3．13．1 蒸気タービン本体
（2）車室，円板，隔板，噴口，翼，車軸及び管


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 ${ }^{* 1}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \left.\quad \text { ( }{ }^{\circ} \mathrm{C}\right) \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*2 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*3 } \\ (\mathrm{mm}) \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最高使用 温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*2 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 醎 } \\ & \text { I } \\ & \text { ビ } \\ & \text { o } \\ & \text { 管 } \end{aligned}$ | 低圧タービン第10段抽気出口N36-F006A, B | 0． $63 * 5$ | 230 | 318.5 | （10．3） | STPA23 |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 457.2 | $\begin{aligned} & \hline \hline(9.5) \\ & \hline{ }^{*} \end{aligned}$ | SCMV3 |  |  |  |  |  |  |  |  |
|  | 低圧タービン第11段抽気出口 | 0． $38^{* 5}$ | 151 | 457.2 609.6 | $\begin{array}{r} \hline{ }^{*}{ }^{* 6} \\ \hline(9.5) \\ \mathbf{Q}^{* 6} \\ \hline(9.5) \\ \hline \end{array}$ | SCMV3 SCMV3 |  | 変更なし |  |  |  |  |  |  |

注記＊1 ：記載の適正化を行う。既工事計画書には「管名称」「使用場所」と記載。
＊2 ：外径は公称値を示す。
＊3：（ ）内は公称値を示す
＊4：記載の適正化を行う。既工事計画書には「リード管（蒸気加減弁から高圧タービンまで）」と記載。
＊5 ：S I 単位に換算したものである。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－6 蒸気夕ービンの管の強度計算書」による。
＊7：記載の適正化を行う。既工事計画書には「クロスアラウンド管（高圧タービンから湿分分離加熱器まで）」と記載
＊8：記載の適正化を行ら。既工事計画書には「クロスアラウンド管（同上レジューサ）」と記載。
＊9：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。
＊10：記載の適正化を行う。既工事計画書には「クロスアラウンド管（湿分分離加熱器から組合せ中間弁及びクロスアラウンド管安全弁まで）」と記載
＊11：記載の適正化を行う。既工事計画書には「クロスアラウンド管（組合せ中間弁から低圧タービンまで）」と記載。
＊12：記載の適正化を行う。既工事計画書には「湿分分離加熱器第1段加熱烝気管（高圧タービン第3段抽気出口から湿分分離加熱器へ）」と記載。
＊13：記載の適正化を行う。既工事計画書には「第1抽気管（高圧タービン第5段抽気出口から高圧第2給水加熱器へ）」と記載
＊14：記載の適正化を行う。既工事計画書には「第2抽気管（クロスアラウンド管から高圧第1給水加熱器へ）」と記載。
＊15：記載の適正化を行う。既工事計画書には「第3抽気管（低圧タービン第10段抽気出口から低圧第 4 給水加熱器へ）」と記載。
＊16：記載の適正化を行う。既工事計画書には「第4抽気管（低圧タービン第11段抽気出口から低圧第3給水加熱器へ）」と記載。
（3）調速装置及び非常用調速装置並びに調速装置で制御される主要弁

|  |  |  |  |  | 変 更 前＊ | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  | 称 |  | 主蒸気止め弁 | 変更なし |
| 種 |  |  | 類 | － | 止め弁 |  |
| 駆 | 動 | 方 | 法 | － | 油圧作動 |  |
| 個 |  |  | 数 | － | 4 |  |

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

|  |  |  |  |  | 変 更 前＊ | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  | 称 |  | 蒸気加減弁 | 変更なし |
| 種 |  |  | 類 | － | 制御弁 |  |
| 駆 | 動 | 方 | 法 | － | 油圧作動 |  |
| 個 |  |  | 数 | － | 4 |  |

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

|  |  |  |  |  | 変 更 前＊ | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  | 称 |  | 組合せ中間弁 | 変更なし |
| 種 |  |  | 類 | － | 制御弁•止め弁 |  |
| 駆 | 動 | 方 | 法 | － | 油圧作動 |  |
| 個 |  |  | 数 | － | 4 |  |

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（4）復水器
个 復水器


注：記載の適正化を行う。既工事計画書の「取放水の温度差」の記載を削除。
注記＊1：記載の適正化を行う。既工事計画書には「冷却水入口標準温度」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「 $\mathrm{m}^{2} /$ 個」と記載。
＊3：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「SM41A 相当（SMA41AP）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「SS41」と記載。

