳鉢で粗粉砕し, さらにそのうちの約15gをタングステンカーバイドミルあるいはアルミナミルによって微 粉砕し均質な粉体試料とした.微粉砕した試料は四ほう酸リチウムと1:10の希釈率で混合 し、高周波炉で溶融・固化させることによりガラスビードを作成した.成分測定は産業技 術総合研究所が所有する波長分散型蛍光エックス線分析機(Panalytical 社製 Axios)を用 いて測定した.測定した元素の定量は検量線法を用い、産総研地質調査総合センター地質 標準試料を用いて校正した.

・結果

福山軽石以降の代表的な姶良カルデラ噴出物の全岩組成を図1に示す.福山降下軽石が デイサイト,敷根溶岩が玄武岩質安山岩,岩戸火砕流のスコリアが安山岩,薩摩降下軽石 がデイサイト,米丸および住吉池噴出物が玄武岩である.それ以外の噴出物はすべて流紋 岩組成を示す.姶良カルデラ周辺で噴出した玄武岩〜玄武岩質安山岩として,約6万1千 年前の敷根溶岩および,約8千年前の米丸・住吉池噴出物がある.

福山軽石噴火以降,入戸火砕流噴火に至るまでの全岩化学組成は,主要元素で見る限り ほぼ単一の化学組成トレンド状に分布する(図 2.3-1). 珪長質側の端成分は,入戸火砕流 噴火で噴出した流紋岩に,苦鉄質側の端成分は米丸および住吉池の玄武岩にほぼ一致する.

入戸火砕流噴火に先立つ清水流紋岩,牛根流紋岩,大塚降下軽石,深港降下軽石,毛梨 野降下軽石はいずれも流紋岩マグマを噴出しており,その全岩化学組成は姶良入戸火砕流 噴火で噴出する流紋岩マグマと主成分及び微量成分でみてほぼ同一の組成をもつ. 岩戸火 砕流堆積物には安山岩スコリア及び流紋岩軽石が混在しており,そのうち流紋岩軽石は低 い全岩 FeO*/MgO 比を持つものと,高いものの2 種類が含まれる(図 2.3-2).高い全岩 FeO*/MgO 比の流紋岩は,姶良入戸火砕流噴火で噴出する流紋岩マグマと主成分及び微量 成分でみてほぼ同一の組成をもつ.これらの流紋岩マグマはいずれも姶良カルデラ内部か ら噴出していることから,少なくとも岩戸火砕流噴火以降,姶良入戸火砕流噴火に至るま での約3 万年間は,姶良カルデラ直下に存在した同一の流紋岩マグマ溜まりから噴火が発 生していたと考えられる.

入戸火砕流噴火の最初期の噴出物である大隅降下軽石には, 縞状軽石がしばしば含まれる. これらの縞状軽石の組成は, 白色軽石の大多数を占める SiO2=74-76% の流紋岩組成から苦鉄質側に直線的な分布を示す. これは, これらの縞状軽石がより苦鉄質のマグマとの混合によって形成されたことを示す. 大隅降下軽石の縞状軽石は, 後カルデラ期の薩摩降下軽石・新島軽石などと同様に高い Zr 含有量を示すトレンドをもつ (図 2.3-3).

また,後カルデラ期の薩摩降下軽石や桜島北岳から噴出した大規模な降下軽石はいずれ もデイサイト組成であり,FeO/MgO-SiO₂図からは,入戸火砕流噴火の流紋岩マグマと, 玄武岩質安山岩マグマとの混合によって形成されたことを示唆する.

後入戸火砕流期に姶良カルデラから噴出したと考えられる新島軽石を作る流紋岩は、入 戸火砕流噴火の流紋岩に比べるとややSiO2に乏しい.また微量元素組成で見ると,Zn,Y,Zr といった液相農集元素が先入戸火砕流噴火~入戸火砕流噴火の流紋岩に比べると有意に高 い(図 2.3-3).同じく後入戸火砕流期の桜島噴出物(薩摩軽石・桜島 P11 軽石)などは、 入戸火砕流の流紋岩に比べて有意にZn,Zr 濃度が高い(図 2.3-3).

これら姶良カルデラ噴出物の全岩化学組成は,姶良カルデラ直下に少なくとも6万年前 以降同一組成の流紋岩が貯留されており,約3万年前の入戸火砕流噴火に先立ついくつか のより規模の小さな噴火でもこれらのマグマが噴出していたこと,これらのマグマはしば しば苦鉄質マグマの混入を受けていたことを示している.

一方,入戸火砕流噴火以降に姶良カルデラに蓄積・噴出している流紋岩マグマは,微量 成分で見ると入戸火砕流噴火までの流紋岩マグマとは明瞭に区別が可能であり,新たな流 紋岩マグマの蓄積が起きていることを示唆する.この流紋岩マグマは新島軽石の噴火では 直接噴出したほか,桜島の安山岩マグマの珪長質単成分である可能性がある.

図 2.3-1-1 姶良カルデラ及び周辺の過去約 10 万年間の噴出物組成. 横軸は全岩 SiO₂ 量,縦軸は全岩 FeO*量.

図 2.3-1-2 姶良カルデラ及び周辺の過去約 10 万年間の噴出物組成. 横軸は全岩 SiO₂ 量,縦軸 は全岩 MgO 量.

図 2.3-1-3 姶良カルデラ及び周辺の過去約 10 万年間の噴出物組成. 横軸は全岩 SiO₂ 量,縦軸 は全岩 K₂O 量.

図 2.3-1-4 姶良カルデラ及び周辺の過去約 10 万年間の噴出物組成. 横軸は全岩 SiO₂ 量,縦軸 は全岩 Na₂O+K₂O 量.

図 2.3-1-5 姶良カルデラ及び周辺の過去約 10 万年間の噴出物組成. 横軸は全岩 SiO2 量, 縦軸 は全岩 Al2O3 量. 全岩 Al2O3 量の分布は全体として上に凸の曲線を描く. 岩戸火砕流堆積物およ び薩摩降下軽石にみられる直線状のトレンド(矢印)は, 斜長石結晶の集積効果による.

図 2.3-1-6 姶良カルデラ及び周辺の過去約 10 万年間の噴出物組成. 横軸は全岩 SiO₂ 量,縦軸 は全岩 P₂O₅ 量. SiO₂=60wt%付近で分布が屈曲する.

図 2.3-2 姶良カルデラ及び周辺の過去約 10 万年間の噴出物組成. 横軸は全岩 FeO*/MgO 比, 縦軸は全岩 SiO2 量. 青破線で囲んだ範囲は, 岩戸火砕流堆積物に含まれる白色軽石の組成範囲 を示す.

図 2.3-3-1 全岩 FeO*/MgO 比に対する全岩 Zr 量.新島軽石の組成を赤破線,大隅降下軽石中の 編状軽石の組成を青破線で示す.

図 2.3-3-2 全岩 SiO₂ 量に対する全岩 Zr 量.新島軽石の組成を赤破線,大隅降下軽石中の縞状軽石の組成を青破線で示す.新島軽石はこれら姶良カルデラの噴出物の中で最も Zr が高い組成を持つ.

図 2.3-3-3 全岩 SiO₂ 量に対する全岩 Zn 量.新島軽石の組成を赤破線,大隅降下軽石中の縞状軽石の組成を青破線で示す.

図 2.3-3-4 全岩 SiO₂ 量に対する全岩 Rb 量.新島軽石の組成を赤破線,大隅降下軽石中の縞状軽 石の組成を青破線で示す.

図 2.3-3-5 全岩 SiO₂ 量に対する全岩 Y 量. 新島軽石の組成を赤破線,大隅降下軽石中の縞状軽 石の組成を青破線で示す.

図 2.3-3-6 全岩 Zr 量に対する全岩 Y 量. 新島軽石の組成を赤破線で示す.

2.3) メルト包有物の含水量とマグマ定置深度

·分析手法

ガラス中の含水量の測定は、EDS による炭素蒸着膜厚を補正した酸素を含む全元素の分 析に基づき、ガラスを構成する陽イオン元素に対する酸素量から含水量を推定する方法(下 司ほか、2017)を用いた.分析結果は、FR-IR および SIMS による含水量の定量結果と比 較し、同等の分析精度があることを確認している(下司ほか、2017).この方法を用いる場 合、ガラスに含まれる鉄の価数が余剰酸素量に影響する.しかし、今回測定した姶良カル デラ噴出物のガラス組成はいずれも流紋岩組成で、含まれる鉄は FeO 換算で1 重量%に満 たないこと、また結果として得られる含水量が5%前後であったことから、鉄の価数の不確 実性に伴う誤差は無視し得ると判断される.

測定に用いた試料のうち,岩戸火砕流堆積物,入戸火砕流堆積物に含まれる斑晶のガラ ス包有物には,徐冷によって生じたと考えられる二次鉱物の析出が頻繁に認められる.ま た分析値も広く分散している(図 2.3-4)ため,ここでは降下軽石から得られた値のみを用 いて議論する.含水量の解析には,これら二次鉱物のみられるガラス包有物の値は除外し た.本報告では,福山降下軽石,大塚降下軽石,深港降下軽石,毛梨野降下軽石,大隅降 下軽石,新島軽石,および薩摩降下軽石に含まれる斑晶内のガラス包有物の含水量を用い て議論する.

・結果

福山軽石噴火から姶良入戸火砕流噴火に至るまで,流紋岩質端成分マグマに含まれる斑 晶のガラス包有物の含水量は,4.0~7.5wt%程度の範囲に分散し,噴火ごとに有意な違いは みられない.これは,流紋岩質の端成分マグマの平衡圧力が,福山軽石噴火以降大規模火 砕流の噴出に至った入戸噴火までほぼ一定であったことを示唆する.斑晶はマグマ溜りの 様々な深さからもたらされたと考えられるので,図2.3・2から斑晶含水量頻度がそれ以下で は急激に減少する H₂O=4%がマグマ溜りの天井付近の圧力に相当する含水量と仮定すると, おおよそ 100MPa の平衡圧力が推定される(図2.3・3).地殻岩石の密度を2000~2500 kg /m³と仮定すると,入戸火砕流噴火に先行して存在した流紋岩マグマ溜りの天井の深さは約 4~5 km程度と推測される.これは、メルト包有物の含水量や全岩・鉱物組成の化学平衡な どから求めたマグマ溜まり深度(安田ほか2015)とも一致している.

一方,後入戸火砕流期に噴出した新島軽石の含水量も4.0~8.0wt%程度の範囲であり, その貯留深度は約4~5km以深と推測される.

桜島火山で最大の噴火である P14 薩摩降下軽石の斑晶ガラス包有物の含水量は、それまでの噴出物に比べてやや低く、H₂O=4.0%程度のものが多く含まれている.

後入戸火砕流噴火期

図 2.3・4 先入戸火砕流~入戸火砕流噴火~後入戸火砕流期の噴出物に含まれる斑晶ガラス包有物の含水量(横軸).記号はそれぞれ分析したガラス包有物の平均した含水量.記号はガラス包 有物を含む結晶の種類.灰色掛けした岩戸火砕流堆積物及び入戸火砕流堆積物に含まれるガラス 包有物には微細結晶が晶出している.縦の水色破線は大隅降下軽石に含まれるガラス包有物の含 水量のほぼ下限である 4wt%の線を示す.

図 2.3-5 流紋岩メルトの含水量の圧力依存性. 図は Liu et al. (2005)の Figure 5 を引用し, 図 2.3-4の大隅降下軽石のガラス包有物の含水量範囲(4.0~7.5%)を示した. 含水量 4%は, 流紋岩メルトの約 100MPa における飽和含水量に相当し,地殻岩石の密度を 2000~2500 kg/m³ と仮定すると約 4~5 kmの深さに相当する.

2. 4) 斑晶組成累帯組織

入戸火砕流噴火噴出物に含まれる斑晶鉱物の累帯組織を解析した.大隅降下軽石に含ま れる斜方輝石斑晶は、長径 2 mm以下,幅 1 mm以下の長柱状の自形をしめす.ほとんどの斜 方輝石斑晶は斑晶中心部では Mg/(Mg+Fe)比が 0.52~0.55 程度で、外縁部にむかって Mg/ (Mg+Fe)比が 0.45 程度まで低下する正累帯組織を示す(図 2.3-6-1).斜方輝石斑晶中の Mg/ (Mg+Fe)比の不均質構造が均質化されずに保持されていることから、結晶の累帯構

造が形成後これらの結晶がマグマ温度に保持されていた時間は比較的短いことが推測される.

少量の斜方輝石斑晶は逆累帯構造をもつ. これらの結晶は, Mg/(Mg+Fe)比が高い中心 部をもち周辺部に向かうにつれて単調に Mg/(Mg+Fe)比が低下する正累帯構造をもつ内部 が,より Mg/(Mg+Fe)比が高いリムに取り囲まれている(図 2.3-6-2). 外縁部の Mg/(Mg+Fe) 比が高く,後方散乱電子線像で暗く見えるリム部分は,その内側との境界が入り組んだ複 雑な形状を示す.またこの領域に多くのガラス包有物が含まれる.このような虫食い状の 組織は,マグマ混合等による結晶の融解組織と考えられることから,入戸火砕流噴火の直 前に,珪長質マグマ溜まりの一部は斜方輝石斑晶の溶融を伴うような,高温で苦鉄質のマ グマの注入を被ったことが推測される. 大隅降下軽石に含まれる斜方輝石斑晶にみられる逆累帯組織は、組成累帯構造の境界が 不明瞭であり、組成累帯構造が形成されたのち十分な元素拡散が生じたことを示す(図 2.3-6-2).これは、流紋岩マグマ溜まりへの苦鉄質マグマの注入と混合後、マグマが噴出し 軽石として急激に冷却されるまでに時間差があることを示唆する.

一方,入戸火砕流噴火に先立つ毛梨野降下軽石・深港降下軽石に含まれる斜方輝石には 顕著な組成累帯組織は見いだされず,わずかに結晶中心から外縁部に向かい Mg 値が減少す る正累帯組織が見られる例があるのみである(図 6.3).このことは、毛梨野降下軽石・深 港降下軽石の噴火時には、大隅降下軽石の噴出時に比べ苦鉄質マグマの混合による顕著な 温度上昇やメルト組成の苦鉄質への変化は軽微であった可能性がある.

図2.3-6-1 大隅降下軽石に含まれる斜方輝石斑晶の反射電子線像.大隅降下軽石に含まれる大 多数の斜方輝石斑晶は,中心部から外縁部に向かって鉄が増加しマグネシウムが減少する正累帯 組織を持つため,反射電子線像では中心が相対的に暗く外縁部に向かって単調に色調が明るくな る.

