柏崎刈羽原子力発電所 第7号機 津波漂流物の衝突荷重(海水貯留堰)について

2020年5月14日 東京電力ホールディングス株式会社

枠囲みの内容は、機密事項に属しますので公開できません。

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

1. はじめに

2. 津波漂流物の衝突荷重(海水貯留堰)

1. はじめに

本日の説明内容

TEPCO

第769回 原子力発電所の新規制基準適合性に係る審査会合(令和元年9月10日)において示した 主な説明事項のうち、「津波漂流物の衝突荷重(海水貯留堰)」について説明する。

2. 津波漂流物の衝突荷重(海水貯留堰)

2.1 概要

▶ 海水貯留堰の設計において考慮する漂流物の衝突荷重は、柏崎刈羽原子力発電所における基準津波の特徴、漂流物の特徴等を考慮し、以下のフローに従い算定する。

2.2 衝突評価対象物(被衝突体)の選定

▶ 7号機取水口前面に設置する海水貯留堰については、津波が直接到達し、漂流物が 衝突する可能性があることから、衝突評価対象物(被衝突体)として選定する。

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.3 衝突物の抽出(1次スクリーニング) ~ 漂流物の調査~ **TEPCO**

- ▶ 基準津波の水位, 流向, 流速を考慮し, 漂流物の調査範囲を発電所周辺5kmに設定 (陸域については, 5km圏内の海岸線に沿った標高10m以下の範囲)
- ▶ 1次スクリーニングでは、上記範囲内に存在する施設・設備等のうち、特段の漂流物 化防止対策を施さない場合、海水貯留堰に到達する可能性があるものを調査・抽出
- ▶ 「発電所の構内/構外」及び「海域/陸域」に区分して調査・抽出を実施
- ▶ 各区分における調査・抽出結果を次頁以降に記載

図3: 漂流物の調査範囲(基準津波3の遡上域を例示)

2.3 衝突物の抽出(1次スクリーニング) ~構外海域~

- ▶ 図4に示すとおり、発電所周辺海域における軌跡シミュレーションを実施し、初期配置が沖合 3km及び5kmの場合は、初期配置付近を漂う状況を確認
- ➢ 初期配置が沖合1.5kmで、港湾口の近傍の場合、港湾内に移動する可能性有り
- ⇒保守的に, 発電所周辺の漁港に停泊する<u>漁船等が発電所付近(沖合1.5kmの港湾口</u> 付近)で航行不能になると仮定し, 衝突物として抽出

2.3 衝突物の抽出(1次スクリーニング) ~構内海域~

- ▶ 港湾内に定期的に来航する船舶としては、<u>燃料等輸送船</u>が来航し、物揚場に停泊する。
- 港湾の入り口付近では、<u>浚渫作業関連船舶(浚渫船,土運船,揚錨船及び曳船)</u>が浚渫作業 を実施する。
- その他には、<u>港湾設備保守点検、海洋環境監視調査及び温排水水温調査のための作業船</u>が 作業内容に応じて港湾内にて作業を実施する。
- ⇒

 ⇒
 <u>上記船舶</u>は、退避や係留等の対策を実施しない場合、海水貯留堰に到達する

 可能性があることから、1次スクリーニングにおいて衝突物として抽出

[©]Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

2.3 衝突物の抽出(1次スクリーニング) ~構外陸域~

TEPCO

- ▶ 家屋等建築物や電柱等構築物の多 くは、設置方法や重量等により漂流 物化することはないと考えられる。
- 軽量の(比重が小さい)ものが漂流物化した場合でも、図4に示した「発電所周辺海域における軌跡シミュレーション」を参考とすれば、海水貯留堰に到達する漂流物とはならないと言える。
- ⇒構外陸域の施設・設備等は、海水貯 留堰の機能に影響を与える衝突物と はならないと整理

<u>図6:構外陸域の漂流物調査結果</u>

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.3 衝突物の抽出(1次スクリーニング) ~構内陸域①~