枠囲みの内容は商業機密の観点から公開できません。

3．13．2 蒸気タービンの附属設備
（2）熱交換器（湿分分離器を含む。）

枠囲みの内容は商業機密の観点から公開できません。
（前頁からの続き）

（次頁へ続く）

[^0]（前頁からの続き）


注：記載の適正化を行う。既工事計画書の「加熱面積（フィン表面にて）」の記載を削除。
注記 $~ 1 ~$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：S I 単位に換算したものである。
＊3：記載の適正化を行う。既工事計画書には「胴内径」と記載。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－1 湿分分離加熱器 の強度計算書」による。
＊7 ：記載の適正化を行う。既工事計画書には「加熱管」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「外径•厚さ」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「19． $05 \times 1.90$ 」と記載。
＊10：記載の適正化を行う。既工事計画書には「フィン部谷径•厚さ」と記載。
＊11：記載の適正化を行う。既工事計画書には「 $15.88 \times 1.24$ 」と記載。
＊12：記載の適正化を行う。既工事計画書にはマンホールを含んだ「29460」と記載。記載内容は，設計図書による。
＊13：記載の適正化を行う。既工事計画書には「胴」と記載。
＊14：記載の適正化を行う。既工事計画書には「鏡板」と記載。

[^1]
（次頁へ続く）

枠囲みの内容は商業機密の観点から公開できません。
（前頁からの続き）


注 ：記載の適正化を行う。既工事計画書の「加熱面積」及び「材料」の「胴フランジ」の記載を削除。
注記＊1 ：S I 単位に換算したものである。
＊2 ：公称値を示す。
＊3 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－5 スチームコンバ ータ中間熱交換器の強度計算書」による。
＊5 ：記載の適正化を行う。既工事計画書には「加熱管外径」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「加熱管厚さ」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には管台長さ及びマンホールを含んだ「6325」と記載。記載内容は，設計図書による。
＊ 8 ：記載の適正化を行う。既工事計画書には「胴」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「SB46」と記載。
＊ 10 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊11：記載の適正化を行う。既工事計画書には「SF50A」と記載。
＊12：記載の適正化を行う。既工事計画書には「加熱管」と記載。
＊ 13 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

[^2]（4）管等
イ 主配管

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ \hline \end{array} \end{aligned}$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { タ } \\ & 1 \\ & \text { ビ } \\ & \text { 補 } \\ & \text { 脀 } \\ & \text { 気 } \\ & \text { 采 } \end{aligned}$ | ＊3 |  |  | 216.3 | （12．7） | STPT49 | $\begin{aligned} & \text { タ } \\ & \text { l } \\ & \text { ビ } \\ & \text { シ } \\ & \text { 補 } \\ & \text { 烝 } \\ & \text { 采 } \end{aligned}$ | 変更なし |  |  |  |  |  |  |
|  | N38－F023A，B | 8． $62 * 4$ | 302 | 165.2 | （11．0） | STPT49 |  |  |  |  |  |  |  |  |
|  | 湿分分離加熱器第2段加熱器 |  |  | 165.2 | （14．3） | STPA23 |  |  |  |  |  |  |  |  |
|  | 同上レジューサ | 8． $62{ }^{* 4}$ | 302 | $\stackrel{216.3}{/}$ | $\begin{gathered} (12.7) \\ \vdots \\ (11.0) \end{gathered}$ | STPT49 |  |  |  | －＊5 |  |  |  |  |
|  | N38-F024A, B <br> 湿分分離加熱器第2段加熱蒸気管合流点 | 8． $62 * 4$ | 302 | 216.3 | （12．7） | STPT49 |  |  |  | 変更なし |  |  |  |  |
|  | 蒸気式空気抽出器入口管の安全弁 <br> 復水器 | 2． $35 * 4$ | 223 | 165.2 | （7．1） | STPT38 |  |  |  | －＊5 |  |  |  |  |

（ロ）抽気系


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径 }{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最 高 使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ \hline \end{array} \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径 }{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 抽 } \\ & \text { 気 } \\ & \text { 系 } \end{aligned}$ | 主蒸気系 <br> グランド蒸気発生器入口管合流点 | 1． $57 * 4$ | 302 | 267.4 | （9．3） | STPA23 | $\begin{aligned} & \text { 抽 } \\ & \text { 気 } \\ & \text { 系 } \end{aligned}$ | －＊5 |  |  |  |  |  |  |
|  | 同上レジューサ | $1.57 * 4$ | 302 | $\begin{gathered} 267.4 \\ / \\ 165.2 \\ \hline \end{gathered}$ | $\begin{gathered} (9.3) \\ \text { (7.1) } \end{gathered}$ | STPA23 |  | －＊5 |  |  |  |  |  |  |
|  | クロスアラウンド管安全弁復水器 | $0.93 * 4$ | 302 | 711.2 |  | SB46 |  | －＊5 |  |  |  |  |  |  |