図 2.3-6-2 大隅降下軽石に含まれる斜方輝石斑晶の反射電子線像.大隅降下軽石にしばしば認められる,メルトの組成変化による結晶の溶融と再成長による逆累帯組織を持つ斜方輝石結晶. 斑晶外縁部に,中心部に比べて鉄に乏しくマグネシウムに富む厚さ 100~200µm の縁が見られる.結晶最外縁部は再び鉄に富むため明るい色調の部分が見られる.

図 2.3-6-3 先入戸火砕流噴火の深港降下軽石(左)と毛梨野降下軽石(右)に含まれる斜方輝 石斑晶の反射電子線像.ごく弱い正累帯構造が認められる.

2.5) 流紋岩マグマ温度

·分析手法

姶良カルデラの主要な珪長質マグマに含まれる磁鉄鉱-チタン鉄鉱の組成からそれらの 平衡温度を求めた.それぞれの試料に含まれる磁鉄鉱およびチタン鉄鉱の化学組成は,産 業技術総合研究所が所有する波長分散型 EPMA 分析装置 JXA-8530Plus を用いて測定した. 分析条件は加速電圧 15kV,照射電流 12nA で,分析領域は 4μm 径である.得られた分析値 は ZAF 法を用いて補正した.

・結果

岩戸火砕流堆積物から新島軽石までの流紋岩質噴出物から得られた磁鉄鉱-チタン鉄鉱 平衡温度を図 7 に示す.岩戸火砕流の白色軽石,大塚降下軽石,深港降下軽石,毛梨野降 下軽石に含まれる磁鉄鉱-チタン鉄鉱の平衡温度はおおよそ 700~800℃を示す.大隅降下 軽石に含まれる磁鉄鉱-チタン鉄鉱の平衡温度はこれらより明らかに高温で 790~840℃前 後を示す.妻屋火砕流および入戸火砕流堆積物の磁鉄鉱-チタン鉄鉱の平衡温度は,大隅降 下軽石のそれよりもやや低温で,730~800℃である.

これらの結果は、岩戸火砕流から入戸火砕流噴火前までは流紋岩マグマ溜まり温度はほ ぼ一定であったこと、入戸火砕流噴火の直前にマグマ溜まりの一部で温度が上昇しその部 分が大隅降下軽石として噴出したこと、入戸火砕流噴火の噴出量の大部分を占める入戸火 砕流のマグマの温度は、カルデラ噴火以前の長期間にわたる流紋岩マグマの温度とほぼ等 しいことを示す.

このことは、大隅降下軽石の噴出直前に、流紋岩マグマ溜まりが苦鉄質マグマの注入を 受けて部分的に昇温したことを示唆する.大隅降下軽石には苦鉄質マグマの混入を示す縞 状軽石がしばしばみられること、大隅降下軽石の斑晶にはしばしば逆累帯組成構造が見ら れることなども苦鉄質マグマの注入を示唆する.

図 2.3-7 岩戸火砕流噴火(60ka)から新島軽石(13ka)に至る,姶良カルデラから噴出した流紋 岩マグマの磁鉄鉱—イルメナイト平衡温度の時間変化.水色破線は800℃の平衡温度位置を示す. 大隅降下軽石の平衡温度は他の噴出物に比べ高く,800℃を超えるものが多い.

(3) まとめ

約3万年前の入戸火砕流噴火に先立ち始良カルデラから噴出した噴出物,入戸火砕流噴 火の噴出物,および入戸火砕流噴火後の始良カルデラ噴出物の岩石学的特徴を検討し,始 良カルデラにおける流紋岩マグマの蓄積条件の検討を行った.始良カルデラの噴出物の全 岩化学組成からは,入戸火砕流噴火で噴出した SiO₂=75~76wt%の流紋岩マグマと類似し た特徴を持つ流紋岩マグマが,約6万年前と推測される岩戸火砕流噴出物の中に混合端成 分として認められ,それ以降の少なくとも3回の始良カルデラからの火砕噴火でも同じマ グマが噴出したことが分かった.これは,少なくとも入戸火砕流噴火に先立つ約3万年前 から,入戸火砕流噴火で噴出した流紋岩マグマの蓄積が開始していたことを示唆する.一 方,入戸火砕流噴火までの流紋岩マグマを代表する新島軽石の化学組成は,微量元素組 成でみると入戸火砕流噴火までの流紋岩マグマとは明瞭に区別が可能であり,入戸火砕流 噴火後姶良カルデラには別の流紋岩マグマが蓄積し噴出していることを示している.

流紋岩質の噴出物の斑晶鉱物に含まれるガラス包有物の含水量解析から、この流紋岩マ グマは深さ約 4~5 km付近に天井を持つマグマ溜まりに蓄積されていたと推測される.また 岩戸火砕流噴火~入戸火砕流噴火の間でガラス包有物の含水量範囲には顕著な違いは見ら れないことから、入戸火砕流噴火に先立ち流紋岩マグマが蓄積されていた深さには大きな 変化はなかったと推測される.

斑晶組織の累帯構造からは、入戸噴火直前のマグマ溜まりへの高温・苦鉄質マグマの注 入を示唆する.入戸火砕流噴火噴出物(大隅降下軽石・入戸火砕流)にしばしばみられる 縞状軽石とその組成は、流紋岩マグマへの苦鉄質マグマの混入を示す.入戸火砕流噴火噴 出物にしばしばみられる逆累帯組織を持ち溶融組織をもつ斑晶の存在もまた、流紋岩マグ マへの苦鉄質マグマの混入を示す.流紋岩質噴出物に含まれる磁鉄鉱—チタン鉄鉱の平衡温 度はほぼ一定であるが、入戸火砕流噴火の最初期に噴出した大隅降下軽石から得られた温 度はその前後の噴出物に比較して有意に高く、入戸火砕流噴火の直前に高温のマグマの注 入があったことを示唆する.

参考文献

- Aramaki, S. (1984) Formation of the Aira caldera, southern Kyushu, ~22,000 years ago. J. Geophys. Res., 89, 8485-8501.
- 下司信夫・宮城磯治・斎藤元治(2017) エネルギー分散型エックス線分析装置による火山 ガラス含水量の簡易定量法.火山, 62, 13-22.

福島大輔(2015)姶良火砕噴火の推移とマグマの発泡プロセス.月刊地球,429,252-258. 小林哲夫・溜池俊彦(2002)桜島火山の噴火史と火山災 害の歴史.第四紀研究,41,269-278.

- Kano, K., Yamamoto, T. and Ono, K. (1996) Subaqueous eruption and emplacement of the Shinjima Pumice, Shinjima (Moeshima) Island, Kagoshima Bay, SW Japan. Journal of Volcanology and Geothermal Research, 71, 187-206.
- Liu, Y., Zhang, Y., Behrens, H. (2005) Solubility of H₂O in rhyolitic melts at low pressures and a new empirical model for mixed H₂O-CO₂ solubility in rhyolitic melts. Jour. Volcanol. Geotherm. Res. 143, 219-235.
- 森脇 広・町田 洋・初見祐一・松島義章(1986) : 鹿児島湾北岸におけるマグマ水蒸気 噴火とこれに影響 を与えた縄文海進. 地学雑誌, 95, 94-113.
- 森脇広・永迫俊郎・西澤文勝・松島義章・鈴木毅彦・田中源吾(2017)テフラ編年と ¹⁴C 年代に基づく鹿児島湾奥,新島(燃島)の海成堆積物の編年とその意義.地学雑誌, 126,557-579
- 長岡信治・奥野 充・新井房夫(2001) 10 万~3 万年前の姶良カルデラ火山のテフラ層序と 噴火史. 地質学雑誌, 107, 432-450.
- 西村光史・小林哲夫(2015)姶良カルデラ,高野ベースサージ堆積物と新島火砕流堆積物

の化学的特徴. 月刊地球 429, 259-264.

新エネルギー総合開発機構(1987) 昭和61 年度全国地熱 資源総合調査(第 2次)火山性熱水 対流系地域タイプ(国分地域), 88 p.

- 周藤正史・石原和弘・巽 好幸(2000)姶良カルデラ地域の先カルデラ火山活動史~カル デラ北縁部加治木,国分地域及び南縁部牛根地域の溶岩流試料の K-Ar 年代.火山, 45,1-12.
- 山元孝広・下司信夫・小林哲夫 (2013) 桜島火山, 横山コアから見出された火砕堆積物の岩 石化学的特徴.火山, 58, 519-528.

安田敦・吉本充宏・藤井敏嗣(2015)姶良火砕噴火のマグマ溜まり深度.火山, 60, 381-397.

2.4 鬼界カルデラ噴出物の岩石学的検討

【実施内容】

鬼界カルデラ噴出物については、平成25-29年度に、鬼界アカホヤ噴火(7.3千年前)によっ て噴出した降下軽石及び火砕流堆積物に含まれる軽石・スコリアについて岩石学的解析とメルト 包有物化学分析を行い、同噴火マグマの化学的特徴と温度・圧力条件を検討した。その結果、流 紋岩マグマについては輝石温度計で 902±15℃ (n=35),鉄チタン鉱物温度計で 874±6℃ (n=7), 安山岩マグマについては輝石温度計で 975±5℃ (n=5) が得られた. これらの温度推定結果とメ ルト包有物の H2O および CO2 濃度(平成 25-28 年度成果)を用いてマグマのガス飽和圧力を見 積もったところ、流紋岩マグマは 146±53MPa (61-276MPa, n=31)、安山岩マグマは 115±27MPa (83-177MPa, n=21)の圧力下にあったと推定された. 両マグマのガス飽和圧力の平均値は 133±46MPa(n=52)であることから、地殻密度を 2500kg/m³と仮定すると、鬼界アカホヤ噴火 マグマ溜まりの主体は深さ5±2kmにあったと推定できた.そこで,平成30年度は,これらのメ ルト包有物分析によるマグマの深度(圧力)推定の確度と妥当性を検討するため,(1)竹島火砕 流堆積物に含まれるメルト包有物 30 個の追加分析による圧力データの蓄積、と(2) 竹島火砕流 上部ユニットに含まれるスコリアの全岩化学組成データを用いた安山岩マグマの熱力学解析、を 行った. (1) では, メルト包有物の H2O および CO2 濃度から得られた圧力について, 今年度ま での結果全てをまとめたところ,流紋岩マグマは153±50MPa (61-276MPa, n=40), 安山岩マグ マは 105±25MPa (69-177MPa, n=42)と算出された. 両マグマの圧力の平均値は 128±46MPa

(n=82) である.これらの平均値と標準偏差は平成 29 年度に得られた値とほぼ同じであった.

(2)においては、安山岩マグマの熱力学解析結果と安山岩スコリアの岩石学的解析・メルト包 有物分析から得られた安山岩マグマの温度・圧力・含水量・メルト量・斑晶量を比較した結果, おおよそ整合的な結果が得られた.さらに、鬼界アカホヤ噴火に至るマグマ供給系の発達過程を 検討するために、9.5 千年前の噴火噴出物(籠港降下スコリア、安山岩組成)と95 千年前のカル デラ噴火(鬼界葛原噴火)の噴出物(長瀬火砕流堆積物,流紋岩組成)について EPMA および SIMS によるメルト包有物化学分析を実施した.その結果、籠港降下スコリアに含まれるメルト 包有物は、主成分元素組成は竹島火砕流スコリアに含まれるメルト包有物と同様であるが、揮発 性成分濃度に関しては同メルト包有物とはやや異なることが判明した.また、長瀬火砕流堆積物 に含まれる流紋岩メルト包有物の主成分元素および揮発性成分の特徴は、鬼界アカホヤ噴火の流 紋岩メルト包有物のそれとは異なることが判明した.これらの結果は、9.5 千年前の噴火と95 千 年前のカルデラ噴火では、鬼界アカホヤ噴火(7.3 千年前)とは異なるマグマが活動したことを示 唆している.

【研究成果】

2.4.1 はじめに

鬼界カルデラは薩摩硫黄島火山の活動により形成された東西 20km,南北 17km の大型カルデ ラで,鹿児島県薩摩半島の南約 50km に位置する.カルデラ地形の大部分は海没しており,陸上 部は薩摩硫黄島・竹島・昭和硫黄島と数個の岩礁のみである.薩摩硫黄島火山は約 70 万年前から 活動を開始し,現在まで断続的に噴火活動を継続している(小野・他, 1982).小野・他 (1982) によれば、その噴火史は大きく先カルデラ火山期、カルデラ形成期(60万年~7.3千年前)、後カ ルデラ火山期(7.3千年前~現在)に分けられる.先カルデラ火山期には、玄武岩・安山岩マグマ による小成層火山形成と流紋岩・デイサイトマグマによる厚い溶岩流の噴火があった.カルデラ形 成期には大規模火砕流の流出を伴う噴火が2回以上と、より小規模な活動があり、このうちの2 回の噴火でカルデラが陥没・拡大したと考えられている(小野・他、1982).このうち、最新のカ ルデラ噴火が7.3千年前に起きた「鬼界アカホヤ噴火」で、その噴出物量は170km³以上と考え られている(町田・新井、2003).鬼界カルデラ近傍にある鬼界アカホヤ噴火の噴出物は、最下部 の「幸屋(船倉)降下軽石」とその上位の「竹島火砕流堆積物」に大別できる.また、鬼界アカ ホヤ噴火の直前の9.5千年前に「籠港降下スコリア」を放出する噴火が起きている.後カルデラ 火山期も断続的に噴火活動を継続し、流紋岩マグマの活動によって硫黄岳が、玄武岩マグマの活 動によって稲村岳が形成された.最新のマグマ噴火は1934-35年の流紋岩マグマによる海底噴火 で、硫黄島の東海岸沖に昭和硫黄島を形成した(例えば、Kawanabe and Saito, 2002).さらに、 後カルデラ火山期には、噴火活動とともに活発な火山ガス放出活動が継続している.

本研究ではマグマ供給系発達過程の詳細化を行うモデル事例として,鬼界アカホヤ噴火を研究 対象とする.鬼界アカホヤ噴火の噴火準備過程を解明するには,マグマ溜まりの発達史と噴火直 前の温度・圧力環境を知る必要がある.鬼界アカホヤ噴火は国内で起きた最新のカルデラ噴火で あるため,噴火による堆積物の風化・浸食・変質が少なく,新鮮な試料を分析試料として用いる ことが出来る.また,噴出物の鉱物化学分析から地質温度計を用いることでマグマ溜まりの温度 を,メルト包有物分析の揮発性成分(H₂O, CO₂)の濃度測定からマグマの圧力を推定することが できる.鬼界アカホヤ噴火後のマグマ溜まりについては,岩石学的解析(Saito et al., 2002)や メルト包有物分析(Saito et al., 2001; Saito et al., 2003)などの研究により,その化学的特徴や 温度・圧力環境が明らかにされている.一方,鬼界アカホヤ噴火マグマ溜まりについては,Saito et al.(2001)で一部の火砕流堆積物についてのみ行われているだけで,系統的な解析は未だ行われ ていなかった.