TEPCO

- ▶ 構内の陸域については、基準津波の遡上域となる範囲(図7及び図8において遡上 域として示す範囲)を漂流物の調査範囲として設定
- ▶ 調査にあたっては、構内陸域を「大湊側海岸線」、「荒浜側海岸線」及び「荒浜側防 潮堤内敷地(荒浜側防潮堤の損傷を想定した際の遡上域)」に区分して整理
- ▶ 各区分における施設・設備等を、「建屋」、「機器類」等に分類して、海水貯留堰への 衝突有無を整理
- を整理結果を次頁以降に記載

2.3 衝突物の抽出(1次スクリーニング) ~構内陸域②~

表1:「大湊側海岸線」における施設・設備等の海水貯留堰への到達有無の整理

No.			到達 有無	理由	
1	建屋	鉄筋コンクリート建屋	無	東日本大震災時に数十m移動した事例があるが, 密度評価を実施し, 漂流しないと整理 (参考1参照)	
2		鉄骨造建屋	無	水密性が無く大きな浮力が発生しないため、建屋の形で漂流しない	
3	機器類 タンク タンク以外 タンク以外		無	大湊側海岸線にタンクは存在しない	
4			無	該当設備はクレーン, 電気・制御盤等であるが, 水密性が無く漂流物とならない	
5	5 車両		有	対策を施さない場合10分程度漂流するものと考えられるため、到達可能性が有ると整理	
6	6 <mark>資機材</mark>		有	軽量な、ユニットハウス(仮設ハウス)、足場板等については到達可能性が有ると整理	
\bigcirc	⑦ 植生		無	大湊側海岸線に植生は存在しない	
8	③その他一般構築物		無	該当設備はマンホール、チェッカープレート等であるが、水密性が無く漂流物とならない	

表2:「荒浜側海岸線」における施設・設備等の海水貯留堰への到達有無の整理

No.			到達 有無	理由	
1	#E 鉄筋コンクリート建屋		無	軌跡シミュレーションの結果より到達しない(次頁参照)	
2	建崖	鉄骨造建屋	無	水密性が無く大きな浮力が発生しないため、建屋の形で漂流しない	
3		タンク	無	荒浜側海岸線にタンクは存在しない、タンク類似物として輸送中のキャスクが存在するが、 密度より漂流しない	
	機器類		有	タンク類似物として輸送中のLLW輸送容器が存在する	
4		タンク以外	無	該当設備はクレーン, 電気・制御盤等であるが, 水密性が無く漂流物とならない	
5	5 車両		無	軌跡シミュレーションの結果より到達しない(次頁参照)	
6	〕 資機材		無	軌跡シミュレーションの結果より到達しない(次頁参照)	
$\overline{\mathcal{O}}$	⑦ <mark>植生</mark>		有	敷地南側境界付近に保安林が存在する	
8	 8 その他一般構築物 		無	該当設備はマンホール、チェッカープレート等であるが、水密性が無く漂流物とならない	

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.3 衝突物の抽出(1次スクリーニング) ~構内陸域③~

TEPCO

- 荒浜側護岸部の車両及び資機材の海水貯留堰への到達有無を軌跡シミュレーションにより確認
 基準津波1~3いずれのケースでも海水貯留堰に到達する様子は確認されない
- ▶ 津波の流向も長期間一様に海水貯留堰に向かう流れではなく、海水貯留堰に到達しないと整理

- 注1) 地震発生から120分間を評価
- 注2) 浸水深10cmで漂流開始とした。
- 注3) 斜面崩壊・地盤変状の有無, 荒浜側防潮堤の有 無、防波堤の有無のパラスタを実施し, 同様の 結果となることを確認

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.3 衝突物の抽出(1次スクリーニング) ~構内陸域④~