|  | 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | ${ }_{(\mathrm{mm})}^{\text {厚 }}$ | 材 | 料 |
|  |  | 高圧タービングランド部抽気系 | $0.63 * 4$ | 180 | 165.2 | （7．1） | STPA23 |  |  |  | －＊5 |  |  |  |  |
|  |  | 同上レジューサ | 0.63 ＊4 | 180 | $165.2$ | $\begin{gathered} \text { (7. 1) } \\ \quad / \\ - \end{gathered}$ | STPA23 |  |  |  | －＊5 |  |  |  |  |
|  |  | 主蒸気止め弁復水器 | 0.35 ＊4 | 164 | 165.2 | （7．1） | STPA23 |  |  |  | －＊5 |  |  |  |  |
|  |  | 同上レジューサ | $0.35 * 4$ | 164 | $\begin{gathered} 165.2 \\ \quad / \end{gathered}$ | $\begin{gathered} \text { (7. 1) } \\ \quad \\ - \end{gathered}$ | STPA23 |  |  |  | －＊5 |  |  |  |  |
|  |  |  |  |  | 216.3 | （8．2） | STPT38 |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 267.4 | （9．3） | STPT38 |  |  |  |  |  |  |  |  |
|  |  | 低圧タービングランド部 |  |  | 318.5 | （10．3） | STPT38 |  |  |  |  |  |  |  |  |
| $\bigcirc$ |  |  | $0.14 * 4$ | 164 | 457.2 | ${ }_{(9.5)}^{* 16}$ | SB46 |  |  |  | －＊5 |  |  |  |  |
| \＆ | $\begin{aligned} & \text { 夕 } \\ & 1 \end{aligned}$ | グラント烝気復水器 |  |  | 508.0 | $\square_{(9.5)}^{* 16}$ | SB46 |  |  |  |  |  |  |  |  |
| $\ominus$ $\sim$ | $\begin{aligned} & \text { ビ } \\ & \text { グ } \\ & ラ \end{aligned}$ | 同上レジューサ | $0.14{ }^{* 4}$ | 164 | $\begin{gathered} \text { 267.4 } \\ / \\ 216.3 \end{gathered}$ | $\begin{gathered} (9.3) \\ \prime \\ (8.2) \end{gathered}$ | STPT38 |  |  |  | －＊5 |  |  |  |  |
| $\bigcirc$ | $\begin{aligned} & \text { ド } \\ & \text { 蒸 } \\ & \text { 俭 } \end{aligned}$ | 同上レジューサ | $0.14 * 4$ | 164 | $\stackrel{318.5}{/}$ | $\begin{gathered} (10.3) \\ (7.1) \\ (7.1 \end{gathered}$ | STPT38 | $\begin{aligned} & \text { グ } \\ & \text { ラ } \\ & \stackrel{y}{*} \end{aligned}$ |  |  | －＊5 |  |  |  |  |
|  | 系 | 同上レジューサ | $0.14 * 4$ | 164 | $\begin{gathered} 457.2 \\ / / \\ 318.5 \end{gathered}$ |  | SB46 | $\begin{aligned} & \text { 蒸 } \\ & \text { 采 } \end{aligned}$ |  |  | －＊5 |  |  |  |  |
|  |  | 同上レジューサ | $0.14 * 4$ | 164 | $\begin{gathered} 508.0 \\ \hline \\ 457.2 \end{gathered}$ |  | SB46 |  |  |  | －＊5 |  |  |  |  |
|  |  | 高圧タービングランド部 グランド蒸気復水器入口管合流点 2 | $0.14 * 4$ | 164 | 165.2 | （7．1） | STPT38 |  |  |  | －＊5 |  |  |  |  |
|  |  | 同上レジューサ | $0.14 * 4$ | 164 | $\text { 165. }{ }^{2}$ | $\begin{gathered} \text { (7. 1) } \\ \quad \\ - \end{gathered}$ | STPT38 |  |  |  | －＊5 |  |  |  |  |


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{array}{\|l\|l} \hline \begin{array}{l} \text { 最 高 使 用 } \\ \text { 温 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ \hline \end{array}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { タ } \\ & \text { し } \\ & \text { ビ } \\ & \text { グ } \\ & ラ \\ & \vdots \end{aligned}$ | 原子炉給水ポンプ駆動用蒸気タービン <br> グランド蒸気復水器入口管合流点1 | $0.14 * 4$ | 164 | 216.3 | （8．2） | STPT38 | $\begin{aligned} & \text { タ } \\ & 1 \\ & \text { ビ } \\ & \text { 年 } \\ & ラ \\ & \vdots \end{aligned}$ |  |  | －＊5 |  |  |  |  |
|  | 同上レジューサ | $0.14 * 4$ | 164 | $\stackrel{216.3}{/}$ | (8.2) <br> － | STPT38 | 䘬 系 |  |  | －＊5 |  |  |  |  |