そこで、平成 25・29 年度に本委託費研究において、鬼界アカホヤ噴火堆積物の幸屋(船倉)降 下軽石とその直上にある竹島火砕流堆積物に含まれる軽石とスコリア(以後、「竹島火砕流軽 石」、「竹島火砕流スコリア」、と称する)について岩石学的解析とメルト包有物化学分析を行 い、鬼界アカホヤ噴火に放出されたマグマの化学的特徴を明らかにし、マグマ溜まりの温度・圧 力条件について検討した(産業技術総合研究所,2014,2015,2016,2017,2018).その結果、 噴火マグマは主体である流紋岩マグマに加えて安山岩マグマがマグマ溜まりに存在していたこと が明らかになった.また、その圧力条件は、流紋岩マグマが 61・276MPa、安山岩マグマが 83-177MPaと見積もられた.そこで、平成 30 年度は、マグマ溜りの圧力環境をより詳細に検討す るため、同噴火による竹島火砕流堆積物に含まれるメルト包有物の追加分析を行い、H₂O および CO2濃度の変動範囲について確認した.用いた試料として、軽石、スコリアに加えて、これまで 分析してなかった縞状軽石を新たに加えた.また、竹島火砕流の上部ユニットに含まれるスコリ アの全岩化学組成データを用いて安山岩マグマの温度・圧力・含水量・メルト量・斑晶量と比較 した.これらの結果を元に、地下に伏在するマグマ溜まりの深さ指標となるマグマの圧力条 件を再検討した.また,鬼界アカホヤ噴火に至るマグマ供給系の発達過程を検討するために,鬼 界アカホヤ噴火の直前の噴火(9.5 千年前)の安山岩噴出物(籠港降下スコリア)について SIMS によるメルト包有物の微小領域化学分析を行い,その揮発性成分濃度を把握した.また,95 千年 前のカルデラ噴火(鬼界葛原噴火)の噴出物(長瀬火砕流堆積物内の軽石)に含まれるメルト包 有物について SIMS 分析を行い,マグマの揮発性成分濃度について予察的な結果を得た.

2.4.2 竹島火砕流堆積物の岩石学的解析とメルト包有物の追加分析

鬼界アカホヤ噴火で噴出した竹島火砕流堆積物は非溶結の堆積物(小野・他,1982)で、地質 調査の結果、上部・中部・下部の3つのユニットに分かれることが判明している.中部および上 部ユニットには白~灰白色の軽石の他に、暗灰色~黒色でやや重いスコリア(大きさ最大 50cm) と縞状軽石が存在する.既往研究(平成28年度成果など)では、このスコリアの全岩化学組成等 の特徴が明らかにされているが、岩石学的特徴の重要な要素の1つである「モード組成」につい ては未着手のままだった.そこで、本研究では、竹島火砕流堆積物の中部ユニットから採取した スコリア(以下「竹島火砕流中部ユニットスコリア」と呼ぶ)1個と竹島火砕流堆積物の上部ユ ニットから採取したスコリア(以下「竹島火砕流上部ユニットスコリア」と呼ぶ)2個について、 そのモード組成分析を実施した.分析には本研究で平成28年度に導入した電子線マイクロアナ ライザー(日本電子(株)製JXA-8530F;産総研活断層・火山研究部門に設置済み、以下「EPMA」 と呼ぶ)を用いた.その結果、スコリアの発泡度(スコリア中の泡の体積率)は52-67vol%、固 体部分の斑晶量 29-35vol%、石基 66-72vol%となった(表 2.4-1,図 2.4-1).最も多い斑晶はどの スコリアも斜長石で、固体部分の15-24vol%を占める.上部ユニットスコリアの方が中部ユニッ トスコリアより、発泡度が小さく、斑晶量が多い(即ち、石基量が少ない)傾向が見られるが、 分析数が少ないので断定はできない.

さらに、竹島火砕流堆積物に含まれるメルト包有物の追加分析を行い、H₂O および CO₂ 濃度 の変動範囲について検討した.用いた試料は、竹島火砕流下部ユニット軽石(試料番号 06IW24-5),竹島火砕流中部ユニットスコリア(試料番号 06IW29-3),竹島火砕流上部ユニットの軽石(試 料番号 06IW42-1),スコリア(試料番号 06IW42-2),縞状軽石(試料番号 06IW42-3,図 2.4-2) に含まれる斜長石、単斜輝石、斜方輝石および磁鉄鉱内のメルト包有物(大きさ 0.03-0.24mm) 30 個である(表 2.4-2).金蒸着したメルト包有物について、主成分化学組成を EPMA で測定す るとともに、H₂O,CO₂,S および Cl 濃度を二次イオン質量分析計(平成 28 年度に本研究で産総 研活断層・火山研究部門に設置済み、以下「SIMS」と呼ぶ)で測定した(表 2.4-2).EPMA 測 定条件および誤差は、平成 28 年度成果に記載済みである.SIMS は Cameca 製 nanoSIMS50L を用い、Cs+の1 次イオンビームを金蒸着したメルト包有物に照射し、放出された ¹H^{, 12}C[,] ³²S^{,35}Cl^{, 30}Si[,]の二次イオン数を測定し、標準ガラス試料で作成した SIMS 検量線で濃度を算出 した.SIMS の分析手順は Saito et al. (2010)にまとめられている.

今年度分析した竹島火砕流下部ユニット軽石のメルト包有物4個のSiO2濃度(74-76 wt%, 表 2.4-2)は、平成26年度に得られた同軽石のメルト包有物と石基ガラスのSiO2濃度(72-76wt% および74.8±1.4wt%)にほぼ一致している. また、他の主成分元素についても同様である.この 一致は今回分析したメルト包有物も母斑晶に捕獲された時期が流紋岩マグマの急冷固化の直前で あることを示す. 今年度分析したメルト包有物の H₂O 濃度は 3.5^{-6.3} wt%, CO₂ 濃度は 0.002⁻ 0.031 wt%, S 濃度は 0.006^{-0.008}wt%, Cl 濃度は 0.113^{-0.126}wt%であり, 平成 26 年度成果(同 軽石のメルト包有物 9 個について, H₂O 濃度 2.9^{-6.0} wt%, CO₂ 濃度 0.014^{-0.058} wt%, S 濃度 0.003^{-0.019} wt%, Cl 濃度 0.099^{-0.151}wt%) にほぼ一致している (図 2.4⁻³).

竹島火砕流中部ユニットスコリアのメルト包有物6個のSiO2濃度(64-66 wt%,表2.4-2)は、 平成28年度に得られた同スコリアのメルト包有物と石基ガラスのSiO2濃度(66-67wt%および 66.29±2.24wt%)におおよそ一致している.また、他の主成分元素についてもメルト包有物と石 基ガラスの濃度は同様である.この一致はメルト包有物が母斑晶に捕獲された時期がマグマの急 冷固化の直前であることを示す.今年度分析したメルト包有物のH2O濃度は2.3-3.9 wt%,CO2 濃度は0.018-0.028 wt%,S濃度は0.062-0.077 wt%,Cl濃度は0.090-0.105 wt%であり、平成 28年度成果(同スコリアのメルト包有物について,H2O濃度2.4-4.8 wt%,CO2濃度0.018-0.048 wt%,S濃度0.079-0.104 wt%,Cl濃度0.082-0.099 wt%)とほぼ一致している(図2.4-3).

今年度分析した竹島火砕流上部ユニット軽石のメルト包有物 5 個の SiO₂ 濃度(70-75 wt%, 表 2.4-2)は、平成 27 年度に得られた同軽石のメルト包有物と石基ガラスの SiO₂ 濃度(65-77 wt%および 71.02±4.86 wt%)の変動範囲に含まれる. また、他の主成分元素についても同様で ある.この結果は今回分析したメルト包有物も母斑晶に捕獲された時期が安山岩マグマの急冷固 化の直前であることを示す.今年度分析したメルト包有物の H₂O 濃度は 3.3-5.8 wt%, CO₂ 濃度 は 0.010-0.047 wt%, S 濃度は 0.007-0.027 wt%, Cl 濃度は 0.095-0.152 wt%であり、平成 27 年度成果(同軽石のメルト包有物 9 個について、H₂O 濃度 2.6-4.7 wt%, CO₂ 濃度 0.007-0.046 wt%, S 濃度 0.007-0.119 wt%, Cl 濃度 0.072-0.164 wt%)とほぼ一致している(図 2.4-3).

竹島火砕流上部ユニットスコリアのメルト包有物6個のSiO2濃度(64-65 wt%,表2.4-2)は、 平成28年度に得られた同スコリアのメルト包有物と石基ガラスのSiO2濃度(64-68 wt%および 66.16±1.61 wt%)におおよそ一致している.また、他の主成分元素についてもメルト包有物と石 基ガラスの濃度は同様である.この一致はメルト包有物が母斑晶に捕獲された時期がマグマの急 冷固化の直前であることを示す.今年度分析したメルト包有物のH2O濃度は2.4-2.9 wt%, CO2 濃度は0.011-0.018 wt%, S濃度は0.061-0.094 wt%, Cl濃度は0.077-0.106 wt%であり、平成 28年度成果(同スコリアのメルト包有物について、H2O濃度2.2-3.3 wt%, CO2濃度0.014-0.058 wt%, S濃度0.031-0.119 wt%, Cl濃度0.070-0.118 wt%)と比べると、やや CO2濃度が低い以 外、ほぼ一致している(図2.4-3).

竹島火砕流上部ユニット縞状軽石のメルト包有物9個のSiO2濃度(62・66 wt%,表2.4・2)は、 平成28年度に得られた竹島火砕流上部ユニットスコリアのメルト包有物と石基ガラスのSiO2濃 度(64・68 wt%および66.16±1.61 wt%)に近い.また、他の主成分元素についても同様である. この結果は同スコリアと同様に、縞状軽石のメルト包有物も母斑晶に捕獲された時期がマグマの 急冷固化の直前であることを示す.縞状軽石内のメルト包有物のH2O濃度は2.4・3.6 wt%, CO2 濃度は0.014・0.026 wt%, S濃度は0.065・0.097 wt%, Cl濃度は0.082・0.110 wt%であり、これ らも上記スコリアのメルト包有物の揮発性成分濃度とほぼ一致している(図2.4・3).従って、竹 島火砕流上部ユニット縞状軽石に含まれるメルト包有物の化学的特徴は、同ユニットスコリアに 含まれるメルト包有物とほぼ同じである.

以上をまとめると、今年度得られた竹島火砕流の下部ユニット軽石、中部ユニットスコリア、 上部ユニット軽石および上部ユニットスコリアのメルト包有物の化学的特徴は、平成26-28年度 に得られた各ユニット軽石およびスコリアメルト包有物と同様である.また、上部ユニット縞状 軽石に含まれるメルト包有物の化学的特徴は、同ユニットスコリアに含まれるメルト包有物とほ ぼ同じである.従って、揮発性成分の濃度変化の要因に関する考察も平成26-28 年度と変わらな い.以下に、これまでの考察結果の概要を記す.揮発性成分のうち、H2OとCO2の濃度の変化の 原因としては、主に、(I)ガス不飽和状態でのマグマの結晶分化、(II)ガス飽和状態でのマグマの結 晶分化, (III)圧力低下によるマグマの脱ガス, (IV)ガス飽和状態でのマグマへの CO₂ガスの付加, という4つの分化プロセスが考えられる(Saito et al., 2001; 図 2.4-3b). このうち, (I)と(II)の プロセスでは H₂O と CO₂の濃度が変化するとともに主成分元素濃度も変化する. 幸屋(船倉) 降下軽石と竹島火砕流の全ユニットの軽石に含まれる流紋岩メルト包有物について, H2O 濃度と K₂O 濃度,または, CO₂濃度と K₂O 濃度に相関は見られず (平成 26-27 年度成果), H₂O と CO₂ の濃度の変化の原因として、(I)と(II)の可能性は低い.一方,これらの流紋岩メルト包有物の H₂O と CO₂の濃度のほとんどは、図 2.4-3bの(IV)で示すように 100-280MPa の等圧線上に位置 していることから、(IV)のガス飽和状態でのマグマへの CO2 ガスの付加が働いている可能性を示 唆する.

また,竹島火砕流の中部および上部ユニットスコリアのメルト包有物について,H2O 濃度と K₂O 濃度, または, CO₂ 濃度と K₂O 濃度に相関は見られず(平成 28 年度成果), H₂O と CO₂の 濃度の変化の原因として、(I)と(II)の可能性は低い. (III)圧力低下によるマグマの脱ガスが起 きた場合, H₂O と CO₂の濃度の分布は, 図 2.4-3b の(III)で示すように, 脱ガスの初期に CO₂濃 度が大きく低下し、その後、H2O濃度が減少するというトレンドが現れる. (IV)ガス飽和状態で のマグマへの CO₂ ガスの付加が起きた場合は、上記のように H₂O と CO₂の濃度の分布は等圧線 上に位置する (図 2.4-3b の(IV)). 竹島火砕流のスコリアと縞状軽石に含まれるメルト包有物は, 高 H₂O 濃度(4.8wt%)の1 個を除き, H₂O 濃度 2.2-3.7wt%の比較的狭い範囲に収まる一方, CO2濃度は 0.011-0.058wt%と大きく変動している. この濃度分布は、上記の(III)または (IV)の プロセスによる濃度変動に近い. (III)の場合, 177MPa から 69MPa への圧力低下による脱ガス, (IV)の場合, 69-177MPa の等圧線上に位置していることから, 69-177MPa の圧力条件にあるガ ス飽和状態のマグマへ CO2を主体としたガスが付加していたことになる.いずれにしろ、マグマ 溜まり内でガス飽和状態になっていたことになり、そのマグマ圧力は 69-177MPa と見積もられ る. どちらのプロセスが働いていたかを知るために、今年度、上・中部ユニットスコリアのメル ト包有物を追加分析したが,高H2O濃度(~5wt%)かつ低CO2濃度を持つメルト包有物は確認 できなかった.従って,現状では,(III)の圧力低下によるマグマの脱ガスの可能性が高いと判断 できる.

表 2.4-1 薩摩硫黄島火山岩のモード組成 (vol%).赤色が本研究成果である竹島火砕流堆積物中のスコリアおよび籠港降下スコリアのモード組成.本研究以外のモード組成は全て小野・他(1982)から引用.

