柏崎刈羽原子力発電所	「7号機 工事計画審査資料
資料番号	KK7 補足−026−9 改 1
提出年月日	2020年5月7日

工事計画に係る説明資料

(主排気筒の耐震性についての計算書に関する補足説明資料)

2020年5月

東京電力ホールディングス株式会社

1. 工事計画添付書類に係る補足説明資料

「V-2-7-2-1 主排気筒の耐震性についての計算書」の記載内容を補足するための資料を以下に示す。なお、他建物・構築物の地震応答計算書の記載内容を共通的に補足する内容についても、本資料で代表し説明する。

- 別紙1 既工認と今回工認モデル及び手法の比較
- 別紙2 主排気筒のモデル化,境界条件及び拘束条件の考え方

別紙3 地震応答解析における原子炉建屋の材料物性の不確かさに関する検討

<u>別紙3-1</u>原子炉建屋の材料物性の不確かさを考慮した検討に用いる地震動の選定について

別紙3-2 原子炉建屋の材料物性の不確かさを考慮した地震応答解析結果

別紙3-3 減衰をレーリー減衰にした場合の地震応答解析結果

別紙4 共振風速及び渦励振について

別紙5 地震荷重と風荷重を重畳させた場合の影響検討

別紙6 接合部の耐震性について

下線:今回ご提示資料

別紙3 地震応答解析における原子炉建屋の材料物性の不確かさに関 する検討 目 次

1.	概	要	••••									• •		• •			•••				•••	 •••	•••			別紙 3-1
1.1	L	検討	概要			•••								• •	• •		•••				••	 •••	•••	• •		別紙 3-1
1.2	2	検討	方針									• •		• •			•••				•••	 •••	•••			別紙 3-2
2.	建	屋応	答の	不確	かる	さを	考	慮	し1	と設	と計	用	地創	震フ	力の	ン設	定	方	法	•	••	 •••	•••	• •		別紙 3-4
3.	地	震応	答解	析に	よく	る夏	上屋	応	答	り不	、確	か	さい	の景	影響	肾検	討			••	••	 •••	•••	• •	••	別紙 3-31
3.1	L	固有	値解	析結	果	•	•••	•••	•••		•••	• •		• •	• •		•••			••	••	 •••	•••		••	別紙 3-31
3.2	2	地震	応答	解析	·結!	果			•••		•••						•••					 •••	•••		• •	別紙 3-37
4.	ま	とめ	•••														•••			••	••	 •••	•••			別紙 3-45

1. 概要

1.1 検討概要

本資料は,主排気筒の地震応答解析における原子炉建屋の材料物性の不確かさに関 する検討について説明するものである。

本資料では、材料物性の不確かさを考慮した原子炉建屋の応答*を用いた地震応答 解析を行い、原子炉建屋の材料物性の不確かさが主排気筒に及ぼす影響について確認 する。なお、本資料においては、原子炉建屋の材料物性の不確かさを「建屋応答の不 確かさ」と呼ぶこととする。

建屋応答の不確かさを考慮する検討ケース*を表1-1に示す。

表1-1中の下線部は,基本ケースとの差異を示す。

検討ケース	コンクリート 剛性	回転ばね 定数	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	100%	標準地盤	基本ケース
 ②ケース 2 (建屋剛性+σ, 地盤剛性+σ) 	<u>実強度+σ</u> (46.0N/mm ²)	100%	<u>標準地盤+σ</u> (新期砂層+13%, 古安田層+25%, 西山層+10%)	地盤剛性の変化 に伴い,回転ば ね定数が変化
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	<u>実強度一σ</u> (40.2N/mm ²)	100%	<u>標準地盤-σ</u> (新期砂層-13%, 古安田層-25%, 西山層-10%)	地盤剛性の変化 に伴い,回転ば ね定数が変化
④ケース4(建屋剛性コア平均)	<u>実強度</u> (コア平均) (55.7N/mm ²)	100%	標準地盤	_
⑤ケース 5 (建屋剛性-2σ)	<u>実強度-2σ</u> (37.2N/mm ²)	100%	標準地盤	_
⑥ケース 6 (回転ばね低減)	実強度 (43.1N/mm ²)	<u>50%</u>	標準地盤	—

表1-1 建屋応答の不確かさを考慮する検討ケース*

注記*:「原子炉建屋の地震応答計算書に関する補足説明資料」のうち,別紙3「地震応答 解析における材料物性の不確かさに関する検討」に基づく。

1.2 検討方針

V-2-7-2-1「主排気筒の耐震性についての計算書」では、建屋応答の不確かさを考 慮するため、入力地震動には、材料物性の不確かさを考慮した原子炉建屋全体の地震 応答解析結果から得られる屋上レベル(T.M.S.L.38.2m)における応答を用いている。 そのため、本検討における建屋応答の不確かさ及びその変動幅は、「原子炉建屋の地 震応答計算書に関する補足説明資料」のうち、別紙3「地震応答解析における材料物 性の不確かさに関する検討」に準拠し、主排気筒の地震応答解析モデルに対しては建 屋剛性の不確かさ(コンクリート強度)を考慮する。なお、建屋剛性の不確かさ(コ ンクリート強度)は、基礎コンクリートの物性値に考慮する。

検討は,表1-1に示す各検討ケースについて固有値解析及び地震応答解析を行い, ケース1(基本ケース)の結果と比較することで,建屋応答の不確かさが主排気筒に 及ぼす影響について確認する。

なお,各解析の方法及び諸元については,V-2-7-2-1「主排気筒の耐震性についての計算書」と同一である。

地震応答解析モデル図を図1-1に示す。

図1-1 主排気筒の地震応答解析モデル

2. 建屋応答の不確かさを考慮した設計用地震力の設定方法

表1-1に示した検討ケースについて,原子炉建屋の応答を入力地震動として用いた解 析を実施することで,建屋応答の不確かさを設計用地震力として考慮する。

建屋応答の不確かさを考慮したケースの応答値の算出に当たっては,基本ケースにお ける主排気筒の応答を確認したうえで,主排気筒の応答への影響が大きい波(Ss-1, Ss-2及びSs-8)に対して実施する(別紙3-1「原子炉建屋の材料物性の不確かさを考慮 した検討に用いる地震動の選定について」参照)。

V-2-7-2-1「主排気筒の耐震性についての計算書」における耐震評価では、入力地震動毎に、全ての部材をモデル化した立体フレームモデルにおける各部材応力について断面算定を行い、その中で断面算定結果(検定値)が最も厳しくなる地震応答解析結果を設計用地震力(評価用応力)としている。なお、建屋応答の不確かさを考慮した地震応答解析結果は、別紙3−2「原子炉建屋の材料物性の不確かさを考慮した地震応答解析結果」に示す。

入力地震動の組合せを表2-1に、入力地震動の加速度時刻歴波形を図2-1~図2-18 に示す。なお、図中の〇印は、最大値発生時を示す。Ss-1及びSs-8は、2方向(3成分) (水平1方向(並進・回転)及び鉛直方向)の同時入力とし、Ss-2は、3方向(5成分)(水平2方向(並進・回転)及び鉛直方向)の同時入力とする。Ss-1及びSs-8の水平方向 については、NS方向とEW方向で構造としての対称性があるため、検定値が厳しい傾向に あるNS方向を代表として用いる。なお、Ss-1のケース6、Ss-2のケース2以外の全ケース、 Ss-8のケース3及びケース6において誘発上下動を考慮している。

		(a)	Ss-1			
	入力均	也震動の糺	分)同時入力)			
建屋応答の不確かさ		水平フ	方向 <mark>*1</mark>	-	鉛直	
検討ケース	NS 🗆	方向	EW 🤇	方向	方向 <mark>*1</mark>	備考 <mark>*</mark> 2
	並進	回転	並進	回転	並進	
ケース 1 (基本ケース)	0	0			0	_
ケース 2 (建屋剛性+σ, 地盤剛性+σ)	0	0			0	_
ケース 3 (建屋剛性-σ, 地盤剛性-σ)	0	0	_	_	0	_
ケース 4 (建屋剛性コア平均)	0	0		_	0	_
ケース 5 (建屋剛性-2σ)	0	0			0	
ケース 6 (回転ばね低減)	0	0			0	誘発上下動考慮

表2-1 入力地震動の組合せ(1/2)

注記*1:組み合わせる成分を「○」で,組み合わせない成分を「─」で示す。

*2:誘発上下動を考慮しない場合は「一」で示す。

		<u>``</u>									
	入力地震動の組合せ(Ss-2, 3 方向(5 成分)同時入力)										
建屋応答の不確かさ		水平ナ	テ向 <mark>*1</mark>	鉛直							
検討ケース	NS 🗸	方向	EW 🗸	方向	方向 <mark>*1</mark>	備考 <mark>*</mark> 2					
	並進	回転	並進	回転	並進						
ケース 1 (基本ケース)	\bigcirc	0	\bigcirc	\bigcirc	0	誘発上下動考慮					
ケース 2 (建屋剛性+σ, 地盤剛性+σ)	0	0	\bigcirc	0	0	_					
ケース 3 (建屋剛性-σ, 地盤剛性-σ)	0	0	\bigcirc	0	0	誘発上下動考慮					
ケース4 (建屋剛性コア平均)	0	0	\bigcirc	0	0	誘発上下動考慮					
ケース 5 (建屋剛性-2σ)	0	0	0	0	0	誘発上下動考慮					
ケース 6 (回転ばね低減)	0	0	0	0	0	誘発上下動考慮					
注記*1:組み合わせる成	<mark>戈分を「</mark> ◯)」で,組	しみ合わせ	ない成分	を「―」	で示す。					

(b) Ss-2

*2:誘発上下動を考慮しない場合は「一」で示す。

		(c)	Ss-8							
入力地震動の組合せ(Ss-8, 2方向(3成分)同時										
建屋応答の不確かさ		水平プ	テ向 <mark>*1</mark>		鉛直					
検討ケース	NS 🗆	方向	EW 🤇	方向	方向 <mark>*1</mark>	備考 <mark>*</mark> 2				
	並進	回転	並進	回転	並進					
ケース 1 (基本ケース)	0	0			0	_				
ケース 2 (建屋剛性+σ, 地盤剛性+σ)	0	0		_	0	_				
ケース 3 (建屋剛性-σ, 地盤剛性-σ)	0	0	_		0	誘発上下動考慮				
ケース 4 (建屋剛性コア平均)	0	0			0	_				
ケース 5 (建屋剛性-2σ)	0	0	_		0	_				
ケース 6 (回転ばね低減)	\bigcirc	\bigcirc			\bigcirc	誘発上下動考慮				

表2-1 入力地震動の組合せ(2/2)

注記*1:組み合わせる成分を「○」で,組み合わせない成分を「─」で示す。

*2:誘発上下動を考慮しない場合は「―」で示す。

別紙 3-12

○印は最大値発生時を示す。

- 3. 地震応答解析による建屋応答の不確かさの影響検討
- 3.1 固有值解析結果

建屋剛性の不確かさ(コンクリート強度)の影響検討として,基礎コンクリートの 剛性を変動させた解析モデルによる固有値解析を実施した。固有値解析結果を表3-1, 固有モードを図3-1~図3-4に示す。

ケース1(基本ケース)に対し、基礎コンクリートの剛性を変動させた解析モデル の固有振動数の変動幅は0%である。主排気筒では、建屋剛性の不確かさ(コンクリ ート強度)による影響はみられない。

表3-1 固有值解析結果

(a) NS方向

田右エード		NS方向	固有振動数f	f ₁ (Hz)	
回有七个下	ケース1	ケース2	ケース3	ケース4	ケース5
答 自1 次	0.98	0.98	0.98	0.98	0.98
同分1次		(1.00)	(1.00)	(1.00)	(1.00)
答 身 9 次	6.63	6.63	6.63	6.63	6.63
同身 2 仄		(1.00)	(1.00)	(1.00)	(1.00)
從 拔 1 次	3.69	3.69	3.69	3.69	3.69
」 ज ज □ び □		(1.00)	(1.00)	(1.00)	(1.00)
建成のが	10.74	10.74	10.73	10.75	10.73
		(1.00)	(1.00)	(1.00)	(1.00)

注:()内は、ケース1に対する比率を示す。

(b) EW方向

田右モード		EW方向	固有振動数f	f ₁ (Hz)	
回有七个下	ケース1	ケース2	ケース3	ケース4	ケース5
答 自 次	0.98	0.98	0.98	0.98	0.98
同身1次		(1.00)	(1.00)	(1.00)	(1.00)
倍 身の次	6.67	6.67	6.67	6.68	6.67
同身 2 仄		(1.00)	(1.00)	(1.00)	(1.00)
建拔1次	3.71	3.71	3.71	3.71	3.71
妖培1次		(1.00)	(1.00)	(1.00)	(1.00)
建技の次	11.15	11.15	11.15	11.16	11.15
<u> </u>		(1.00)	(1.00)	(1.00)	(1.00)

注:()内は、ケース1に対する比率を示す。

(c) 鉛直方向

田右モード		鉛直方向	固有振動数	f 1 (Hz)	
回有七个下	ケース1	ケース2	ケース3	ケース4	ケース5
答 自 1 次	19.06	19.06	19.05	19.06	19.05
同身1次		(1.00)	(1.00)	(1.00)	(1.00)
杂 技 1 次	20.43	20.43	20.42	20.44	20.42
		(1.00)	(1.00)	(1.00)	(1.00)

注:()内は、ケース1に対する比率を示す。

3.2 地震応答解析結果

建屋応答の不確かさの影響検討として,建屋応答の不確かさを考慮した地震応答解 析を実施した。

対象となる検討ケースは表1-1に示す検討ケースとし、代表として、入力地震動に Ss-1を用いた結果を示す。

最大応答値を図3-5~図3-10に示す。<mark>なお,図3-7及び図3-10では,以下の主柱</mark>

材の最大応力を包絡したものを「鉄塔部 主柱材包絡」として示す。

・原子炉建屋の_R1通りと_RC通りの交点に位置する主柱材

・原子炉建屋の_R1通りと_RD通りの交点に位置する主柱材

・原子炉建屋の_R2通りと_RC通りの交点に位置する主柱材

・原子炉建屋のR2通りとRD通りの交点に位置する主柱材

また、制震装置(オイルダンパー)の最大応答値及び許容値を表3-2に示す。

ケース1(基本ケース)に対し、水平及び鉛直いずれの方向についても、各検討ケ ースの最大応答加速度、最大応答変位、最大応答軸力、最大応答曲げモーメントはお おむね同等であることを確認した。また、制震装置(オイルダンパー)の最大応答値 は許容値以下である。

(a) 鉄塔部

図3-5 最大応答加速度(Ss-1, NS方向)

(a) 鉄塔部

図3-6 最大応答変位 (Ss-1, NS方向)

(a) 鉄塔部 主柱材包絡

図3-7 最大応答曲げモーメント (Ss-1, NS方向)

(a) 鉄塔部

図3-8 最大応答加速度(Ss-1,鉛直方向)

(mm)

ケース6

18.5

19.0

20.8

14.7

11.9

6.19

3.17

0.00

(a) 鉄塔部

図3-9 最大応答変位 (Ss-1, 鉛直方向)

T. M. S. L			鉄均	茶部		(KN)
(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6
80.0						
76.25	24.4	23. 5	24.1	23.5	24.7	24.3
72.5	672	632	665	664	679	722
68.75	695	652	685	687	702	747
65.0	1780	1690	1760	1750	1800	1900
60.75	1820	1730	1800	1800	1840	1950
56.5	3280	3140	3240	3220	3310	3480
52.25	3360	3220	3310	3300	3390	3560
48.0	4480	4330	4400	4410	4500	4700
40.2	4610	4470	4530	4540	4640	4850
38.2	6090	5910	5990	6010	6130	6380

ケース3…建屋剛性 $-\sigma$ ・地盤剛性 $-\sigma$, ケース4…建屋剛性コア平均, ケース5…建屋剛性 -2σ ,ケース6…回転ばね低減

(a) 鉄塔部 主柱材包絡

						(kN)
T.M.S.L.			筒車	}部		
(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6
85.0						
80.0	55.7	58.5	52.5	54.2	56.4	55.7
76.25	130	137	123	127	132	130
72.5	366	384	346	356	371	366
65.0	437	459	413	425	443	437
56.5	565	593	536	550	572	565
48.0	668	701	637	651	676	668
39.0	874	917	841	852	884	874
38.2	1110	1160	1080	1080	1120	1110
注:ケース1 ケース3	…工認モデル …建屋剛性-	- (基本ケーン - σ ・地盤剛性	ス), ケース: 生一σ,	2…建屋剛性-	+σ・地盤剛	性+σ,

