柏崎刈羽原子力発電所第	第7号機 工事計画審査資料
資料番号	KK7-019 改 1
提出年月日	2020年5月14日

原子炉建屋の地震応答解析における

側面地盤からの回転入力について

2020年5月

東京電力ホールディングス株式会社

目 次

1.	概要	1
2.	地震応答解析モデルの妥当性の確認 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	検討方針	12
4.	検討条件	15
4.	1 側面地盤からの回転入力方法	15
4.2	2 解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
5.	検討結果	27
5.	1 最大応答値	27
6.	床応答に対する影響 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
7.	まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44

1. 概要

本資料は,原子炉建屋の地震応答解析における側面地盤からの回転入力について説明 するものである。

2. 地震応答解析モデルの妥当性の確認

原子炉建屋の地震応答解析モデル(以下,「今回工認モデル」という。)は2007年新潟 県中越沖地震時のシミュレーション解析結果を踏まえて設定している。「工事計画に係 る説明資料(建屋・構築物の地震応答計算書)」のうち「原子炉建屋の地震応答計算書 に関する補足説明資料」の別紙 1-2「原子炉建屋の地震応答解析モデルについて」では 表2-1に示すとおり,既工認手法及び既工認手法に側面回転地盤ばねを考慮したモデル での地震応答解析結果と観測記録とを比較している。図2-1及び図2-2に示すとおり, 側面回転地盤ばねを考慮することで既工認手法と比べ,加速度応答スペクトル及び最大 応答加速度の観測記録との整合性が向上し,地震時の挙動をより実応答に近い形で評価 できることを確認している。

また,別紙 1-5「建屋側面地盤回転ばねを考慮することの妥当性について」では,建 屋を質点系モデル,地盤を2次元 FEM モデルとした詳細なモデルを用いて地震応答解析 を実施しており,この解析においては側面地盤からの回転入力が考慮されている。図2 -3~図2-8に示すとおり,地盤を2次元 FEM としたモデルと今回工認モデルである埋 込SR モデルを比較すると,応答は概ね同等ではあるが若干埋込SR モデルの方が大きく なる傾向にあることを確認した。

以上に示すとおり,地震時の挙動をより実応答に近い形で評価でき,周辺地盤をより 詳細に表現したモデルよりも保守的な応答を示すことから,今回工認モデルは保守的な 設定となっており,基本モデルとして<mark>妥当であると考えられる。</mark>

なお,次章以降で今回工認モデルに対して<mark>さらに</mark>側面地盤からの回転入力を考慮した 場合の影響について確認する。

	建屋モ	デル	地盤モデル	
ケース名	コンクリート のヤング係数	剛性を考慮 する部位	側面ばね	表層部での 建屋-地盤 相互作用
既工認手法に 基づく解析 モデル	設計基準強度 に基づく 耐震壁		水平	考慮
ケース1 実剛性考慮	実剛性*	耐震壁	水平	考慮
ケース2 補助壁考慮	設計基準強度 に基づく	耐震壁+ 補助壁	水平	考慮
ケース3 側面回転ばね	設計基準強度 に基づく	耐震壁	水平・回転	考慮
ケース4 表層非考慮	設計基準強度 に基づく	耐震壁	水平	非考慮
シミュレーショ ン解析モデル (ケース1~4の 項目を全て反映 したモデル)	実剛性*	耐震壁+ 補助壁	水平・回転 (表層無視)	非考慮

表 2-1 パラメータスタディケース(別紙 1-2 表 3-1 に一部追記)

注記*:本シミュレーション解析においては,建設時の取得データを基に文献調査等を踏まえて経年 による強度増進効果を加味して設定した推定実強度(49.0N/mm²(500kgf/cm²))に基づく剛 性を使用する。なお、今回工認では、妥当性、信頼性の観点から、建設時の91日強度の平均 値に相当する値(43.1N/mm²(440kgf/cm²))をコンクリート実強度として剛性を算定する。 注:網掛け部は本資料の図2-1及び図2-2に結果を示すケースを示す。