	先カルデラ火山	期									
噴火年代	<700ka	<700ka	<700ka	<700ka	<700ka	<700ka					
試料名	真米山溶岩	矢筈山溶 岩	矢筈山溶岩	矢筈山降下ス コリア	長浜溶岩	ヤクロ瀬 溶岩					
マグマ化学組成	玄武岩	安山岩	安山岩	安山岩	流紋岩	デイサイ ト					
試料番号	75TK38	751010L	751015	751016S	75108	GW76KG- D6					
備考 ^a						20	_				
斑晶											
斜長石	31.9	20.2	12.2	8.6	6.0	17.8					
石英	0	0	0	0	0	0					
かんらん石	1.6	3.3	0	0.1	0	0					
単斜輝石	0.2	3.0	0.8	1.1	0.5	1.9					
斜方輝石	0	0.1	1.4	0.9	0.3	1.4					
鉄鉱	0	0	0	0.4	0.4	0.8					
石基	66.3	73.4	85.6	88.9	92.8	78.1					
発泡度 カウント数							_				
	カルデラ形成期										
噴火年代	140ka	95ka	9. 5ka	9. 5ka	9. 5ka	7ka	7ka	7ka	7ka	7ka	7ka
試料名	小アビ山火砕流 溶結凝灰岩中の	長瀬火砕 流軽石	籠港降下スコ リア (層1)	籠港降下スコ リア (層2)	籠港降下スコ リア (層3)	幸屋(船 倉)降下 お 	船倉火砕流 溶結凝灰岩	竹島火砕流 軽石	竹島火砕流中 部スコリア	竹島火砕流上 部スコリア	竹島火砕流上 部スコリア
ーガールが知ら	本質レンス	法外山	中山山	中山山	中山山	牲 石 法 始 出	法处理	法经历出	中山田	中山山	中山田
マクマ化子組成	初1歳又石 7510701	元秋石 7571/99	女田石	女叫石 	女田石	初応秋石 7577/29D1	- 加秋石 7571/94	75100D1	女川石 061W90 2	女川石 061W22_4	女川石 061W49_9
刊作"宙"与	7510761	701822	05	04	03	701K02F1	731824	75109F1	001w29-3	001#55-4	001#42-2
備老 ⁸			木研究	木研究	木研究				木研究	木研究	木研究
11用小5			749176	77-0176	749176				27-0126	749126	27-0126
斑晶					10.0	-		_	15.0	10.5	
斜長石	6.6	20	5.8	32.5	13. 2	5	5.2	7	15.0	16.7	24.1
有央 か/ と / エ	0	2.5	0	0	0	0	0	0	0	0	0
がんらん 日 単創編工	0 7	0.5	86	4.0	6.0	1	0.0	1	8.6	12.0	5 8
^{半小/µ} 口 斜方輝石	0.1	0.5	5.0	4.0	2.4	1	0.9	1	0.7	12.5	3.1
鉄鉱	0.5	1	0.9	0.2	0, 1	1	0.6	1	4.2	2.3	1.4
石基	92.1	74	79.6	59.5	77.5	92	93.0	90	71.5	66.7	65.5
発泡度			55	52	59				67	54	52
カワント数			1480	2160	2760)			2124	2058	2401
	後カルデラ水山	胡						-			
噴火年代	3. 9ka	3.9ka	3. 9ka	1.1ka	1. 1ka	0. 5ka	1935				
試料名	稲村岳スコリア	東溶岩	磯松崎溶岩	硫黄岳溶岩	硫黄岳溶岩	硫黄岳火	昭和硫黄島				
マグマ化学組成	安山岩	安山岩	安山岩	流紋岩	流紋岩	流紋岩	流紋岩				
試料番号	751063	751069	751020	751062	IW74-S13	76I0132R	IW74S-24				
備考。								_			
斑晶											
斜長石	22.7	26.7	19.3	7.3	74	13 5	14				
石英	0	0) (0) 0	0				
かんらん石	1.7	3.1	0.2	0	0) 0	0				
単斜輝石	2.5	0.7	1.1	0.3	0.6	5 1.3	1.6				
斜方輝石	0.9	0.2	0.6	0.5	0.4	1.1	1.1				
鉄鉱	0.8	0	0 0	0.3	0.1	0.7	1.1				
石基	71.4	69.3	78.8	91.6	91.5	83.4	82.2				
発泡度											
カウント数											

図 2.4-1 薩摩硫黄島火山岩のモード組成 (vol%). 斜長石を青色, 単射輝石を橙色, 斜方輝石を黄色, かんらん石を緑色, 鉄鉱を茶色, 石英を赤色, 石基を灰色で示す. 本研究成果である竹島火砕流堆積物中のスコリアおよび籠港降下スコリアのモード組成を赤色の枠で囲っている. 本研究以外のモード 組成は全て小野・他(1982)から引用.

図 2.4-2 竹島火砕流上部ユニットに含まれる縞状軽石(試料番号 06IW42-3). 竹島・エーメ立神にて 採取.

表 2.4-2 竹島火砕流堆積物(下部ユニット,中部ユニット,上部ユニット)の軽石・スコリア・縞状 軽石中のメルト包有物の化学組成と H₂O および CO₂濃度から見積もられたガス飽和圧力.

	竹島火砕流下部ユニ	ット軽石				
試料番号	061W24-5	06IW24-5	06IW24-5	06IW24-5		
メルト包有物番号	mt18101106p1i1	mt18101106p2i1	mt18101106p3i1	mt18101106p4i1		
ホスト鉱物組成	甲斜陣右 Wo38Fn45Fs18Ma#71	甲斜輝石 ₩o38Fn43Fs19Ma#70	甲斜輝石 ₩o38Fn44Fs18Ma#71	甲斜輝石 ₩o38Fn/3Fs19Ma#69		
	w050EH45F510Mg#71	#030EII431.313Mg#10	#050EII44F510mg#71	W050E11451-815Mg#05	-	
SiO ₂	67.26	68.29	68.20	67.58		
TiO ₂	0.49	0.48	0.33	0.37		
A1203	11.94	11.67	10.97	11.49		
Fe0*	3.14	3. 20	3.24	2.95		
Mn0	0.03	0.06	0.08	0.09		
MgU CaO	0.40	0.44	0.30	0.39		
Na _o 0	3 34	3.26	2 57	3 20		
K ₂ O	2.84	2.89	2.74	2.72		
P ₂ O ₇	0.04	0.05	0.00	0.05		
S	0.007	0.008	0.006	0.006		
C1	0.116	0.123	0.126	0.113		
H ₂ 0	3.5	4.4	5.8	6.3		
CO ₂	0.031	0.015	0.015	0.002		
Total	94.93	96.75	96.05	96.95		
ガス飽和圧力(MPa)	136	140	213	229		
	11 da l militale i das	1			-	
34水1 - 平 日	竹島火砕流中部ユニ:	ットスコリア	0.01000 0	0.01000 0	OCTWOO D	0.01000 0
八村番芳	061W29-3	061W29-3	Ub1W29-3	Ub1W29-3	Ub1W29-3	Ub1W29-3
メルト包有物番号	mt18101110p2i1	mt18101110p2i2	mt18101110p6i1	mt18101110p6i2	mt18101110p1i1	mt18101110p4i1
ホスト鉱物組成	甲斜輝石	甲斜輝石	甲斜輝石 	里斜輝石	斜万輝石	斜万輝石
	Wo38En45Fs17Mg#73	Wo38En45Fs17Mg#73	Wo38En46Fs17Mg#73	Wo37En47Fs16Mg#74	Wo3En68Fs29Mg#70	Wo3En65Fs32Mg#67
SiO ₂	61.88	59.62	61.04	62.30	62.59	62.57
TiO ₂	0.85	0.79	0.92	0.91	0.92	0.71
$A1_{2}0_{3}$	13.15	13.39	14.01	13.96	13.65	13.16
Fe0*	6.02	6.51	6.84	6.77	7.05	7.42
MnO	0.09	0.10	0.13	0.17	0.16	0.03
MgO	1.57	1.78	1.97	1.92	1.56	1.62
Ca0	4.12	4.27	4.79	4.55	4.29	4.21
Na ₂ 0	3.49	3.09	3.42	3.60	3.26	3.52
K ₂ O	2.05	1.87	1.94	1.90	2.20	1.72
P ₂ O ₅	0.24	0.24	0.53	0.53	0.19	0.44
s	0.062	0,066	0,066	0.077	0.068	0,068
C1	0.105	0.090	0,095	0.099	0, 096	0.100
H ₂ O	2.8	2.6	2.6	3.9	2.3	2.5
C0 ₂	0.021	0.020	0,020	0.018	0.028	0.019
Total	96.44	94.42	98.37	100.65	98.36	98.08
ガス飽和圧力(MPa)	100	90	92	129	104	87
	竹島火砕流上部ユニー	ット軽石				
試料番号	06TW42-1	06IW42-1	06IW42-1	06TW42-1	06IW42-1	
メルト包有物番号	mt18101113p1i1	mt18101113p4i1	mt18101113p6i1	mt18101113p7i1	mt18101113p2i1	
ホスト鉱物組成	斜長石	斜長石	斜長石	斜長石	単斜輝石	
	An55	An59	An55	An53	Wo38En46Fs16Mg#74	
SiO ₂	71.72	72.28	74.93	71.20	69.20	
TiO ₂	0.53	0.38	0.50	0.61	0.61	
A1203	11.51	13.46	12.24	12.49	13.18	
Fe0*	2.42	2.97	2.41	2.79	5.47	
MnO	0.09	0.04	0.05	0.10	0.16	
MgO	0.40	0.86	0.55	0.60	1.22	
Ca0	1.77	2.42	1.97	1.94	3.26	
Na ₂ 0	3.65	3.76	3.74	3.84	3.45	
K ₂ O	2.92	3.26	3.01	2.94	2.49	
P ₂ U ₅	0.05	0.23	0.08	0.14	0.21	
S Cl	0.007	0.009	0.008	0.013	0.027	
H ₂ O	5. 2	5.8	5. 1	3.9	3. 3	
C02	0.010	nd	0.012	0.034	0.047	
Total	100.41	105.65	104.68	100.76	102.74	
ガス約和広古(四)る	170	100	170	150	105	
ルス即和圧刀(MPa)。	176	199	172	159	167	

	伝真した対対し対応の	1 11				
	竹島火幹流上部ユニ	ットスコリア				
試料番号	06IW42-2	06IW42-2	06IW42-2	06IW42-2	06IW42-2	06IW42-2
メルト包有物番号	mt18101115p4i1	mt18101115p7i1	mt18101115p2i1	mt18101115p6i1	mt18101115p8i1	mt18101115p12i1
ホスト鉱物組成	単斜輝石	単斜輝石	斜方輝石	斜方輝石	斜方輝石	斜方輝石
	Wo38En45Fs17Mg#72	Wo38En45Fs17Mg#73	Wo3En69Fs28Mg#71	Wo3En69Fs29Mg#70	Wo3En67Fs30Mg#69	Wo3En68Fs29Mg#70
SiO ₂	63.84	58.02	63.02	59.12	59.30	60.73
TiO ₂	0.86	0.91	0.74	0.75	0.78	0.88
A1203	13.80	13.35	13.97	13.05	13.17	13.58
Fe0 [*]	6.84	7.38	7.47	6.55	7.62	7.02
MnO	0.10	0.16	0.14	0.18	0.19	0.08
MgO	1.86	1.75	1.65	1.72	1.53	1.80
Ca0	4.47	4.58	4.37	4.30	4.03	4.35
Na ₂ 0	3.44	2.87	3.72	2.94	3. 57	3.27
K20	1.98	1.67	1.86	1.86	1.97	1.93
P205	0.47	0.22	0.37	0.38	0.38	0.47
S	0.067	0.094	0.064	0.061	0.066	0.079
C1	0.080	0.081	0.077	0.106	0.088	0.093
H ₂ 0	2.4	2.8	2.5	2.5	2.6	2.9
CO2	0.016	0.017	0.011	0.016	0.013	0.018
Total	100. 25	93.88	99.96	93.54	95.29	97.14
ガス飽和圧力 (MPa)	78	89	69	79	80	95

	竹島火砕流上部ユニ	ット縞状軽石				
試料番号	06IW42-3	06IW42-3	06IW42-3	06IW42-3	06IW42-3	06IW42-3
メルト包有物番号	mt18101116p1i1	mt18101116p3i1	mt18101116p3i2	mt18101116p4i1	mt18101116p5i1	mt18101116p2i1
ホスト鉱物組成	単斜輝石	単斜輝石	単斜輝石	単斜輝石	単斜輝石	斜方輝石
	Wo39En44Fs17Mg#72	Wo39En45Fs17Mg#73	Wo38En44Fs17Mg#73	Wo38En44Fs17Mg#72	Wo38En44Fs17Mg#72	Wo3En68Fs29Mg#70
Si0 ₂	56.75	55.70	58.09	55.66	58.50	56.52
TiO ₂	0.77	0.71	0.77	0.76	0.81	0.76
A1203	12.64	12.70	12.49	12.34	12.40	13.51
Fe0*	6.21	6.48	6.07	6.92	6.27	7.95
MnO	0.10	0.09	0.13	0.15	0.21	0.10
MgO	1.31	1.80	1.61	1.77	1.71	1.85
Ca0	4.08	4.59	4.10	4.45	4.35	4.74
Na ₂ 0	3.18	2.80	2.86	3.10	2.85	2.83
K20	1.83	1.54	1.72	1.52	1.80	1.69
P205	0.33	0.38	0.37	0.47	0.42	0.15
S	0.075	0.085	0.077	0.066	0.065	0.089
Cl	0.099	0.087	0.101	0.095	0.093	0.082
H_2O	3.3	2.4	2.8	3.0	2.6	3.2
CO2	0.026	0.015	0.020	0.015	0.022	0.025
Total	90.73	89.40	91.21	90.27	92.10	93. 52
ガス飽和圧力(MPa)	126	74	95	90	95	121

	竹島火砕流上部ユニ	ット縞状軽石	
試料番号	06IW42-3	06IW42-3	06IW42-3
メルト包有物番号	mt18101116p2i2	mt18101116p2i3	mt18101116p6i1
ホスト鉱物組成	斜方輝石	斜方輝石	磁鉄鉱
	Wo3En69Fs29Mg#70	Wo3En68Fs29Mg#70	
SiO ₂	53.00	55.06	57.93
TiO ₂	0.63	0.53	1.09
A1203	13.80	13.32	12.81
Fe0 [*]	7.00	7.96	8.14
MnO	0.09	0.12	0.13
MgO	1.62	1.73	1.80
Ca0	4.10	4.82	4.74
Na ₂ 0	2.93	2.70	3.08
K20	1.85	1.45	1.68
P_2O_5	0.20	0.19	0.51
S	0.081	0.097	0.082
C1	0.110	0.084	0.104
H_2O	3.6	3.1	2.7
C02	0.024	0.014	0.024
Total	89.03	91.16	94.83
ガス的和圧力 (MPa)	130	01	108

Fe0^{*} = total Fe0 ; na = not analyzed; nd = not detected * Papale et al. (2006)またはNewman and Lowenstern (2002)で提案されているケイ酸塩メルトへのH₂OおよびCO₂溶解度モデルに適用してガス飽和圧力を計算 した. CO₂が検出できなかったメルト包有物 (mt18101113p4i1) についてはCO₂濃度Owt%と仮定して計算した.