<u>表3:「荒浜側防潮堤内敷地」における施設・設備等の海水貯留堰への到達有無の整理</u>

No.	種類		到達 有無	理由	
1	鉄筋コンクリート建屋建屋		無	護岸部に残存する防潮堤が障害となり海域に流出することは考え難い。 参考として軌跡シミュレーションを実施し海水貯留堰に到達しないことを確認(次頁参照)	
2		鉄骨造建屋	無	水密性が無く大きな浮力が発生しないため、建屋の形で漂流しない	
3	機器類	タンク	無	護岸部に残存する防潮堤が障害となり海域に流出することは考え難い。 参考として軌跡シミュレーションを実施し海水貯留堰に到達しないことを確認(次頁参照)	
4	タンク以外		無	該当設備はクレーン, 電気・制御盤等であるが, 水密性が無く漂流物とならない	
5	⑤ 車両		無	護岸部に残存する防潮堤が障害となり海域に流出することは考え難い。 参考として軌跡シミュレーションを実施し海水貯留堰に到達しないことを確認(次頁参照	
6	⑥ 資機材		無	護岸部に残存する防潮堤が障害となり海域に流出することは考え難い。 参考として軌跡シミュレーションを実施し海水貯留堰に到達しないことを確認(次頁参照)	
$\overline{\mathcal{O}}$	⑦ 植生		無	荒浜側防潮堤内敷地に植生は存在しない	
8	⑧ その他一般構築物		無	該当設備はマンホール、チェッカープレート等であるが、水密性が無く漂流物とならない	

2.3 衝突物の抽出(1次スクリーニング) ~構内陸域⑤~

- デ浜側防潮堤内敷地の施設・設備が漂流物となった場合の海水貯留堰への到達有無を軌跡シ ミュレーションにより確認
- ▶ 基準津波1~3いずれのケースでも海水貯留堰に到達する様子は確認されない
- ▶ 津波の流向も長期間一様に海水貯留堰に向かう流れではないため、海水貯留堰に到達しないと 整理

2.3 衝突物の抽出(1次スクリーニング) ~結果まとめ~

TEPCO

▶ 1次スクリーニングの結果,表4に示す施設・設備等を海水貯留堰に到達する可能性のある衝突 物として抽出

表4:1次スクリーニング結果まとめ

設置場所情報			1壬 *5		チョ	二次スクリー
海域/陸域	構内/構外	場所	裡 親	内谷・名称・備宣寺	里里	ニング対象
	構外	発電所周辺		発電所近傍で航行不能となった漁船	15t 未満	_
		発電所港湾内	船舶	燃料等輸送船	総トン数 約5,000t	0
海村				浚渫作業関連船舶	総トン数 約500t	0
进现	構内			港湾設備保守点検作業船	30t 未満	0
				海洋環境監視調査作業船	30t 未満	0
				温排水水温調査作業船	15t 未満	0
		大湊側護岸部 構内	車両 資機材	人員·資機材運搬車両, 工事用車両	約0.7t~約45t	0
	構内			ユニットハウス	1t 未満	_
陸域				角材,足場板,ホース,カラーコーン	数kg	0
		荒浜側護岸部	タンク	 LLW輸送容器	約1.2t	0
		敷地南側境界	植生	流木	約140kg [※]	_

※ 流木の重量は,構内陸上遡上域の植生調査結果(平均直径17.0 cm,平均樹高7.4m)を元に, 建築空間の緑化手法(1985)の算定式により設定した。

2.4 衝突物の整理(2次スクリーニング) ~船舶①~

- 表4に示す衝突物について、「漂流物防止対策」及び「衝突影響」の観点から2次スクリーニング を実施し、衝突荷重を算定する衝突物の整理を実施する。
- 構内海域に存在する、「燃料等輸送船」、「浚渫作業関連船舶」及び「その他作業船」について以下のとおり漂流物化防止対策を実施する。