図 2-1 加速度応答スペクトルの比較(T.M.S.L. 23.5m)(別紙 1-2 図 3-9 再掲)

図 2-2 最大応答加速度の比較(別紙 1-2 図 3-10 再掲)

(om/s2)		
2DFEM 基本NS	増込SR モデル	20FEM 基本NS
1390		
1008		
839	1070	839
783	920	783
734	809	734
683	754	683
651	666	651
594	691	594
629	585	629
	(cm/s²) 2DFEM ■★NS 1390 1008 839 783 783 734 683 651 594 629	(cm:/s ²) 20FEM 第ネトN 第 キャトN 第 キャトトN 第 キャトN 第 キャトトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャトト 第 キャト 第 キャト 第 キャト 第 キャト 第 キャト 第 キャト 第 キャト 第 第 第 キャト 第 第 キャト 第 キャト 第 第 キャト 第 第 キャト 第 第 キャト 第 第 第 第 キャト 第 第 第 第 第 第 第 第 第 第

加速度

図 2-3 建屋の最大応答分布の比較(NS 方向)(別紙 1-5 図 4-33 再掲)

図 2-4 床応答スペクトルの比較(NS 方向) h=5%(別紙 1-5 図 4-34 再掲)

図 2-5 床応答スペクトルの比較(NS 方向) h=1%(別紙 1-5 図 4-35 再掲)

(cm/s ²)					
DF 4	20	TEM.		増込5R モデル	2DFEM 基本EW
11		131		_	
		937			
1	_	826		1074	826
3		756		877	756
3		728		816	728
ł	-	683		781	683
-		650		722	650
ą	_	589		665	589
ł		620		586	620

加速度

図 2-6 建屋の最大応答分布の比較(EW 方向)(別紙 1-5 図 4-36 再掲)

図 2-7 床応答スペクトルの比較(EW 方向) h=5%(別紙 1-5 図 4-37 再掲)

図 2-8 床応答スペクトルの比較(EW 方向) h=1%(別紙 1-5 図 4-38 再掲)

3. 検討方針

今回工認モデルと側面地盤からの回転入力を考慮したモデル(以下,「回転入力モデル」という。)を比較することにより,側面地盤からの回転入力による建屋応答への影響を確認する。

なお、地震応答解析は、位相特性の偏りがなく、全周期帯において安定した応答を生じさせる基準地震動 Ss-1 に対して実施することとする。

3.1 側面地盤からの回転入力を考慮した運動方程式

地震応答解析モデルに関する運動方程式は、地震動規定点に対する相対座標系にお

(3.1)

いて,次式で表せる。

$$[\mathbf{m}] \cdot \left\{ \ddot{\mathbf{u}} \right\} + [\mathbf{c}] \cdot \left\{ \dot{\mathbf{u}} \right\} + [\mathbf{k}] \cdot \left\{ \mathbf{u} \right\} = -[\mathbf{m}] \cdot \left\{ \mathbf{H} \right\} \cdot \ddot{\alpha} + \left\{ \mathbf{f} \right\}$$

ここで、[m] :質量マトリックス
[c] :減衰マトリックス
[k] :剛性マトリックス
[k] :相対変位ベクトル
{u} :相対変位ベクトル
{H} :入力ベクトル(入力のある自由度:1,他:0)

 ^α :地震加速度
{f} :地震外力ベクトル(水平方向の解析に用いる。)