図 2.4-3 a) H25-30 年度成果である幸屋(船倉)降下軽石および竹島火砕流軽石メルト包有物の H₂O および CO₂ 濃度. 籠港降下スコリア(9.5ka 噴火)および長瀬火砕流堆積物軽石(95ka 噴火) に含まれるメルト包有物の H₂O および CO₂ 濃度も示す.既往研究による結果も記す. b)マグマプロ セスに伴うメルトの H₂O および CO₂ 濃度の変化.

2.4.3 鬼界アカホヤ噴火までのマグマ溜まりの温度・圧力環境

マグマの圧力条件について、メルト包有物分析で得られたメルトの H₂O および CO₂ 濃度と各 揮発性成分のメルトへの溶解度の圧力依存性からマグマのガス飽和圧力を見積もることができる. 平成 29 年度には、平成 26-28 年度に得られたメルト包有物の H₂O および CO₂ 濃度に、Papale et al. (2006)または Newman and Lowenstern (2002)で提案されているケイ酸塩メルトへの H₂O および CO₂ 溶解度モデルに適用して、ガス飽和圧力を計算した(表 2.4-3). マグマ温度は、平成 29 年度に本研究で得られた流紋岩マグマの温度(874℃および 902℃)と安山岩マグマの温度 (975℃)を用いている. 今年度、新たにメルト包有物 30 個の追加分析を行い、H₂O および CO₂ 濃度が得られたので、同様にガス飽和圧力を算出した(表 2.4-3 の赤色部分).

流紋岩マグマ温度 874℃の場合,幸屋(船倉)降下軽石は 96-237MPa (165±45MPa),竹島火 砕流下部ユニット軽石は 87-246MPa (162±56MPa),竹島火砕流中部ユニット軽石は 84-276MPa (151±64MPa),竹島火砕流上部ユニット軽石は 61-199MPa (139±40MPa),となった. 幸屋(船倉)降下軽石から竹島火砕流中部ユニットまで層序による系統的な変化は見られない(図 2.4-4). なお,竹島火砕流については,上部ユニットになるに従い,やや低い平均値を示してい るが,各平均値に付随する標準偏差が大きいので,有意とは言えない.また,流紋岩マグマ温度 902℃の場合の圧力はマグマ温度 874℃の計算結果とほぼ同じである(表 2.4-3).

竹島火砕流中・上部ユニットのスコリアと縞状軽石に含まれるデイサイトメルト包有物につい ても同様の計算を安山岩マグマ温度 975℃の条件で行い,竹島火砕流中部ユニットスコリア 87-177MPa(117±28MPa),竹島火砕流上部ユニットスコリア 69-170MPa(99±23MPa),竹島火 砕流上部ユニット縞状軽石 74-130MPa(103±19MPa),となった.軽石と同様に,竹島火砕流上 部ユニットの平均値は,中部ユニットに比べ,やや低い平均値を示すが,各平均値に付随する標 準偏差が大きいので,有意とは言えない.また,安山岩マグマの示すガス飽和圧力(69-177MPa) は,流紋岩マグマのガス飽和圧力範囲(61-276MPa)に含まれる.

以上, 平成 30 年度までの全てのメルト包有物分析結果から得られた圧力をまとめると下記の ようになる.

- (1) 流紋岩マグマ(温度 874℃の場合)のガス飽和圧力は 61-276MPa の範囲を示し、その 平均値は 153±50MPa (n=40) である.この圧力平均値は、地殻密度を 2500kg/m³と 仮定すると、深さ 6±2km に相当する.なお、平成 29 年度に比べ、分析数が 31 から 40 に増えたが、その圧力平均値と標準偏差(153±50MPa)は、平成 29 年度の圧力平 均値と標準偏差(146±53MPa)とほとんど変わらなかった.
- (2) 安山岩マグマ(温度 975℃)のガス飽和圧力は 69-177MPa の範囲を示し、流紋岩マグマのガス飽和圧力範囲(61-276MPa)に含まれる.安山岩マグマのガス飽和圧力の平均値は 105±25MPa(n=42)であり、この圧力は、地殻密度を 2500kg/m³と仮定すると、深さ 4±1kmに相当する.なお、平成 29 年度に比べ、分析数が 21 から 42 に倍増したが、その圧力平均値と標準偏差(105±25MPa)は、平成 29 年度の圧力平均値と標準偏差(115±27MPa)とほとんど変わらなかった.
- (3) 流紋岩および安山岩マグマのガス飽和圧力の平均値は 128±46MPa (n=82) であり, 鬼界アカホヤ噴火マグマ溜まりの主体は深さ 5±2km にあったと考えられる. なお, 平

成 29 年度に比べ,分析数が 52 から 82 に増えたが,その圧力平均値と標準偏差 (128±46MPa)は,平成 29 年度の圧力平均値と標準偏差(133±46MPa)とほとんど 変わらなかった.

平成 29 年度には、メルト包有物分析による流紋岩マグマの深度(圧力)推定の妥当性を検討 するため、竹島火砕流軽石の全岩化学組成データを用いて流紋岩マグマの熱力学解析を行ない、 観測されたマグマの温度・圧力・含水量・メルト量・斑晶量と比較した.マグマの熱力学解析に は、マグマの熱力学計算ソフトウエア MELTS (Asimow and Ghiorso, 1998; Ghiorso and Sack, 1995; Ghiorso and Gualda, 2015; Gualda et al., 2012)を用いた.計算の詳細については、平成 29 年度報告書内の「阿蘇カルデラ噴出物の熱力学解析」を参照されたい.流紋岩マグマの H₂O 濃度 3 および 6wt%, CO₂ 濃度 0.1wt%を仮定して上記の熱力学計算を行った(平成 29 年度成果 の図 6 および図 7).温度 874℃または 902℃,圧力 61・276MPa の条件の元で、計算結果と観測 値(メルト量,斑晶量,斜長石 An 濃度,石基ガラス Al₂O₃濃度等)を比較した結果,整合的な 結果になった.即ち,H₂O 濃度 3wt%かつマグマ温度 874℃の場合,熱力学計算結果は、メルト 量 80・84wt%,斜長石斑晶量 15wt%,斜長石 An 濃度 30 程度、メルト Al₂O₃濃度 12wt%となり、 観測値(メルト 90vol%,斜長石斑晶量 7vol%,斜長石 An 濃度 42・62,石基ガラス Al₂O₃濃度 13wt%)におおよそ近くなった.また,H₂O 濃度 6wt%の場合は、マグマ温度 874℃でマグマ中 のメルト量が 90・99wt%,斜長石斑晶量 <10vol%,斜長石 An 濃度 35・40,石基ガラス Al₂O₃濃 度 13・14wt%になり、この場合も実際の観測値と同様である.

本年度は、さらに、メルト包有物分析による安山岩マグマの深度(圧力)推定の妥当性を検 討するため,竹島火砕流上部ユニットスコリア(06IW33・4)の全岩化学組成データ(平成 28 年 度成果報告書に記載済み)を用いて安山岩マグマの熱力学解析を行ない、観測されたマグマの温 度・圧力・含水量・メルト量・斑晶量と比較した. 鬼界アカホヤ噴火の安山岩マグマの酸素分圧 は鉄チタン鉱物がスコリアに含まれないので不明である.そこで流紋岩の分析から得られている FMQ+1 ログユニットという値を用いた. 平成 28-30 年度の本研究成果では、安山岩スコリアに 含まれるデイサイトメルト包有物のH2O濃度は1個を除き、2-4wt%に収まっている.従って、 安山岩マグマの H2O 濃度は 2 および 4wt%, CO2 濃度は 0.1wt%を仮定して上記の熱力学計算を 行い、図 2.4-5 と図 2.4-6 が得られた. 平成 29 年度研究の結果から、同噴火の安山岩マグマの温 度は 975℃, 圧力はメルト包有物の H2O および CO2 濃度から 69-177MPa と見積もられており, この条件の元で, 熱力学計算結果と岩石学的解析による観測値 (メルト量, 斑晶量, 斜長石 An 濃 度,石基ガラスSiO2濃度等)を比較した.H2O濃度2wt%の場合,熱力学計算結果は、メルト量 58wt%, 斜長石斑晶量 26-27wt%, 斜長石 An 濃度 59-60, メルト SiO2 濃度 70wt% となり, 観測 値(メルト 66-72vol%, 斜長石斑晶量 15-24vol%, 斜長石 An 濃度 58-84, 石基ガラス SiO2 濃度 62-73wt%) に近い. また, H2O 濃度 4wt%の場合は、マグマ中のメルト量が 62-78wt%, 斜長石 斑晶量 11-24vol%, 斜長石 An 濃度 62-72, 石基ガラス SiO2 濃度 67-70wt%になり, この場合も 実際の観測値と同様である.これらの一致は,メルト包有物の分析による安山岩マグマの深度(圧 力) 推定の妥当性を支持する.

表 2.4-3 薩摩硫黄島火山のカルデラ形成期噴出物中のメルト包有物の化学組成から見積もられたガス飽和圧力.各ユニットの平均と標準偏差も示す.赤色のデータは本年度の成果. 括弧内の平均値と標準偏差は平成 29 年度成果.

