本資料のうち 松囲みの内容	柏崎刈羽原
不真相*** / 9, 行西****114	
は、機密事項に属しますので	算科 資料
い用マナトリン	提出年
公開でさません。	

柏崎刈羽原子力発電所第	7 号機 工事計画審査資料
資料番号	KK7 添-1-035 改 1
提出年月日	2019年11月22日

V-1-2-2 原子炉圧力容器の脆性破壊防止に関する説明書

2019年11月 東京電力ホールディングス株式会社 V-1-2-2 原子炉圧力容器の脆性破壊防止に関する説明書

1. 概要	1
2. 基本方針	1
 1. 脆性破壊防止に対する設計 	2
4. 評価対象と評価方法	2
5. 記号の説明	5
 最低使用温度に基づく評価 	6
6.1 評価箇所	6
6.2 最低使用温度	6
7. 関連温度に基づく評価	7
7.1 評価箇所	7
7.2 関連温度の要求値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
7.3 応力拡大係数の計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
7.3.1 最大仮想欠陥	7
7.3.2 応力拡大係数の計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
7.4 中性子照射による関連温度の移行量	8
7.5 計算結果	9
7.5.1 応力拡大係数の計算結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
7.5.2 関連温度の要求値の計算結果	9
8. 上部棚吸収エネルギーの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
8.1 評価箇所	10
8.2 上部棚吸収エネルギーの評価方法	10
8.3 上部棚吸収エネルギーの計算 ・・・・・・・・・・・・・・・・・・・・・・・・	10
8.3.1 上部棚吸収エネルギー減少率の推定	10
8.3.2 上部棚吸収エネルギー調整値の算出	11
8.4 上部棚吸収エネルギーの評価結果	11
9. 結論	12
付録1 中性子照射による関連温度移行量	26
別紙1 計算機プログラム(解析コード)の概要 ASHSD2-B	
別紙2 計算機プログラム(解析コード)の概要 DORT	

別紙3 計算機プログラム(解析コード)の概要 NOPS

K7 ① V-1-2-2 R0

図表目次

図6-1	破壊靱性評価箇所	13
図7-1	最大仮想欠陥形状 ·····	14
表4-1	重大事故シーケンスの影響確認 ・・・・・・・・・・・・・・・・・・・・・	15
表6-1	最低使用温度に基づく評価箇所 ・・・・・・・・・・・・・・・・・・・・・・	18
表7-1	関連温度の評価箇所 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
表7-2	原子炉圧力容器の40定格負荷相当年数の運転期間中の中性子束	
	及び中性子照射量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
表7-3	応力拡大係数及び関連温度の要求値の計算結果 ・・・・・・・・・・	22
表8-1	国内USE予測式の適用範囲及び評価対象の諸元 ・・・・・・・・・	24
表8-2	上部棚吸収エネルギーの評価結果 ・・・・・・・・・・・・・・・・・・・・・	25

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準 規則」という。)第14条第2項及び第54条第1項第1号並びにそれらの「実用発電用原子炉及 びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に基づき、設計基準 対象施設としての原子炉圧力容器及び原子炉冷却材再循環ポンプモータケーシング(以下「モー タケーシング」という。)の破壊靭性及び想定される重大事故等が発生した場合に、原子炉圧力 容器が重大事故等時に対処するために流路としての機能を有効に発揮できることを確認するた め、破壊靭性に対する評価についても説明するものである。あわせて、技術基準規則第17条第1 項第1号及び第55条第1項第2号並びにそれらの解釈に対して、原子炉圧力容器及びモータケ ーシングの材料が適切であることを説明する。

今回,設計基準対象施設としての原子炉圧力容器及びモータケーシングの材料については,平 成5年6月17日付け4資庁第14562号にて認可された工事計画から変更はないが,各供用状態 及び試験状態の脆性破壊に対する評価結果に影響を及ぼす脆化予測法が改定されたため,改めて 設計基準対象施設としての原子炉圧力容器及びモータケーシングの破壊靭性に対する評価につ いて説明する。また,重大事故等対処設備としての原子炉圧力容器の破壊靭性に対する評価につ いて説明する。

2. 基本方針

原子炉圧力容器及びモータケーシングに使用する材料は,通常運転時,運転時の異常な過渡変 化時及び設計基準事故時において使用される圧力,温度,放射線,荷重その他の使用条件に対し て適切な破壊靭性を有する設計とする。

原子炉圧力容器及びモータケーシングに使用する材料は,中性子照射の影響を考慮し適切な破 壊靭性を維持できるよう,保安規定に監視試験片の評価結果に基づき原子炉冷却材温度及び圧力 の制限範囲を設定することを定めて,原子炉圧力容器及びモータケーシングの脆性破壊を防止す るよう管理する。

原子炉圧力容器に使用する材料は,重大事故等時における温度,圧力及び荷重に対して適切な 破壊靱性を有する設計とし,かつ,重大事故等時における温度,放射線,荷重その他の使用条件 において重大事故等時に対処するために流路としての機能を有効に発揮することができる設計 とする。

原子炉圧力容器の脆性破壊防止以外の温度,放射線,荷重その他の使用条件に対して健全性を 維持することについては, V-1-1-7「安全設備及び重大事故等対処設備が使用される条件の下に おける健全性に関する説明書」に示している。