また,建屋-地盤連成系における建屋部分の運動方程式は,地盤ばねの取り付く質 点を添字 c で,それ以外の質点を添字 s で表すと絶対座標系において次式となる。

(3.2)式を地震動規定点との相対変位 {u}についての式に書き換えると,次式のよ うになる。

(3.4)式を(3.3)式に代入すれば,運動方程式は次式になる。

$$\begin{bmatrix} M_{s} & 0\\ 0 & M_{c} \end{bmatrix} \cdot \begin{pmatrix} \ddot{u}_{s}\\ \ddot{u}_{c} \end{pmatrix} + \begin{bmatrix} C_{ss} & C_{sc}\\ C_{cs} & C_{cc} + C_{c} \end{bmatrix} \cdot \begin{pmatrix} \dot{u}_{s}\\ \dot{u}_{c} \end{pmatrix} + \begin{bmatrix} K_{ss} & K_{sc}\\ K_{cs} & K_{cc} + K_{c} \end{bmatrix} \cdot \begin{pmatrix} u_{s}\\ u_{c} \end{pmatrix} = -\begin{bmatrix} M_{s} & 0\\ 0 & M_{c} \end{bmatrix} \cdot \{H\} \cdot \ddot{\alpha}_{0} + \begin{pmatrix} 0\\ f_{c} \end{bmatrix}$$
(3.5)

ここで, { f _。}は次式で表される相互作用力である。

$$\left\{ \mathbf{f}_{c} \right\} = \left[\mathbf{K}_{c} \right] \cdot \left\{ \mathbf{\widetilde{u}}_{c} \right\} + \left[\mathbf{C}_{c} \right] \cdot \left\{ \mathbf{\widetilde{u}}_{c} \right\} + \left\{ \mathbf{p}_{c} \right\}$$
(3.6)

4. 検討条件

4.1 側面地盤からの回転入力方法

側面地盤からの回転入力は、側面回転地盤ばねの取り付く質点に地盤の回転応答を 入力することで考慮する。地盤の回転応答は、一次元波動論に基づく入力地震動評価 における水平成層地盤と等価な擬似3次元 FEM モデルを作成し、地震応答解析を実施 することで求める。地盤の回転応答算出用モデルを図4-1に示す。建屋質点系モデル の質点と対応する位置に剛ばりを設定し、剛ばりに発生する回転角及び回転角速度を 算出する。算出した回転角及び回転角速度の時刻歴を図4-2に示す。

(a) NS 方向

図 4-1 地盤の回転応答算出用モデル

(a) 質点7位置(T.M.S.L. 4.8m)

(b) 質点 8 位置(T.M.S.L. -1.7m)

(c) 質点9位置(T.M.S.L.-8.2m)

図 4-2 算出した回転角及び回転角速度の時刻歴(NS 方向回転角)(1/8)

(d) 質点 10 位置 (T.M.S.L. -13.7m)

(a) 質点7位置(T.M.S.L. 4.8m)

(b) 質点 8 位置(T.M.S.L. -1.7m)

(c) 質点9位置(T.M.S.L.-8.2m)

図 4-2 算出した回転角及び回転角速度の時刻歴(NS 方向回転角速度)(3/8)

(d) 質点 10 位置 (T.M.S.L. -13.7m)

(a) 質点7位置(T.M.S.L. 4.8m)

(b) 質点 8 位置(T.M.S.L. -1.7m)

(c) 質点9位置(T.M.S.L.-8.2m)

図 4-2 算出した回転角及び回転角速度の時刻歴 (EW 方向回転角) (5/8)

(d) 質点 10 位置 (T.M.S.L. -13.7m)

(a) 質点7位置(T.M.S.L. 4.8m)

(b) 質点 8 位置(T.M.S.L. -1.7m)

(c) 質点9位置(T.M.S.L.-8.2m)

図 4-2 算出した回転角及び回転角速度の時刻歴(EW 方向回転角速度)(7/8)

(d) 質点 10 位置 (T.M.S.L. -13.7m)

図 4-2 算出した回転角及び回転角速度の時刻歴(EW 方向回転角速度)(8/8)

4.2 解析モデル

地震応答解析モデルを図 4-3 に示す。

NS 方向

EW 方向

注記*:RCCV 回転ばね

図 4-3 地震応答解析モデル

5. 検討結果

5.1 最大応答值

基準地震動 Ss-1 による最大応答値を図 5-1~図 5-8 に,最大せん断ひずみを表 5-1 及び表 5-2 に示す。

回転入力モデルの最大応答値は、今回工認モデルの結果と同等であることを確認した。

図 5-3 最大応答せん断力 (Ss-1, NS 方向)