【燃料等輸送船】

- 襲来までに時間的な余裕がある津波(基準津波1 及び2)に対しては緊急退避が可能
- 時間的な余裕がない津波(基準津波3)に対しては、津波発生時に「荷役」行程中であった場合、 緊急退避ができない可能性があるが、以下の理由から航行不能とはならず、第一波経過後に退 避が可能
 - 津波高さと喫水の関係から、岸壁を超えない。
 - 岸壁に接触しても防げん材を有しているとともに、
 二重船殻構造等十分な船体強度を有する。
 - 船舶内に人員が常駐している。

⇒ 燃料等輸送船は海水貯留堰に到達 しないと整理

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.4 衝突物の整理(2次スクリーニング) ~船舶2~

【浚渫作業関連船舶】

- ▶ 浚渫作業関連船舶としては、「浚渫船」、「揚錨船」、「曳船」及び「土運船」が該当
- ▶ 「浚渫船」はストックアンカーにて係留
- ▶ 「揚錨船」及び「曳船」は状況に応じて退避するか, 浚渫船に係船
- >「土運船」ついては、基本的に「浚渫船」に係船
- ▶ 海象条件が悪い場合は、土運船が港湾内で単独で待機している状況があるが、その際は、土運船は、事前に海中に沈めた重りに係留
 - <complex-block>

⇒ 浚渫作業関連船舶は海水貯留堰に到達しないと整理

[©]Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

2.4 衝突物の整理(2次スクリーニング) ~船舶③~

漂流物衝突によるリスクを低減するため、港湾内作業船に対して以下の対策を実施

- 港湾内の作業船舶は、「大湊側港湾内」、「発電所全体港湾内又は「港湾外(発電所付近)」で 作業を実施(図16参照)
- ▶「発電所全体港湾内」又は「港湾外(発電所付近)」で作業する船舶は,到達が早い基準津波3 に対しても沖合1.5kmまで(あるいは構外の海岸に)退避可能であるため(図17参照),津波 時には港湾内から退避する運用とする。
- ▶「大湊側港湾内」で作業する船舶は退避できない可能性を考慮し、剛性が小さいゴムボートを 使用する運用とする。

2.4 衝突物の整理(2次スクリーニング) ~車両①~

- ▶ 構内遡上域(図7.8)及び荒浜側護岸部を起 点とした軌跡シミュレーション結果(図9.10) を考慮し、図18に示す範囲に駐停車する車 両を抽出
- ▶ 当該範囲に駐停車する車両について、以下 に示す運用を選択的に定め. 漂流物衝突に よるリスク低減を図る。(各車種に対していず れの運用を選択するかは次頁に示す。)

図18:車両の抽出範囲

表5:大湊側護岸部に駐停車する車両に対して定める運用

No.	運用名称	運用詳細
1	密度評価	車両密度評価を実施し,密度が1.05t/m ^{3※} より大きいことを確認す る。
2	衝突荷重 評価	保守的となる衝突荷重算定式を選択した上で衝突荷重評価を実施 し,海水貯留堰の機能に影響が無いことを確認する。
3	代替車両 の利用	分類No.①又は②で整理される車両で代替する。
4	退避時気 相部開放	津波警報発令時に,気相部を開放(窓,扉及びタンクを開放)した上 で人員が退避する。 (運用詳細については参考2-1,2-2参照)
5	停車時間 制限	人員及び機材の積み下ろし時のみ図8の範囲に停車を可とする。