原子炉圧力容器及びモータケーシングの材料に対して施設時の評価として、中性子照射が及ぼ す影響を評価することから、評価時期については、「核原料物質、核燃料物質及び原子炉の規制 に関する法律」第43条の3の32に、発電用原子炉の運転できる期間が40年と定められている ことを考慮し、40定格負荷相当年数を想定して、評価を実施する。 なお,原子炉圧力容器の炉心領域部の中性子照射による影響評価については,監視試験片によって計画的に評価を行うとともに,施設後40定格負荷相当年数の運転期間後以降の評価については,高経年化対策として実施する。

3. 脆性破壊防止に対する設計

技術基準規則第 17 条を踏まえ,原子炉圧力容器及びモータケーシングに使用する材料は,強 度と靭性に優れる低合金鋼の鋼板及び鍛鋼品で構成し,原子炉冷却材と接触する原子炉圧力容器 内面部分はステンレス鋼及び高ニッケル合金で内張りし,耐食性を向上させた設計とする。原子 炉圧力容器及びモータケーシングは脆性破壊防止の観点から,原子炉冷却材の最低使用温度を設 定し,適切な温度で使用する。また,中性子照射脆化が予想される材料に関しては,材料中のCu 及び Ni 含有量が多いほど中性子照射脆化に与える影響が大きいことから,材料調達時に各元素 の含有量を管理する。

また,技術基準規則第55条を踏まえ,重大事故等対処設備としての原子炉圧力容器の材料は, 重大事故等時の原子炉圧力容器の使用温度が崩壊熱による原子炉冷却材の加熱により設計基準 対象施設としての最低使用温度を下回らず,想定される使用条件に対して適切な破壊靭牲を有す る設計とする。

4. 評価対象と評価方法

原子炉圧力容器及びモータケーシングに使用する材料は,発電用原子力設備規格(設計・建設 規格 JSME S NC1-2005 (2007 年追補版含む))(日本機械学会)(以下「設計・建 設規格」という。)に基づいて,評価対象となる材料を抽出する。評価対象となる材料は,原子 炉圧力容器及びモータケーシングを構成する材料のうち,耐圧部を構成する材料であり,かつ, 設計・建設規格 PVB-2311 に示される脆性破壊が生じにくい板厚,断面積,外径及び指定材料等 の条件により,破壊靱性試験が必要となる材料をすべて抽出し,評価を行う。この抽出により, 最低使用温度に対してスタッドボルト,関連温度に対して耐圧部を構成する材料,上部棚吸収エ ネルギーに対して炉心領域材料が評価対象となる。

技術基準規則第14条及び第54条への適合性を確認するため,技術基準規則第14条の解釈に 示される原子力発電所用機器に対する破壊靭性の確認試験方法 JEAC4206-2007(日本 電気協会)(以下「JEAC4206」という。),原子炉構造材の監視試験方法 JEAC 4201-2007(日本電気協会),原子炉構造材の監視試験方法 JEAC4201-2007[2010年 追補版](日本電気協会)及び原子炉構造材の監視試験方法 JEAC4201-2007[2013年追 補版](日本電気協会)(以下「JEAC4201」という。)の手法を用いて,原子炉圧力容 器及びモータケーシングの脆性破壊に対する評価を行う。

JEAC4206 第2章 クラス1機器の規定により,破壊靭性試験を行う場合に必要とされる試験条件,すなわち最低使用温度を明確にすること,並びに関連温度の要求値及びJEAC 4201の規定により,上部棚吸収エネルギーが供用期間中の破壊靭性の要求を満足することを

2

示す。また,重大事故等が発生した場合に,原子炉圧力容器が重大事故等時に対処するために流 路としての機能を有効に発揮できることを示す。

破壊靭性の評価は、JEAC4206のFB-2000で規定されるように、最低使用温度以下での 衝撃試験結果を判定基準と対比し評価する方法、JEAC4206のFB-4000並びに附属書A及 び附属書Fで規定されるように、応力拡大係数と運転状態における材料の温度より求められる関 連温度を用いて評価する方法、また、JEAC4201のSA-3440で規定されるように、高温時 における靭性を示す上部棚吸収エネルギーの減少率を予測し、設計寿命末期における上部棚吸収 エネルギーを評価する方法に区分される。

したがって,原子炉圧力容器及びモータケーシングの材料で破壊靭性試験を要求される箇所に 対し,最低使用温度を基準とする評価箇所と関連温度を基準とする評価箇所を区別して評価を行 い,加えて炉心領域材料について上部棚吸収エネルギーの評価を行う。なお,関連温度を用いて の評価は,供用期間中の耐圧・漏えい試験及び供用状態A及びB(耐圧・漏えい試験を除く)の 運転条件において,原子炉圧力容器及びモータケーシングの材料の脆性破壊防止の観点で破壊靭 性上最も厳しい運転条件が,低温高圧の運転管理となる耐圧・漏えい試験時であるため,供用状 態A及びBの評価は耐圧・漏えい試験での評価で代表する。