3 ₀ 6.		50 49 41 59 55 55				
.6						163 119 119 127 127 100 100 100 100 100 87 81 81
975°C	214 148 148 186 143 143 143 143		155 > 155 > 155 235 96 176 1173 16 5 44	210 98 98 113 113 113 113 113 117 117 117 117 117	128 137 109 84 188 268 151±64	117+28
ずス飽和圧力 [。] 14℃	218 218 149 168 196 144 143 143		156 288 288 293 188 293 158 153 158 117 1173 1173 1173	214 98 98 1110 1110 1110 1110 1110 1110 111	128 137 133 139 109 84 190 276 151±64	
otal A	01.53 01.79 01.40 00.93 00.29 00.35	99, 10 99, 16 99, 32 99, 66 99, 06	95, 65 997, 18 998, 39 998, 39 999, 23 999, 24	00.69 01.56 01.56 00.90 98.55 98.55 94.95 94.95 94.05 95 94.05 95 94.05 95 94.05 95 95 95 95 95 95 95 95 95 95 95 95 95	97.31 98.31 98.35 96.95 94.59 98.83	97, 68 96, 70 98, 70 98, 70 99, 54 99, 54 99, 44 98, 37 98, 36 98, 36 98, 36
02 T	002 1 004 1 002 1 003 1 003 1 003 1 003 1	011 010 016 017 015 015	0.031 na 0.105 0.007 0.006 0.028 0.061	0.014 1 0.025 1 0.025 1 0.026 1 0.014 0 0.014 0 0.013 0 0.015 0 0.016 0 0.016 0 0.017 0 0.017 0 0.017 0 0.017 0 0.017 0 0.017 0 0.014 0 0.026 0 0.014 0 0.026 0 0.014 0 0.026 0 0.005 0 0000000000	0, 031 0, 031 0, 034 0, 032 0, 027 0, 025	0.048 0.039 0.039 0.025 0.039 0.018 0.021 0.021 0.023 0.021 0.023 0.023 0.023 0.023 0.023 0.018
20 C		000000	ಎಒ ಈ ಐ ಅ ಎ ಐ ನ ಈ ಕೆ ದೆ ಬೆ ದೆ ದೆ ಕೆ ಕೆ ನೆ	က တာ 🏲 வ က ေရ ဝ မ မ တ တ က က မ မဲ ရဲ က် က် က် က် က် က် က်	9,32,4 9,22,4 9,12,24 9,12,4	ದ ದ ದ ದ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ ನ
1 H	123 5 128 4 118 5 117 4 117 4 118 4 118 4 118 4 118 4 138 4 126 4	090 2 082 2 089 2 093 0 074 2	0,110 0,111 0,111 0,111 0,115 0,115 0,115 0,115 0,112	0, 127 0, 117 0, 116 0, 118 0, 113 0, 113 0, 116 0, 116 0, 116 0, 116 0, 113 0, 124 0, 116 0, 113	0, 116 0, 103 0, 106 0, 106 0, 106 0, 106 0, 105	0.099 0.087 0.087 0.081 0.084 0.085 0.096 0.096 0.099 0.099 0.099 0.099
0	0010 0000 0000 0000 0000 0000 0000 000	<pre>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	$\begin{array}{c} 0. & 0.07 \\ 0. & 0.09 \\ 0. & 0.08 \\ 0. & 0.09 \\ 0. & 0.09 \\ 0. & 0.08 \\ 0. & 0.08 \\ 0. & 0.08 \\ 0. & 0.07 \\$	0,009 0,009 0,010 0,007 0,011 0,012 0,012 0,012 0,007 0,008 0,006 0,006	0.011 0.011 0.010 0.009 0.012 0.012 0.013	0.099 0.099 0.104 0.090 0.085 0.085 0.085 0.062 0.068 0.068 0.068 0.068 0.068 0.068 0.068 0.068
20° S	8888888	<pre>(19 0) (19 0) (21 0) (22 0) (23</pre>	0	$\begin{array}{c} 0.00\\ 0.05\\$	$\begin{smallmatrix} & 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 &$	$\begin{array}{c} 0. \ 0. \ 0\\ 0. \ 0\\ 0. \ 0\\ 0. \ 15\\ 0. \ 17\\ 0. \ 17\\ 0. \ 24\\ 0. \ 53\\ 0. \ 53\\ 0. \ 19\\ 0. \ 10\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$
20 P	L 29 1 23 1 23 1 24 2 24 2 24 2 24 2 24 2 25 2 2 2 2 2 0 2 0	2010 100 100 100 100 100 100 100 100 100	$\begin{array}{c} 1.25\\ 2.96\\ 2.96\\ 2.94\\ 2.98\\ 2.98\\ 2.98\\ 2.98\\ 2.94\\ 2.94 \end{array}$	2.81 3.05 2.87 2.88 2.88 2.88 2.88 2.88 2.88 2.83 2.83	2, 80 2, 77 2, 77 2, 79 3, 30 2, 78 2, 63	1.97 1.91 1.91 1.91 1.92 2.20 1.87 1.91 1.91 1.91 1.91 1.72
la ₂ 0 k	13 13 13 13 13 13 13 13 13 13 13 13 13 1	197 297 297 297 297 297 297 297 297 297 2	$\begin{array}{c} 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. $	2, 29 3, 16 3, 11 2, 50 3, 20 3, 20 3, 20 3, 20 3, 20 3, 20	22 93 294 22 64 22 64 297	2, 51 3, 32 3, 32 3, 31 3, 31 3, 32 3, 49 3, 49 3, 52 3, 52 3, 52
a0 N	84 3 87 8 96 2 96 2 96 2 97 2 97 2 97 2 97 2 97 2	2 04 5 74 2 7 5 9 2 7 4 5 9 2 5 9 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 1.84\\ 1.85\\ 2.06\\ 1.86\\ 1.86\\ 1.72\\ 2.13\\ 2.13\\ 1.84\\ 1.84\end{array}$	1. 89 1. 86 1. 86 1. 86 1. 82 2. 14 1. 80 1. 80 1. 80 1. 80 1. 80 1. 66	2 2 09 2 2 06 2 2 01 2 2 01 2 32 2 32 2 32	4, 71 4, 71 4, 71 4, 74 4, 61 4, 29 4, 12 4, 29 4, 29 4, 29
(60 (0.15 0.16 0.16 0.17 0.17 0.17 0.16 0.14 0.18 0.18	0, 79 2, 20, 20, 20, 20, 20, 20, 20, 20, 20,	$\begin{array}{c} 0.45\\ 0.43\\ 0.47\\ 0.47\\ 0.46\\ 0.46\\ 0.39\\ 0.67\\ 0.50\\ 0.46\end{array}$	0.49 0.44 0.48 0.48 0.48 0.44 0.44 0.44 0.44	$\begin{array}{c} 0.51\\ 0.51\\ 0.57\\ 0.56\\ 0.54\\ 0.44\\ 0.54\end{array}$	1.77 1.77 1.77 1.77 1.65 1.65 1.69 1.57 1.97 1.97 1.97 1.97 1.62 1.62
h0	2008 2009 2007 2007 2006 2006 2006 2006 2006 2006	008 00 009 00 0113 1 0113 1 0113 1 0108 1 008 0 008 0 008 0 009 0 000 000000	$\begin{array}{c} 0.08\\ 0.06\\ 0.09\\ 0.08\\ 0.08\\ 0.08\\ 0.08\\ 0.09\\$	0.09 0.10 0.10 0.05 0.05 0.11 0.13 0.13 0.01 0.00 0.08 0.08 0.09	$\begin{array}{c} 0.\ 05\\ 0.\ 13\\ 0.\ 13\\ 0.\ 01\\ 0.\ 12\\ 0.\ 12\\ 0.\ 12\\ 0.\ 12\\ \end{array}$	0.11 0.13 0.13 0.15 0.15 0.15 0.16 0.17 0.17 0.17 0.16
2e0" h	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	8,78 8,77 5,71 5,71 5,10 5,59 6,10 6,12 6,12 0 1,12 0 1,12 0 1,12	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	22 23 24 25 26 27 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	2, 239 2,	6. 34 6. 14 6. 12 5. 84 6. 12 6. 28 6. 03 6. 03 6. 51 7. 42 7. 42 7. 42
A1 203 1	11. 06 11. 12 11. 14 11. 14 10. 99 11. 10 11. 14	12.21 12.23 12.47 12.69 12.80 12.46	$\begin{array}{c} 12.29\\ 12.11\\ 12.11\\ 12.16\\ 12.00\\ 12.00\\ 12.03\\ 12.03\\ 12.27\\ 12.15\\ 12.15\end{array}$	112, 28 112, 55 112, 55 112, 55 112, 84 112, 84 112, 84 112, 84 112, 84 111, 67 111, 67 111, 67 111, 67	12.40 12.38 12.51 12.36 12.12 12.36 11.39 11.39 12.79	13,49 13,58 13,58 13,58 13,58 13,58 13,58 13,35 13,35 13,35 13,35 13,35 13,15 13,15 13,16 13,16 13,16
L102	0.18 0.21 0.25 0.16 0.19 0.19	0.69 0.67 0.65 0.65 0.65	$\begin{array}{c} 0.51\\ 0.48\\ 0.58\\ 0.58\\ 0.59\\ 0.39\\ 0.55\\ 0.71\\ 0.61\\ 0.54 \end{array}$	0, 37 0, 54 0, 55 0, 57 0, 49 0, 44 0, 44 0, 44 0, 48 0, 33 0, 33	0.59 0.58 0.54 0.53 0.56 0.56 0.57	0,93 0,91 0,95 0,83 0,83 0,83 0,88 0,88 0,88 0,88 0,95 0,91 0,91 0,91 0,91
Si02	75.83 77.54 77.54 77.04 76.40 76.40 75.86	70. 76 71. 06 67. 10 67. 04 68. 34 69. 71	$\begin{array}{c} 72.24\\ 69.36\\ 71.84\\ 71.84\\ 71.59\\ 68.58\\ 68.58\\ 72.55\\ 71.65\\ 71.65\end{array}$	72. 12 74. 40 73. 58 70. 33 70. 33 70. 33 69. 06 68. 06 68. 29 68. 29 67. 58 67. 58	69. 95 70. 73 70. 80 71. 59 69. 28 68. 06	62. 18 62. 31 61. 56 62. 31 63. 43 63. 43 62. 01 62. 01 62. 12 64. 12 65. 62 61. 04 61. 04 62. 30 61. 55 61. 04 62. 57 62. 50
ホスト鉱物組成	在 在在 一般的 一般的 一般的 一般的 一般的 一般的 一般的 一般的 一般的 一般的	科長石 An 61 納長石 An 61 約長石 An 61 約子前石 No. 210-617-53.204;#65 約子前石 No. 210-617-53.204;#65 約子前石 No. 657-63.204;#66 約長石 An 657	해長石 Au53 하是石 Au53 (新是石 Au54 (1998) Hot 215,427,647 (1998) Hot 215,427,647 (1998) Hot 2015,647 (1998) Hot 2015,647 (1998) Hot 2015,649 (1998) Ho	해분준 Au61 하분준 Au61 하분石 Au61 하분石 Au61 하분石 Au68 하분石 Au68 하분石 Au68 하분石 Au68 하분石 Au68 하분石 Au58 하분石 Au58 하루 Au58 하는 Au58 하는 Au58 Au647 Au59 (Au59) (Au59) (Au50)	納長石 An 57 納長石 An 57 納長石 An 55 納長石 An 58 納長石 An 58 約長石 An 58 約長石 An 58 約長石 An 58 約長石 An 58 約長石 An 58	時長石 An 76 時長石 An 76 時長石 An 76 時長石 An 78 前長石 Contine Stra 160,4473 地谷東部石 Food the Stra 160,4473 山谷東部石 Food the Stra 10,4473 山谷東西 Food Chine Stra 10,4473 山谷東部石 Food Food Food Food Food Food 日本市 Food Food Food Food Food Food Food 小香東部石 Food Food Food Food Food Food 前外東部石 Food Food Food Food Food Food Food Foo
メルト包有物番号	nt07030602-a2-ph1-mi1 nt07030602-a2-ph2-mi2 nt07030602-a2-ph3-mi1 nt07030602-a2-ph5-mi2 nt07030602-a2-ph5-mi2 nt07030602-a2-ph5-mi2 nt07030602-a2-ph6-mi2	mts16041406-4-p111 mts16041406-4-p112 mts16041406-2-p111 mts16041406-2-p113 mts16041406-2-p113 mts16041406-3-p111	nt10007-3-7111 nt10007-3-712 nt10007-3-751 nt10007-13-751 nt10007-10-712 nt10007-10-712 nt10007-113-711 nt10007-13-711 nt10007-13-711	n:07030601-ad-pil-mil n:07030601-ad-pil-mil n:07030601-ad-pil-mil n:07030601-ad-pil-mil n:107030601-ad-pil-mil n:1070307-19-pil n:100007-19-pil n:100007-21-bil n:100007-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:1000017-21-bil n:100001106511 n:1001106511 n:1001106511	mt10007-27-p1i1 mt10007-27-p1i2 mt10007-27-p1i3 mt10007-27-p5i1 mt10007-27-p5i1 mt100007-27-p5i1 mt100007-27-p5i1	mt109907-31-7551 mt109907-31-7552 mt109907-31-7515 mt109097-31-7511 mt109097-31-7711 mt109097-31-7711 mt109097-31-7811 mt18001109212 mt180101109513 mt180101109613 mt180101109611 mt180101109611 mt180101109611
ホルダー番号	(65ka) mt07030602-a2-ph1-mi1 mt07030602-a2-ph2-mi1 mt07030602-a2-ph3-mi1 mt07030602-a2-ph4-mi1 mt07030602-a2-ph6-mi1 mt07030602-a2-ph6-mi1 mt07030602-a2-ph6-mi2	(G. 5ka) mrs 16041406-4-p111 mrs 16041406-4-p112 mrs 16041406-2-p111 mrs 16041406-2-p111 mrs 16041406-2-p211 mrs 16041406-2-p211 mrs 16041406-2-p111	4.7 (7, 31a) mus120,70605-2-7911 mus120,70605-2-79511 mus120,70605-2-79511 mus120,70605-2-79511 mus120,70605-3-79111 mus120,70605-3-79411 mus120,70605-4-79411	C. 2. A WEAT (7. 30a) 1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	二、シト戦石(7,3/a) mts12080104-4-p111 mts12080104-4-p112 mts12080104-4-p113 mts12080105-2-p511 mts12080105-2-p511 mts12080105-2-p512	(3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
說料番号	 長調火砕が低石 9411840 9411840 9411840 9411840 9411840 9411840 9411840 9411840 	(11114) 第三部語を見た、 第三部語を見て、 第三部語を見て、 第三部語を見て、 第三部語を見て、 第二部語を 第二部語を見て、 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部語を 第二部第二第二部第二第二第二第二第二第二第二第二第二第二第二第二第二第二第二第	春屋(組合)時間 (11) (11) (11) (11) (11) (11) (11) (11	71 #JA #JA #PA	竹島火砕浅中部 - 0611827-2 0611827-2 0611827-2 0611827-2 0611829-1 0611829-1 0611829-1 0611829-1	11点火気化中語: (101129-3