※津波時の浮遊砂濃度を保守的に1%と設定した場合の海水密度

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.4 衝突物の整理(2次スクリーニング) ~車両2~

TEPCO

表6:大湊側護岸部に駐停車する車両の抽出結果(車種ごとの代表例)及び適用する運用の一覧

車種	用途	適用する運用の分類	車両 重量[t]	気相部開放無し 時の密度[t/m³]	気相部開放有り 時の密度[t/m ³]
小型建設用車両 (スキッドローダー,高所作業車等)	汚泥集積	①密度評価	1.07	3.26	不要
軽自動車	人員/資機材運搬	②衝突荷重評価	0.83	0.25	選択しない
乗用車	人員運搬	③代替車両の利用(困難な場合は⑤停車時間制限)	2.00	0.28	選択しない
中型トラック	資機材運搬	③代替車両の利用(困難な場合は④退避時気相部開放)	4.02	0.80	2.55
ユニック 設備吊り上げ ③代替車両の利用 (困難な場合は④退避時気相部開		③代替車両の利用(困難な場合は④退避時気相部開放)	5.11	0.97	2.81
大型トラック(トレーラー含む)	資機材運搬	①密度評価	9.70	1.36	不要
バキューム車	汚泥集積	③代替車両の利用(困難な場合は④退避時気相部開放)		0.51	1.37
大型建設用車両 (クレーン,高所作業車等)	設備吊り上げ等	①密度評価	7.32	1.18	不要

※ 大湊側護岸部の主要作業(取水路等点検作業)の至近実績から縦軸をリストアップ

⇒・軽自動車以外は、密度評価あるいは運用対策の実施により海水貯留堰に衝突しないものと整理 ・軽自動車のみ海水貯留堰に衝突する可能性があるものとして抽出

2.4 衝突物の整理(2次スクリーニング) ~タンク及びその他資機材~ **TEPCO**

【タンク(LLW輸送容器)】

追 而

【その他資機材】

- ▶ 海水貯留堰に衝突する可能性があるその他資機材として、ユニットハウス、角材、足場板、ホース及びカラーコーンが挙げられる。
- ▶ ユニットハウス以外の設備については、重量が数kg程度であり、重量及び大きさ共にユニット ハウスに包含される。

⇒その他資機材としては、「ユニットハウス」を代表として衝突荷重を評価する。

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無謝

2.5 初期配置に関する整理 ~ソリトン分裂~

- 漂流物が砕波のような特殊な形態の波に乗った場合, 衝突荷重が大きくなる可能性がある。
- 発電所のサイト特性を踏まえ、津波が上記のような特殊な形態となる範囲を「ソリトン 分裂の発生位置」及び「引き波時の港湾内海底露出範囲」を考慮して設定
- 各漂流物について、その初期配置と上記範囲の関係を整理

【ソリトン分裂及び砕波に関する整理】

- 基準津波の波形等から砕波が発生す るような段波形状は見られない。
- 水面勾配は最大で2.57°であり、松山ら(2005)における水面勾配の砕波限界30°~40°に比べ十分小さい
- 上記より、ソリトン分裂及び砕波は発生しないものと整理
 (詳細については参考3-1~3-4参照)

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.5 初期配置に関する整理 ~その他サイト特性~

【その他サイト特性(引き波時の港湾内海底露出)】

- ▶ 柏崎刈羽原子力発電所の基準津波の特徴として,引き波時に港湾内の海底が露出する。
- 漂流物の初期配置が上記港湾内の露出域であった場合,特殊な形態の波に乗った状況となる可能性を否定できない。
- ▶ 引き波時の海底露出域は沖合約600m程度まで確認される。
 - ⇒上記600mと港湾設備の位置関係を踏まえ、発電所港湾内を特殊な形態の波により漂流 物が移動する範囲として設定

図22:引き波による港湾内海底の露出範囲(基準津波2)

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

2.6 衝突荷重を算定する衝突物の整理

- ▶ 前述の衝突物の特性を考慮し、衝突荷重を算定する衝突物を以下のとおり整理
- ▶ 初期配置に関する分類については, 護岸部津波遡上域を「直近(陸域)」, 発電所全体港湾内を「直近(海域)」, 港湾外を「前面海域」と整理

2.7 既往の漂流物衝突荷重算定式の適用性の整理

既往の漂流物衝突荷重算定式について、各式導出にあたって実施した実験の条件に加え、前記で整理した衝突荷重を算定する衝突物の種類、初期配置等を踏まえ、各式の適用性を以下のとおり整理