供用状態C及び供用状態Dについては、JEAC4206の解説-附属書A-3120より、健全性 評価上最も問題となる事象はPTS事象*1である。沸騰水型原子炉圧力容器では相当運転期間で の中性子照射量が低いこと、炉圧は蒸気温度の低下に伴い低下することからPTS事象は発生し ない。そのため、供用状態C及び供用状態Dにおいては脆性破壊に対して厳しくなる事象はなく、 耐圧・漏えい試験時に対する評価で代表される。

また,重大事故等時について炉心損傷防止対策の有効性評価における重大事故シーケンス及び 格納容器破損防止対策の有効性評価における評価事故シーケンスを表4-1に示す。表4-1より重 大事故等時の温度・圧力条件は従来想定されている設計基準事象に包絡される。このことから, 原子炉圧力容器の重大事故等対処設備としての破壊靭性に対する評価は,7章に示す設計基準事 象における評価で代表できる。

具体的な破壊靭性の評価方法は、原子炉圧力容器及びモータケーシングの耐圧部材料に使用さ れる低合金鋼がフェライト鋼であり、脆性破壊が懸念される材料であることから、評価において は破壊力学を適用する。破壊力学では、欠陥の先端近傍の応力場の強さを応力拡大係数で表し、 応力拡大係数が破壊靭牲を超えると破壊すると判断する。原子炉圧力容器及びモータケーシング の材料の評価に当たっては、保守的に欠陥が存在するものと仮定し、欠陥の先端に生じる欠陥の 進展力(応力拡大係数)を、供用期間中に想定される圧力・温度条件等から算出する。破壊靭性 については、落重試験及び衝撃試験から得られる関連温度(RTNDT)及び金属温度と関数の関 係にあることから、関連温度を用いて各温度の破壊靭性を算出する。

また,経年劣化事象により破壊靭性の低下が懸念される部位については,供用期間中における 劣化を考慮した評価を行う。軽水炉における材料の破壊靭性の低下を伴う劣化事象としては,熱 時効と中性子照射脆化が挙げられる。熱時効については,原子炉圧力容器の材料である低合金鋼

R

3

に対する影響を,財団法人 発電設備技術検査協会の研究*2において検証されており,有意な劣 化事象ではない。一方,中性子照射脆化については,JEAC4201において監視試験の対象 となる中性子照射量10¹⁷n/cm²(E>1MeV)以上となる炉心領域が含まれるため,考慮が必要であ る。

中性子照射脆化は、中性子照射量及び材料の化学成分(Cu, Ni, P)に依存し、中性子照射量 及びこれら化学成分の含有量が多いほど脆化は大きい傾向にある。原子炉圧力容器を構成する各 部位の材料については、板材と鍛造材の違いはあるものの、すべて低合金鋼を使用しており、化 学成分に有意な差はない。一方、供用期間中に原子炉圧力容器の材料が受ける中性子照射量につ いては、炉心領域のうち、炉心の有効高さを直接囲む胴板3の内表面が最も多く、3.3×10¹⁷n/cm²

(E>1MeV)程度であるのに対し、それ以外の部位では10¹⁷n/cm²(E>1MeV)程度以下であり、 胴板3とそれ以外の部位では3倍以上の差がある。したがって、中性子照射脆化を考慮した破壊靭 性の評価は、当該事象が懸念される胴板3について実施する。

中性子照射量を考慮する位置は、内表面及び表面からの仮想欠陥深さ1/4t(内表面から1/4t 部)とする。

注記*1:PTS(加圧熱衝撃)

加圧下の原子炉圧力容器内で急激な冷却が生じると,原子炉圧力容器内外間の温度 差により高い引張応力が容器内面に発生し,これと内圧による膜応力が重畳して高 い引張応力が容器内面に発生する現象。

*2 : プラント長寿命化技術開発 低合金鋼・ステンレス鋼等腐食環境材料試験(低合金 鋼・ステンレス鋼) (BWR) (昭和62年度~平成4年度のまとめ) (平成5年3月 財 団法人 発電設備技術検査協会)

5. 記号の説明

記号	記号の説明	単位
а	欠陥の深さ	mm
f	原子炉圧力容器内表面から深さ a における中性子照射量	n/cm^2
F(a/rn)	補正係数で、JEAC4206の附属書Fの附属書図	—
	F-4200-1で有限要素法のデータを結んだ曲線により得ら	
	れる値	
Κı	供用状態における材料の応力と応力係数との積	MPa∙√m
	(以下「応力拡大係数」という。)	
Kic	JEAC4206の附属書Aにより規定される静的破壊	MPa•√m
	靭性値	
КIр	一次応力による応力拡大係数	MPa∙√m
K I q	二次応力による応力拡大係数	MPa∙√m
ℓ	欠陥の長さ	mm
Mm	JEAC4206の附属書Fの附属書図 F-3100-1によ	$\sqrt{\mathrm{m}}$
	り得られる膜応力の応力補正係数	
M b	J E A C 4 2 0 6 の附属書 F のF-3100に示される曲げ応	$\sqrt{\mathrm{m}}$
	力の応力補正係数(M_m の $\frac{2}{3}$ の値)	
RTNDT	JEAC4206のFB-2000及び附属書Aにより規定され	$^{\circ}\!\mathrm{C}$
	る関連温度	
ΔRT NDT	関連温度の移行量	°C
r i	ノズルの内半径	mm
r c	ノズルコーナーの曲率半径	mm
r n	ノズルのみかけの半径	mm
Sf	安全係数	—
Т	供用状態における材料の温度	°C
t	板厚	mm
USE	上部棚吸収エネルギー	J
ΔUSE	上部棚吸収エネルギー減少率	%
ϕ c	原子炉圧力容器内表面から深さ a における中性子束	$n/(cm^2 \cdot s)$
σ	胴板及び鏡板部の周方向応力	MPa
$\sigma\mathrm{m}1$	一次膜応力	MPa
$\sigma m2$	二次膜応力	MPa
σ b 1	一次曲げ応力	MPa
σ b 2	二次曲げ応力	MPa