ケース4…建屋剛性コア平均, ケース5…建屋剛性-2*σ*,ケース6…回転ばね低減

(b) 筒身部

図3-10 最大応答軸力 (Ss-1)

	オイルダンパーの最大応答値										
	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6	可谷胆				
速度 (m/s)	1.91	1.84	1.89	1.87	1.93	2.01	2.60				
変位 (mm)	124	116	127	120	126	133	175				

表3-2 制震装置(オイルダンパー)の最大応答値及び許容値(Ss-1)

4. まとめ

建屋応答の不確かさを考慮した固有値解析及び地震応答解析結果より,以下の傾向を 確認した。

- ・固有値解析より、固有振動数の変動幅は、基本ケースに対し0%である。
- ・地震応答解析より,発生応力,加速度及び変位は,基本ケースとおおむね同等 である。

上記の傾向については、以下の理由により発生したと考えられる。

主排気筒の地震応答解析では,建屋応答の不確かさとして,入力地震動に材料物性の 不確かさを考慮した原子炉建屋の応答を用いている。「原子炉建屋の地震応答計算書に 関する補足説明資料」のうち,別紙3「地震応答解析における材料物性の不確かさに関 する検討」では,材料物性の不確かさによる応答への影響は小さい。また,主排気筒の 解析モデルに対しては,基礎コンクリートの剛性のみに建屋剛性の不確かさ(コンクリ ート強度)を考慮している。よって,主排気筒における建屋応答の不確かさによる影響 は小さくなったと考えられる。 別紙3-1 原子炉建屋の材料物性の不確かさを考慮した検討に用 いる地震動の選定について

目 次

1.	概要 •••••••••••••••••••••	別紙 3-1-1
2.	選定方法	別紙 3-1-1
3.	地震動の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 3-1-3
4.	建屋応答の不確かさを考慮した検討に用いる地震動 ・・・・・・・・・・	別紙 3-1-12

1. 概要

主排気筒を対象とした,原子炉建屋の材料物性の不確かさ(以下「建屋応答の不確か さ」という。)を考慮した検討では,基本ケースを対象に,各入力地震動(Ss-1~Ss-8 による原子炉建屋全体の地震応答解析から得られる原子炉建屋屋上レベル(T.M.S.L.38.2m)の応答)による地震応答解析を行い,主排気筒の応答への影響が大き い入力地震動に対して検討を実施する。

本資料では,建屋応答の不確かさを考慮した検討に用いる地震動の選定方法及び地震動の選定結果について説明する。

2. 選定方法

建屋応答の不確かさを考慮した検討に用いる地震動の選定方法を以下に示す。また, 選定方法のフローを図2-1に示す。

- Ss-1~Ss-8の基本ケースについて、原子炉建屋の地震応答解析を行う。(V-2-2-1「原子炉建屋の地震応答計算書」による)
- ② ①から得られるSs-1~Ss-8による原子炉建屋屋上レベル(T.M.S.L.38.2m)の時 刻歴応答波を入力地震動として、主排気筒の基本ケースについて地震応答解析を 行う。
- ③ ②から得られる各入力時震動の応答(加速度,変位,軸力及び曲げモーメント) を比較し、いずれかの応答が最大となる基準地震動Ssを建屋応答の不確かさを 考慮した検討に用いる入力地震動とする。

注記*1:詳細は、V-2-7-2-1「主排気筒の耐震性についての計算書」による。 *2:応答値は、加速度、変位、軸力及び曲げモーメントとする。

図 2-1 建屋応答の不確かさを考慮した検討に用いる地震動の選定法のフロー

3. 地震動の選定

主排気筒の基準地震動Ssに対する地震動の選定過程を以下に記載する。主排気筒の 基準地震動Ssに対する最大応答値を表3-1~表3-16に示す。

「2. 選定方法」に基づき確認した結果,Ss-1,Ss-2及びSs-8については,応答値の いずれかがSs-1~Ss-8の中で最大となることから,建屋応答の不確かさの影響検討に用 いる地震動とする。

部 鉄塔部 筒身部	T. M. S. L.		最大応答加速度(m/s ²)										
꼬마대	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値			
	80.0	<u>50.3</u>	47.9	37.2	18.7	21.7	19.0	21.7	41.3	50.3			
	76.25	<u>44.6</u>	41.4	33.1	15.5	18.2	15.8	17.9	34.9	44.6			
	72.5	<u>38. 2</u>	33.5	28.4	12.0	14.7	12.1	13.8	28.5	38.2			
鉄塔	65.0	27.8	23.6	20.0	9.29	11.4	9.34	10.8	22.1	27.8			
部	56.5	<u>18.5</u>	15.7	13.7	8.53	8.49	8.80	8.11	16.2	18.5			
	48.0	<u>18.3</u>	10.9	11.1	8.12	7.18	8.35	7.28	14.1	18.3			
	40.2	<u>12.7</u>	8.85	9.17	6.36	5.29	6.58	5.19	11.7	12.7			
	38.2	12.2	8.62	8.89	6.11	5.18	6.32	4.99	11.3	12.2			
	85.0	<u>70. 9</u>	60.3	47.6	26.8	27.3	28.2	27.3	53.4	70.9			
	80.0	<u>49. 5</u>	44.4	37.2	17.3	19.4	17.2	18.7	37.8	49.5			
	76.25	<u>42.5</u>	33.3	29.6	11.4	15.2	12.3	14.0	31.9	42.5			
倍	72.5	<u>38. 1</u>	26.9	22.8	9.75	12.7	10.6	11.8	30.8	38.1			
身	65.0	<u>27. 1</u>	23.6	17.5	8.29	11.8	8.90	10.9	23.6	27.1			
的	56.5	17.0	<u>19. 6</u>	14.5	9.24	9.09	9.10	8.94	17.3	19.6			
	48.0	<u>16. 1</u>	11.1	11.1	7.88	7.01	8.11	6.83	14.0	16.1			
	39.0	<u>12.4</u>	8.71	8.99	6.20	5.23	6.41	5.05	11.4	12.4			
	38.2	12.2	8.62	8.89	6.11	5.18	6.32	4.99	11.3	12.2			

表 3-1 最大応答加速度一覧表(基準地震動 S s, NS 方向)

注:下線部分は最大値を示す。

表 3-2 最大応答加速度一覧表(基準地震動 S s, EW 方向)

本 7.(告	T. M. S. L.				最大応	、答加速度(m/s^2)			
部 鉄塔部 简身部	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	<u>48. 4</u>	<u>48. 4</u>	35.9	28.7	28.4	31.1	36.3	37.3	48.4
	76.25	<u>42. 9</u>	42.1	31.5	25.0	24.9	26.7	29.9	32.3	42.9
	72.5	<u>37. 0</u>	34.3	26.9	20.0	20.1	21.1	23.0	27.1	37.0
鉄	65.0	26.4	<u>26. 6</u>	19.0	15.3	14.8	15.6	16.5	21.3	26.6
部	56.5	16.4	<u>18. 1</u>	12.3	12.3	11.5	12.5	13.3	14.6	18.1
	48.0	<u>18.4</u>	12.9	11.1	9.62	10.6	9.96	12.1	13.4	18.4
	40.2	<u>13. 2</u>	11.9	8.68	7.24	8.78	7.38	9.27	11.0	13.2
	38.2	12.6	11.6	8.44	6.97	8.54	7.12	8.96	10.7	12.6
	85.0	<u>67.8</u>	62.9	46.7	37.0	42.1	37.6	52.8	48.0	67.8
	80.0	<u>48.6</u>	45.4	35.7	25.9	26.0	27.7	33.9	35.0	48.6
	76.25	<u>39. 6</u>	37.4	28.1	21.1	20.8	22.4	22.0	30.3	39.6
筒	72.5	<u>33. 4</u>	33.0	21.1	19.2	16.4	20.3	17.9	26.7	33.4
身	65.0	22.0	<u>22. 4</u>	15.7	15.7	12.4	17.1	14.9	19.5	22.4
出)	56.5	<u>18.0</u>	16.9	13.2	12.1	11.3	12.8	13.2	15.6	18.0
	48.0	<u>15. 7</u>	12.8	10.2	9.08	10.1	9.60	11.3	13.0	15.7
	39.0	<u>12.8</u>	11.7	8.53	7.06	8.63	7.21	9.05	10.8	12.8
	38.2	<u>12.6</u>	11.6	8.44	6.97	8.54	7.12	8.96	10.7	12.6

部位鉄塔部	T. M. S. L.				最大応	、答加速度(m/s^2)			
고마(미고	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	<u>14. 0</u>	10.5	9.54	8.48	8.56	8.72	9.34	7.40	14.0
	76.25	<u>14.0</u>	10.6	9.35	8.44	8.50	8.71	9.31	7.23	14.0
	72.5	<u>14. 2</u>	10.1	9.33	8.11	8.08	8.22	8.95	7.17	14.2
鉄塔	65.0	12.4	8.83	7.88	7.22	6.98	6.99	8.00	5.59	12.4
部	56.5	<u>11. 8</u>	7.37	7.15	6.16	6.31	6.19	6.87	4.67	11.8
	48.0	<u>10.3</u>	6.31	6.24	5.30	5.68	5.49	5.94	3.72	10.3
	40.2	<u>9.34</u>	6.60	6.20	4.69	5.30	4.74	5.27	3.14	9.34
	38.2	<u>9.40</u>	6.83	6.40	4.71	5.48	4.80	5.68	3.13	9.40
	85.0	<u>11.6</u>	6.63	8.32	6.25	6.04	6.03	6.31	6.58	11.6
	80.0	<u>11. 5</u>	6.62	8.26	6.21	6.01	5.98	6.27	6.51	11.5
	76.25	<u>11. 4</u>	6.59	8.14	6.14	5.95	5.88	6.21	6.38	11.4
倍	72.5	<u>11. 1</u>	6.52	7.83	5.96	5.79	5.63	6.02	6.02	11.1
身	65.0	<u>10. 5</u>	6.38	7.18	5.59	5.46	5.31	5.64	5.27	10.5
当り	56.5	<u>9.96</u>	6.21	6.56	5.14	5.09	5.10	5.20	4.39	9.96
	48.0	<u>9.49</u>	6.05	6.35	4.73	4.77	4.88	4.82	3.57	9.49
	39.0	9.01	5.89	6.11	4.45	4.52	4.64	4.50	3.01	9.01
	38.2	<u>9.00</u>	5.89	6.10	4.45	4.52	4.64	4.50	3.01	9.00

表 3-3 最大応答加速度一覧表(基準地震動 S s, 鉛直方向)

注:下線部分は最大値を示す。

表 3-4 最大応答変位一覧表(基準地震動 S s, NS 方向)

动法	T. M. S. L.				最大	応答変位(1	nm)			
部位鉄塔部	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	194	170	138	58.0	78.2	59.7	67.4	161	194
	76.25	167	147	119	50.2	67.9	51.8	57.8	140	167
	72.5	133	116	94.9	39.6	54.2	40.8	45.5	114	133
鉄	65.0	<u>79. 4</u>	68.7	56.0	23.7	32.6	24.3	27.3	69.9	79.4
部	56.5	<u>38. 4</u>	32.1	26.9	12.2	15.8	12.4	13.0	34.6	38.4
	48.0	<u>11. 7</u>	8.95	8.67	5.00	4.89	5.11	3.98	10.9	11.7
	40.2	<u>1.62</u>	1.24	1.19	0.747	0.706	0.777	0.612	1.54	1.62
	38.2	<u>0. 00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	85.0	261	234	189	88.9	121	90.4	97.3	237	261
	80.0	211	186	153	69.2	98.6	70.9	79.6	196	211
	76.25	175	152	127	55.2	82.1	56.9	66.9	166	175
倚	72.5	143	122	104	43.0	67.2	45.8	55.3	138	143
身	65.0	86.6	71.4	64.3	24.2	41.2	27.5	34.7	<u>86. 8</u>	86.8
别	56.5	36.5	29.8	29.1	11.5	18.1	11.4	15.5	<u>38. 4</u>	38.4
	48.0	<u>12. 1</u>	9.32	9.05	5.16	5.07	5.23	4.22	11.3	12.1
	39.0	<u>0. 583</u>	0.415	0.428	0.265	0.249	0.274	0.220	0.555	0.583
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

部位鉄塔部	T. M. S. L.				最大	応答変位(mm)			
可加工	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	180	181	130	100	100	106	103	149	181
	76.25	155	157	111	86.0	85.9	90.6	88.0	129	157
	72.5	123	126	88.4	67.8	67.6	71.3	69.6	104	126
鉄塔	65.0	72.9	<u>76. 4</u>	51.6	38.9	40.4	41.7	42.2	63.1	76.4
部	56.5	34.0	<u>36. 3</u>	23.3	19.2	19.3	20.6	20.9	30.2	36.3
	48.0	<u>9.89</u>	9.85	6.80	5.98	6.59	6.33	7.16	8.29	9.89
	40.2	1.51	<u>1.67</u>	1.06	0.947	1.12	1.01	1.16	1.43	1.67
	38.2	0.00	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	85.0	247	271	170	156	186	172	200	224	271
	80.0	197	220	138	125	149	139	160	183	220
	76.25	161	182	114	103	123	115	131	153	182
筒	72.5	130	148	93.0	83.9	98.4	93.4	105	125	148
身	65.0	75.1	<u>89. 0</u>	56.7	50.8	57.2	56.7	60.8	76.6	89.0
出	56.5	31.0	<u>36. 4</u>	24.2	21.6	23.2	24.2	25.6	31.9	36.4
	48.0	9.34	<u>10. 5</u>	7.08	5.89	6.96	6.27	7.87	8.76	10.5
	39.0	0.540	<u>0. 591</u>	0.380	0.314	0.378	0.335	0.400	0.513	0.591
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

表 3-5 最大応答変位一覧表(基準地震動 S s, EW 方向)

注:下線部分は最大値を示す。

表 3-6 最大応答変位一覧表(基準地震動 S s,鉛直方向)

动法	T. M. S. L.				最大	応答変位(nm)			
部位 鉄塔部	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	17.1	<u>25. 5</u>	12.5	13.0	14.0	13.6	13.3	13.7	25.5
	76.25	17.6	<u>26. 1</u>	12.8	13.3	14.4	13.9	13.6	14.0	26.1
	72.5	19.3	<u>24. 8</u>	14.0	12.6	13.6	13.2	12.9	15.4	24.8
鉄	65.0	13.6	<u>20. 3</u>	9.82	10.3	11.1	11.0	10.5	11.2	20.3
部	56.5	11.2	<u>13. 8</u>	7.94	7.27	7.85	7.74	7.27	9.48	13.8
	48.0	5.58	<u>8.02</u>	3.88	4.47	4.92	4.80	4.35	5.06	8.02
	40.2	2.78	<u>3. 69</u>	1.95	2.48	2.98	2.65	2.51	2.64	3.69
	38.2	0.00	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	85.0	<u>0. 929</u>	0.551	0.651	0.499	0.485	0.467	0.504	0.496	0.929
	80.0	<u>0. 913</u>	0.541	0.640	0.490	0.476	0.459	0.495	0.487	0.913
	76.25	<u>0. 884</u>	0.525	0.619	0.474	0.461	0.444	0.479	0.471	0.884
倚	72.5	<u>0. 804</u>	0.478	0.562	0.431	0.419	0.402	0.435	0.426	0.804
身	65.0	<u>0. 636</u>	0.381	0.442	0.341	0.332	0.317	0.344	0.333	0.636
别	56.5	<u>0. 427</u>	0.258	0.295	0.228	0.223	0.214	0.231	0.219	0.427
	48.0	<u>0. 224</u>	0.137	0.153	0.119	0.117	0.113	0.120	0.111	0.224
	39.0	<u>0. 00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	38.2	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

部	T.M.S.L.				最大	、応答軸力	(kN)			
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0									
	76.25	<u>23. 8</u>	19.1	20.3	17.7	16.4	18.7	16.2	18.1	23.8
	72.5	672	670	498	297	334	328	315	484	672
	68.8	695	696	519	318	351	348	333	503	696
鉄	65.0	1780	1760	1300	748	857	831	808	1280	1780
塔如	60.8	<u>1820</u>	<u>1820</u>	1350	796	896	878	847	1330	1820
当り	56.5	3280	3240	2390	1400	1550	1510	1470	2470	3280
	52.3	3360	3340	2460	1470	1620	1590	1540	2550	3360
	48.0	4480	<u>4530</u>	3280	1990	2110	2160	2000	3530	4530
	40.2	4610	4700	3400	2100	2220	2280	2110	3670	4700
	38.2	6090	5790	4520	2760	2850	2980	2680	5120	6090