出典	種類	記載概要	適用性
松富ほか (1999)	流木	 ・ 円柱形状の流木が縦向きに衝突する場合の衝突荷重算定式を提案 ・ 水理模型実験及び空中衝突試験において,流木を被衝突体の前面に設置した状態で衝突させている。 	実現象を再現するパラメータを適切に定める必要があ るという課題はあるものの、「直近(陸域)又は「直近(海 域)」からの流木に対して適用可能と判断する。
池野・田中 (2003)	流木	 円柱.角柱及び球の形状をした木材による漂流物の衝突荷 重算定式を提案 衝突体を被衝突体の前面に設置した状態で衝突させている。 	実験の模型縮尺(1/100)を考慮すると、原子力発電所 における漂流物衝突事象への適用は困難と判断する。
道路橋 示方書 (2002)	流木	 ・橋(橋脚)に自動車,流木あるいは船舶等が衝突する場合の 漂流物の衝突荷重算定式を提案 ・漂流物が流下(漂流)してきた場合に,表面流速を与えること で漂流流速に対する荷重を算定可能 	漂流物流下(漂流)してきた場合を想定している算定式 であり、「前面海域」からの漂流物に対して適用可能と 判断する。
FEMA (2012)	流木 コンテナ	 非減衰系の振動方程式に基づき導出した荷重算定式を提案 適用にあたっては、個別の漂流物に対して軸剛性を適切に さだめる必要がある。 	実現象を再現する軸剛性を適切に定める必要があると いう課題はあるものの、「直近(陸域)又は「直近(海 域)」からの漂流物に対して適用可能と判断する。
水谷ほか (2005)	コンテナ	 ・ 漂流するコンテナによる漂流物の衝突荷重算定式を提案 ・ 被衝突体の直近のエプロン上にコンテナを設置した状態で 衝突させている。 	エプロン上にコンテナを設置して衝突力を求めるという 特殊な実験により得られた式であり, 柏崎刈羽原子力 発電所において想定している状況と異なるため, 適用 は困難と判断する。
有川ほか (2007, 2010)	流木 コンテナ	 ・ 鋼製構造物(コンテナ等)による漂流物の衝突荷重を提案 ・ コンテナを被衝突体の前面に設置した状態で衝突させている。 	剛性に係るk値を設定することが困難であるため, k値t が実験で直接確認されている流木以外への適用は困 難と判断し,「直近(陸域)又は「直近(海域)」からの流 木に対して適用可能と判断する。

表8:既往の漂流物衝突荷重算定式及び適用性の整理

2.8 各衝突物に適用する漂流物衝突荷重算定式

■ 各衝突物に適用する衝突荷重算定式を以下のとおり整理

【船舶】

- ・港湾設備保守点検作業船(ゴムボート)
 - ⇒「直近(海域)」からの漂流物であるため, FEMA(2012)を適用
- ・発電所付近で航行不能となった船舶

⇒「前面海域」からの漂流物であるため, 道路橋示方書(2002)を適用

【資機材】

・ユニットハウス

⇒「直近(陸域)」からの漂流物であるため, FEMA(2012)を適用

【車両】

·軽自動車

⇒「直近(陸域)」からの漂流物であるため, FEMA(2012)を適用

【植生】

·流木

⇒「前面海域」からの漂流物であるため,道路橋示方書(2002)を適用

2.9 荷重算定における設計上の配慮

① 漂流物衝突速度

⇒大湊側港湾内全域における海水貯留堰方向の最大流速5.64m/sを切り上げ6.0m/s

① 衝突荷重を作用させる標高

⇒最も厳しくなる海水貯留堰天端に衝突荷重を作用させる

③ 津波荷重と漂流物衝突荷重の組合せ

⇒保守的に津波の最大荷重(越流直前の波力)と漂流物による最大荷重が同時に作用と仮定

2.10 漂流物衝突荷重の算定

- ▶ 前述の方針に従い算出した衝突荷重は以下のとおり。
- ▶ 荷重が最大となる、「軽自動車-FEMA(2012);499 kN」を海水貯留堰の設計に用いる漂流物 衝突荷重とする。