図 5-4 最大応答曲げモーメント (Ss-1, NS 方向)

図 5-7 最大応答せん断力 (Ss-1, EW 方向)

図 5-8 最大応答曲げモーメント (Ss-1, EW 方向)

表 5-1 最大せん断ひずみ (NS 方向)

(a) 外壁部

(b) RCCV 部

***	最大せん断ひずみ(×10 ⁻³) (Ss-1)			
部材 番号	今回工認 モデル	回転入力 モデル		
1	0.147	0.144		
2	0.170	0.168		
3	0.171	0.174		
4	0.361	0.363		
5	0.388	0.389		
6	0.406	0.410		
7	0.528	0.587		
8	0.225	0.251		

☆ 77++	最大せん断ひずみ (×10 ⁻³) (Ss-1)		
部材 番号	<u>今</u> 回工認 モデル	回転入力 モデル	
11	0.0499	0.0531	
12	0.130	0.124	
13	0.149	0.147	
14	0.189	0.199	
15	0.388	0.430	
16	0.189	0.194	

表 5-2 最大せん断ひずみ (EW 方向)

(a) 外壁部

(b) RCCV 部

☆ 7 + +	最大せん断ひずみ (×10 ⁻³) (Ss-1)		
部材番号	今回工認 モデル	回転入力 モデル	
1	0.103	0.107	
2	0.116	0.118	
3	0.148	0.150	
4	0.206	0.212	
5	0.243	0.248	
6	0.334	0.349	
7	0.318	0.352	
8	0.244	0.276	

±0.++	最大せん断ひずみ (×10 ⁻³) (Ss-1)		
部材 番号	今回工認 モデル	回転入力 モデル	
11	0.0292	0.0285	
12	0.0848	0.0844	
13	0.0982	0.0961	
14	0.191	0.193	
15	0.200	0.216	
16	0.200	0.222	

NS 方向

EW 方向

6. 床応答に対する影響

基準地震動 Ss-1 における今回工認モデルの床応答スペクトルと回転入力モデルの床応 答スペクトルの比較を図 6-1 及び図 6-2 に示す。

図 6-1 及び図 6-2 に示すとおり、回転入力モデルの床応答スペクトルは、今回工認 モデルの床応答スペクトルと同等であることを確認した。

図 6-1 基準地震動 Ss-1の床応答スペクトル比較 (Ss-1, NS 方向, h=0.01) (1/3)

質点 6

質点 14

図 6-1 基準地震動 Ss-1の床応答スペクトル比較(Ss-1, NS 方向, h=0.01)(2/3)

質点9

図 6-1 基準地震動 Ss-1の床応答スペクトル比較 (Ss-1, NS 方向, h=0.01) (3/3)

図 6-2 基準地震動 Ss-1の床応答スペクトル比較 (Ss-1, EW 方向, h=0.01) (1/3)

質点 6

質点 14

図 6-2 基準地震動 Ss-1の床応答スペクトル比較(Ss-1, EW 方向, h=0.01)(2/3)

質点9

図 6-2 基準地震動 Ss-1の床応答スペクトル比較 (Ss-1, EW 方向, h=0.01) (3/3)

7. まとめ

今回工認モデルは,周辺地盤を詳細に表現して側面地盤からの回転入力も考慮される モデルよりも保守的な設定となっていることを確認した。

また,保守的なモデルである今回工認モデルに,さらに側面地盤からの回転入力を考 慮した回転入力モデルを用いて,基準地震動 Ss-1 に対する地震応答解析を実施し,今回 工認モデルを用いた結果と比較した。

その結果,回転入力モデルの最大応答値は,今回工認モデルの結果と<mark>同等の応答を示</mark> すことから,今回工認モデルは基本モデルとして妥当であることを確認した。