表 3-7 最大応答軸力一覧表(基準地震動 S s, _R2 通り-_RC 通り間主柱材)

注:下線部分は最大値を示す。

表 3-8 最大応答軸力一覧表(基準地震動 S s, gl 通り-gC 通り間主柱材)

部位	T. M. S. L.				最大	、応答軸力	(kN)			
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0									
	76.25	<u>24. 4</u>	20.9	20.3	17.6	17.6	19.3	17.8	18.1	24.4
	72.5	612	947	433	528	552	552	526	412	947
鉾	68.8	632	972	438	551	571	575	546	417	972
	65.0	1670	2540	1220	1370	1460	1440	1380	1190	2540
塔朝	60.8	1670	2580	1200	1420	1500	1490	1420	1150	2580
刊	56.5	3100	<u>4710</u>	2260	2490	2670	2610	2520	2290	4710
	52.3	3110	<u>4800</u>	2210	2570	2740	2700	2590	2230	4800
	48.0	4250	6490	3080	3340	3620	3510	3410	3280	6490
	40.2	4350	<u>6650</u>	3010	3480	3740	3650	3530	3190	6650
	38.2	5920	8380	4110	4180	4550	4360	4240	4320	8380

部	T.M.S.L.				最大	、応答軸力	(kN)			
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0									
	76.25	<u>24. 4</u>	19.9	19.9	16.3	17.9	16.3	18.3	18.1	24.4
	72.5	638	652	466	315	283	329	315	463	652
	68.8	661	671	484	333	305	346	331	482	671
鉄	65.0	1690	<u>1740</u>	1230	802	775	842	793	1230	1740
塔如	60.8	1730	<u>1780</u>	1270	843	746	882	829	1280	1780
当り	56.5	3100	<u>3200</u>	2260	1450	1390	1510	1380	2350	3200
	52.3	3160	<u>3270</u>	2340	1520	1340	1580	1440	2420	3270
	48.0	4280	<u>4390</u>	3150	1970	1870	2040	1770	3380	4390
	40.2	4410	4510	3280	2080	1790	2140	1830	3510	4510
	38.2	<u>5920</u>	5300	4110	2530	2480	2620	2200	4410	5920

表 3-9 最大応答軸力一覧表(基準地震動 S s, g1 通り-gD 通り間主柱材)

注:下線部分は最大値を示す。

表 3-10 最大応答軸力一覧表(基準地震動 S s, R2 通り-RD 通り間主柱材)

部位	T.M.S.L.	最大応答軸力 (kN)											
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値			
	80.0												
	76.25	<u>22. 6</u>	18.9	19.3	16.5	17.3	16.3	17.0	16.9	22.6			
	72.5	672	956	498	467	491	487	508	484	956			
	68.8	695	982	519	482	505	502	526	503	982			
鉄	65.0	1780	2560	1300	1260	1380	1330	1340	1280	2560			
塔朝	60.8	1820	2610	1350	1280	1350	1340	1370	1330	2610			
引	56.5	3280	4760	2390	2330	2510	2450	2460	2470	4760			
	52.3	3360	<u>4850</u>	2460	2390	2520	2510	2510	2550	4850			
	48.0	4480	6600	3280	3290	3460	3470	3430	3530	6600			
	40.2	4610	<u>6760</u>	3400	3390	3560	3580	3530	3670	6760			
	38.2	6090	8720	4520	4380	4720	4620	4550	5120	8720			

部	T.M.S.L.				最大応答軸力 (kN)					
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	85.0									
笛	80.0	<u>55. 7</u>	43.5	46.4	38.4	39.2	40.1	41.0	43.2	55.7
	76.25	130	102	109	90.0	91.8	93.9	96.0	101	130
	72.5	366	287	305	253	258	263	269	284	366
身	65.0	437	343	364	302	309	315	321	338	437
制	56.5	565	446	471	392	401	406	415	435	565
	48.0	668	530	556	465	477	484	489	511	668
	40.2	874	702	732	615	632	643	639	661	874
	38.2	<u>1110</u>	904	945	802	814	835	822	822	1110

表 3-11 最大応答軸力一覧表(基準地震動 S s, 筒身部)

注:下線部分は最大値を示す。

表 3-12 最大応答曲げモーメント一覧表(基準地震動 S s, g2 通り-gC 通り間主柱材)

部	T.M.S.L.				最大応答曲	ョげモーメン	ィト (kN・m)			
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	76.25	19.0	<u>24. 4</u>	13.8	12.6	13.5	13.3	13.6	13.9	24.4
	72.5	42.2	41.6	31.4	18.4	20.7	20.3	19.6	30.5	42.2
	68.8	79.2	<u>89. 3</u>	58.3	43.9	49.4	46.2	50.2	58.9	89.3
鉄	65.0	106	107	79.2	46.3	52.7	51.4	49.7	73.9	107
塔朝	60.8	62.4	<u>67. 6</u>	46.4	33.9	35.8	36.1	38.1	41.9	67.6
引	56.5	285	277	211	125	136	138	133	211	285
	52.3	455	509	336	233	269	247	265	358	509
	48.0	442	458	329	199	213	223	218	331	458
	40.2	224	233	165	115	116	129	116	166	233
	38.2	2270	2160	1660	1050	1100	1120	1040	2040	2270

部位	T.M.S.L.				最大応答曲	げモーメン	ィト (kN・m)			
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	0.00	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	76.25	18.6	<u>21. 5</u>	13.5	10.5	10.8	11.0	11.2	13.5	21.5
	72.5	38.4	<u>58.6</u>	27.0	32.6	34.4	34.2	32.7	25.9	58.6
	68.8	72.9	<u>95. 2</u>	52.2	51.4	54.1	53.8	53.4	51.5	95.2
鉄	65.0	97.2	149	70.7	82.8	87.2	86.8	82.7	65.5	149
塔如	60.8	62.3	<u>86. 1</u>	46.4	50.1	51.8	52.7	49.9	41.9	86.1
剖	56.5	263	398	190	215	228	225	215	187	398
	52.3	428	536	303	275	295	288	287	318	536
	48.0	423	645	301	352	379	372	365	298	645
	40.2	218	313	159	177	189	187	186	153	313
	38.2	2290	2930	1640	1590	1800	1670	1630	1890	2930

表 3-13 最大応答曲げモーメント一覧表(基準地震動 S s, g1 通り-gC 通り間主柱材)

注:下線部分は最大値を示す。

表 3-14 最大応答曲げモーメント一覧表(基準地震動 S s, g1 通り-gD 通り間主柱材)

部	T. M. S. L.	最大応答曲げモーメント (kN·m)									
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値	
	80.0	0.00	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	76.25	18.6	<u>23. 9</u>	13.5	12.1	13.2	12.8	13. 2	13.5	23.9	
	72.5	39.8	<u>40. 4</u>	29.2	19.8	17.7	20.7	19.3	29.0	40.4	
	68.8	72.9	<u>87. 8</u>	52.2	40.6	42.5	44.1	48.1	53.2	87.8	
鉄	65.0	103	103	75.7	50.2	45.6	53.3	50.4	73.5	103	
塔朝	60.8	<u>67. 2</u>	66.9	50.1	35.4	32.0	38.3	39.1	46.6	67.2	
詽	56.5	264	271	196	133	116	140	125	197	271	
	52.3	428	487	303	218	240	237	254	318	487	
	48.0	450	464	334	221	188	231	211	331	464	
	40.2	224	235	172	130	121	139	126	153	235	
	38.2	2290	1970	1640	978	1080	1070	1140	1890	2290	

部	T.M.S.L.				最大応答曲	ョげモーメン	・ト (kN・m)			
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	0.00	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	76.25	19.0	<u>22. 0</u>	13.8	10.4	10.9	11.0	11.3	13.9	22.0
	72.5	42.2	<u>59. 4</u>	31.4	29.1	30.7	30.4	31.3	30.5	59.4
	68.8	79.2	<u>99. 5</u>	58.3	46.9	51.1	49.5	54.7	58.9	99.5
鉄	65.0	106	150	79.2	73.6	79.9	77.3	80.7	73.9	150
塔如	60.8	67.2	<u>85. 7</u>	50.1	45.2	47.8	47.6	50.4	46.6	85.7
剖	56.5	285	400	211	196	207	205	209	211	400
	52.3	455	555	336	254	283	268	285	358	555
	48.0	449	636	333	323	346	342	346	331	636
	40.2	224	296	170	153	166	166	171	166	296
	38.2	2270	3120	1660	1740	1920	1820	1770	2040	3120

表 3-15 最大応答曲げモーメント一覧表(基準地震動 S s, _R2 通り-_RD 通り間主柱材)

注:下線部分は最大値を示す。

表 3-16 最大応答曲げモーメントー覧表(基準地震動 Ss, 筒身部)

部位	T.M.S.L.		最大応答曲げモーメント (kN·m)										
位	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値			
	85.0	0.00	<u>0.00</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
笸	80.0	939	<u>1150</u>	631	605	664	623	787	707	1150			
	76.25	2290	2860	1600	1450	1590	1490	1890	1740	2860			
	72.5	2000	2580	1540	1380	1590	1470	1880	1410	2580			
身	65.0	2600	3040	1920	1710	1900	1820	2220	1810	3040			
判	56.5	3030	4200	2350	2260	2730	2430	2870	2550	4200			
	48.0	5020	6460	3220	3120	3850	3460	3890	4580	6460			
	39.0	<u>1890</u>	<u>1890</u>	1370	1060	1080	1090	1120	1540	1890			
	38.2	2040	2180	1510	1280	1190	1330	1320	1770	2180			

4. 建屋応答の不確かさを考慮した検討に用いる地震動

主排気筒の建屋応答の不確かさを考慮した検討に用いる地震動の選定結果を表4-1に 示す。地震動の選定にあたり、基本ケースにおける建屋応答の確認は、以下の資料に基 づき実施した。

• V-2-7-2-1 「主排気筒の耐震性についての計算書」

<mark>表 4-</mark>	-1 建屋応答の不確か	さを考慮した検討に用いる地震	貢動				
	建屋名	建屋応答の不確かさを考慮 した検討に用いる地震動					
	是座石	基準地震動 S s					
	主排気筒	Ss-1, Ss-2, Ss-8					

別紙3-2 原子炉建屋の材料物性の不確かさを考慮した地震応答解 析結果

1.	概要	 別紙 3-2-1
2.	地震応答解析結果	 別紙 3-2-1

1. 概要

本資料は,主排気筒を対象とし,「原子炉建屋の地震応答計算書に関する補足説明資料」のうち,別紙3「地震応答解析における材料物性の不確かさに関する検討」に基づ く原子炉建屋の応答を入力地震動として,原子炉建屋の材料物性の不確かさ(以下「建 屋応答の不確かさ」という。)を考慮した地震応答解析結果について示すものである。 建屋応答の不確かさを考慮した検討に用いる地震動は,主排気筒の応答への影響が大 きいSs-1,Ss-2及びSs-8である(別紙3-1「原子炉建屋の材料物性の不確かさを考慮し

た検討に用いる地震動の選定について」参照)。

入力地震動,固有値解析結果及びSs-1による地震応答解析の結果は,別紙3「地震応 答解析における原子炉建屋の材料物性の不確かさに関する検討」に示している。 本資料では,Ss-2及びSs-8による地震応答解析結果について示す。

2. 地震応答解析結果

入力地震動の組合せを表2-1に、入力地震動の時刻歴波形を図2-1~図2-12に示す。 なお、図中の○印は、最大値発生時を示す。Ss-2は、3方向(5成分)(水平2方向(並 進・回転)及び鉛直方向)の同時入力とし、Ss-8は、2方向(3成分)(水平1方向(並 進・回転)及び鉛直方向)の同時入力とする。なお、Ss-2のケース2以外の全ケース、 Ss-8のケース3及びケース6において誘発上下動を考慮している。

建屋応答の不確かさを考慮したSs-2及びSs-8に対する地震応答解析結果を図2-13~ 図2-20に示す。なお、図2-17及び図2-20では、以下の主柱材の最大応力を包絡した ものを「鉄塔部 主柱材包絡」として示す。

- ・原子炉建屋の_R1通りと_RC通りの交点に位置する主柱材
- ・原子炉建屋の_R1通りと_RD通りの交点に位置する主柱材
- ・原子炉建屋の_R2通りと_RC通りの交点に位置する主柱材
- ・原子炉建屋の_R2通りと_RD通りの交点に位置する主柱材

また、制震装置(オイルダンパー)の最大応答値及び許容値を表2-2に示す。

Ss-1の結果と同様にSs-2及びSs-8の結果は,ケース1(基本ケース)に対し,いずれ の方向についても,各検討ケースの最大応答加速度,最大応答変位,最大応答軸力,最 大応答曲げモーメントはおおむね同等であることを確認した。また,制震装置(オイル ダンパー)の最大応答値は許容値以下である。

(a) Ss-2										
	入力均	也震動の糺	且合せ(Sa	s-2, 3方	向(5成分	分)同時入力)				
建屋応答の不確かさ		水平フ	方向 <mark>*1</mark>		鉛直					
検討ケース	NS 📿	方向	EW 🔎	方向	方向 <mark>*1</mark>	備考 <mark>*</mark> 2				
	並進	回転	並進	回転	並進					
ケース 1 (基本ケース)	0	0	0	0	0	誘発上下動考慮				
ケース 2 (建屋剛性+σ, 地盤剛性+σ)	0	0	0	0	0	_				
ケース 3 (建屋剛性-σ, 地盤剛性-σ)	0	0	0	0	0	誘発上下動考慮				
ケース 4 (建屋剛性コア平均)	0	0	0	0	0	誘発上下動考慮				
ケース 5 (建屋剛性-2σ)	0	0	0	0	0	誘発上下動考慮				
ケース 6 (回転ばね低減)	0	0	0	0	0	誘発上下動考慮				

表2-1 入力地震動の組合せ

注記*1:組み合わせる成分を「○」で,組み合わせない成分を「─」で示す。

*2:誘発上下動を考慮しない場合は「一」で示す。

(b) Ss-8

	入力地	也震動の維	1合せ(Se	s-8, 2方	向(3 成分	分)同時入力)
建屋応答の不確かさ		水平ナ	テ向 <mark>*1</mark>		鉛直	
検討ケース	NS 方向		EW フ	方向	方向 <mark>*1</mark>	備考 <mark>*</mark> 2
	並進	回転	並進	回転	並進	
ケース 1 (基本ケース)	0	\bigcirc	_		\bigcirc	_
ケース 2 (建屋剛性+σ, 地盤剛性+σ)	0	0			0	
ケース 3 (建屋剛性-σ, 地盤剛性-σ)	0	0			0	誘発上下動考慮
ケース 4 (建屋剛性コア平均)	0	0	_		0	_
ケース 5 (建屋剛性-2σ)	0	0	—	_	0	_
ケース 6 (回転ばね低減)	0	0			0	誘発上下動考慮
		>		2 . 5 . 15		

注記*1:組み合わせる成分を「〇」で,組み合わせない成分を「―」で示す。

*2:誘発上下動を考慮しない場合は「―」で示す。

別紙 3-2-6

別紙 3-2-9

別紙 3-2-12

別紙 3-2-14

図2-10 入力地震動の加速度時刻歴波形 (ケース5, Ss-8)

図2-13 最大応答加速度(Ss-2, NS方向)(1/2)

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

図2-13 最大応答加速度(Ss-8, NS方向)(2/2)

鉄塔部 3 ケー ケース3 ケース5 ス4 ケース6 188 159 162177 163 137 141 154133 111 114 125 82.9 68.4 70.2 77.5 42.0 33.7 34.8 38.8 14.0 10.6 11.0 12.5 2.05 1.51 1.55 1.84 0.00 0.00 0.00 0.00 注:ケース1…工認モデル(基本ケース),ケース2…建屋剛性+ σ ・地盤剛性+ σ ,

(mm)

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

(a) 鉄塔部

図2-14 最大応答変位(Ss-8, NS方向)(2/2)

別紙 3-2-24

(a) 鉄塔部 主柱材包絡

別紙 3-2-27

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

図2-18 最大応答加速度(Ss-8,鉛直方向)(2/2)

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

(a) 鉄塔部

図2-19 最大応答変位(Ss-2, 鉛直方向)(1/2)