（二）復水器空気抽出系

（木）復水給水系

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \\ \\ \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$ | 復水器 <br> 低圧復水ポンプ | $0.35 * 4$ | 66 | 660.4 |  | SM41B | 変更なし |  |  |  |  |  |  |  |
|  |  |  |  | 1117.6 | $\begin{array}{\|l\|} \hline \text { (12.7) } \end{array}$ | SM41B |  |  |  |  |  |  |  |  |
|  |  |  |  | 914.4 | $\begin{aligned} & \square_{(12.7)}^{* 30} \end{aligned}$ | SM41B |  |  |  |  |  |  |  |  |
|  |  |  |  | 609.6 | ${ }_{(12.7)}^{\square^{* 30}}$ | SF45A |  |  |  |  |  |  |  |  |
|  | 低圧復水ポンプ <br> 蒸気式空気抽出器 | 1． $94^{* 4}$ | 66 | 457.2 | $\begin{array}{\|c} \square \times 30 \\ (12.7) \\ \hline \end{array}$ | SB46 | $\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$ | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 609.6 | $\begin{array}{\|l\|} \hline \\ \hline(12.7) \\ \hline \end{array}$ | SB46 |  |  |  |  |  |  |  |  |
|  |  |  |  | 609.6 | $\begin{aligned} & \square .30 \\ & (18.0) \end{aligned}$ | SB46 |  |  |  |  |  |  |  |  |
|  | 同上レジューサ | $1.94 * 4$ | 66 | $\underset{457.2}{\substack{609.6 \\ \hline}}$ |  | SB46 |  | －＊5 |  |  |  |  |  |  |
|  | 蒸気式空気抽出器 グランド蒸気復水器 | $1.94 * 4$ | 66 | 609.6 |  | SB46 |  | 変更なし |  |  |  |  |  |  |
|  | グランド蒸気復水器 ～ <br> 復水浄化系（復水ろ過装置）及び復水浄化系（復水脱塩装置） | 1． $94 * 4$ | 66 | 609.6 | $\begin{array}{\|l} \square^{* 30} \\ (12.7) \end{array}$ | SB46 |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 609.6 |  | SB46 |  |  |  |  |  |  |  |  |
|  |  |  |  | 406.4 |  | SB46 |  |  |  |  |  |  |  |  |
|  | 同上レジューサ | 1． $94 * 4$ | 66 | $\underset{406.4}{\substack{609.6 \\ \hline}}$ |  | SB46 |  | －＊5 |  |  |  |  |  |  |
|  | P13-F310 <br> 復水器 | $0.35 * 4$ | 66 | 216． 3 | （8．2） | STPT38 |  | －＊5 |  |  |  |  |  |  |
|  | $\begin{array}{ll}  & { }^{* 32} \\ \text { N21-F029及びN21-F030 } & \\ \sim \\ \text { 復水器 } & \end{array}$ | 1． $94 * 4$ | 66 | 267.4 | （9．3） | STPT38 |  | －＊5 |  |  |  |  |  |  |
|  |  | $0.35 * 4$ | 66 | 267.4 | （9．3） | STPT38 |  |  |  |  |  |  |  |  |

（ ）給水加熱器ドレンベント系


| 変 更 前 |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 |  | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径 }{ }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | 厚 さ＊2 | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 厚 さ＊2 | 材 | 料 |
| $\begin{aligned} & \text { 給 } \\ & \text { 水 } \\ & \text { 熱 } \\ & \text { 器 } \end{aligned}$ | N22-F017A, B <br> 復水器 | ＊34 | $0.35 * 4$ | 302 | 216． 3 | （23．0） | STPA23 | 給 水 加 熱 㗊 俭 |  |  | －＊5 |  |  |  |  |
| $\begin{aligned} & \text { シ } \\ & \text { ジ } \\ & \text { ト } \\ & \text { 系 } \end{aligned}$ | N22-F018A, B <br> 復水器 | $* 37$ | 0． $35 * 4$ | 251 | 165.2 | （11．0） | STPA23 | $\begin{aligned} & \text { シ } \\ & \text { ミ゙ } \\ & \text { 采 } \end{aligned}$ |  |  | －＊5 |  |  |  |  |



| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \\ \hline \end{array} \mathbf{c}^{2} \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$ | 最 高 使 用温 <br> 度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 厚 $\underset{(\mathrm{mm})}{\text { さ＊2 }}$ | 材 | 料 |
| $\begin{aligned} & \text { ス } \\ & \text { 于 } \\ & \text { l } \\ & \text { a } \\ & \text { a } \\ & \text { バ } \\ & \text { l } \\ & \text { 系 } \end{aligned}$ | 第 1 抽気管 <br> スチームコンバータ中間熱交換器 | $2.06 * 4$ | 217 | 216.3 | （8．2） | STPA23 | $\begin{aligned} & \text { ス } \\ & \text { 手 } \\ & \text { l } \\ & \text { a } \\ & \text { シ } \\ & \text { バ } \\ & \text { l } \\ & \text { 系 } \end{aligned}$ | －＊5 |  |  |  |  |  |  |
|  | 同上レジューサ | $2.06 * 4$ | 217 | $\begin{gathered} 216.3 \\ / \\ 165.2 \\ \hline \end{gathered}$ | $\begin{gathered} (8.2) \\ \text { (7.1) } \end{gathered}$ | STPA23 |  | －＊5 |  |  |  |  |  |  |
|  | スチームコンバータ加熱蒸気管 <br> スチームコンバータ加熱蒸気安全弁 | $2.06 * 4$ | 217 | 165.2 | （7．1） | STPA23 |  |  |  | －＊5 |  |  |  |  |
|  | スチームコンバータ加熱蒸気安全弁 <br> 復水器 | 1． 27 ＊4 | 200 | 267.4 | （9．3） | STPT38 |  |  |  | －＊5 |  |  |  |  |
|  | スチームコンバータ中間熱交換器$\begin{aligned} & \text { スチームコンバータフラッ } \\ & \text { シュタンク } \end{aligned}$ |  |  | 267.4 | （9．3） | STPT38 |  | －＊5 |  |  |  |  |  |  |
|  |  | $2.75{ }^{* 4}$ | 217 | 165.2 | （7．1） | STPT38 |  |  |  |  |  |  |  |  |
|  |  |  |  | 267.4 | （15．1） | STPA23 |  |  |  |  |  |  |  |  |
|  |  |  |  | 267.4 | （15．1） | STPA23 |  |  |  |  |  |  |  |  |
|  |  | $0.96 * 4$ | 217 | 406． 4 | $\begin{array}{\|l} \hline \\ (12.71) \end{array}$ | SCMV3 |  |  |  |  |  |  |  |  |
|  |  |  |  | 457.2 | $\begin{array}{\|l\|} \hline{ }^{* 41} \\ (12.7) \\ \hline \end{array}$ | SCMV3 |  |  |  |  |  |  |  |  |
|  | 同上レジューサ | $2.75 * 4$ | 217 | $\begin{gathered} 267.4 \\ / \\ 165.2 \\ \hline \end{gathered}$ | $\begin{gathered} \hline(9.3) \\ \prime \\ (7.1) \end{gathered}$ | STPT38 |  | －＊5 |  |  |  |  |  |  |
|  | 同上レジューサ | $2.75{ }^{* 4}$ | 217 | $165.2$ | (7. 1) | STPT38 |  | －＊5 |  |  |  |  |  |  |
|  | 同上レジューサ | $2.75{ }^{* 4}$ | 217 | $\begin{gathered} 267.4 \\ / \\ - \end{gathered}$ | $(15.1)$ <br> ／ | STPA23 |  | －＊5 |  |  |  |  |  |  |
|  | 同上レジューサ | $0.96 * 4$ | 217 | $\begin{gathered} \text { 406. } 4 \\ / \\ 267.4 \end{gathered}$ | $\begin{gathered} (12.7) \\ (15.1) \end{gathered}$ | STPA23 |  | －＊5 |  |  |  |  |  |  |
|  | 同上レジューサ | 0.96 ＊4 | 217 | $\stackrel{457.2}{/}$ | （12．7） $\square$ <br> （12．7） | SCMV3 |  | －＊5 |  |  |  |  |  |  |



| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | 最高使用  <br> 温．  <br>  $\left({ }^{\circ} \mathrm{C}\right)$ 度 | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\text { 外 }_{\text {径*1 }}{ }^{(\mathrm{mm})}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { ス } \\ & \text { 于 } \\ & \text { l } \end{aligned}$ | $\begin{aligned} & \text { スチームコンバータフラッ } \\ & \text { シュタンク } \\ & \text { ~ } \\ & \text { スチームコンバータ脱気器 } \end{aligned}$ | $0.96 * 4$ | 217 | 165.2 216.3 | （7．1） （8．2） | STPA23 STPA23 | $\begin{aligned} & \text { ス } \\ & \text { 于 } \\ & \text { । } \end{aligned}$ |  |  | －＊5 |  |  |  |  |
| $\begin{aligned} & \text { ב } \\ & \text { 代 } \\ & \text { l } \\ & \text { 多 } \end{aligned}$ | 同上レジューサ | 0.96 ＊4 | 217 | $\underset{165.2}{216.3}$ | $\begin{gathered} (8.2) \\ (7.1) \end{gathered}$ | STPA23 | $\begin{aligned} & \text { ジ } \\ & \text { l } \\ & \text { 多 } \\ & \text { 系 } \end{aligned}$ |  |  | －＊5 |  |  |  |  |