							1											1		
a) 111 mt100907-37-p1i	1 斜長石 An55	70.92	0.51	11.88	2.22	0.07	0.43	1.89	3.14	2.86	0.00	0.011	0, 115	4.7	0.022	98.76	1	72	170	
i2 mt100907-37-p3i	11 Mrt Mr Muoo 2	69, 96	0.62	11.85	2.50	0, 12	0.50	1. 93	2.86	2.85	00.00	0. 007	0.126	* 6 ; ;	0.019	97.20	1 21	19	110	
<pre>il mt100907-37-p5i il mt100007-37-p5i</pre>	 1 斜崁石 An48 1 斜長石 An56 	69, 96 70, 33	0.48	11.74	2.32	0.03	0.40	1.80	2.91	2 80 6 83	0.0	0.008	0.117	4 c	0.017	96.93 97 14	3	26 DK	155 96	
1 mt100907-37-p6i	11 単斜輝石 Wo41En41Fs18Mg#6%	3 71.54	0.49	11.88	2.59	0.06	0.40	1.86	3. 12	2.86	0.00	0.009	0, 113	3.0	0.022	97.95		. 96	96	
l mt100907-37-p7i	 (1) 斜力輝石 Wo3En68Fs28Mg#71 (21)	63. 68	0.81	13.60	5.51	0.07	1.35	3.91	3. 07	2.73	0.00	0.032	0.101	2.6	0.007	97.45 or ro	•	61	61	
mt100907-45-p21	12	63. 11 70. 07	0. 59	13.79	5. 40 2. 40	0.11	0.51	4.44 2.25	3, 10	2, 01	0 0 0 0 0 0 0	0.095	0. 102	3.8	0.021	97.57	. 1	26	92 126	
mt18101113p1i1	斜長石 An55	71.72	0, 53	11.51	2.42	0, 09	0.40	1.77	3, 65	2.92	0, 05	0.007	0.115	5, 2	0.010	100.41	12	76	174	
mt18101113p4i1	斜長石 VU29 2011年 - Inter	72.28	0.38	13.46	2.97	0.04	0.86	2.42	3.76	3, 26	0.23	0.009	0.152	9 - 9 - 9	pi de	105, 65	¥ 1	66	204	
mt18101113p7i1	#FX-1 VID9 斜長石 VID53	71.20	0.61	12.49	2.79	0, 10	0.60	1.94	3.84	2.94	0.14	0, 013	0, 143	3.9	0.034	100.76		20	158	
mt18101113p2i1	单斜輝石 Wo38En46Fs16Mg#7	4 69, 20	0.61	13, 18	5.47	0, 16	1. 22	3. 26	3. 45	2.49	0.21	0.027	0, 095	3, 3	0.047	102.74 13)(8 土4 0(119土3	67 36) 139±40(1	165 19土36)	
3K3) 1 m+100007-49-n5i	1 約45-五 An-77	69 10	0.83	19.75	5 0.6	0.07	1 6.4	4 64	9 90	00 6	0.05	0.085	0.084	0 0	0.005	07 30				107
mt100907-43-pJi	1	61.34	0.89	13.83	0. 37 6. 37	0.15	1.91	4.80	3, 19	1.90	00.0	0.102	0. 099	2.9	0.037	97.51				131
mt100907-43-p7i	2 斜長石 An76	61.09	0, 93	13.83	6.85	0.14	1.92	4.95	3, 39	1.88	0, 00	0.119	0, 098	2.9	0.030	98.13				120
1 mt100907-43-p8i	4 斜長石 An81	61.41	0.93	13.70	6.16	0.09	1.79	4.84	3.10	1.94	0.00	0.089	0.089	3.2	0.017	97.31				102
mt100907-43-p6i	11 斜方輝石 Wo3En68Fs29Mg#70	62.38	0.75	14.10	6.19	0.11	1.56	4.75	3.07	1.91	0.00	0.088	0.084	3, 3	0.020	98.26				107
<pre>2 mt100907-43-p6i 0 m+100007-47-p6i</pre>	12 斜方輝石 Wo3En67Fs29Mg#70 。 如正元 An7a	62.61	0.63	14.24	6.47 6.15	0.09	1.61	4.94	3.61	1.83	0.00	0.091	0.077	00 0 01 0	0.024	98.49 08.20				86
mt100907-47-p21	1 终步还 Aury 9	62. 03 62. 03	0.88	13.51	5.41	0.09	1.54	4, 19	o. 41 4, 73	2.17	8 8	0.070	0.077	2.7	0.019	97. 37				83
mt100907-47-p3i	11 单斜輝石 Wo40En43Fs17Mg#71	1 62.97	0.77	13.44	5.90	0.11	1.46	4.42	3, 33	1.92	0.04	0.069	0.087	3.0	0.017	97.53				94
mt100907-47-pli	 約方館石 Wo3En64Fs33Mg#66 	66.21	0.53	13.36	5.30	0.12	1.16	3.85	3.54	1.89	0.00	0.063	0.078	2.2	0.029	98.32				89
<pre>1 mt100907-47-p6i 2 m+100007-47-p6i</pre>	 斜方輝石 Wo3En65Fs32Mg#67 約十輪正 Wo2Ene559Mg#67 	63.08	0.85	12.96	7.04	0.20	1.51	4.61	3, 11	1.82	0, 12	0.086	0.084	ი (ი ი	0.019	98.75 00 04				107
2 mt100907-47-p01	12 347 20mm日 HOOLEIDOLSOON3HO1 3 斜方龍石 HOOEDOM6469	62.13	0. 70	12.37	6.67	0.16	1.44	4.57	3, 46	1.86	0. 14	0.077	0. 097	000	0.018	90. 62 97. 62				0./T
mt100907-47-p91	1 斜方鮿石 No3En67Fs29Mg#70	61.61	0.82	13.99	6.43	0.12	1. 73	5.00	3.24	1.89	0.00	0.098	0.081	2.8	0.017	97.82				87
mt18101115p4i1	单斜輝石 Wo38En45Fs17Mg#72	2 63.84	0.86	13.80	6.84	0, 10	1.86	4.47	3.44	1.98	0.47	0, 067	0, 080	2.4	0.016	100.25				78
mt18101115p7i1	単斜輝石 Wo38En45Fs17Mg#7、	3 58.02	0.91	13, 35	7, 38	0.16	1.75	4, 58	2.87	1.67	0, 22	0.094	0.081	5 8	0.017	93.88				89
mt18101115p6i1	3件 /J 30世41 RO3END9FSZ8000年71 金社士倫羅王 We3En60En9000元H70	50.12	0.75	13, 97	6.55 6.55	0, 14	1 79	4.3/	3, 12	1.86	0, 37	0.061	0, 0/7	0 U 2 0	0.016	03 54 03 54				60
mt1810111558i1	Art // Weith Theornal Sconge (U 名) 方面石 Theornal Sconge (U	03, 12 50, 30	0.78	13 17	0.00	0 10	2 2	4 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 92	8 8	0.066	0.088	0 9 4 0	0.013	90, 04 05, 90				80.8
mt18101115p12i1	斜方靴石 Wo3En68Fs29Mg#70	60, 73	0. 88	13, 58	7.02	0, 08	1.80	4, 35	3, 27	1. 93	0.47	0.079	0, 093	5 6 10	0, 018	97.14				95
8																			99 ±23	3(106±23)
ška)																				
mt18101116p1i1	単斜輝石 No39En44Fs17Mg#7. 南剑鶴五 we30En4fEs17Mg#7.	2 56.75	0.77	12.64	6.21	0.10	1.31	4, 08	3, 18	1.83	0 33 0 3	0.075	0, 099	00 4 00 0	0.026	90, 73				126
mt18101116p312	单件的 10038En44Fs17Mc#75	3 58,09	0.77	12.49	6, 07	0, 13	1.61	4, 10	2.86	1.72	0, 37	0.077	0, 101	- 8 i 6	0.020	91.21				6
mt18101116p4i1	単斜輝石 Wo38En44Fs17Mg#72	2 55,66	0.76	12.34	6.92	0.15	1.77	4.45	3, 10	1.52	0.47	0.066	0, 095	3.0	0.015	90.27				96
mt18101116p5i1	単斜輝石 Wo38En44Fs17Mg#72	2 58,50	0.81	12.40	6.27	0.21	1.71	4.35	2.85	1.80	0.42	0.065	0, 093	2.6	0, 022	92.10				96
mt18101116p2i1	斜方輝石 No3En68Fs29Mg#70 丝 七鶴天 W-SE-SE-SON-470	56, 52 59, 52	0.76	13, 51	7.95	0, 10	1.85	4.74	5 83 5 83	1.69	0, 15	0, 089	0, 082	01 4 05 0	0.025	93.52 99.00				121
mt18101116n9212	オナノノル中イロ ROODHOUTSZ906H10 会社 古台田太子 We3Pn68Pe90Me社70	8 8	88	13 20	7 0.6	60 10	70.1	4.10	02 70 0 20	1 92	0 10	0.007	0.084	0 - 0 0	0 014	01.16				0.10
1 1010110101111 m	Art 20 Metal - Roo Latool: 52 2005年10 225 全社会庁	00 00	00	19.02	8 14	0 13	08 1	4 7A	00 7	89	12 0	0.089	100		0 004	01.10				108
	1100 × 100 × 100	00.10	00.1	10.21	1	0	8	r F	8	8	5	700 10	5	á	120.0	00 1.0				103±19

?	
•	eq
	÷.
	te
	de
Į	ot
Ļ	=
١	
	ĕ
	Sed
Į	- S
Ę	na
5	a
2	not
ì	
5	g
,	0
Ì	Fe
	7
ŀ	ots
t	÷.
2	
Ì	.0

E40 = total Fe0 ; m = not analyzed ; m = not detected Popule et al. (2006) による計算結果、実績と砂液被長メルト包含物は液鉄岩マグマ温度547C 5902C(平成39年度成果)を用いて算出した。鬼界アカホヤ噴火の安山岩〜デイサイトメルト包有物については、安山岩マグマ温度955C(平成29年度成果)を用いて 計算した。職課庫ドスコリアのメルト包有物についてはマグマ温度979℃(平成39年度成果)を用いて計算した.

表 2.4-3 (続き)

図 2.4・4 本研究によって得られた鬼界カルデラのマグマ溜まりの化学組成と温度・圧力条件. a)噴出 物の全岩化学分析によるマグマの化学組成(SiO₂ 濃度). 長瀬竹島火砕流軽石(95ka, 青色)が本年 度成果. b)輝石温度計および鉄チタン鉱物温度計によるマグマ温度.シンボルは図4と同じ. 幸屋(船 倉)降下軽石および竹島火砕流軽石・スコリアについての結果が本年度成果. エラーバーは各噴出物 の平均値を示している. c)本研究で見積もられた流紋岩マグマ温度(874°C)および安山岩マグマ温度 (975°C) とメルト包有物の化学組成(H26・28 年度成果)から算出された各マグマのガス飽和圧力. 既往研究による結果も記す.

図 2.4-5 a) 鬼界アカホヤ噴火の竹島火砕流上部ユニットスコリアを形成した安山岩マグマに 2 wt.%の水を加えた際のメルト量の温度圧力依存性. b) 同マグマに 4 wt%の水を加えた際のメルト量の温度圧力依存性. c) 同マグマに 2 wt.%の水を加えた際の斜長石斑晶量の温度圧力依存性. d) 同マ グマに 4 wt%の水を加えた際の斜長石斑晶量の温度圧力依存性. ピンク色の縦線は輝石温度計から推 定されたマグマ温度(975°C)を示す. 黄色の横線はデイサイトメルト包有物の H₂O および CO₂ 濃度 から推定されたマグマ圧力の最小値(69MPa)と最大値(177MPa)を示す.

図 2.4-6 a) 鬼界アカホヤ噴火の竹島火砕流上部ユニットスコリアを形成した安山岩マグマに 2 wt.%の水を加えた際の斜長石斑晶化学組成(An 濃度)の温度圧力依存性. b) 同マグマに 4 wt%の水を加えた際の斜長石斑晶化学組成(An 濃度)の温度圧力依存性. c) 同マグマに 2 wt.%の水を加えた際のメルトの SiO₂ 濃度の温度圧力依存性. d) 同マグマに 4 wt%の水を加えた際のメルトの SiO₂ 濃度の温度圧力依存性. ピンク色の縦線は輝石温度計から推定されたマグマ温度(975°C)を示す. 黄色の横線はデイサイトメルト包有物の H₂O および CO₂ 濃度から推定されたマグマ圧力の最小値(69MPa)と最大値(177MPa)を示す.

2.4.4 籠港降下火砕物(9.5千年前)の岩石学的解析メルト包有物分析

本研究で用いた籠港降下スコリアは、平成26年度本研究において現地地質調査を行い、硫黄 島・平家城にある籠港降下火砕物層から採取した.本層の大部分は褐色〜黒色の風化火山灰層で、 その中に薄い降下スコリア層(0.1m以下)が挟まれている.上記露頭の最下部から5m,9m, 10m,12mの高さにある4つのスコリア層(スコリア層1~4)から試料を採取した.スコリア は最大3cm,黄色〜オレンジ色で風化が進んでいる.平成27年度に各層のスコリアについてXRF で主成分元素組成を測定し、全て安山岩組成(SiO2濃度55-58 wt%)であることが明らかとなっ ている.今年度は、これらの岩石学的特徴を把握するため、スコリア層1、スコリア層2および スコリア層3の各スコリアについてモード組成分析を実施した(表2.4-1,図2.4-1).分析には 本研究で平成28年度に導入したEPMAを用いた.その結果、スコリアの発泡度(スコリア中の 泡の体積率)は52-59vol%、固体中の斑晶量は20-41vol%、石基量60-80vol%となった(表2.4-1,図2.4-1).2つのスコリアでは、斜長石が最も多い斑晶である(13-33vol%)が、他のスコリ ア(sio_sg14111405)では単斜輝石が最も多かった(9vol%).籠港降下スコリアの斑晶量(石基量)の変動範囲は大きく、鬼界アカホヤ噴火で噴出した竹島火砕流のスコリアの斑晶量(石基量) はその範囲内に収まっている.

さらに、メルト包有物の化学組成を把握するため、スコリア層 1、スコリア層 3 およびスコリ ア層4のスコリアを粉砕し、エポキシ樹脂にマウントし、メルト包有物を露出・研磨した. 平成 29年度は、スコリア層1のメルト包有物5個、スコリア層3のメルト包有物1個、スコリア層4 のメルト包有物7個について、主成分元素、SおよびCl濃度をEPMAで測定した(平成29年 度成果の表 5). そこで、今年度は、これらのメルト包有物の 6 個(斜長石および斜方輝石内) に ついて H₂O および CO₂ 濃度を SIMS で測定した(表 2.4-4). 平成 29 年度の結果では, 籠港降 下スコリアのメルト包有物は, SiO2 濃度 65-74wt%を持ち,その主成分元素濃度の分布は竹島 火砕流上・中部ユニットに含まれるスコリアのメルト包有物や同火砕流上部ユニット軽石内の一 部のメルト包有物が示す化学組成分布とも重なった(図2.4-6). さらに, 籠港降下スコリアのメ ルト包有物の S および Cl 濃度も竹島火砕流上・中部ユニットに含まれるスコリアのメルト包有 物が示す濃度分布内に含まれていた.このため,平成29年度成果報告書では,鬼界アカホヤ噴火 で噴出した安山岩マグマがその2千年前からマグマ溜りに存在していた可能性を指摘した.一方, 今年度, 籠港降下スコリアのメルト包有物を SIMS で分析した結果, その H₂O および CO₂ 濃度 (0.8-2.5 wt%, および, 0.010-0.017 wt%) は竹島火砕流上・中部ユニットに含まれるスコリア のメルト包有物が示す濃度よりも低いことが明らかとなった(表 2.4-4,図 2.4-3). 上記と同様に 算出したガス飽和圧力は、41-78MPa である.即ち,籠港降下スコリアを形成した安山岩マグマ は、竹島火砕流に含まれる安山岩マグマとは異なる揮発性成分(H2Oおよび CO2)の特徴を持つ. この結果は、鬼界アカホヤ噴火を引き起こした安山岩マグマは、その約2千年前に噴火した安山 岩マグマとは同一では無いことを意味する.本研究成果によって,鬼界アカホヤ噴火直前のマグ マ供給系の発達過程において、籠港降下スコリアを形成した安山岩マグマとは異なる安山岩マグ マが深部から上昇してきた可能性や、籠港降下スコリアを形成した安山岩マグマに揮発性成分 (H₂O および CO₂)が付加して高濃度になった等のプロセスを考える必要があることが判明し た.

254

表 2.4-4 籠港降下スコリア中のメルト包有物の化学組成とその H₂O および CO₂ 濃度から見積もられ たガス飽和圧力

層準	スコリア層1		スコリア層4			
試料番号	sio_sg14111405	sio_sg14111405	sio_sg14111402	sio_sg14111402	sio_sg14111402	sio_sg14111402
メルト包有物番号 ホスト鉱物組成	mts16041406-4-plil 斜長石 An61	mts16041406-4-p1i2 斜長石 An61	mts16041406-2-pli1 斜方輝石 Wo4En64Fs32Mg#66	mts16041406-2-pli3 斜方輝石 Wo3En65Fs32Mg#67	mts16041406-2-p2i1 斜方輝石 Wo3En63Fs33Mg#66	mts16041406-3-plil 斜長石 An65
SiO ₂	70.76	71.06	67.10	67.04	68.34	69.71
TiO ₂	0.69	0.67	0.84	0.69	0.65	0.64
A1203	12.21	12.23	12.47	12.69	12.80	12.46
Fe0*	3.78	3.77	5.71	6.10	5.59	4.12
MnO	0.08	0.09	0.13	0.10	0.08	0.07
MgO	0.79	0.82	1.52	1.41	1.11	0.82
Ca0	2.64	2.74	3.53	3.59	3.50	3.29
Na ₂ 0	2.97	2.57	2.73	2.83	3.16	2.79
K20	2.92	2.92	2.44	2.47	2.19	2.83
P_2O_5	0.19	0.194	0.209	0. 202	0. 173	0.228
S	0.028	0.030	0.035	0.045	0.036	0.031
C1	0.090	0.082	0.089	0.093	0.087	0.074
H_2O	2.0	2.0	2.5	0.8	2.0	2.0
CO_2	0.011	0.010	0.016	0.017	0.015	0.014
Total	99.10	99.16	99.32	98.06	99.66	99.04
ガス飽和圧力(MPa) ^a	50	49	78	41	59	55

Fe0* = total Fe0

¹ Papale et al. (2006)で提案されているケイ酸塩メルトへのH₂0およびCO₂溶解度モデルに適用してガス飽和圧力を計算した.マグマ温度は979℃(平成29年度成果) を用いた.