			6.4 M	the lose		(mm)
T.M.S.L.			鉄均	동哥		
(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6
	10 5	10.0		10 5	10.0	
80.0	13.7	12.2	15.8	13.5	13.8	15.0
76.25	14.0	12.5	16.2	13.8	14.1	15.4
72 5	15.4	13.7	17 7	15.2	15.5	16.9
12.0	10.4	10.1	11.1	10.2	10.0	10.5
65.0	11.2	9.90	13.0	11.0	11.3	12.4
56.5	9.48	8.24	11.1	9.30	9.52	10.5
48.0	5.06	4.21	6.19	4.94	5.10	5.73
40.2	2.55	1.94	3.41	2.52	2.56	3.06
38.2	0.00	0.00	0.00	0.00	0.00	0.00
È:ケース1	…工認モデル	(基本ケース)	,ケース2…建	屋剛性+σ・±	也盤剛性+σ,	
ケース3	…建屋剛性— o	· ・地盤剛性-	σ,			

ケース4…建屋剛性コア半均,

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

図2-19 最大応答変位(Ss-8, 鉛直方向)(2/2)

			A.4 1-	the first		(kN)
T.M.S.L.			鉄均	各部		
(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6
80.0						
76.25	20.9	21.4	22.2	20.4	21.0	21.6
72.5	956	772	1030	908	986	1070
68.75	982	794	1060	934	1010	1100
65.0	2560	2060	2760	2420	2640	2880
60.75	2610	2100	2810	2470	2690	2930
56.5	4760	3820	5120	4500	4910	5380
52.25	4850	3900	5210	4590	5000	5470
48.0	6600	5280	7060	6230	6800	7460
40.2	6760	5400	7220	6390	6960	7630
38.2	8720	7070	9240	8260	8970	9770
注:ケース1 ケース3		 (基本ケーン σ・地盤剛性) 	ス), ケース: 生一σ,	2…建屋剛性-	⊢ σ ・地盤剛	性+σ,

ケース4…建屋剛性コア平均, ケース5…建屋剛性-2σ,ケース6…回転ばね低減

						(kN)
T.M.S.L.			筒具	才部		
(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6
85.0						
80.0	43.5	43.9	42.4	42.9	43.8	43.5
76.25	102	103	99.4	100	103	102
72.5	287	290	280	283	289	287
65.0	343	346	334	338	345	343
56.5	446	450	434	439	448	446
48.0	530	535	517	523	533	530
39.0	702	708	684	692	706	702
38.2	904	910	881	893	909	904
注:ケース1 ケース3 ケース4	 …工認モデル …建屋剛性 – …建屋剛性= 	 (基本ケーズ) σ・地盤剛性 ア平均, 	ス), ケース: 生-σ,	2…建屋剛性-	+σ•地盤剛	±+σ,

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

(b) 筒身部

図2-20 最大応答軸力(Ss-2)(1/2)

別紙 3-2-33

	(kN)											
T.M.S.L.			鉄均	答部								
(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6						
80_0												
76.25	18.1	18.7	17.6	17.6	18.2	18.0						
72.5	484	450	540	481	488	523						
68.75	503	470	559	500	507	543						
65.0	1280	1190	1440	1280	1290	1390						
60.75	1330	1230	1480	1320	1330	1440						
56.5	2470	2270	2750	2460	2470	2660						
52.25	2550	2350	2830	2540	2550	2750						
48.0	3530	3230	3920	3500	3530	3780						
40.2	3670	3360	4060	3630	3670	3920						
38.2	5120	4670	5670	5050	5130	5440						
注:ケース1	…工認モデル	(基本ケーン)	ス),ケース	2…建屋剛性-	⊢σ・地盤剛	±+σ,						

(kN)

ケース3…建屋剛性-σ・地盤剛性-σ, ケース4…建屋剛性コア平均, ケース5…建屋剛性-2σ,ケース6…回転ばね低減

(a) 鉄塔部 主柱材包絡

	(kN)												
T.M.S.L.			筒身	≹部									
(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6							
85.0													
80.0	43.2	43.7	42.3	42.0	43. 7	43.2							
76.25	101	102	99. 0	98.3	102	101							
72.5	284	287	277	276	287	283							
65.0	338	342	331	329	342	338							
56.5	435	439	426	423	440	435							
48.0	511	516	501	497	517	511							
39.0	661	666	648	644	668	661							
38.2	822	828	808	804	830	822							
注 : ケース1 ケース3		 (基本ケーン) σ・地盤剛性 	ス), ケース: 生一σ,	2…建屋剛性-	⊢ σ · 地盤剛	性+σ,							

ケース3…建屋町112-6・地盤町12-6, ケース4…建屋剛性コア平均, ケース5…建屋剛性-26,ケース6…回転ばね低減

<mark>(b) 筒身部</mark>

図2-20 最大応答軸力 (Ss-8) (2/2)

表2-2 制震装置(オイルダンパー)の最大応答値及び許容値

		新 索 庙					
	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6	计谷恒
速度 (m/s)	1.74	1.53	1.91	1.70	1.76	1.90	2.60
変位 (mm)	133	114	149	130	135	146	175

(a) Ss-2

(b) Ss-8

		新索店					
	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6	計谷旭
速度 (m/s)	1.42	1.30	1.58	1.40	1.43	1.53	2.60
変位 (mm)	117	104	132	115	118	126	175

別紙3-3 減衰をレーリー減衰にした場合の地震応答解析結果

1.	概要		• • • •	• • •	 	 	 	•••	 • • •	 • • •	• • •		• • • • •	別紙 3-3-1
2.	地震応	答解析	結果	•	 	 	 	•••	 • • •	 • • •		• • •		別紙 3-3-2

1. 概要

V-2-7-2-1「主排気筒の耐震性についての計算書」では、減衰を剛性比例型減衰(鉄 塔部の水平方向1次固有振動数に対し、鉄骨造は2%、鉄筋コンクリート造(基礎)は5% を設定)とした地震応答解析について示している。

本資料では、減衰をレーリー減衰にした場合の地震応答解析を行い、剛性比例型減衰の解析結果と比べることで、V-2-7-2-1「主排気筒の耐震性についての計算書」におけ る減衰設定の妥当性を確認する。詳細には、以下に示す検討を実施する。

・ Ss-1を用いたケース1(基本ケース)に対する検討

・ Ss-2を用いたケース6(回転ばね低減)に対する検討

Ss-1を用いたケース1(基本ケース)に対する検討では、全周期帯の応答が大きく、 耐震評価への影響も大きい基準地震動Ss-1を用いた基本ケースを選定し、減衰の違いに よる影響を確認することを目的とする。

Ss-2を用いたケース6(回転ばね低減)に対する検討では、V-2-7-2-1「主排気筒の 耐震性についての計算書」における断面算定結果(検定値)が最も厳しくなる検討ケー スを対象に,減衰をレーリー減衰にした場合においても断面算定結果が許容値を超過し ないことを確認することを目的とする。

なお,入力地震動は,別紙3「地震応答解析における原子炉建屋の材料物性の不確か さに関する検討」に基づき,Ss-1は,2方向(3成分)(NS方向(並進・回転)及び鉛直 方向)同時入力とし,Ss-2は,3方向(5成分)(水平2方向(並進・回転)及び鉛直方向) 同時入力とする。

また,固有値解析結果は,別紙3「地震応答解析における原子炉建屋の材料物性の不 確かさに関する検討」に示すケース1(基本ケース)と同一である。 2. 地震応答解析結果

固有値解析結果を表2-1に,解析ケースを表2-2に示す。

レーリー減衰は,鉄塔NS方向の1次振動数(3.69Hz)と主要モードが存在する12.0Hz に対し,鋼材の減衰定数(2%)となるように設定した。

減衰をレーリー減衰にした場合の基準地震動Ssに対する地震応答解析結果を図2-1 ~図2-14に示す。なお、図2-7、図2-8、図2-13及び図2-14では、以下の主柱材の 最大応力を包絡したものを「鉄塔部 主柱材包絡」として示す。

・原子炉建屋のR1通りとRC通りの交点に位置する主柱材

- ・原子炉建屋の_R1通りと_RD通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRD通りの交点に位置する主柱材

また,制震装置(オイルダンパー)の最大応答値及び許容値を表2-3に,地震応答解 析結果に基づく断面算定結果を表2-4に示す。

減衰をレーリー減衰にした場合の地震応答解析結果は剛性比例型減衰に比べ,一部の 応答は大きくなるものの,制震装置(オイルダンパー)の最大応答値は許容値以下であ り,減少傾向にある。

また,各部材の断面算定結果について,Ss-1を用いたケース1(基本ケース)に対す る検討では,筒身部B-C間を除き,レーリー減衰の断面算定結果(検定値)は剛性比 例型減衰の断面算定結果(検定値)以下となっている。なお,筒身部B-C間について も検定値が0.71(剛性比例型減衰)から0.72(レーリー減衰)に増加してはいるものの, その影響は軽微である。

一方で、Ss-2を用いたケース6(回転ばね低減)に対する検討では、剛性比例型減衰 に比ベレーリー減衰の検定値が大きくなる部材がいくつかあり、検定値の変動は筒身部 が大きい傾向である。しかしながら、筒身部のうち、レーリー減衰の検定値が最大とな るB-C間において、検定値は0.83(剛性比例型減衰)及び0.87(レーリー減衰)と変 動は小さく、いずれも裕度は確保されている。また、全部材中で最も検定値が大きくな る主柱材D-E間について、剛性比例型減衰では検定値は0.99であったが、レーリー減 衰では検定値は0.95まで低減している。

以上より,減衰をレーリー減衰にした場合についても耐震性に影響がないことを確認 するとともに, V-2-7-2-1「主排気筒の耐震性についての計算書」における減衰設定が 妥当であることを確認した。

	田右	田右垢動粉	田右国期	刺激係数					
方向	回行 モード	回有派勤 奴 (Hz)	回有周期 (s)	X (NS方向)	Y (EW方向)	Z (鉛直方向)			
	筒身1次	0.98	1.021	1.528	0.000	0.000			
NS	筒身2次	6.63	0.151	-1.201	0.000	0.000			
N2	鉄塔1次	3.69	0.271	-1.616	0.000	0.000			
	鉄塔2次	10.74	0.093	1.067	0.000	0.001			
	筒身1次	0.98	1.018	0.000	1.511	0.000			
FW	筒身2次	6.67	0.150	0.000	-1.186	0.000			
ĽW	鉄塔1次	3. 71	0.269	0.000	-1.538	0.000			
	鉄塔2次	11.15	0.090	0.000	1.035	0.000			

表2-1 固有值解析結果(水平方向)

表2-2 検討ケース

(a) Ss-1を用いたケース1(基本ケース)に対する検討

検討ケース	地震動	建屋応答の不確	『かさ(基本ク	N b - L	/*** +*	
		コンクリート 剛性	回転ばね 定数	地盤 剛性	减衰	加方
①ケース 1 (工認モデル)	Ss-1	実強度 (43.1N/mm ²)	100%	標準 地盤	剛性比例型	計算書* 記載
レーリー減衰	Ss-1	実強度 (43.1N/mm ²)	100%	標準 地盤	レーリー	

(b) Ss-2を用いたケース6(回転ばね低減)に対する検討

		建屋応答の不確	寉かさ(ケー			
検討ケース	地震動	コンクリート 剛性	回転ばね 定数	地盤 剛性	减衰	佩考
⑥ケース 6 (回転ばね低減)	Ss-2	実強度 (43.1N/mm ²)	50%	標準 地盤	剛性比例型	計算書* 記載
レーリー減衰	Ss-2	実強度 (43.1N/mm ²)	50%	標準 地盤	<u> </u>	

注:下線部は、V-2-7-2-1「主排気筒の耐震性についての計算書」記載ケースとの差異 を示す。

注記*:「計算書」とは、V-2-7-2-1「主排気筒の耐震性についての計算書」を指す。

図2-1 最大応答加速度(Ss-1を用いたケース1(基本ケース)に対する検討,NS方向)

別紙 3-3-4

図2-2 最大応答加速度(Ss-2を用いたケース6(回転ばね低減)に対する検討,NS方向)

図2-3 最大応答加速度(Ss-2を用いたケース6(回転ばね低減)に対する検討,EW方向)

図2-4 最大応答変位(Ss-1を用いたケース1(基本ケース)に対する検討,NS方向)

別紙 3-3-7

図2-5 最大応答変位(Ss-2を用いたケース6(回転ばね低減)に対する検討,NS方向)

図2-6 最大応答変位(Ss-2を用いたケース6(回転ばね低減)に対する検討,EW方向)

(b) 筒身部

図2-7 最大応答曲げモーメント(Ss-1を用いたケース1(基本ケース)に対する検討)

図2-8 最大応答曲げモーメント(Ss-2を用いたケース6(回転ばね低減)に対する検討)

図2-9 最大応答加速度(Ss-1を用いたケース1(基本ケース)に対する検討,鉛直方向)

別紙 3-3-12

(Ss-2を用いたケース6(回転ばね低減)に対する検討,鉛直方向)

図2-11 最大応答変位(Ss-1を用いたケース1(基本ケース)に対する検討,鉛直方向)

(b) 筒身部

図2-12 最大応答変位(Ss-2を用いたケース6(回転ばね低減)に対する検討,鉛直方向)

図2-13 最大応答軸力(Ss-1を用いたケース1(基本ケース)に対する検討)

図2-14 最大応答軸力(Ss-2を用いたケース6(回転ばね低減)に対する検討)

	オイルダンパーの最大応答値						
	Ss-1を ケース 1(基 に対す	用いた (本ケース) る検討	Ss-2を ケース 6(回 に対す	許容値			
	剛性比例型 減衰	レーリー 減衰	剛性比例型 減衰	レーリー 減衰			
速度 (m/s)	1.91	1.86	1.90	1.79	2.60		
変位 (mm)	124	118	146	139	175		

表2-3 制震装置(オイルダンパー)の最大応答値及び許容値

表2-4(1/2) 断面算定結果

(a) 主柱材

		Ss-17	を用いたク	ケース1(基	本ケース)に対す	る検討	Ss-2ð	を用いたク	ース6(回	転ばね低減	載) に対す	⁻る検討	
標高	部	岡山	剛性比例型減衰			レーリー減衰			剛性比例型減衰			レーリー減衰		
T.M.S.L.	材	評価月	用応力		評価月	用応力		評価月	用応力		評価月	11応力		
(m)	間	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	
80.0 72.5	B - C	24.4	19.0	0.14	29.2	18.7	0.14	21.6	27.3	0.19	25.3	26.4	0.18	
65 0	C - D	695	79.2	0.54	702	78.9	0.54	1100	110	0.79	1050	108	0.77	
56.5	D - E	1820	106	0.62	1820	106	0.62	2930	168	0.99	2800	162	0.95	
48.0	E - F	3360	455	0.62	3320	447	0.61	5470	618	0.93	5250	599	0.90	
40.2	$\mathbf{F} - \mathbf{G}$	4610	455	0.52	4510	447	0.51	7630	729	0.84	7390	707	0.81	

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) 斜材

		Ss-1を用い7	たケース1(基	本ケース) に	対する検討	Ss-2を用いた	ケース6(回	転ばね低減)	こ対する検討	
標高	部	剛性比例	问型減衰	レーリ	一減衰	剛性比例	问型減衰	レーリー減衰		
T. M. S. L. (m)	材間	評価用応力	~	評価用応力	~	評価用応力	~	評価用応力		
,	1.4	N (kN)	f _c	N (kN)	$\frac{0}{f_{c}}$	N (kN)	f _c	N (kN)	f _c	
80.0	B - C	655	0.73	646	0.72	633	0.71	611	0.69	
65 0	C - D	758	0.49	746	0.48	738	0.47	713	0.46	
56.5	D - E	942	0.33	928	0.33	968	0.34	932	0.33	
48.0	$\mathrm{E}-\mathrm{F}$	1100	0.21	1090	0.21	1130	0.22	1120	0.22	
40.2	$\mathbf{F} - \mathbf{G}$	1210	0.14	1230	0.14	1360	0.16	1430	0.17	

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(c) 水平材

		Ss-1を用い	たケース1(基	本ケース) に	対する検討	Ss-2を用いたケース6(回転ばね低減)に対する検討				
標高	部材	剛性比例型減衰		レーリ	ー減衰	剛性比例	间型減衰	レーリー減衰		
T. M. S. L.	位	評価用応力		評価用応力		評価用応力		評価用応力		
(m)	闁	N (kN)	$\frac{\sigma_{c}}{f_{c}}$	N (kN)	$\frac{\sigma_{c}}{f_{c}}$	N (kN)	$\frac{\sigma_{c}}{f_{c}}$	N (kN)	$\frac{\sigma_{\rm c}}{f_{\rm c}}$	
80.0	В	58.7	0.08	58.8	0.08	63.6	0.09	62.3	0.09	
72.5	С	73. 2	0.12	73.0	0.12	92.9	0.15	90. 9	0.14	
65.0	D	139	0.10	139	0.10	178	0.12	181	0.13	
56.5	Е	207	0.15	205	0.15	326	0.24	325	0.24	
48.0	F	220	0.11	215	0.11	325	0.16	306	0.15	