- 6. 最低使用温度に基づく評価
- 6.1 評価箇所

JEAC4206のFB-2400の規定により,最低使用温度以下の温度で衝撃試験を行う箇所 を表6-1及び図6-1に示す。

6.2 最低使用温度

表6-1に示した箇所の最低使用温度を同表中に示す。最低使用温度は、平成5年6月17日付け 4資庁第14562号にて認可された工事計画のIV-3-1-2-1「原子炉圧力容器の応力解析の方針」に 示す原子炉圧力容器の運転条件をもとに、原子炉の運転状態又は試験状態において原子炉圧力 容器の内外にて接する流体の最低温度を考慮して定めた。

- 7. 関連温度に基づく評価
- 7.1 評価箇所

JEAC4206のFB-2100の規定により,関連温度に基づいた評価を行う箇所を表7-1(1),表7-1(2)及び図6-1に示す。

7.2 関連温度の要求値

原子炉圧力容器に欠陥を想定した場合、欠陥に発生する応力拡大係数KIが、JEAC

4206の附属書AのA-3222に基づく静的破壊靭性値KICを超えなければ脆性破壊は生じない。 KICは関連温度RTNDTを基準とした温度の関数として示される。

 $K_{IC} = 36.48 + 22.78 \exp[0.036(T - RT_{NDT})]$

ここで、関連温度RTNDTを関連温度の要求値として計算するため、上式をRTNDTについての式とする。

(関連温度)

$$R T_{NDT} = T - \frac{1}{0.036} \ln \left(\frac{K_{IC} - 36.48}{22.78} \right)$$

KIがKICを超えないRTNDTの最大値として、関連温度の要求値を定義すると以下の式により求められる。

(関連温度の要求値)

$$RTNDT \leq T - \frac{1}{0.036} ln \left(\frac{KI - 36.48}{22.78} \right)$$

応力拡大係数KIの計算は、JEAC4206の附属書A及び附属書Fにより、7.3節に示すように行う。

7.3 応力拡大係数の計算

7.3.1 最大仮想欠陥

応力拡大係数の計算に用いる最大仮想欠陥は, 胴板, 鏡板及びモータケーシング部にあっては, 板厚の1/4倍の深さ, 板厚の1.5倍の長さの表面欠陥を用いる。ただし, 板厚 t が t <100.0mmの場合, 100.0mm厚断面に対する欠陥を用いる。

ノズル部にあっては、ノズルが取り付く部分の胴板及び鏡板部板厚の1/4倍の深さの欠陥を用いる。ただし、最大仮想欠陥の大きさは胴板部の最大仮想欠陥寸法を超えないものとする。

図7-1に最大仮想欠陥の形状を示す。

7.3.2 応力拡大係数の計算

応力拡大係数は,材料に欠陥の存在を想定した場合,過渡時の温度・圧力変化による欠 陥の進展力を係数で表す。 耐圧・漏えい試験時における応力拡大係数は、有限要素法又は理論式より算出した膜応 力及び曲げ応力をもとに算出する。解析コードは「ASHSD2-B」又は「NOPS」 である。

なお,解析コード「ASHSD2-B」及び「NOPS」の検証及び妥当性確認等の概要については,別紙1及び別紙3「計算機プログラム(解析コード)の概要」に示す。

(1) 形状不連続部を含めた胴板,鏡板及びモータケーシング部

形状不連続部を含めた胴板,鏡板及びモータケーシング部の応力拡大係数の計算は次式 による。

 $K_{I} = S_{F} \cdot K_{Ip} + K_{Iq}$

- (a) 一次応力に対する安全係数SF=1.5 (耐圧・漏えい試験における係数)
- (b) 一次応力に対する応力拡大係数

 $K_{Ip} = M_m \cdot \sigma_{m1} + M_b \cdot \sigma_{b1}$

Mmは, JEAC4206の附属書Fの附属書図 F-3100-1により得られる。 Mbは, Mmの2/3の値。

(c) 二次応力に対する応力拡大係数KIq=Mm・σm2+Mb・σb2

(2) ノズル部

ノズル部の応力拡大係数の計算は次式による。

$$K_{I} = \frac{S_{F} \cdot F(a / r_{n}) \cdot \sigma \cdot \sqrt{\pi \cdot a}}{\sqrt{1000}}$$