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「主蒸気系より湿分分離加熱器第2段加熱器まで（湿分分離加熱器第2段加熱蒸気管）」と記載。
＊4 ：S I 単位に換算したものである。
＊5：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。
＊6：記載の適正化を行う。既工事計画書には「湿分分離加熱器第2段加熱蒸気減圧升バイパス弁から湿分分離加熱器第 2 段加熱蒸気管まで」と記載。
＊7 ：記載の適正化を行う。既工事計画書には「湿分分離加熱器第1段加熱蒸気管から湿分分離加熱器第1段加熱器まで」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「クロスアラウンド管から原子炉給水ポンプ駆動用蒸気タービン～」と記載。
＊9：記載の適正化を行う。既工事計画書には「原子炉給水ポンプ駆動用蒸気タービンより復水器まで」と記載。
＊ 10 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－7 抽気系管の強度計算書」による。
＊11：記載の適正化を行う。既工事計画書には「第3抽気管よりグランド蒸気発生器まで（グランド蒸気発生器入口管）」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器入口管からグランド蒸気発生器加熱蒸気安全弁まで」と記載。
＊13：記載の適正化を行う。既工事計画書には「主蒸気系よりグランド蒸気発生器入口管まで」と記載。
＊14：記載の適正化を行う。既工事計画書には「グランド蒸気排風機から気体廃棄物処理系まで」と記載
＊15：記載の適正化を行う。既工事計画書には「グランド蒸気発生器から高圧タービン，低圧タービングランド部へ（グランド蒸気発生器出口管）」と記載
＊16：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－8 タービングランド蒸気系管の強度計算書」による。
＊ 17 ：記載の適正化を行う。既工事計画書には「加熱蒸気供給管からグランド蒸気発生器出口管まで」と記載。
＊ 18 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器出口管から原子炉給水ポンプ駆動用蒸気タービンへ」と記載。
＊ 19 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器出口管からグランド蒸気安全弁まで」と記載。
＊ 20 ：記載の適正化を行う。既工事計画書には「低圧タービングランド部からグランド蒸気復水器まで（グランド蒸気復水器入口管）」と記載。
＊21：記載の適正化を行う。既工事計画書には「高圧タービングランド部よりグランド蒸気復水器入口管まで」と記載。
＊ 22 ：記載の適正化を行う。既工事計画書には「原子炉給水ポンプ駆動用蒸気タービンよりグランド蒸気復水器入口管まで」と記載。
＊23：記載の適正化を行う。既工事計画書には「復水器から蒸気式空気抽出器まで（復水器出口管）」と記載。
＊24：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－9 復水器空気抽出系管の強度計算書｣による
＊25：記載の適正化を行う。既工事計画書には「蒸気式空気抽出器から気体廃㐮物処理系まで」と記載。
＊ 26 ：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊27：記載の適正化を行う。既工事計画書には「復水器出口管から起動用真空ポンプまで（起動用真空ポンプ入口管）」と記載。
＊28：記載の適正化を行う。既工事計画書には「起動用真空ポンプ入口管から起動用真空ポンプの真空破壊弁まで」と記載。
＊29：記載の適正化を行う。既工事計画書には「起動用真空ポンプウォータセパレータから気体廃棄物処理系まで」と記載。
＊ 30 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－10 復水給水系管の強度計算書」による。
＊31：記載の適正化を行う。既工事計画書には「補給水系から復水器まで」と記載。
＊32：記載の適正化を行う。既工事計画書には「高圧復水ポンプ入口管より復水器まで」と記載。
＊33：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－11 給水加熱器ドレンベント系管の強度計算書」による。
＊34：記載の適正化を行う。既工事計画書には「湿分分離加熱器第2段加熱器ドレンタンクから復水器まで」と記載。
$* 35$ ：記載の適正化を行う。記載内容は設計図書による。
＊36：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲となるものである。
＊37：記載の適正化を行う。既工事計画書には「湿分分離加熱器第1段加熱器ドレンタンクから復水器まで」と記載。
＊38：記載の適正化を行う 摡工事計画書には「湿分分離ドレンタンクから高圧第1給水加埶器へ（湿分分離ドレンタンク出口管）」と記載
＊39：記載の適正化を行う。既工事計画書には「湿分分離ドレンタンク出口管から復水器まで」と記載。
＊ 40 ：記載の適正化を行う。既工事計画書には「第1抽気管よりスチームコンバータ中間熱交換器まで（スチームコンバータ加熱蒸気管）」と記載。
＊41：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－12スチームコンバータ系管の強度計算書」による。
＊ 42 ：記載の適正化を行う。既工事計画書には「スチームコンバータフラッシュタンクから加熱蒸気供給管まで（スチームコンバータフラッシュタンク蒸気出ロ管）」と記載。