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

表2-4(2/2) 断面算定結果

(d) 筒身部

		Ss	-1を用い	ヽたケース1(基	本ケー	ス) に対	すする検討	Ss-	2を用い	たケース6 (回	転ばね	氐減)に	対する検討
海 古	HTT		剛性比例型減衰 レーリーズ			一減衰	-減衰 剛性比例型減衰			レーリー減衰			
信 向 TMSI	すり 大才	評価	用応力		評価	用応力		評価	用応力		評価	用応力	
(m)	間	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{{}_{\rm c}{}_{\rm f}{}_{\rm cr}} + \frac{\sigma_{\rm b}}{{}_{\rm b}{}_{\rm f}{}_{\rm cr}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{{}_{\rm c} {\rm f}_{\rm c r}} + \frac{\sigma_{\rm b}}{{}_{\rm b} {\rm f}_{\rm c r}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{{}_{\rm c} {\rm f}_{\rm cr}} + \frac{\sigma_{\rm b}}{{}_{\rm b} {\rm f}_{\rm cr}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{{}_{\rm c}{}_{\rm f}{}_{\rm cr}} + \frac{\sigma_{\rm b}}{{}_{\rm b}{}_{\rm f}{}_{\rm cr}}$
85.0 80.0	A-B	24.2	938	0.29	25.1	967	0.29	21.7	1090	0.33	21.7	1160	0.35
72.5	B - C	163	2290	0.71	168	2330	0.72	152	2720	0.83	148	2850	0.87
65.0	C - D	227	2290	0.72	209	2290	0.72	203	2450	0.77	206	2650	0.83
56.5	D - E	301	3020	0.57	314	2910	0.55	256	3630	0.67	274	3510	0.65
48 0	$\mathrm{E}-\mathrm{F}$	282	3980	0.73	292	3830	0.71	396	4570	0.85	421	4410	0.82
39.0	$\mathbf{F} - \mathbf{G}$	379	5020	0.50	381	4890	0.49	539	5660	0.57	562	5530	0.56

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づき、時刻歴断面算定結果を示す。

別紙4 共振風速及び渦励振について

目 次

1.	概要	別紙 4-1
2.	検討方針	別紙 4-2
3.	渦励振の発生の有無 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-4
3.	1 鉄塔部(個材の渦励振の発生の有無)	別紙 4-4
	3.1.1 判定方法	別紙 4-4
	3.1.2 判定結果	別紙 4-6
	3.1.3 実状に応じた見直しを考慮した判定結果 ・・・・・・・・・・・・・・	別紙 4-7
3.	2 筒身部	別紙 4-10
4.	渦励振を考慮した場合の解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-11
4.	1 渦励振による風直交方向荷重	別紙 4-11
4.	2 解析結果	別紙 4-13

1. 概要

本資料は、V-2-7-2-1「主排気筒の耐震性についての計算書」(以下「今回工認」とい う。)における断面算定表について、記載されている共振風速の設計上の取扱いを説明し、 渦励振の発生の有無の確認及び渦励振による風直交方向荷重による検討について示す資 料である。

2. 検討方針

主排気筒のような煙突構造物では、カルマン渦の発生周波数と構造物の固有振動数が 一致する風速で、風直交方向に大きな振動(渦励振)が発生するおそれがある。この風 速を共振風速として、今回工認における断面算定表に記載している。記載した共振風速 を表 2-1 に示す。

鉄塔部(主柱材、斜材及び水平材)における共振風速Vrは、次式により算定する。

 $V_r = D \cdot f_L / S_t \cdots (2.1)$

ここで,

- D : 円形断面個材の外径(m)
- f_L:個材の曲げ振動の1次固有振動数(Hz)
- S_t: ストローハル数(円形断面につき 0.18)

なお,表2-1に示した鉄塔部の共振風速は,柏崎刈羽原子力発電所7号機『柏崎刈羽 原子力発電所第7号機の工事計画の認可について』(3 資庁第6675 号 平成3年8月23 日)(以下「建設時工認(認可)」という。)にて算出した値を用いている。

筒身部における共振風速U₁は,次式により算定する。

 $U_r = 5 \cdot f_L \cdot D_m \cdots (2. 2)$ $z \in \mathcal{C},$

f_L:風直交方向振動の1次固有振動数(=2.88Hz)

D_m:円形断面を有する煙突の高さ2H/3における外径(=2.416m)

H : 煙突の基準高さ(=73.0 m)

なお,表2-1に示した筒身部の共振風速は,柏崎刈羽原子力発電所7号機『工事計画 届出書』(総官発20第180号 平成20年8月25日)(以下「中越沖地震に伴う補強時 (届出)」という。)にて算出した値を用いている。

「煙突構造設計指針」((社)日本建築学会,2007年)に基づき,鉄塔部の個材及び筒 身部に対する渦励振について検討を行う。検討フローを図2-1に示す。

表 2-1 今回工認における共振風速

(a) 主柱材

主柱材	部材間	共振風速 V _r (m/s)
ϕ 318.5 \times 6	B - C	175
ϕ 406. 4 × 6. 4	C - D	414
ϕ 508.0 \times 7.9	D – E	504
ϕ 609. 6 × 16	E - F	719
ϕ 711. 2×19	F - G	284
(c)	水平材	

水平材	部材 位置	共振風速 V _r (m/s)
ϕ 216. 3 × 4. 5	В	29
ϕ 216. 3 × 4. 5	С	26
ϕ 318.5×6	D	53
ϕ 318.5×6	Е	48
ϕ 406. 4×6. 4	F	112

	部	共振風速
斜材	材	V r
	間	(m/s)
ϕ 216. 3 × 4. 5	B - C	35
ϕ 267.4 \times 6	C - D	52
ϕ 355. 6 × 7. 9	D – E	118
ϕ 406. 4 × 12. 7	E - F	149
ϕ 558.8×16	F - G	103

(d) 筒身部

筒身部	部 材 間	共振風速 U _r (m/s)
$\phi 2412 \times 6$	A – B	
$\phi 2412 \times 6$	В — С	
$\phi 2412 \times 6$	C - D	24
φ2416× 8	D – E	54
$\phi 2416 \times 8$	E - F	
ϕ 2424 \times 12	F - G	

図 2-1 検討フロー

- 3. 渦励振の発生の有無
- 3.1 鉄塔部(個材の渦励振の発生の有無)
 - 3.1.1 判定方法

鉄塔部について、個材の渦励振に関する判定フローを図 3-1 に示す。

「煙突構造設計指針」((社)日本建築学会,2007年)では,次式の条件を満た す個材に対して,渦励振を考慮するものとしている。

 $U_Z / (f_L \cdot D) \ge 0.83 / S_t$ がつ, $L / D \ge 15 \cdots (3.1)$

ここで,

- Uz: 個材の平均高さZにおける設計風速(m/s),今回工認に示す基準風速(= 40.1m/s)とする。
- f_L:個材の曲げ振動の1次固有振動数(Hz)
- S_t:ストローハル数(円形断面につき 0.18)
- L : 個材の長さ(m)
- D : 円形断面個材の外径(m)

(3. 1)式から, (3. 2)式又は(3. 3)式のいずれかを満たす場合は, 渦励振を考 慮しなくても良いと判断できる。

40.1/ (f $_{\rm L}$ \cdot D) $<$ 0.83/S $_{\rm t}$ \cdots	(3.	2)
$L \neq D < 15 \cdots$	(3.	3)

ここで(3. 2)式に(2. 1)式を代入し、式変形させたものを(3. 4)式に示す。 48.4<Vr

以上より, (3.3)式及び(3.4)式に基づき, 個材の渦励振の発生の有無につい て判定する。

図 3-1 個材の渦励振に関する判定フロー

3.1.2 判定結果

判定結果を表 3-1 に示す。

判定の結果,一部の斜材及び水平材については,(3.3)式及び(3.4)式のいず れも満たさない。しかしながら,判定に用いた個材の長さLや共振風速V_rは, 建設時工認(認可)にて算出した保守的な値を用いている。よって,斜材及び水 平材について実状に応じた見直しを行う。

表 3-1 個材の渦励振に関する判定結果

					1-1-1-1-1			
	部	_	_		共振風速		判定	
主柱材	材	L	D	L/D	V r	(3.3)式	(3. 4)式	渦励振
	間	(m)	(m)		(m/s)	L / D < 15	48.4 $<$ V $_{\rm r}$	の考慮
ϕ 318.5 \times 6	B - C	3.75	0.3185	11. 78	175	ОK	ОK	不要
ϕ 406. 4 × 6. 4	C - D	3.75	0.4064	9.23	414	ОK	ΟK	不要
ϕ 508. 0 × 7. 9	D - E	4.25	0.5080	8.37	504	ΟK	ΟK	不要
ϕ 609. 6×16	E - F	4.25	0.6096	6.98	719	ОK	ΟK	不要
ϕ 711. 2×19	F - G	7.88	0.7112	11.08	284	ΟK	ΟK	不要

(a) 主柱材

(b) 斜材

	部				共振風速	判定				
斜材	材	L	D	L/D	V r	(3.3)式	(3. 4)式	渦励振		
	間	(m)	(m)		(m/s)	L / D < 15	48.4 $<$ V $_{\rm r}$	の考慮		
ϕ 216. 3× 4. 5	B - C	4.54	0.2163	20.99	35	NG	NG	要		
ϕ 267. 4 \times 6	C - D	4.61	0.2674	17.25	52	NG	ОK	不要		
ϕ 355. 6 × 7. 9	D - E	5.09	0.3556	14.32	118	ОK	ОK	不要		
ϕ 406. 4×12. 7	E - F	5.16	0.4064	12.70	149	ОK	ОK	不要		
ϕ 558.8×16	F - G	8.59	0.5588	15.38	103	NG	OK	不要		

(c) 水平材

			-		共振風速	判定				
水平材	部材	L	D	L/D	V r	(3.3)式	(3. 4)式	渦励振		
	11/10	(m)	(m)		(m/s)	L / D < 15	48.4 $<$ V $_{\rm r}$	の考慮		
ϕ 216. 3×4. 5	В	5.00	0.2163	23.12	29	NG	NG	要		
ϕ 216. 3×4. 5	С	5.23	0.2163	24.18	26	NG	NG	要		
ϕ 318. 5×6	D	5.46	0.3185	17.15	53	NG	ОK	不要		
ϕ 318. 5×6	Е	5.73	0.3185	18.00	48	NG	NG	要		
ϕ 406. 4 × 6. 4	F	6.00	0.4064	14.77	112	OK	OK	不要		

3.1.3 実状に応じた見直しを考慮した判定結果

個材の長さLの設定例を図 3-2 に示す。

建設時工認(認可)において,共振風速Vrの算定に用いた個材の長さLには, 接合部を無視した保守的な値を設定している。実際には,接合部間において個材 の曲げ振動が発生し,1次固有振動数fLに影響を及ぼすと考えられる。そのため, 実状に応じた見直しとして,個材の長さLを以下のような設定とする。

・水平材:ガセットの端部-継手のボルト中心間

・斜 材:継手のボルト中心-継手のボルト中心間

なお,個材の曲げ振動の1次固有振動数 f Lを算定する際の境界条件は,保守的 にピン接合-ピン接合とする。

実状に応じた見直しを考慮した判定結果を表 3-2 に示す。

判定の結果,いずれの部材についても(3.3)式又は(3.4)式のいずれかを満た す。

以上より,鉄塔部における個材振動に関し,渦励振を考慮する必要は無いと判 断した。

青枠:斜材(B-C間)の個材長さL,赤枠:水平材(B)の個材長さL
(a) 建設時工認における設定例(施工図*に対し加筆)

青:斜材(B-C間)の個材長さL,赤:水平材(B)の個材長さL
(b) 施工図*を参考とした実状に応じた見直し例

注記*:柏崎刈羽原子力発電所7号機工事の内 発電所本館建物新設工事 原子炉建屋 施工図一覧表(11/16) 排気筒鉄骨工事 図 3-2 個材の長さLの設定例

表 3-2 実状に応じた見直しを考慮した判定結果

(a) 斜	材
-------	---

	部	* 1	1		共振風速	判定	同定		
斜材	材	$L^{\uparrow 1}$	D	L/D^{*2}	V_{r}^{*2}	(3.3)式	(3. 4)式	渦励振	
	間	(m)	(m)		(m/s)	L / D < 15	48.4 $<$ V $_{\rm r}$	の考慮	
ϕ 216. 3× 4. 5	B - C	3.40	0.2163	15.72	62	NG	ΟK	不要	
ϕ 267.4× 6	C - D	3.30	0.2674	12.35	101	ΟK	ΟK	不要	
ϕ 355. 6 × 7. 9	D - E	3.60	0.3556	10.13	150	ΟK	ΟK	不要	
ϕ 406. 4×12. 7	E - F	3.60	0.4064	8.86	195	ΟK	ΟK	不要	
ϕ 558.8 × 16	F - G	5.50	0.5588	9.85	158	OK	ΟK	不要	

注記*1:実状に応じた個材の長さLの見直し結果を示す。

*2:実状に応じた見直しを考慮し再算定した結果を示す。

(b) 水平材

		sk 1	Ð		共振風速	判定				
水平材	部材	L^{*1}	D	L/D^{*2}	V r * 2	(3.3)式	(3. 4)式	渦励振		
	11/10	(m)	(m)		(m/s)	L / D < 15	48.4 $<$ V _r	の考慮		
ϕ 216. 3×4. 5	В	1.70	0.2163	7.86	250	ΟK	ΟK	不要		
ϕ 216. 3×4. 5	С	1.80	0.2163	8.33	223	ΟK	ΟK	不要		
ϕ 318. 5×6	D	1.80	0.3185	5.66	484	ΟK	ΟK	不要		
ϕ 318. 5×6	Е	1.90	0.3185	5.97	435	ΟK	ΟK	不要		
ϕ 406. 4×6. 4	F	1.90	0.4064	4.68	710	OK	OK	不要		

注記*1:実状に応じた個材の長さLの見直し結果を示す。 *2:実状に応じた見直しを考慮し再算定した結果を示す。

3.2 筒身部

「煙突構造設計指針」((社)日本建築学会,2007年)では,次式の条件を満たす煙 突に対しては,渦励振を考慮するものとしている。

 $U_{\rm H}/(f_{\rm L} \cdot D_{\rm m}) \ge 4.2 \cdots (3.5)$

ここで,

- U_H:基準風速 (=40.1m/s)
- f_L:風直交方向振動の1次固有振動数(=2.88Hz)
- D_m:円形断面を有する煙突の高さ2H/3における外径(=2.416m)
- H : 煙突の基準高さ(=73.0 m)

以上を(3.5)式に代入すると(3.6)式となる。

 $40.1/(2.88 \cdot 2.416) = 5.763 \ge 4.2 \cdots (3.6)$

以上より,主排気筒は(3.5)式の条件を満たすため,渦励振による風直交方向荷重 を考慮する必要がある。

- 4. 渦励振を考慮した場合の解析
- 4.1 渦励振による風直交方向荷重

「煙突構造設計指針」((社)日本建築学会,2007年)より,風直交方向荷重の算定 式を(4.1)式に示す。

 $W_{r} = 0.8 \cdot \rho \cdot U_{r}^{2} \cdot C_{r} \cdot \frac{Z}{H} \cdot A_{F} \cdots (4. 1)$

ここで,

- Wr:地表面からの高さZにおける渦励振による風直交方向荷重(N)
- ρ : 空気密度(=1.22kg/m³)
- U_r : 共振風速 (m/s) =5・f_L・D_m (=34.8 m/s*)
 - f_L:風直交方向振動の1次固有振動数(=2.88 Hz)
 - D_m:円形断面を有する煙突の高さ2H/3における外径 (=2.416 m)
- C_r : 共振時風力係数=0.57 $\sqrt{\zeta_L}$ (=1.22)

ζ_L:風直交方向振動の1次減衰定数(=0.218)