ここで,

$$S_F = 1.5$$

 $r_n = r_i + 0.29 \cdot r_c$

7.4 中性子照射による関連温度の移行量

炉心領域材料は、中性子照射による脆化を受けると予想されることから、中性子照射による 関連温度の移行量 ΔRTNDT を見込む。

中性子束及び中性子照射量は、第1回監視試験の結果から得られた値を評価に用いる。

40定格負荷相当年数の運転期間中に原子炉圧力容器の材料が受ける中性子照射量は,原子炉 圧力容器の胴板3の内表面,板厚の1/4t部の値を算出する。各位置における最大中性子束を解 析コード「DORT」を用いて算出し,リードファクタ*及び照射期間を用いて,中性子照射 量を算出する。

注記*:監視試験片の照射位置における中性子束の,原子炉容器内表面あるいは他の位置 における最大中性子束に対する比で表す。

8

なお,評価に用いる解析コード「DORT」の検証及び妥当性確認等の概要については, 別紙2「計算機プログラム(解析コード)の概要」に示す。

算出した中性子束及び中性子照射量を表7-2に示す。

内表面から深さ1/4t位置での中性子束 ø c は以下となる。

 $\phi c = 1.74 \times 10^8 n/(cm^2 \cdot s)$

中性子照射量fは、中性子束 ocに40定格負荷相当年数を乗ずることにより求める。

 $f = 1.74 \times 10^8 \times (40 \times 365 \times 24 \times 60 \times 60) = 2.19 \times 10^{17} n/cm^2$

付録1より、炉心領域材料の化学成分を用いて、安全側に中性子照射による関連温度の移行 量を、ΔRTNDT=23.5℃とする。

7.5 計算結果

7.5.1 応力拡大係数の計算結果

応力拡大係数の計算結果を表7-3(1)及び表7-3(2)に示す。

表7-3(1)には胴板,鏡板及びモータケーシング部に対する計算結果を,表7-3(2)には ノズル部に対する計算結果を示す。

7.5.2 関連温度の要求値の計算結果

応力拡大係数及び耐圧試験の温度より、7.2節に示した関係を満足する関連温度の要求 値を求めた結果を,胴板,鏡板及びモータケーシング部に対して表7-3(1)に、ノズル部 に対して表7-3(2)に示す。また,同表中に使用する材料の実測値を示す。

なお,表7-3(1)及び表7-3(2)において使用した耐圧試験温度54℃は、中性子照射によ る関連温度の移行量を設計段階で予測し、これをもとに定めた温度であり、平成5年6月17 日付け4資庁第14562号にて認可された工事計画のIV-3-1-2-1「原子炉圧力容器の応力解析 の方針」の原子炉圧力容器の運転条件に示される。

- 8. 上部棚吸収エネルギーの評価
- 8.1 評価箇所

JEAC4206のFB-2200の規定により、上部棚吸収エネルギーの評価は、中性子照射に よる脆化を受けると予想される炉心領域材料について行う。評価を行う箇所を図6-1に示す。

8.2 上部棚吸収エネルギーの評価方法

上部棚吸収エネルギーは、高温時における鋼材の粘り強さ(靭性)の程度を示す指標であり、 中性子照射が進むと低下する。

上部棚吸収エネルギーの要求値は、JEAC4206のFB-4200において、68J以上と規定されており、JEAC4201の附属書BのB-3100に基づき、供用期間中の中性子照射を考慮しても、原子炉圧力容器内表面から1/4t位置において、上部棚吸収エネルギー調整値が68J以上であることを確認する。

上部棚吸収エネルギーの算出に当たっては,評価対象の材料中の元素含有量,中性子照射量 及び温度について,JEAC4201附属書Bで国内USE予測式の適用範囲として規定され ており,今回の評価に用いる材料,中性子照射量及び温度については,すべて適用範囲を満足 しているため,国内USE予測式を用いる。表8-1に国内USE予測式の適用範囲及び評価対 象の諸元を示す。

- 8.3 上部棚吸収エネルギーの計算
 - 8.3.1 上部棚吸収エネルギー減少率の推定

中性子照射による上部棚吸収エネルギーの減少率(ΔUSE(%))を,次式を用いて推定 する。

 $\Delta USE = C_o + [CF_U] \cdot [FF_U](f) + M_U$

ここで,

Co : 係数 -0.95

$$\begin{bmatrix} CF_U \end{bmatrix} : 化学成分による係数 \\ \begin{bmatrix} CF_U \end{bmatrix} = 5.23 + 9.36 \cdot \left\{ 0.5 + 0.5 \cdot \tanh\left(\frac{Cu - 0.087}{0.034}\right) \right\} \times (1 + 0.59 \text{ Nich})$$

[FF_U](f): 中性子照射量fによる係数 [FF_U](f)=f^(0.349-0.068·log f)

Cu : 銅の含有量 (mass%)

 f : 40定格負荷相当年数での原子炉圧力容器内表面から1/4t位置の中性 子照射量
 0.0219 (×10¹⁹n/cm², E>1MeV)

8.3.2 上部棚吸収エネルギー調整値の算出

8.3.1項にて推定した上部棚吸収エネルギーの減少率(ΔUSE)及び照射前の上部棚吸 収エネルギー(USE(初期値))を用いて、上部棚吸収エネルギー調整値(USE(調整 値))を,次式を用いて算出する。