注記＊1 ：記載の適正化を行う。既工事計画書には「貯水容量（通常水位にて）」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：公称値を示す。
＊ 4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－14 湿分分離加熱器第1段加熱器ドレンタンクの強度計算書」による。
＊7 ：記載の適正化を行う。既工事計画書には「胴」と記載。

[^3]

注記＊1 ：記載の適正化を行う。既工事計画書には「貯水容量（通常水位にて）」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：公称値を示す。
＊ 4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－15 湿分分離加熱器第 2 段加熱器ドレンタンクの強度計算書」による。
＊ 7 ：記載の適正化を行う。既工事計画書には「胴」と記載。

[^4]

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「貯水容量（通常水位にて）」と記載。
＊2 ：公称値を示す。
＊3：S I 単位に換算したものである。
＊4：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－16 スチームコン

バータフラッシュタンクの強度計算書」による。
＊6：記載の適正化を行う。既工事計画書には「胴」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊8：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

|  |  |  | 変 更 前＊1 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | N21－F157＊2 | 変更なし |
| 種 | 類 | － | 平衡型 |  |
| 吹 | 出 圧 力 | MPa | 0.35 |  |
| 吹 | 出 量 | kg／h／個 | 4749＊3 |  |
| 個 | 数 | － | 1 |  |
| 取付箇所 | 系（ライン 統 名 | － | N21－F157 <br> 復水器空気抽出系 |  |
|  | 設 置 床 | － | $\begin{aligned} & \text { タービン建屋 } \\ & \text { 0.P. } 15.00 \mathrm{~m} \end{aligned}$ |  |
|  | $\begin{array}{lclll} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$ | － | － |  |
|  | 溢 水 防 護 上の配慮が必要な高さ | － |  |  |

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：本設備は記載の適正化を行うものであり，手続き対象外である。
＊3 ：公称値を示す。


注記＊ 1 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器加熱蒸気安全弁」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－1 グランド蒸気発生器加熱蒸気安全弁吹出量計算書」による。
＊3：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「グランド蒸気発生器入口管」と記載。記載内容は，設計図書による。
＊5：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「グランド蒸気安全弁」と記載。
＊ 2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－2 グランド蒸気安全弁吹出量計算書」による。
＊3：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「グランド蒸気発生器出口管」と記載。記載内容は，設計図書による。
＊5：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。


注記＊1 ：記載の適正化を行う。既工事計画書には「スチームコンバータ加熱蒸気安全弁」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－3 スチームコンバータ加熱蒸気安全弁吹出量計算書」による。
＊3：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「スチームコンバータ加熱蒸気管」と記載。記載内容は，設計図書による。
＊5：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。


注記＊1：記載の適正化を行う。既工事計画書には「スチームコンバータフラッシュタンク安全弁」 と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－4 スチームコンバータ フラッシュタンク安全弁吹出量計算書」による。
＊3：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「スチームコンバータフラッシュタンク蒸気出口管」と記載。記載内容は，設計図書による。
＊5：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。
3.13 .3 蒸気タービンの基本設計方針，適用基準及び適用規格
（1）基本設計方針

| 変更前 | 変更後 |
| :---: | :---: |
| 用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 | 用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 |
| 第1章 共通項目 <br> 蒸気タービンの共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．設備に対する要求（4．6 逆止め弁，4．7 内燃機関の設計条件，4．8電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計と する。 | 第1章 共通項目 <br> 蒸気タービンの共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．溢水等，5．設備に対する要求（5．6 逆止め弁，5．7 内燃機関及び ガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。 |
| 第2章 個別項目 <br> 1．蒸気タービン <br> 設計基準対象施設に施設する蒸気タービン及び蒸気タービンの附属設備は，想定される環境条件において，材料に及ぼす化学的及び物理的影響 を考慮した設計とする。 <br> また，振動対策，過速度対策等各種の保護装置及び監視制御装置により，中央制御室及び現場において運転状態の監視を行い，発電用原子炉施設の安全性を損なわないよう，以下の事項を考慮して設計する。 <br> 1.1 蒸気タービン本体 | 第2章 個別項目 <br> 1．蒸気タービン <br> 変更なし |