- Z : 地表面からの高さ (m)
- H :煙突の基準高さ(=73.0 m)
- A_F: 地表面からの高さZにおける風向き 0° に直角な面に投影した煙突の投影面積 (m²)
- 注記*:今回工認における筒身部の共振風速はU_r=34m/s と示している。渦励振の 有無の判定については,共振風速は小さい方が保守的であるため当該数値 を記載しているが,荷重として考慮する場合は大きい方が保守的であるた め,本評価では,U_r=34.8m/s とする。

以上より算定した筒身部の風直交方向荷重を表 4-1 に示す。

表 4-1 風直交方向荷重(共振風速	34.	8 m/s	s)
----------------	------	-----	-------	----

標高	$0.8 \cdot \rho \cdot U_r^2 \cdot C_r \cdot Z$	見付面積	風荷重
T.M.S.L.	H•1000	$A_{\rm F}$	W r
(m)	(kN/m^2)	(m^2)	(kN)
85.00	1.44	6.0	9
80.00	1.35	10.6	15
76.25	1.26	9.0	12
72.50	1.19	13.6	17
65.00	1.05	19.3	21
56.50	0.875	20.5	18
48.00	0.709	21.2	16
39.00	0.532	10.9	6

(a) 荷重表

注:90°方向及び45°方向の風直交方向荷重の値は同一。

(b) 載荷方向

注:黒は風荷重(風方向荷重),緑は風直交方向荷重を示す。

4.2 解析結果

解析ケースを表 4-2 に、各ケースにおける荷重の載荷方向及び荷重図を表 4-3 に 示す。また、各解析より求まる各部材の発生応力の最大値を表 4-4~表 4-7 に示す。 なお、表 4-4~表 4-7 には比較のため、今回工認に基づく地震荷重による部材応力 を示す。

表 4-4~表 4-7 より,主柱材,水平材及び斜材は渦励振を考慮することで多少応 力は増加するものの,いずれも地震荷重による応力を下回る。一方で,筒身部 E-F 間は,地震荷重を上回る応力が発生している。

筒身部について断面算定結果を表 4-8 に示す。

F値の割増しを考慮することで、いずれの部材についても許容値を下回る。

以上より, 渦励振を考慮した場合でも主排気筒の発生応力は, 評価基準以内となっ ており, 十分な安全余裕を有していることを確認した。

长카	<i>朱</i> 刀 十二	風荷重の組合せ							
使司	門別	風方向	可荷重	渦励振(風直交方向荷重)					
クース	サース名	風速	風方向	風速	風方向				
① 風方向荷重 単独解析	①90NS	40.1m/s	90°方向 (NS)		_				
	①90EW	40.1m/s	90°方向 (EW)		_				
	1)45	40.1m/s	45°方向						
2	②90NS+渦	40.1m/s	90°方向 (NS)	共振風速 (34.8m/s)	90°方向 (EW)				
〕 風直交方向 荷重を考慮	②90EW+渦	40.1m/s	90°方向 (EW)	共振風速 (34.8m/s)	90°方向 (NS)				
した解析	②45+渦	40.1m/s	45°方向	共振風速 (34.8m/s)	135°方向				

表 4-2 解析ケース

表 4-3 各ケースにおける荷重の載荷方向及び荷重図

注:各荷重線の長さは、荷重の大きさを示す。

標高	大四		風荷重*											地震荷重			
T.M.S.L.	材	(1)9	ONS	2901	NS+渦	(1)9	OEW	②90E	W+渦	1	45	24	5+渦		動自	勺 [*]	
(m) 80.0	間	N (kN)	M (kN•m)	N (kN)	M (kN•m)	N (kN)	M (kN·m)	N (kN)	M (kN•m)	N (kN)	M (kN•m)	N (kN)	M (kN•m)	N (kN)	M (kN•m)	地震動 (ケース)	
72 5	В-С	10.2	3.40	10.2	3. 42	10.2	3.46	10.2	3. 48	10.3	2.77	10.3	2.77	21.6	27.3	Ss-2 (ケース6)	
65. 0	C – D	68.2	11.3	68.2	11.3	68.1	10.8	68.1	10.9	65.7	13.0	65.7	13.0	1100	<u>110</u>	Ss-2 (ケース6)	
56.5	D-E	206	11.3	206	11.3	206	11.1	206	11.1	-255	13.0	-255	13.0	2930	<u>168</u>	Ss-2 (ケース6)	
48.0	E - F	423	65.9	423	72.1	421	57.6	422	63.6	-671	78.5	-671	81.5	5470	<u>618</u>	Ss-2 (ケース6)	
40.0	F-G	715	86.2	725	94.8	722	69.8	730	80.2	-1180	100	-1180	119	7630	729	Ss-2 (ケース6)	

表 4-4 主柱材 最大応答(軸力及び曲げモーメント)

注記*:今回工認に基づく鉛直荷重を考慮した値。

注:下線部分は断面算定結果が最大となる値を示す。

記号の説明

N:軸力(圧縮を正とする。)

M : 曲げモーメント

標高	立17			風荷	·重 ^{*1}			地類	雲荷重	
T.M.S.L.	司) 材	(1)90NS	①90NS ②90NS+渦		②90EW+渦	1)45	②45+渦	動 的 ^{*1}		
(m) 80. 0	間	N (kN)	N (kN)	N (kN)	N (kN)	N (kN)	N (kN)	N (kN)	地震動 (ケース)	
72 5	В-С	49.0	49.0	48.9	48.9	47.9	47.9	699	Ss-1 ^{*2} (ケース6)	
65. 0	C – D	74.8	74.8	74.7	74.8	82.6	82.6	807	Ss-1 ^{*2} (ケース6)	
56.5	D-E	-111	-111	-111	-111	-146	-146	995	Ss-2 (ケース3)	
48.0	$\mathrm{E}-\mathrm{F}$	175	176	174	175	-208	-214	<u>1190</u>	Ss-2 (ケース3)	
40.2	F-G	656	657	555	556	-545	581	<u>1360</u>	Ss-2 (ケース6)	

表 4-5 斜材 最大応答(軸力)

注記*1:今回工認に基づく鉛直荷重を考慮した値。

*2:入力地震動の組合せはNS+鉛直。

注:下線部は断面算定結果が最大となる値を示す。

記号の説明

N:軸力(圧縮を正とする。)

標高	部			地震荷重					
T.M.S.L.	材	(1)90NS	②90NS+渦	(1)90EW	②90EW+渦	1)45	②45+渦	動	的*1
(m)	位	Ν	Ν	Ν	Ν	Ν	Ν	Ν	地震動
	直	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(ケース)
80.0	В	12.6	12.6	12.6	12.6	10.4	10.4	<u>65. 3</u>	Ss-1 ^{*2} (ケース6)
72.5	С	29.9	29.9	29.9	29.9	28.2	28.2	<u>92. 9</u>	Ss-2 (ケース6)
65.0	D	46.2	46.3	46.3	46.4	48.2	48.1	<u>178</u>	Ss-2 (ケース6)
56.5	E	50.8	50.9	50.7	50.9	70.7	70.5	326	Ss-2 (ケース6)
48.0	F	200	200	193	193	174	223	325	Ss-2 (ケース6)

表 4-6 水平材 最大応答(軸力)

注記*1:今回工認に基づく鉛直荷重を考慮した値。

*2:入力地震動の組合せはNS+鉛直。

注:下線部は断面算定結果が最大となる値を示す。

記号の説明

N:軸力(圧縮を正とする。)

標高	立て												地震荷重			
T.M.S.L.	材	(1)9	ONS	2901	IS+渦	(1)9	OEW	②90H	EW+渦	1	45	24	5+渦		動 的*	1, *2
(m) 85_0	間	N (kN)	M (kN•m)	N (kN)	M (kN•m)	N (kN)	M (kN•m)	N (kN)	M (kN⋅m)	N (kN)	M (kN•m)	N (kN)	M (kN•m)	N (kN)	M (kN•m)	地震動 (ケース)
80.0	A-B	26.0	95.0	26.0	105	26.0	95.0	26.0	105	26.0	95.0	26.0	105	<u>21.7</u>	1090	Ss-2 (ケース6)
72.5	В-С	172	590	172	649	172	590	172	649	172	590	172	649	<u>152</u>	2720	Ss-2 (ケース6)
65.0	C – D	206	1500	206	1640	206	1500	206	1640	206	1500	206	1640	209	2530	Ss-1 ^{*3} (ケース6)
56. 5	D-E	269	3000	269	3270	269	3000	269	3270	269	3000	269	3270	256	3630	Ss-2 (ケース6)
49.0	E – F	322	4990	<u>322</u>	<u>5410</u>	322	4990	<u>322</u>	<u>5410</u>	322	4990	322	<u>5410</u>	355	4660	Ss-2 (ケース3)
40. 0 39. 0	F-G	432	4990	432	5410	432	4990	432	5410	432	4990	432	5410	477	5760	Ss-2 (ケース3)

表 4-7 筒身部 最大応答(軸力及び曲げモーメント)

注記*1:今回工認に基づく鉛直荷重を考慮した値。

*2:時刻歴評価に基づく応力を示す。

*3:入力地震動の組合せはNS+鉛直。

注:下線部は断面算定結果が最大となる値を示す。

記号の説明

N:軸力(圧縮を正とする。)

M:曲げモーメント

表 4-8 筒身部における評価用応力及び検定値(1/2)

		②90NS+渦			(1)90NS				290EW-	+渦	①90EW			
標高	部	評価月	用応力		評価月	用応力		評価用]応力		評価月	用応力		
T. M. S. L. (m)	材 間	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{c_{\rm c}f_{\rm cr}} + \frac{\sigma_{\rm b}}{b_{\rm b}f_{\rm cr}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{c f_{\rm cr}} + \frac{\sigma_{\rm b}}{b f_{\rm cr}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{cf_{\rm cr}} + \frac{\sigma_{\rm b}}{bf_{\rm cr}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{cf_{\rm cr}} + \frac{\sigma_{\rm b}}{bf_{\rm cr}}$	
85.0	A-B	26.0	105	0.04	26.0	95.0	0.04	26.0	105	0.04	26.0	95.0	0.04	
72 5	В-С	172	649	0.23	172	590	0.21	172	649	0.23	172	590	0.21	
65.0	C - D	206	1640	0.53	206	1500	0.49	206	1640	0.53	206	1500	0.49	
56 5	D - E	269	3270	0.61	269	3000	0.56	269	3270	0.61	269	3000	0.56	
49.0	E-F	322	5410	0.98	322	4990	0. 91	322	5410	0.98	322	4990	0.91	
48.0 39.0	F - G	432	5410	0.54	432	4990	0.50	432	5410	0.54	432	4990	0.50	

(a) 風方向:90°方向

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。また、F値の割増しを行った結果を示す。

表 4-8 筒身部における評価用応力及び検定値(2/2)

			2)45+	·渦	1)45				
標高	部	評価月	用応力		評価月	月 応力			
T. M. S. L. (m)	材 間	N (kN)	M (kN∙m)	$\frac{\sigma_{\rm c}}{cf_{\rm cr}} + \frac{\sigma_{\rm b}}{bf_{\rm cr}}$	N (kN)	M (kN∙m)	$\frac{\sigma_{\rm c}}{cf_{\rm cr}} + \frac{\sigma_{\rm b}}{bf_{\rm cr}}$		
85. 0 80. 0	A-B	26.0	105	0.04	26.0	95.0	0.04		
72.5	B-C	172	649	0.23	172	590	0.21		
65 0	C - D	206	1640	0.53	206	1500	0.49		
56 5	D - E	269	3270	0.61	269	3000	0.56		
49.0	E - F	322	5410	0.98	322	4990	0.91		
48. 0 39. 0	F - G	432	5410	0.54	432	4990	0.50		

(b) 風方向:45°方向

注:断面算定方法は, V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。 また, F値の割増しを行った結果を示す。
別紙5 地震荷重と風荷重を重畳させた場合の影響検討

1.	概要	別紙 5-1
2.	解析方針	別紙 5-2
2. 2	1 解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-2
2.2	2 風荷重	別紙 5-5
3.	断面算定結果(検定値)に基づく影響評価 ・・・・・・・・・・・・・・・	別紙 5-7

1. 概要

本資料は主排気筒に対し、地震荷重に加えて風荷重(風速4.1m/s及び16.0m/s)を重 畳させた場合の耐震性に関する裕度を示すものである。詳細には、以下に示す検討を実 施する。

- ・ Ss-1を用いたケース1(基本ケース)に対する検討
- ・ Ss-2を用いたケース6(回転ばね低減)に対する検討

Ss-1 を用いたケース 1 (基本ケース) に対する検討では,建屋応答の不確かさを含め た各入力地震動の代表として,全周期帯の応答が大きく,耐震評価への影響も大きい基 準地震動 Ss-1 を用いた基本ケースを選定し,地震荷重と風荷重を重畳させた場合の影響 を確認することを目的とする。

Ss-2 を用いたケース 6 (回転ばね低減) に対する検討では, V-2-7-2-1 「主排気筒の 耐震性についての計算書」における断面算定結果が最も厳しくなる検討ケースを対象に, 地震荷重と風荷重を重畳させた場合においても断面算定結果に一定の裕度を有すること を確認することを目的とする。

また、上述の各検討において重畳させる風荷重を以下に示す。

- ・ 風速4.1m/sによる風荷重
- ・ 風速16.0m/sによる風荷重

なお,入力地震動は,別紙3「地震応答解析における原子炉建屋の材料物性の不確か さに関する検討」に基づき,Ss-1については2方向(3成分)(NS方向(並進・回転)及 び鉛直方向)同時入力とし,Ss-2について3方向(5成分)(水平2方向(並進・回転)及 び鉛直方向)同時入力とする。

また,固有値解析結果は,別紙3「地震応答解析における原子炉建屋の材料物性の不 確かさに関する検討」に示すケース1(基本ケース)と同一である。

2. 解析方針

2.1 解析モデル

V-2-7-2-1「主排気筒の耐震性についての計算書」における解析モデル(以下「工 認モデル」という。)では、既工認との整合性と保守性を担保するため、主柱材及び 筒身の実状の部材断面の切り替え位置よりも低い位置に部材の切り替え位置を設定し、 モデル化を行っている。本検討では、地震荷重に加えて、風荷重を重畳させた場合の 耐震性に関する裕度を確認することを目的としているため、主柱材及び筒身部につい て、実状に合わせた切り替え位置を考慮したモデルに変更する。

切り替え位置の一覧を表 2-1 に示す。主柱材は,工認モデルに対して,1.65m~ 2.15m 高い位置に部材断面の切り替え位置を変更し,筒身は,C-D間で 0.25m 高い 位置,E-F間で1.75m 高い位置に部材断面の切り替え位置を変更する。

また、切り替え位置の変更を考慮した解析モデルを図 2-1 に示す。

表 2-1 切り替え位置の一覧

2.2 風荷重

風荷重は、V-2-7-2-1「主排気筒の耐震性についての計算書」と同一方法により算 定し、作用方向も同一とする。また、風速については 4.1m/s 及び 16.0m/s の 2 ケース について検討する。

風荷重計算表を表 2-2 及び表 2-3 に示す。

表 2-2 風荷重計算表 (風速 4.1m/s)

(a) 鉄塔部

標高	速度圧	90	。 方向風荷重	: * 1	45°方向風荷重						
T.M.S.L.	q	風力係数	見付面積	風荷重	風力係数	見付面積	風荷重				
(m)	(kN/m^2)	C _f	$A(m^2)$	P(kN)	C _f	$A(m^2)$	P (kN)				
80.00	0.0358	1.92	3.4	0.24	1.50	5.4	0.29				
76.25	0.0358	1.82	7.6	0.50	1.44	11.9	0.62				
72.50	0.0358	1.86	9.6	0.64	1.45	15.5	0.81				
65.00	0.0358	1.72	16.8	1.04	1.36	27.1	1.32				
56.50	0.0358	1.63	21.0	1.23	1.26	34.1	1.54				
48.00	0.0358	1.48	24.3	1.29	1.15	39.7	1.64				
40.20	0.0358	1.43	11.0	0.57	1.10	18.5	0.73				

注記*:NS方向, EW方向の包絡値を示す。

(b) 筒身部

標高	速度圧	90)° 方向風荷	É	45°方向風荷重						
T.M.S.L.	q	風力係数	見付面積	風荷重	風力係数	見付面積	風荷重				
(m)	(kN/m^2)	C f	$A(m^2)$	P (kN)	C f	$A(m^2)$	P (kN)				
85.00	0.0365	0.90	6.0	0.20	0.90	6.0	0.20				
80.00	0.0365	0.89	10.6	0.35	0.89	10.6	0.35				
76.25	0.0365	0.88	9.0	0.29	0.88	9.0	0.29				
72.50	0.0365	0.86	13.6	0.43	0.86	13.6	0.43				
65.00	0.0365	0.83	19.3	0.59	0.83	19.3	0.59				
56.50	0.0365	0.79	20.5	0.60	0.79	20.5	0.60				
48.00	0.0365	0.74	21.2	0.58	0.74	21.2	0.58				
39.00	0.0365	0.68	10.9	0.28	0.68	10.9	0.28				