評価に当たっては、初期条件確認試験の結果をUSE(初期値)としてUSE(調整値) の算出を行う。

USE (調整値) = USE (初期値) × $(1 - \Delta USE / 100)$

USE (調整値):照射後の上部棚吸収エネルギー (J)

USE(初期値):照射前の上部棚吸収エネルギー(J):270J

8.4 上部棚吸収エネルギーの評価結果

供用期間中の中性子照射を考慮した,上部棚吸収エネルギー調整値の計算結果を表8-2に示す。

表8-2より,40定格負荷相当年数での上部棚吸収エネルギー調整値は,JEAC4206に 規定される要求値の68J以上を満足している。

9. 結論

原子炉圧力容器及びモータケーシングの材料に対して,JEAC4206 第2章 クラス1 機器の規定により破壊靭性の評価を必要とされる箇所について,JEAC4206のFB-2000に より最低使用温度以下の温度で衝撃試験を行う箇所は流体の最低温度を考慮した最低使用温度 を定めるとともに,JEAC4206のFB-4000並びに附属書A及び附属書Fにより関連温度を 決定する必要のある箇所については関連温度の要求値を示し,JEAC4206のFB-2100によ り求めた関連温度が要求値を満足することを確認した。

また,設計寿命末期における上部棚吸収エネルギー調整値が,JEAC4206のFB-4200に 規定されている要求値,68J以上を満足することを確認した。

注記*1:最低使用温度を基準とする評価箇所

*2:関連温度を基準とする評価箇所

*3 : 上部棚吸収エネルギーの評価箇所

図6-1 破壊靱性評価箇所

a. 胴板,鏡板及びモータケーシング部

表 4-1(1) 重大事故シーケンスの影響確認

	重大事故 シーケンス等	事象の概要及び考察
1	高圧・低圧注水 機能喪失 (給水喪失) [TQUV]	給水喪失により,原子炉水位は徐々に低下して炉心が露 出する。 その後,主蒸気逃がし安全弁8弁を手動開放させ,低圧 代替注水系(常設)により注水する。本挙動は設計熱サイ クルで想定している「原子炉冷却材喪失事故」に包絡され る。
2	高圧注水・減圧 機能喪失 (給水喪失) [TQUX]	給水喪失により,原子炉水位は徐々に低下して炉心が露 出する。 その後,代替自動減圧ロジックを用いた主蒸気逃がし安 全弁4弁による自動減圧が行われ,残留熱除去系(低圧注 水モード)により注水される。本挙動は設計熱サイクルで 想定している「原子炉冷却材喪失事故」に包絡される。
3	全交流 動力電源喪失 [TB]	全交流動力電源喪失又は全電源喪失により原子炉水位は 低下し,原子炉隔離時冷却系又は高圧代替注水系が運転開 始して原子炉水位は維持される。 原子炉隔離時冷却系又は高圧代替注水系停止後に,主蒸 気逃がし安全弁2弁を手動開放させ,低圧代替注水系(常 設)により注水する。また,可搬型代替交流電源設備によ る交流電源の供給を開始して,残留熱除去系(低圧注水モ ード)により注水する。 本挙動は設計熱サイクルで想定している「原子炉冷却材喪 失事故」に包絡される。

表 4-1(2) 重大事故シーケンスの影響確認

	重大事故	事象の概要及び考察	
		全交流動力電源喪失により原子炉水位は低下し、原子炉	
	崩壊熱除去	隔離時冷却系が運転開始して原子炉水位は維持される。	
4	機能喪失	その後,主蒸気逃がし安全弁 2 弁を手動開放させ,低圧	
4	(取水機能喪失)	代替注水系(常設)により注水する。本挙動は設計熱サイ	
		クルで想定している「原子炉冷却材喪失事故」に包絡され	
	[TW]	る。	
		給水喪失により原子炉水位は低下し、原子炉隔離時冷却	
	崩壊熱除去	系及び高圧炉心注水系が運転開始して原子炉水位が維持さ	
	機能喪失	れる。	
5	(RHR 機能喪失)	その後,主蒸気逃がし安全弁1弁を手動開放させ,高圧	
		炉心注水系が注水継続され原子炉水位が維持される。本挙	
	[TW]	動は設計熱サイクルで想定している「原子炉冷却材喪失事	
		故」に包絡される。	
		主蒸気隔離弁誤閉止の発生後、原子炉スクラムに失敗す	
	原子炉停止	る。主蒸気隔離弁が閉止されると原子炉圧力が上昇し、原	
	機能喪失	子炉圧力高信号で原子炉冷却材再循環ポンプが4台,原子	
		炉水位低(レベル2)で残りの6台がトリップする。主蒸気	
6	[ATWS]	隔離弁の閉止により、タービン駆動原子炉給水ポンプはト	
		リップするが、電動機駆動原子炉給水ポンプが自動起動し	
		て給水が継続される。	
		圧力上昇の挙動は、設計熱サイクルで想定している「過	
		大圧力」に包絡される。	