種類	内容·名称·構造	重量	初期配置	適用式	漂流物衝突 荷重 [kN]
向八南台	港湾設備保守点検作業船 (ゴムボート)	1.0 t 未満	直近(海域)	FEMA (2012)	*1
7070	発電所近傍で航行不能と なった船舶	15 t	前面海域	道路橋示方書 (2002)	89
資機材	ユニットハウス	1.0 t 未満	直近(陸域)	FEMA (2012)	%2
車両	軽自動車	1.0 t	直近(陸域)	FEMA (2012)	499
枯仕	樹木(流木)	140 kg	前西海村	道路橋示方書 (2002)	1
			即回冲鸣	FEMA (2012)	(参考値)143 ^{※3}

表9	:漂流物	勿衝突す	帯重の	筧定結果
	・ノオトノルレー	ᄭᇊᇧᇅ		テーヘレットレット

- ※1 ゴムボートの軸剛性が不明であるが,軽自動車よりも剛性が小さいと考えられるとともに,重量も軽自動車 より小さいため,軽自動車の評価結果に包含されると整理
- ※2 ユニットハウスの軸剛性が不明であるが, 軽自動車よりも剛性が小さいと考えられるとともに, 重量も軽自動車 より小さいため, 軽自動車の評価結果に包含されると整理
- ※3 参考として, FEMA(2012)を適用した場合の荷重を記載

【参考1】鉄筋コンクリート建屋の漂流評価について

- 鉄筋コンクリート建屋については、 東北地方太平洋沖地震に伴う津波の事例から、保守的に取水口位置から100mの範囲の鉄筋コンクリート建屋について漂流物化の検討を行った。
- ▶ 抽出された6/7号機取水電源室は、 図9に示すようにドアや窓等の開口 部の上端から天井までの空間に空 気の層が残り、浮力として作用する ことを考慮したとしても、密度は 1.2t/m²以上となり、漂流物とはなら ないことを確認した。

図26:鉄筋コンクリート建屋の漂流物化検討

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

【参考2-1】退避時気相部開放運用の実効性について

【運用の概要】

大湊側護岸部に車両を駐停車する場合であって、津波警報発令時に車両による退避が困難な場合は、気相部 開放措置(窓を全開にする、ドアを開放する、タンク蓋を開放する。)した上で人員が退避すること。

【適用可能な対象車両】

中型トラック, ユニック, バキューム車

【運用の前提条件】

本運用を適用する場合は、気相部開放措置を実行可能な作業者を常に車両の付近に配置する 体制とする。(ただし、車両操作等との兼務は可とする。)

【車両の水没時間と衝突時間の関係】

- JAFの実施した試験映像より、気相部開放運用を適用した場合、遅くとも浸水後7分経過時点で車両は 水没する。
- 基準津波波形より、押波により車両が漂流し、引き波で海域に流出し、次の押波で海水貯留堰に衝突 するまでは少なくとも12分間は要する。
- ▶ 気相部開放運用を実施することにより、貯留堰に衝突するまでに車両を水没させることが可能となる。

[©]Tokyo Electric Power Company Holdings, Inc. All Rights Reserved. 無断複製・転載禁止 東京電力ホールディングス株式会社

【参考2-2】バキューム車の退避時気相部開放運用について **TEPCO**

- ▶ バキューム車については、退避時気相部開放運用として、タンクカバーの開放も実施
- ▶ タンクカバー開放完了までに要する時間は約5分であり、完了後に退避するとしても、津波の到 達までに十分な時間余裕がある。

図28:バキューム車の退避時気相部開放運用イメージ

【参考3-1】ソリトン分裂に係る検討 ~概要・検討方針~

TEPCO

【概要】

- 漂流物が分裂波または砕波が発生するような波に乗った場合、漂流物の衝突荷重に影響を及ぼす可能性があることから、津波による分裂波及び砕波の発生の有無を確認する。
- 過去の事例では、日本海側では日本海中部地震 (1983)の際に、海底勾配1/200程度の遠浅海岸 で、ソリトン分裂が発生したとしている。
- 柏崎刈羽原子力発電所敷地周辺の海域については、ソリトン分裂波は観測されていない。