表 2-3 風荷重計算表 (風速 16.0m/s)

(a) 鉄塔部

標高	速度圧	90	。 方向風荷重	- * 1	45°方向風荷重						
T.M.S.L.	q	風力係数	見付面積	風荷重	風力係数	見付面積	風荷重				
(m)	(kN/m^2)	$\rm C_{f}$	$A(m^2)$	P(kN)	$\rm C_{f}$	$A(m^2)$	P(kN)				
80.00	0.544	1.92	3.4	3.6	1.50	5.4	4.5				
76.25	0.544	1.82	7.6	7.6	1.44	11.9	9.4				
72.50	0.544	1.86	9.6	9.8	1.45	15.5	12.3				
65.00	0.544	1.72	16.8	15.8	1.36	27.1	20.1				
56.50	0.544	1.63	21.0	18.7	1.26	34.1	23.4				
48.00	0.544	1.48	24.3	19.6	1.15	39.7	24.9				
40.20	0.544	1.43	11.0	8.6	1.10	18.5	11.1				

注記*:NS方向, EW方向の包絡値を示す。

(b) 筒身部

標高	速度圧	90)° 方向風荷	Í	45°方向風荷重					
T.M.S.L.	q	風力係数	見付面積	風荷重	風力係数	見付面積	風荷重			
(m)	(kN/m^2)	C f	$A(m^2)$	P(kN)	$\rm C_{f}$	$A(m^2)$	P (kN)			
85.00	0.555	0.90	6.0	3.0	0.90	6.0	3.0			
80.00	0.555	0.89	10.6	5.3	0.89	10.6	5.3			
76.25	0.555	0.88	9.0	4.4	0.88	9.0	4.4			
72.50	0.555	0.86	13.6	6.5	0.86	13.6	6.5			
65.00	0.555	0.83	19.3	8.9	0.83	19.3	8.9			
56.50	0.555	0.79	20.5	9.0	0.79	20.5	9.0			
48.00	0.555	0.74	21.2	8.8	0.74	21.2	8.8			
39.00	0.555	0.68	10.9	4.2	0.68	10.9	4.2			

3. 断面算定結果(検定値)に基づく影響評価

断面算定結果を表 3-1 に示す。

鉄塔部について,地震荷重と風荷重(風速 4.1m/s 及び 16.0m/s)を重畳させた場合の 検定値の変動はごく微小であることを確認した。特に, V-2-7-2-1「主排気筒の耐震性 についての計算書」において最も厳しい検定値を示す主柱材D-E間についても,重畳 させる風荷重を風速 4.1m/s から風速 16.0m/s に変動させた場合においても検定値は 0.01 程度の変動であることを確認した。

また,筒身部についてはその他部材と比較をして受風面積が大きいことから,重畳さ せる風荷重の増加に伴い,検定値も増加する傾向であることが確認されたが,最大検定 値はE-F間の検定値0.81であり,十分な裕度を有することを確認した。

以上のことから,風荷重と地震荷重を重畳させた場合についても主排気筒の耐震性に 影響が無いことを確認した。

表 3-1 断面算定結果 (1/2)

(a) 主柱材

		Ss-17	を用いたク	アース1(基	本ケース)に対す	る検討	Ss-2を用いたケース6(回転ばね低減)に対する検討								
標高	部	風速	4.1m/sと	の重畳	風速	16.0m/sと	の重畳	風速	4.1m/sと	の重畳	風速16.0m/sとの重畳					
T.M.S.L.	材	評価月	用応力		評価月	用応力		評価月	用応力		評価月	用応力				
(m)	間	N (kN)	M (kN∙m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN∙m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN∙m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$			
80.0	B - C	24.2	15.0	0.11	24.1	14.9	0.11	21.5	19.7	0.14	21.5	19.7	0.14			
65 0	C - D	688	41.3	0.40	691 41.3		0.40	1060	63.6	0.61	1060	63.7	0.61			
56.5	D - E	1810	98.4	0.60	1830	99.4	0.61	2840	152	0.94	2850	153	0.95			
48.0	$\mathrm{E}-\mathrm{F}$	3370	272	0.50	3410	275	0.51	5330	418	0.79	5360	421	0.79			
40. 2	$\mathbf{F} - \mathbf{G}$	4600	550	0.55	4670	558	0.56	7400	719	0.82	7460	726	0.83			

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) 斜材

		Ss-1を用い7	たケース1(基	本ケース)に	対する検討	Ss-2を用いたケース6(回転ばね低減)に対する検								
桓 富	部	風速4.1m/	sとの重畳	風速16.0m	/sとの重畳	風速4.1m/	sとの重畳	風速16.0m	/sとの重畳					
T. M. S. L.	材	評価用応力		評価用応力		評価用応力		評価用応力						
(m)	間	N (kN)	σ _c f _c	N (kN)	σ _c f _c	N (kN)	σ _c f _c	N (kN)	σ _c f _c					
80.0 72.5	B - C	649	0.73	656	0.74	613	0.69	616	0.69					
65.0	C - D	758	0.49	769	0.49	721	0.46	729	0.47					
56 5	D - E	948	0.34	961	0.34	945	0.34	953	0.34					
48.0	E - F	1110	0.22	1130	0.22	1120	0.22	1140	0.22					
40.2	F - G	1200	0.14	1220	0.14	1400	0.16	1470	0.17					

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(c) 水平材

		Ss-1を用い	たケース1(基	本ケース) に	対する検討	Ss-2を用いた	を用いたケース6(回転ばね低減)に対する検討								
趰 宣	部	風速4.1m/	sとの重畳	風速16.0m/	/sとの重畳	風速4.1m/	sとの重畳	風速16.0m/sとの重畳							
1лк I=1 Т. М. S. L.	材	評価用応力		評価用応力		評価用応力		評価用応力							
(m)	位置	N (kN)	$\frac{\sigma_{\rm c}}{f_{\rm c}}$	N (kN)	$\frac{\sigma_{\rm c}}{f_{\rm c}}$	N (kN)	$\frac{\sigma_{\rm c}}{f_{\rm c}}$	N (kN)	$\frac{\sigma_{\rm c}}{f_{\rm c}}$						
80.0	В	60.1	0.09	62.0	0.09	63.6	0.09	64.9	0.09						
72.5	С	76.3	0.12	80.9	0.13	96.7	0.15	101	0.16						
65.0	D	138	0.10	145	0.10	182	0.13	189	0.13						
56.5	Е	228	0.17	232	0.17	335	0.25	346	0.25						
48.0	F	201	0.10	204	0.10	294	0.15	306	0.15						

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

		Ss	-1を用レ	ヽたケース1 (基	本ケース) に対-	する検討	Ss-	-2を用い	たケース6 (回!	転ばね低	減)に求	する検討	
		風	速4.1m/:	sとの重畳	風運	±16.0m∕	sとの重畳	風	速4.1m/:	sとの重畳	風j	₹16.0m/	sとの重畳	
標 高 T.M.S.L.	部 材	評価用	1応力	σ _с σ _b	評価用	同応力	σς, σ	評価月	目応力	σ _с , σ _b	評価月	評価用応力		
(m)	間	N (kN)	M (kN•m)	$\frac{M}{M} = \frac{\frac{\sigma_{c}}{\sigma_{f}} + \frac{\sigma_{b}}{\sigma_{f}}}{\frac{\sigma_{c}}{\sigma_{r}}} + \frac{\sigma_{b}}{\sigma_{f}} = \frac{N}{(kN)} = \frac{M}{(kN \cdot m)}$		M (kN•m)	cfcr bfcr	N (kN)	M (kN•m)	cfcr bfcr	N (kN)	M (kN•m)	cfcr ⁺ bfcr	
80.0	A - B	24.3	959	0.29	23.5	976	0.30	18.5	1070	0.32	21.4	1050	0.32	
72.5	$\mathrm{B}-\mathrm{C}$	164	2340	0.73	164	2380	0.74	145	2660	0.82	137	2620	0.80	
65.0	C - D	224	2250	0.71	224	2100	0.67	197	2390	0.75	240	2390	0.76	
56.5	$\mathrm{D}-\mathrm{E}$	301	3020	0.57	246	3430	0.63	260	3530	0.65	274	3950	0.72	
48.0	$\mathrm{E}-\mathrm{F}$	289	3610	0.67	287	4140	0.76	395	4080	0.76	333	4430	0.81	
39.0	$\mathbf{F} - \mathbf{G}$	379	5100	0.51	382	5840	0. 58	539	5620	0.57	469	5640	0.56	

表 3-1 断面算定結果(2/2)

(d) 筒身部

注:断面算定方法は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づき、時刻歴断面算定結果を示す。

別紙6 接合部の耐震性について

目 次

1.	樃	「要・·		•••			 •••	• •	• •			• •			•••	 •••	•••			•••				• •					別紙 6-1
2.	検	討方針		•••	•••	••	 •••	••	••	• •	••	••	•••	••	•••	 •••	•••	•••	•••	•••	•••	••	••	•••	••	••	••		別紙 6-2
2.	1	主柱材		•••	•••	• •	 •••	• •	• •			• •	• •	••	•••	 •••	•••	•••		•••				•••			••	•••	別紙 6-6
2.2	2	斜材及	びオ	く平	材		 •••	• •	• •			• •	• •	•••	•••	 •••	•••	•••		•••				•••			••	•••	別紙 6-7
3.	検	討条件		•••			 •••								•••	 •••	•••			•••				•••				•••	別紙 6-9
4.	検	討結果		•••			 •••	••	• •			• •		• •	•••	 •••	•••			•••	••	••	••	• •					別紙 6-11
4.	1	検討用	応力	J		• •	 •••	••	• •		•••	••	•••	•••	•••	 •••	•••		• •	•••				•••	••	••	••		別紙 6-11
4. 2	2	検討結	果	•			 •••	••				• •				 •••	•••			•••							••	•	別紙 6-12

1. 概要

V-2-7-2-1「主排気筒の耐震性についての計算書」においては、主排気筒を構成する 鉄塔部材、筒身部材及び基礎について断面算定結果を示している。

本資料では,主排気筒を構成する部材のうち,ボルト接合をしている鉄塔部材について,その接合部の耐震性について確認した結果を示す。

2. 検討方針

鉄塔部材の主柱材,斜材及び水平材について,地震時において接合部が破断しないこ とを確認する。

検討は,各部材の端部及び接合部の破断耐力が,基準地震動Ss(建屋応答の不確か さの考慮を含む)による応力を上回っていることを確認する。

鉄塔部材の接合形式は以下のとおりとなっている。

主柱材 :フランジ継手

斜材 : 十字継手又は I 字継手

水平材 :十字継手又は I 字継手

各部材の接合部の位置及び詳細図を図 2-1 及び図 2-2 に示す。

接合部の詳細は、柏崎刈羽原子力発電所の竣工図書のうち、「柏崎刈羽原子力発電所 第7号機本館建物新設工事 排気筒継手詳細図(K-7 SST-XX-S-006)」による。

図 2-1 接合部の位置

図 2-2 接合部詳細 (2/3)

十字継手詳細	継 手板 厚	スプライス 板 厚	使 ボルト径	本 数
φ 558 8×16.0 (STK490) b 5 <u>32-M24 (F107)</u> <u>44 6 10 (STK490)</u> <u>32-M24 (F107)</u> <u>44 6 10 (STK490)</u> <u>55 8 8×16.0 (STK490)</u> <u>55 8 8 8×16.0 (STK490)</u> <u>55 8 8×16.0 (STK490)</u>	22 (SM490A)	19 (SM490A)	M24 (F10T)	32
	22 (SM490A)	19 (SM490A)	M22 (F1OT)	24
$\phi 406.4 \times 6.4$ (STK400) a 3	16	12	M22 (F1OT)	16
ϕ 355. 6 × 7. 9 (STK490) b 3 <u>16-M22 (F10T)</u> ϕ <u>16-M22 (F10T) ϕ <u>16-M22 (F10T)</u> ϕ <u>16-M2</u></u>	16 (SM490A)	12 (SM490A)	M22 (F10T)	16
¢ 318.5×6.0 (STK400) a 2 <u>16-M22 (F10T)</u> 0 0 0 0 0 0 0 0 0 0 0 0 0	16	12	M22 (F1 OT)	16

-

図 2-2 接合部詳細 (3/3)

別紙 6-5

以下に各部位の検討方針を示す。

なお,検討に当たっては,「鋼構造設計規準 -許容応力度設計法-((社)日本建築 学会,2005年)」及び「2015年版 建築物の構造関係技術基準解説書(国土交通省国土技 術政策総合研究所・国立研究開発法人建築研究所)」に準拠して算定する。

2.1 主柱材

フランジ継手部について,継手位置のボルトに生じる検討用応力が,破断耐力以下 であることを確認する。

検討用応力N'は以下により算定する。

$$N' = \left(\frac{N}{A} + \frac{M}{Z}\right) \times A$$

ここで,

N :評価用応力(主柱材に発生する軸力の最大値)(kN)

A : 主柱材の断面積(mm²)

M:評価用応力(主柱材に発生する曲げモーメントの最大値)(kN·m)

Z : 主柱材の断面係数(mm³)

継手位置の破断耐力Puは、以下により算定する。

 $P_u = T \times n$

ここで,

- T : 高力ボルト1本あたりの引張破断耐力(kN)
- n : 高力ボルト本数

2.2 斜材及び水平材

+字継手部及び I 字継手部について, 接合部の部材端部(+字継手部はスプライス プレートを含む), 接合ファスナー, ファスナーのはしあき部分, ガセットプレート 及び溶接部に対して, 破断形式に応じた破断耐力を算定し, 部材に生じる応力が破断 耐力以下であることを確認する。

以下に示す部材端部及び接合部の破断形式(1)~(5)の各々の場合について,破断耐 カA_j・σ_uを算定し,その最小の値を接合部の破断耐力とする。

(1) 部材端部で破断する場合

A_j・σ_u=A₁・_bσ_u A₁=A_g-A_d ここで,_bσ_u:部材端部の破断応力度(N/mm²) A_g:部材端部の断面積(mm²) A_d:部材端部の欠損断面積(mm²) A_j・σ_u:部材端部の破断耐力(N)

(2) 部材の接合ファスナーで破断する場合 $A_{j} \cdot \sigma_{u} = 0.75 \cdot A_{2} \cdot f \sigma_{u}$ $A_{2} = n \cdot m \cdot f A$ ここで、 $f \sigma_{u}$:接合ファスナーの破断応力度(N/mm²) n:ファスナーの数 m:ファスナーーがせん断を受ける面の数 f A:ファスナー1つの断面積(mm²) ただし、ねじ部がせん断面にかかる時は、 $f A = 0.75 \cdot \pi (d/2)^{2}$ d:ファスナーの呼び径(mm) $A_{j} \cdot \sigma_{u}$:接合ファスナーの破断耐力(N)

- (3) ファスナーのはしあき部分で破断する場合
 - a. 部材端部の場合

 $A_{j} \cdot \sigma_{u} = {}_{1}A_{3} \cdot {}_{b}\sigma_{u}$ ${}_{1}A_{3} = n \cdot {}_{b}e \cdot {}_{b}t$ ここで、 ${}_{b}\sigma_{u} : 部材端部の破断応力度(N/mm^{2})$ ${}_{b}e : 部材端部のはしあき距離(mm)$ ${}_{b}t : 部材端部のファスナー接合部での板厚(mm)$ n : ファスナーの数 $A_{j} \cdot \sigma_{u} : ファスナーのはしあき部分の破断耐力(N)$ b. ガセットプレートの場合

$$A_{j} \cdot \sigma_{u} = {}_{2}A_{3} \cdot {}_{g}\sigma_{u}$$

 ${}_{2}A_{3} = n \cdot {}_{g}e \cdot {}_{g}t$
ここで、 ${}_{g}\sigma_{u} : ガセットプレートの破断応力度(N/mm2)$
 ${}_{g}e : ガセットプレートのはしあき距離(mm)$
 ${}_{g}t : ガセットプレートのファスナー接合部での板厚(mm)$
 $n : ファスナーの数$
 $A_{j} \cdot \sigma_{u} : ガセットプレートのはしあき部分の破断耐力(N)$