表 4-1(3) 重大事故シーケンスの影響確認

	重大事故 シーケンス等	事象の概要及び考察	
		外部電源喪失及び LOCA 発生により原子炉水位は徐々に低	
	LOCA 時注水	下して炉心が露出する。	
7	機能喪失	その後,主蒸気逃がし安全弁 8 弁を手動開放,低圧代替	
((中小破断)	注水系(常設)による注水を開始する。本挙動は設計熱サ	
		イクルで想定している「原子炉冷却材喪失事故」に包絡さ	
	[SE]	れる。	
		ISLOCA 時は、高圧炉心注水系配管の破断を想定し、破断	
	格納容器バイパス	口からの冷却材流出による水位低下により、原子炉隔離時	
	(HPCF 配管破断)	冷却系及び高圧炉心注水系が運転開始して原子炉水位が維	
0		持される。	
8	[ISLOCA]	その後,主蒸気逃がし安全弁 8 弁を手動開放させ,高圧	
		炉心注水系が注水継続され原子炉水位が維持される。本挙	
		動は設計熱サイクルで想定している「原子炉冷却材喪失事	
		故」に包絡される。	
	雰囲気圧力・温度に	大破断 LOCA により原子炉水位は低下し,炉心が損傷・溶	
0	よる静的負荷	融する。	
9	(格納容器過圧	その後、低圧代替注水系(常設)や代替循環冷却系によ	
	・過温破損)	る注水を開始し,溶融炉心を冷却することで,原子炉圧力	
1	しまゆは	容器は破損しない。本挙動は設計熱サイクルで想定してい	
10	水素燃焼	る「原子炉冷却材喪失事故」に包絡される。	
	高圧溶融物放出/		
	格納容器雰囲気		
11	直接加熱,		
	原子炉圧力容器外の	原子炉圧力容器が破損するシーケンスであり、原子炉圧	
	溶融燃料-冷却材	力容器の破壊靱性に対する評価は不要である。	
	相互作用,		
	溶融炉心・コンクリ		
	一卜相互作用		

表6-1 最低使用温度に基づく評価箇所

評価箇所	材料	最低使用温度 (℃)
スタッドボルト	SNB24-3	

表7-1(1) 関連温度の評価箇所 (胴板,鏡板及びモータケーシング部)

評価箇所	材料	備考
上部鏡板1	S Q V 2 A	t \geq 16mm
上部鏡板2	S Q V 2 A	$t \ge 16 mm$
胴板1	S Q V 2 A	$t \ge 16 mm$
胴板2	S Q V 2 A	$t \ge 16 mm$
胴板3	SFVQ1A	t \geq 16mm
胴板4	SFVQ1A	$t \ge 16 mm$
下部鏡板1	SFVQ1A	$t \ge 16 mm$
下部鏡板2	SFVQ1A	$t \ge 16 mm$
鏡板フランジ	SFVQ1A	$t \ge 16 mm$
胴板フランジ	SFVQ1A	$t \ge 16 mm$
原子炉冷却材再循環 ポンプモータケーシング	SFVQ1A	t \geq 16mm

表7-1(2) 関連温度の評価箇所 (ノズル部)

評価箇所		材料	備考
原子炉冷却材再循環ポンプ貫通孔	(N1)	SFVQ1A	t $\geq \! 16$ mm
主蒸気ノズル	(N3)	SFVQ1A	t $\geq \! 16$ mm
給水ノズル	(N4)	SFVQ1A	t $\geq \! 16$ mm
低圧注水ノズル	(N6)	SFVQ1A	t $\geq \! 16$ mm
上蓋スプレイ・ベントノズル	(N7)	SFVQ1A	t $\geq \! 16$ mm
原子炉停止時冷却材出口ノズル	(N8)	SFVQ1A	t $\geq \! 16$ mm
原子炉停止時冷却材出口ノズル	(N10)	SFVQ1A	t \geq 16mm
高圧炉心注水ノズル	(N16)	SFVQ1A	t \geq 16mm

立77 (六	中性子束	中性子照射量
百り1立.	$[n/(cm^2 \cdot s), E > 1 MeV]$	$[n/cm^2, E>1MeV]$
内表面	2.62 $\times 10^{8}$	3.30×10^{17}
1/4t	1.74×10^{8}	2. 19×10^{17}

表7-2 原子炉圧力容器の40定格負荷相当年数の運転期間中の中性子束及び中性子照射量

表7-3(1)	応力拡大係数及び関連温度の要	要求値の計算結果(胴板,	鏡板及びモータケーシング	部)
	耐圧試験(最高使用圧力以	下) T=5	54° C $a = t/4$	

評価箇所	材料	応力拡大係数 K1	関連 (°	温度 C)
		$(\text{MPa} \cdot \sqrt{\text{m}})$	要求値	実測値
上部鏡板1	SQV2A	63.8	48.9	-35
上部鏡板2	SQV2A	110.6	21.2	-35
胴板1	SQV2A	98.4	26.2	-35
胴板2	SQV2A	101.8	24.7	-35
胴板3	SFVQ1A	100. 5	1.7^{*1}	-35
胴板4	SFVQ1A	100. 5	25.2	-35
下部鏡板1	SFVQ1A	102.5	24.4	-35
下部鏡板2	SFVQ1A	110.0	21.4	-35
鏡板フランジ	SFVQ1A	118.6	18.3	-40
胴板フランジ	SFVQ1A	84.6	33.2	-35
原子炉冷却材再循環 ポンプモータケーシング	SFVQ1A	30. 6	$\geq 100.0^{*2}$	-30