2.4.5 長瀬火砕流(95千年前)のメルト包有物分析

鬼界アカホヤ噴火に至る長期的なマグマ供給系の発達過程を検討するためには、鬼界アカホヤ 噴火の前のカルデラ噴火である鬼界葛原噴火(95 千年前,テフラの見かけ体積は 150km³ 以上, 町田・新井 2003)のマグマ溜りに関する情報も必要である.そこで、平成 29 年度は、鬼界葛原 噴火で形成された長瀬火砕流堆積物から採取した軽石(以後,「長瀬火砕流軽石」と呼ぶ)の全岩 化学組成を測定した.その結果,鬼界葛原噴火を引き起こした流紋岩マグマは、鬼界アカホヤ噴 火の流紋岩マグマとわずかに異なる全岩化学組成を持っていることが明らかになった. そこで, 今年度は、長瀬火砕流軽石内の石英に含まれるメルト包有物7個について、主成分元素、S, Cl, H₂O および CO₂ 濃度を EPMA および SIMS で測定し,予察的な結果を得た(表 2.4-5). 長瀬火 砕流軽石のメルト包有物は、鬼界アカホヤ噴火噴出物に含まれる流紋岩メルト包有物よりも高い SiO₂ 濃度(79-80 wt%) および K₂O 濃度(3.4-3.5 wt%),低い Al₂O₃ 濃度(11-12 wt%)を持つ (表 2.4-5, 図 2.4-7). また,長瀬火砕流堆積物のメルト包有物の H₂O および CO₂ 濃度(4.6-5.9 wt%および 0.002-0.012 wt%) は, 鬼界アカホヤ噴火流紋岩メルト包有物が示す濃度に比べ, H₂O 濃度が高く、CO₂濃度が低い傾向を示している.鬼界アカホヤ噴火と鬼界葛原噴火のメルト包有 物の化学的特徴が異なることは、鬼界葛原噴火流紋岩の全岩化学組成が鬼界アカホヤ噴火流紋岩 とわずかに異なることと整合的である.従って、鬼界アカホヤ噴火の流紋岩マグマは鬼界葛原噴 火の流紋岩マグマと同一では無く,95千年前以降にマグマ供給系に何らかの変化があったと考え られる. ただし、メルト包有物の分析数が少ないので、今後、長瀬火砕流軽石の岩石学的解析と それに含まれるメルト包有物の化学分析をさらに進め、鬼界葛原噴火を引き起こした流紋岩マグ マの岩石学的特徴と圧力条件を明らかにする必要がある.

表 2.4-5 長瀬火砕流堆積物中の軽石中のメルト包有物の化学組成とその H₂O および CO₂ 濃度から 見積もられたガス飽和圧力.

試料番号	94IW40						
メルト包有物番号	mt07030602-a2- ph1-mi1	mt07030602-a2- ph2-mi1	mt07030602-a2- ph3-mi1	mt07030602-a2- ph4-mi1	mt07030602-a2- ph5-mi2	mt07030602-a2- ph6-mi1	- mt07030602-a2- ph6-mi2
ホスト鉱物組成	石英						
Si0 ₂	75.83	77.54	76.87	77.04	76.40	77.71	75.86
TiO ₂	0.18	0.20	0.21	0.25	0.16	0.19	0.23
$A1_{2}0_{3}$	11.06	11.21	11.14	11.01	10.99	11.10	11.14
Fe0 [*]	0.95	0.90	0.88	0.90	0.90	0.89	0.95
MnO	0.08	0.09	0.07	0.01	0.06	0.06	0.04
MgO	0.15	0.16	0.17	0.20	0.16	0.14	0.18
Ca0	0.84	0.87	0.95	0.97	0.96	0.75	0.97
Na ₂ 0	3.13	2.44	2.42	2.59	2.44	2.63	2.87
K20	3.29	3.32	3.30	3.23	3.24	3.34	3.25
P_2O_5	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	0.010	0.006	0.007	0.007	0.004	0.008	0.010
C1	0.123	0.128	0.118	0.117	0.118	0.138	0.126
H ₂ 0	5.9	4.9	5.3	4.6	4.9	4.7	4.7
CO2	0.012	0.004	0.002	0.008	0.003	0.009	0.008
Total	101.53	101.79	101.40	100.93	100.29	101.69	100.35
ガス飽和圧力 (MPa) ^a	218	149	168	136	144	143	143

 $Fe0^*$ = total Fe0

* Papale et al. (2006)で提案されているケイ酸塩メルトへのH₂0およびCO₂溶解度モデルに適用してガス飽和圧力を計算した.マグマ温度は 鬼界アカホヤ噴火の流紋岩マグマ温度(874℃)を仮定した.

図 2.4-7 長瀬火砕流軽石中のメルト包有物の主成分化学組成. 各濃度は, SiO₂~P₂O₅の主要 10 元素 で規格化した値を用いた. 平成 25-29 年度本研究成果である籠港降下スコリア (9.5ka 噴火), 幸屋 (船 倉)降下軽石および竹島火砕流軽石・スコリア・縞状軽石 (7.3ka 噴火)の結果,および,既往研究に よる結果も示す.

2.4.6 噴火年代が未確定な火山岩の年代測定

薩摩硫黄島火山には、噴火年代が確定していない溶岩や火砕流堆積物があり、同火山の長期的 なマグマ供給系の発達史を明らかにするためにはこれらの年代を確定する必要がある。特に、薩 摩硫黄島にある長浜溶岩の噴火年代については、小野・他(1982)では、先カルデラ火山期と考 えられている一方、小林(2008)では鬼界アカホヤ噴火直前と推定している(表 2.4-6).また、 小アビ山火砕流堆積物については、小野・他(1982)はカルデラ形成期内、町田・新井(2003) は14万年前としているが、Maeno et al.(2007)では鬼界アカホヤ噴火時の堆積物と考えている。 鬼界アカホヤ噴火の前駆現象やマグマ溜りの情報を知る上でも、この2つの噴出物が鬼界アカホ ヤ噴火で形成されたどうかを明らかにすることは非常に重要である。そこで、これらの噴出物に ついて、産業技術総合研究所に設置済みのK-Ar年代測定装置による測定を試みた。K-Ar年代測 定方法は、数万年から数十億年の年代が測定できるため、上記の噴出物がカルデラ形成期内の噴 火であれば、K-Ar年代測定で噴火年代が得られるはずである。今年度は、試料の選別とK-Ar年 代測定のための前処理を実施した(表 2.4-6).各噴出物を粉砕し、0.25-0.5mmサイズの粒子に ついて、磁性分離・重液分離・ハンドピックを行い、年代測定に必要な石基 3g 以上を取り出し た、測定については、緊急停電による K-Ar 年代測定装置の故障や機器担当者の出向があり、本 年度内に結果を得ることはできなかったので、今後の課題である。

表 2.4-6	K-Ar 年代測定用に調製し	た試料と既往研究
---------	----------------	----------

試料	試料番号	全岩化学組成	(wt%)	調製試料量 噴火年代(既往研究)
		Si0 ₂	K20	(g)
長浜溶岩	93IW01b	na	na	7.8 先カルデラ火山期(<700ka;小野・他,1982),鬼界アカホヤ噴火直前(7.3ka;小林,2008)
長浜溶岩	94IW01a	na	na	8.9
長浜溶岩	94IW02	72.05	2.66	9
t and a total the set of the set				a a second we we have a manage date of a second to be referent to the field (as a second second).
小アビ山火砕流軽石	961W07	71.22	2.58	3.1 カルテフ形成期(140ka;町田・新井, 2003), 鬼界アカホヤ噴火時(7.3ka;Maeno et al., 2007)
小アビ山火砕流軽石	96IW07-2	na	na	3.4
小アビ山火砕流軽石	06IW20-1	72.34	2.81	4.1

2.4.7 まとめと今後の課題

本研究において,鬼界アカホヤ噴火(7.3千年前),籠港降下火砕物(9.5千年前),鬼界葛原噴火(95千年前)による長瀬火砕流堆積物の岩石学的解析およびメルト包有物分析を行い,鬼界カ ルデラに関して以下の知見が得られた.

- ・平成 26・29 年度および本年度に測定したメルト包有物全て(82 個)の H₂O および CO₂ 濃度を用いてマグマのガス飽和圧力を見積もったところ,流紋岩マグマは 153±50MPa (61-276MPa, n=40),安山岩マグマは 105±25MPa (69・177MPa, n=42)の圧力下にあったと推定された.両マグマのガス飽和圧力の平均値は 128±46MPa (n=82) であることから,地殻密度を 2500 kg/m³と仮定すると,鬼界アカホヤ噴火マグマ溜まりの主体は深さ 5±2km にあったと考えられる.
- ・メルト包有物分析によるマグマの深度(圧力)推定の妥当性を検討するため、竹島火砕流の 上部ユニットに含まれるスコリアの全岩化学組成データを用いて安山岩マグマの熱力学解 析を行ない、岩石学的解析およびメルト包有物分析で得られたマグマの温度・圧力・含水 量・メルト量・斑晶量と比較した.その結果、熱力学計算結果と観測結果がおおよそ一致し た.
- ・鬼界アカホヤ噴火に至るマグマ供給系の発達過程を検討するために、9.5 千年前の噴火噴出物(籠港降下スコリア)に含まれるメルト包有物をSIMSで分析し、そのH2OおよびCO2 濃度を明らかにした。その結果、同メルト包有物は、竹島火砕流上・中部ユニットに含まれるスコリアのメルト包有物と同様な主成分元素組成を示す一方、揮発性成分に関しては竹島火砕流上・中部ユニットのメルト包有物に比べ、低いH2OおよびCO2濃度を持つことが判明した。従って、籠港降下スコリアを形成した安山岩マグマと竹島火砕流に含まれる安山岩マグマが同一であるモデルは否定された。
- ・カルデラ噴火マグマ溜りの長期的な発達過程を検討するため、95千年前のカルデラ噴火(鬼 界葛原噴火)による長瀬火砕流堆積物内の軽石に含まれる石英内メルト包有物の化学分析 を行い、予察的な結果を得た.その結果、長瀬火砕流軽石メルト包有物は流紋岩組成である こと、鬼界アカホヤ噴火の流紋岩メルト包有物とは異なる化学的特徴を持つことが明らか になった.長瀬火砕流堆積物内の軽石(流紋岩)の全岩化学組成も鬼界アカホヤ噴火の流紋 岩とはわずかに異なる特徴を示すことから、鬼界葛原噴火マグマと鬼界アカホヤ噴火マグ マは同一では無く、鬼界葛原噴火以降に何らかのマグマ供給系の変化が起きたと予想でき る.

今後,鬼界カルデラにおけるマグマ溜まりの発達過程を検討するために,以下の研究課題を 進める必要がある.

- ・ 噴出年代が確定されていない硫黄島内の長浜溶岩および小アビ山火砕流堆積物について K-Ar 年代測定を行い,両噴出物が鬼界アカホヤ噴火に関与したかどうかを確定する.
- カルデラ噴火マグマ溜りの長期的な発達過程を検討するため、鬼界アカホヤ噴火以前のカルデラ噴火である鬼界葛原噴火(95千年前)、鬼界カルデラ起源の大規模火砕流と考えられている小瀬田火砕流堆積物(58万年前)および小アビ山火砕流堆積物(14万年前?)について、各噴火マグマの岩石学的特徴と揮発成分濃度を把握し、マグマの温度・圧力条

件を推定する.

引用文献

- Asimow, P.D. and Ghiorso, M.S. (1998) Algorithmic Modifications Extending MELTS to Calculate Subsolidus Phase Relations. Amer. Mineral., 83, 1127-1131.
- Ghiorso, M.S., Gualda GAR (2015) An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MEITS. Contributions to Mineralogy and Petrology doi:10.1007/s00410-015-1141-8.
- Ghiorso, M. S. and Sack, R. O. (1995). Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol., 119, 197-212.
- Gualda,G.A.R., Ghiorso,M.S., Lemons,R.V., Carley,T.L. (2012) Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53, 875-890.
- Kawanabe, Y. and Saito, G. (2002) Volcanic activity of the Satsuma-Iwojima area during the past 6500 years. Earth Planets and Space, 54, 295-301.
- 小林哲夫(2008)カルデラの研究からイメージされる新しい火山像-マグマの発生から噴火現象 までを制御するマントルー地殻応力場-...月刊地球,号外 No.60,p65-76.
- Maeno, F. and Taniguchi, H. (2007) Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: Implication from near-vent eruptive deposits. J. Volcanol. Geotherm. Res., 167,212-238.
- 町田洋・新井房夫(2003)新編火山灰アトラス-日本列島とその周辺.東京大学出版会,東京, 336p.
- 小野晃司・曽屋龍典・細野武男(1982)薩摩硫黄島地域の地質.地域地質研究報告(5万分の1 図幅), 地質調査所, 80p.
- Newman, S. and Lowenstern, J. B. (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for EXCEL. Comput. Geosci., 28, 597-604.
- Papale, P., Moretti, R. and Barbato, D. (2006) The compositional dependence of the saturation surface of H2O+CO2 fluids in silicate melts. Chem. Geol., 229, 78-95.
- Saito, G., Kazahaya, K., Shinohara, H., Stimac, J. A. and Kawanabe, Y. (2001) Variation of volatile concentration in a magma system of Satsuma-Iwojima volcano deduced from melt inclusion analyses. J. Volcanol. Geotherm. Res., 108, 11-31.
- Saito, G., Stimac, J.A., Kawanabe, Y. and Goff, F. (2002) Mafic-felsic interaction at Satsuma-Iwojima volcano, Japan: Evidence from mafic inclusions in rhyolites. Earth Planets Space, 54, 303-325.
- Saito, G., Kazahaya, K.and Shinohara, H. (2003) Volatile evolution of Satsuma-Iwojima volcano: degassing process and mafic-felsic magma interaction. In "Developments In

Volcanology 5. Melt Inclusions In Volcanic Systems, Methods, Applicationans and Problems" B. De Vivo and R. J. Bodnar (eds), pp.129-146, Elsevier.

産業技術総合研究所 (2014) 平成 26 年度 火山影響評価に係る技術的知見の整備. 産業技術総合研究所 (2015) 平成 27 年度 火山影響評価に係る技術的知見の整備. 産業技術総合研究所 (2016) 平成 28 年度 火山影響評価に係る技術的知見の整備. 産業技術総合研究所 (2017) 平成 29 年度 火山影響評価に係る技術的知見の整備. 産業技術総合研究所 (2018) 平成 30 年度 火山影響評価に係る技術的知見の整備.