(4) ガセットプレートの破断による場合

$$A_{j} \cdot \sigma_{u} = A_{4} \cdot g \sigma_{u}$$

$$A_{4} = (2 / \sqrt{3} \cdot \ell_{1} + b) \cdot g t - A_{d}$$
ここで、 $g \sigma_{u} : ガ t = \gamma h \mathcal{T} V - h \mathcal{O} w \text{断応力度} (N/mm^{2})$

$$\ell_{1} : \bar{\kappa} \mathcal{D} \bar{\tau} \bar{\tau} \bar{\tau} \bar{\tau} h \mathcal{O} \bar{\tau} \bar{\tau} \bar{\tau} h \bar{\tau} h \bar{\tau} h \bar{\tau} h \bar{\tau} \bar{\tau} h \bar{\tau}$$

(5) 溶接部で破断する場合

接合部はすみ肉溶接であるため,

3. 検討条件

各部材の接合部検討用の諸元を表 3-1~表 3-3 に示す。

		フランジ継手					
符号		c 1					
		主柱材D-E					
	径(mm)	φ 508. 0					
使用部材	厚さ(mm)	7.9					
	材料	STK490					
使用ボルト		M24					
使用ホルト		HTB					
検討用諸元							
А	mm^2	12410					
Z	mm ³	1530000					
n	本	20					
σ _u	N/mm^2	490					
_f σ _u	$_{\rm f} \sigma_{\rm u} = N/{\rm mm}^2$						

表 3-1 接合部検討用諸元(フランジ継手部:主柱材)

記号の説明

A :断面積

Z :断面係数

n : 高力ボルト本数

σ_u :接合部の破断応力度(鋼材の引張強さ)

_fσ_u :高力ボルトの引張強さ (F10T)

			I 字継手	
符号		b 1	b 2	a 1
			斜材C-D	水平材B, C
	径(mm)	φ 216. 3	φ 267.4	φ 216. 3
使用部材	厚さ(mm)	4.5	6.0	4.5
	材料	STK490	STK490	STK400
使用ボルト		M22	M22	M22
使用ホルト		HTB	HTB	HTB
検討用諸元				
A_0	mm^2	2994	4927	2994
h	mm	250	300	250
t	mm	12	16	12
A g	mm^2	3000	4800	3000
r	列	2	2	2
f	列	4	6	3
m	面	1	1	1
d ₀	mm	24	24	24
σ _u	N/mm^2	490	490	400
f σ _u	N/mm^2	1000	1000	1000

表 3-2 接合部検討用諸元(I字継手部:斜材及び水平材)

記号の説明

A₀ : 斜材又は水平材の断面積

h : I 字プレートの幅

t : I 字プレートの厚さ

A_g : I 字プレートの断面積

r :ファスナー群1箇所あたりの軸直交方向ボルト列数

f :ファスナー群1箇所あたりの軸方向ボルト列数

m :ファスナーがせん断を受ける面の数

d₀ : 高力ボルト孔径

σ_u:接合部の破断応力度(鋼材の引張強さ)

f σ_u : 高力ボルトの引張強さ (F10T)

				十字継手		
符号		b 3	b 4	b 5	a 2	a 3
		斜材D-E	斜材E-F	斜材F-G	水平材D, E	水平材 F
	径(mm)	φ 355.6	φ 406. 4	φ 558.8	φ 318.5	φ 406.4
使用部材	厚さ(mm)	7.9	12.7	16.0	6.0	6.4
	材料	STK490	STK490	STK490	STK400	STK400
体田ボルト		M22	M22	M24	M22	M22
<u></u> Спилит		HTB	HTB	HTB	HTB	HTB
検討用諸元						
A_0	mm^2	8629	15710	27280	5891	8042
h	mm	440	440	590	440	440
t	mm	16	22	22	16	16
A g	mm^2	13824	18876	25476	13824	13824
r	列	2	2	2	2	2
f	列	2	3	4	2	2
m	国	2	2	2	2	2
d _o	mm	24	24	26	24	24
b s	mm	150	150	220	150	150
t s	mm	12	19	19	12	12
σ _u	N/mm^2	490	490	490	400	400
f σ _u	N/mm^2	1000	1000	1000	1000	1000

表 3-3 接合部検討用諸元(十字継手部:斜材及び水平材)

記号の説明

 A₀
 :斜材又は水平材の断面積

h : 十字プレートの幅

: 十字プレートの厚さ(ガセットプレートも同様) t

A_g : 十字プレートの断面積

r :ファスナー群1箇所あたりの軸直交方向ボルト列数

f :ファスナー群1箇所あたりの軸方向ボルト列数

:ファスナーがせん断を受ける面の数 m

d₀ : 高力ボルト孔径

b s : 十字プレートスプライスプレートの幅

t s : 十字プレートスプライスプレートの厚さ σ_u : 接合部の破断応力度(鋼材の引張強さ) f σ_u : 高力ボルトの引張強さ(F10T) : 十字プレートスプライスプレートの厚さ

4. 検討結果

4.1 検討用応力

各部材の接合部検討用の評価応力を表 4-1~表 4-3 に示す。

標 高 T.M.S.L.	部		検討	讨用応力		使 用 部 材	備考	
(m)	間	N (kN)	M (kN•m)	N' (kN)	地震動 (ケース)	寸法 (mm)	継手形式	符号
66.5	D-E	2930	168	4290	Ss-2 (ケース6)	ϕ 508. 0 × 7. 9	フランジ継手	c 1

表 4-1 接合部検討用応力(主柱材)

表 4-2 接合部検討用応力(斜材)

標 高 T.M.S.L.	部	検討	用応力	使 用 部 材	備考	
(m) 80. 0	何間	N (kN)	地震動 (ケース)	寸法 (mm)	継手形式	符号
72.5	B - C	699	Ss-1 (ケース6)	ϕ 216. 3× 4. 5	I 字継手	b 1
65.0	C - D	807	Ss-1 (ケース6)	ϕ 267. 4 \times 6	I 字継手	b 2
56 5	D - E	995	Ss-2 (ケース3)	ϕ 355. 6× 7. 9	十字継手	b 3
48.0	E - F	1190	Ss-2 (ケース3)	φ 406. 4×12. 7	十字継手	b 4
40.2	F - G	1360	Ss-2 (ケース6)	ϕ 558. 8×16	十字継手	b 5

表 4-3 接合部検討用応力(水平材)

標 高 T.M.S.L.	高 部 検討用応力 . S. L. 材		·用応力	使 用 部 材	備考	
(m)	位置	N (kN)	地震動 (ケース)	寸法 (mm)	継手形式	符号
80.0	В	65.3	Ss-1 (ケース6)	φ 216. 3×4. 5	I 字継手	a 1
72.5	С	92.9	Ss-2 (ケース6)	φ 216. 3×4. 5	I 字継手	a 1
65.0	D	178	Ss-2 (ケース6)	ϕ 318. 5×6	十字継手	a 2
56.5	Е	326	Ss-2 (ケース6)	ϕ 318. 5×6	十字継手	a 2
48.0	F	325	Ss-2 (ケース6)	φ 406. 4×6. 4	十字継手	a 3

4.2 検討結果

各部材の接合部検討用の破断耐力の算定結果を表 4-4~表 4-6 に示す。

		フランジ継手
符号	c 1	
		主柱材D-E
主柱材継手部の検討		
有効断面積(M24)	mm^2	353
Т	kN	353
n	本	20
破断耐力 P _u	kN	7060

表 4-4 接合部検討用の破断耐力(フランジ継手部:主柱材)

		I字継手					
符号		b 1	b 2	a 1			
		斜材B-C	斜材C-D	水平材B,C			
	径(mm)	φ 216. 3	φ 267.4	φ216.3			
使用部材	厚さ(mm)	4.5	6.0	4.5			
	材料	STK490	STK490	STK400			
	1.1.1	M22	M22	M22			
使用ボルト		HTB	HTB	HTR			
(1) 部材提望で破断す	ス提会 (I	mb 字プレート 提 部)	шь	IIID			
	N/2	100	400	400			
b U u	N/ mm 2	2000	490	2000			
	2	5000	4000	5000			
A d	mm ⁻	576	768	576			
A 1	mm ²	2424	4032	2424			
$A_j \cdot \sigma_u$	kN	<u>1180</u>	1970	969			
(2) 部材の接合ファス	ナーで破め	rする場合	1				
_f σ _u	N/mm ²	1000	1000	1000			
n	箇所	8	12	6			
m	面	1	1	1			
_f A	mm^2	285	285	285			
A $_2$	mm^2	2280	3420	1710			
Α _j • σ _u	kN	1710	2560	1280			
(3) ファスナーのはし	あき部分て	ご破断する場合					
a. 部材端部の場合	(I字プレ	/ート端部のはしあき)					
_b σ _u	N/mm^2	490	490	400			
_b e	mm	45	55	45			
h t	mm	12	16	12			
n	笛所	8	12	6			
1 A 2	mm ²	4320	10560	3240			
Α. • σ	kN	2110	5170	1290			
ト ガヤットプレー	トの場合	(ガヤットプレートの)	+1.あき)	1200			
5. VC)1)V	N/mm ²	400	400	400			
g U u	IN/ IIIII	430	430	400			
g C +		40	16	40			
gl	血血	12	10	12			
n A	直別 9	8	10500	6			
2 A 3	mm	4320	10560	3240			
$A_j \cdot \sigma_u$	KN	2110	5170	1290			
(4) カセットフレート	の破断によ	くなる					
g O u	N/mm ²	490	490	400			
<i>U</i> 1	mm	225	275	150			
b	mm	160	120	160			
g t	mm	12	16	12			
A _d	mm^2	576	768	576			
A 4	mm^2	4462	6233	3422			
Α _j • σ _u	kN	2180	3050	1360			
(5) 溶接部で破断する	場合						
a σ _u	N/mm^2	490	490	400			
l	mm	930	1030	725			
le	mm	906	1006	689			
S	mm	4	4	6			
A ₅	mm^2	5074	5634	5788			
Α _i • σ ₁₁	kN	1430	1590	1330			
破断耐力							
$P_{u} = \min\{A_{j} \cdot \sigma_{u}\}$	kN	1180	1590	969			

表 4-5 接合部検討用の破断耐力(I字継手部:斜材及び水平材)

注:下線部は破断耐力を決定する形式を示す。

		十字継手					
符号		b 3	b 4	b 5	a 2	a 3	
		斜材D-E	斜材E-F	斜材F-G	水平材D, E	水平材F	
	径(mm)	φ 355.6	φ 406. 4	ϕ 558.8	φ 318. 5	φ 406.4	
使用部材	厚さ(mm)	7.9	12.7	16.0	6.0	6.4	
	材料	STK490	STK490	STK490	STK400	STK400	
は田ギルト		M22	M22	M24	M22	M22	
使用ホルト		HTB	HTB	HTB	HTB	HTB	
 部材端部で破断す 	「る場合						
a. 十字プレート端	部						
_b σ _u	N/mm^2	490	490	490	400	400	
A g	mm^2	13824	18876	25476	13824	13824	
A d	mm^2	3072	4224	4576	3072	3072	
A 1	mm^2	10752	14652	20900	10752	10752	
A _j • σ _u	kN	5260	7170	10200	4300	4300	
b. スプライスプレ	~ト端部		-	-			
_b σ _u	N/mm^2	490	490	490	400	400	
A g	mm^2	14400	22800	33440	14400	14400	
A _d	mm^2	4608	7296	7904	4608	4608	
A 1	mm^2	9792	15504	25536	9792	9792	
A _j • σ _u	kN	4790	7590	12500	3910	3910	
(2) 部材の接合ファス	、ナーで破闘	断する場合					
f σ _u	N/mm^2	1000	1000	1000	1000	1000	
n	箇所	16	24	32	16	16	
m	面	2	2	2	2	2	
_f A	mm^2	285	285	339	285	285	
A ₂	mm^2	9120	13680	21696	9120	9120	
A _j • σ _u	kN	6840	10200	16200	6840	6840	
(3) ファスナーのはし	、あき部分゙	で破断する場合	Ì				
a. 部材端部の場合	(十字プ	レート端部のは	はしあき)				
_b σ _u	N/mm^2	490	490	490	400	400	
_b e	mm	55	55	45	55	55	
_b t	mm	16	22	22	16	16	
n	箇所	16	24	32	16	16	
1 A 3	mm^2	14080	29040	31680	14080	14080	
A _j • σ _u	kN	6890	14200	15500	5630	5630	
b. 部材端部の場合	(スプライ	イスプレートの)はしあき)	•			
s σ u	N/mm^2	490	490	490	400	400	
_s e	mm	55	55	45	55	55	
_s t	mm	12	19	19	12	12	
n	箇所	16	24	32	16	16	
₂ A ₃	mm^2	21120	50160	54720	21120	21120	
Α _j •σ _u	kN	10300	24500	26800	8440	8440	
c. 部材端部の場合	(ガセッ	トプレートのは	tしあき)				
g σ _u	N/mm^2	490	490	490	400	400	
_g e	mm	55	55	45	55	55	
g t	mm	16	22	22	16	16	
n	箇所	16	24	32	16	16	
₂ A ₃	mm^2	14080	29040	31680	14080	14080	
A _j • σ _u	kN	6890	14200	15500	5630	5630	

表 4-6 接合部検討用の破断耐力(十字継手部:斜材及び水平材)(1/2)

				十字継手		
符号		b 3	b 4	b 5	a 2	a 3
		斜材D-E	斜材E-F	斜材F-G	水平材D, E	水平材F
	径(mm)	φ 355.6	φ 406. 4	ϕ 558.8	φ 318. 5	φ 406.4
使用部材	厚さ(mm)	7.9	12.7	16.0	6.0	6.4
	材料	STK490	STK490	STK490	STK400	STK400
庙田ボルト		M22	M22	M24	M22	M22
ЮЛI447Р Г		HTB	HTB	HTB	HTB	HTB
(4) ガセットプレート	の破断に。	よる場合				
g σ _u	N/mm^2	490	490	490	400	400
ℓ_1	mm	75	150	225	75	75
b	mm	340	340	480	340	340
_g t	mm	16	22	22	16	16
A _d	mm^2	1536	2112	2288	1536	1536
A $_4$	mm^2	10579	18357	27976	10579	10579
Α _j • σ _u	kN	5180	8990	13700	4230	4230
(5) 溶接部で破断する	場合					
aσ _u	N/mm^2	490	490	490	400	400
l	mm	2085	2209	3041	1436	1486
le	mm	2025	2149	2971	1366	1366
S	mm	6	6	7	7	12
A ₅	mm^2	17010	18052	29116	13387	22949
Α _j • σ _u	kN	4810	<u>5100</u>	8230	<u>3090</u>	5290
破断耐力 P _u =min{A _j ・σ _u }	kN	4790	5100	8230	3090	3910

表 4-6 接合部検討用の破断耐力(十字継手部:斜材及び水平材)(2/2)

注:下線部は破断耐力を決定する形式を示す。

各部材について,検討用応力と接合部の破断耐力の比較を表4-7~表4-9に示す。 検討用応力は,接合部の破断耐力以下となる。

標 高 T.M.S.L.	部	検討用 応力	破断 耐力	検定値	備考	
(m)	間	N' (kN)	Р _и (kN)	N' / P _u	継手形式	符号
66.5	D-E	4290	7060	0.61	フランジ継手	c 1

表 4-7 検討用応力と接合部の破断耐力の比較(主柱材)

表 4-8 検討用応力と接合部の破断耐力の比較(斜材)

標 高 T.M.S.L.	部材	検討用 応力	破断 耐力	検定値	備考	
(m) 80. 0	的間	N (kN)	Р _и (kN)	N∕P _u	継手形式	符号
72.5	B - C	699	1180	0.60	I 字継手	b 1
65. 0	C - D	807	1590	0.51	I 字継手	b 2
56 5	D - E	995	4790	0.21	十字継手	b 3
18 0	$\mathrm{E}-\mathrm{F}$	1190	5100	0.24	十字継手	b 4
40. 2	F – G	1360	8230	0.17	十字継手	b 5

表 4-9 検討用応力と接合部の破断耐力の比較(水平材)

標 高 T.M.S.L.	部 材	検討用 応力	破断 耐力	検定値	備考	
(m)	位置	N (kN)	P _u (kN)	N∕P _u	継手形式	符号
80.0	В	65.3	969	0.07	I 字継手	a 1
72.5	С	92.9	969	0.10	I 字継手	a 1
65.0	D	178	3090	0.06	十字継手	a 2
56.5	Е	326	3090	0.11	十字継手	a 2
48.0	F	325	3910	0.09	十字継手	a 3