【検討方針】

- ▶ 図29の検討フローに従って、検討を行う。
- 第一ステップとして、「防波堤の耐津波設計ガイド ライン」に基づく評価を実施する。 なお、ガイドラインでは、津波と海底地形の特徴からその発生有無を判定する方法が示されている。
- ガイドラインに基づく評価により、ソリトン分裂が発生する可能性がある場合や局所的に海底勾配が緩やかであることが認められる場合については、数値計算による評価を実施する。

【参考3-2】ソリトン分裂に係る検討 ~ガイドラインに基づく評価~ **TEPCO**

【検討概要】

■ 以下の2つの条件について当てはまるか否かを検討する。

①おおむね入射津波高さが水深の30%以上(シミュレーション等による津波高さが水深の60%以上) ②海底勾配が1/100以下程度の遠浅

表10:7号機取水口前面における津波高さと水深の関係

	a 海底地盤高さ	b 潮位	c シミュレーションによる津波水位	(c-b)/(b-a) %
基準津波1	T.M.S.L5.5m	T.M.S.L. 0.65m	T.M.S.L. 7.2m	107
基準津波2	T.M.S.L5.5m	T.M.S.L0.12m	T.M.S.L. 5.2m	99
基準津波3	T.M.S.L5.5m	T.M.S.L. 0.65m	T.M.S.L. 6.6m	97

▶ 表10より、①の条件に合致する。

- 図30より,基準津波策定位置から護岸位置までの平均的な海底 勾配は約1/75である。
- ▶ しかしながら、局所的に海底勾配が1/100を下回る箇所があることから、②の条件に合致しないとはいえない。
- ▶ 以上より、数値計算による評価を実施する。

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.

【参考3-3】ソリトン分裂に係る検討 ~数値計算による評価~ **TEPCO**

【検討概要】

■ 海底地形条件が基準津波策定位置から護岸までの区間において、局所的に1/100を下回る箇所があることを踏まえ、数値計算による評価を実施する。

【検討方針】

- 数値計算による評価にあたっては、ソリトン分裂および砕波の発生の再現性及び柏崎刈羽原子力発電所における基準津波を用いた検討に対する適用性を確認。
- 押波と引波が繰り返し到達した場合においても、護岸からの反射波等による影響が小さく、ソリトン分裂および砕 波の発生有無を判断することのできる解析コード「BSNSQ」を用いて検討する。

【解析モデル・入力波形】

- 計算格子間隔は,設置変更許可申請書5条まとめ資料と同様に、津波シミュレーションの最小格子サイズ5mとした。 図31に、解析モデルを示す。
- 基準津波策定位置から護岸までのモデル化においては、一様に最小格子サイズ5mとした。
- 入力波形は,設置変更許可申請書に示した基準津波1~3を対象とし,基準津波策定位置を入力位置とした。 図32に入力波形(基準津波2)を示す。

【参考3-4】ソリトン分裂に係る検討 ~分裂波発生に関する検討まとめ~ TEPCO

【数値解析結果とまとめ】

- 津波の水位時刻歴波形および空間 分布にソリトン分裂現象と考えられ る挙動は認められない。
- 水面勾配は、最大で2.57°であり、松山ら(2005)における水面勾配の砕波限界30°~40°に比べ十分小さい。
- 過去の事例では、日本海側では日本海中部地震(1983)の際に、海底勾配1/200程度の遠浅海岸で、ソリトン分裂が発生したとしているが、 柏崎刈羽原子力発電所敷地周辺 海域の海底地形とは異なっており、 その他に当該サイト周辺海域で観 測された事例もない。
- ▶ 以上より,柏崎刈羽原子力発電所の敷地前面では、ソリトン分裂及び 砕波は発生しない。

©Tokyo Electric Power Company Holdings, Inc. All Rights Reserved.