注記*1:中性子照射による関連温度の移行量を含めた値

*2 : K1<36.48MPa·√m であり要求値の算出不可のため、十分大きな値として100℃以上とした。

K7 ① V-1-2-2 R0

表7-3(2) 応力拡大係数及び関連温度の要求値の計算結果(ノズル部)耐圧試験(最高使用圧力以下) T=54℃ a = t/4

評価箇所		L L dat	応力拡大係数	関連	関連温度	
		材料	KI	(°C)		
			(MPa•√m)	要求値	実測値	
原子炉冷却材再循環ポンプ貫通孔	(N1)	SFVQ1A	76.6	38.2	-35	
主蒸気ノズル	(N3)	SFVQ1A	154.3	8.3	-60	
給水ノズル	(N4)	SFVQ1A	146.5	10.2	-70	
低圧注水ノズル	(N6)	SFVQ1A	136.9	12.7	-75	
上蓋スプレイ・ベントノズル	(N7)	SFVQ1A	88.0	31.3	-75	
原子炉停止時冷却材出口ノズル	(N8)	SFVQ1A	147.7	9.9	-75	
原子炉停止時冷却材出ロノズル	(N10)	SFVQ1A	142.7	11.2	-80	
高圧炉心注水ノズル	(N16)	SFVQ1A	136.9	12.7	-65	

項目	適用範囲 (JEAC4201)	評価対象の諸元
材料のCu含有量 (mass%)	0.25 以下	*1
材料のNi含有量 (mass%)	0.5~1.0	*1
材料のP含有量 (mass%)	0.020 以下	*1
中性子照射量	1.0×10^{17} , 1.0×10^{20}	末7 0 余 昭
$(n/cm^2, E > 1MeV)$	$1.0 \times 10^{11} \sim 1.2 \times 10^{20}$	★1−2参照
公称照射温度(℃)	$274 \sim 310$	*2

表8-1 国内USE予測式の適用範囲及び評価対象の諸元

注記*1:材料調達時における試験による実測値

*2:ダウンカマの原子炉冷却材温度の公称値

- 30 2 上印伽奴収エイルイ の計画加オ	表8-2	上部棚吸収エネルギーの評価結果
------------------------	------	-----------------

評価箇所	-	上部棚吸収エネルギー(J	·)
	USE (初期値)	USE (調整値)	要求値 (必要下限値)
炉心領域 材料	270	232	68

JEAC4201により,関連温度移行量の予測値を求める。JEAC4201によると, 関連温度の移行量の予測値は評価対象の材料中の元素含有量,中性子照射量,中性子束及び 温度について,JEAC4201-2007附属書Bで国内脆化予測法の適用範囲として規定され ており,今回の評価に用いる材料,中性子照射量,中性子束及び温度については,すべて適 用範囲を満足しているため,国内脆化予測法を用いる。付表-1に国内脆化予測法の適用範囲 及び評価対象の諸元を示す。

 $\Delta RTNDT 予測値 = \Delta RTNDT 計算値 + MR$

ここで,

- △ RTNDT計算値 : JEAC4201のB-2100②に規定される手順により、附属書表
 B-2100-2を用いて計算する、関連温度の移行量の計算値(℃)
 - MR : JEAC4201のB-2100③に規定されるマージン 22(℃)

ΔRTNDTの計算においては以下のパラメータを使用する。

- φc : 計算に使用する中性子束 (n/(cm²·s))
- Cu : 銅の含有量 (mass%)
- Ni : ニッケルの含有量 (mass%)

上式により,以下の値に対して関連温度の移行量を求める。材料の化学成分は,材料調達 時における試験による実測値を用いて算出する。

> $\phi_{c} = 1.74 \times 10^{8} (n/(cm^{2} \cdot s))$ Cu \leq (mass%) Ni \leq (mass%)

上式に対して関連温度の移行量は、1.5℃と求まる。

ただし、中性子照射による関連温度の移行量は、マージン22℃を見込んで、23.5℃として 関連温度の検討を行う。

なお、中性子照射による関連温度の移行量を監視するために、付図-1に示す位置に監視試 験片を取り付けている。

項目	適用範囲 (JEAC4201)	評価対象の諸元
材料のCu含有量 (mass%)	0.25 以下	*1
材料のNi含有量 (mass%)	0.5~1.1	*1
材料のP含有量 (mass%)	0.025 以下	*1
中性子照射量 (n/cm ² , E>1MeV)	$1.0 \times 10^{17} \sim 1.3 \times 10^{20}$	表7-2参照
中性子束 (n/(cm ² ·s), E>1MeV)	$1 \times 10^{7} \sim 1 \times 10^{12}$	表7-2参照
公称照射温度(℃)	270~290	k 2

付表-1	国内脆化予測法の適用範囲及び評価対象の諸元

注記*1:材料調達時における試験による実測値

*2:ダウンカマの原子炉冷却材温度の公称値

付図-1 監視試験片取付図