| 変更前 | 変更後 |
| :---: | :---: |
| 蒸気タービンの定格出力は，復水器真空度 96.3 kPa ，補給水率 $0 \%$ に おいて，発電端で 825000 kW となる設計とする。 <br> 定格熱出力一定運転の実施においても，蒸気タービン設備の保安が確保できるように定格熱出力一定運転を考慮した設計とする。 <br> 蒸気タービンは，非常調速装置が作動したときに達する回転速度並び に蒸気タービンの起動時及び停止過程を含む運転中に主要な軸受又は軸に発生しらる最大の振動に対して構造上十分な機械的強度を有する設計とする。 <br> また，蒸気タービンの軸受は，主油ポンプ，ターニング油ポンプ，非常用油ポンプ等の軸受潤滑設備を設置することにより，運転中の荷重を安定に支持でき，かつ，異常な摩耗，変形及び過熱が生じない設計とす る。 <br> 蒸気タービン及び発電機その他の回転体を同一軸上に結合したもの の危険速度は，速度調定率で定まる回転速度の範囲のうち最小の回転速度から，非常調速装置が作動したときに達する回転速度までの間に発生 しない設計とする。 <br> また，蒸気タービン起動時の危険速度を通過する際には速やかに昇速 できる設計とする。 <br> 蒸気タービン及びその附属設備の耐圧部分の構造は，最高使用圧力又 は最高使用温度において発生する最大の応力が当該部分に使用する材料の許容応力を超えない設計とする。 <br> 蒸気タービンには，その回転速度及び出力が負荷の変動の際にも持続的に動揺することを防止する調速装置を設けるとともに，運転中に生じ た過回転，発電機の内部故障，復水器真空低下，スラスト軸受の摩耗に |  |


| 変更前 | 変更後 |
| :---: | :---: |
| よる設備の破損を防止するため，その異常が発生した場合に蒸気タービ ンに流入する蒸気を自動的かつ速やかに遮断する非常調速装置及び保安装置を設置する。 <br> また，調速装置は，最大負荷を遮断した場合に達する回転速度を非常調速装置が作動する回転速度未満にする能力を有する設計とする。 <br> なお，過回転については定格回転速度の 1.11 倍を超えない回転数で非常調速装置が作動する設計とする。 <br> 蒸気タービン及びその附属設備であって，最高使用圧力を超える過圧 が生ずるおそれのあるものにあっては，排気圧力の上昇時に過圧を防止 することができる容量を有し，かつ，最高使用圧力以下で動作する大気放出板を設置し，その圧力を逃がすことができる設計とする。 <br> 蒸気タービンには，設備の損傷を防止するため，以下の運転状態を計測する監視装置を設け，各部の状態を監視することができる設計とす る。 <br> （1）蒸気タービンの回転速度 <br> （2）主蒸気止め弁の前及び組合せ中間弁の前における蒸気の圧力及 び温度 <br> （3）蒸気タービンの排気圧力 <br> （4）蒸気タービンの軸受の入口における潤滑油の圧力 <br> （5）蒸気タービンの軸受の出口における潤滑油の温度又は軸受メタ ル温度 <br> （6）蒸気加減弁の開度 <br> （7）蒸気タービンの振動の振幅 <br> 蒸気タービンは，振動を起こさないように十分配慮をはらうととも |  |


| 変更前 | 変更後 |
| :---: | :---: |
| に，万一，振動が発生した場合にも振動監視装置により，警報を発する ように設計する。また，運転中振動の振幅を自動的に記録できる設計と する。 <br> 蒸気タービン及びその附属設備の構造設計において「発電用火力設備 に関する技術基準を定める省令及びその解釈」に規定のないものについ ては，信頼性が確認され十分な実績のある設計方法，安全率等を用いる ほか，最新知見を反映し，十分な安全性を持たせることにより保安が確保できる設計とする。 <br> 復水器は，冷却水温度 $15^{\circ} \mathrm{C}$ ，タービン定格出力，大気圧 101 kPa にお いて真空度 96.3 kPa を確保できる設計とする。 <br> 1.2 蒸気タービンの附属設備 <br> ポンプを除く蒸気タービンの附属設備に属する容器及び管の耐圧部分に使用する材料は，想定される環境条件において，材料に及ぼす化学的及び物理的影響に対し，安全な化学的成分及び機械的強度を有するも のを使用する。 <br> また，蒸気タービンの附属設備のうち，主要な耐圧部の溶接部につい ては，次のとおりとし，使用前事業者検査により適用基準及び適用規格 に適合していることを確認する。 <br> （1）不連続で特異な形状でないものであること。 <br> （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験によ り確認したものであること。 <br> （3）適切な強度を有するものであること。 |  |


| 変更前 | 変更後 |
| :---: | :---: |
| （4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及 び技能を有する溶接士であることをあらかじめ確認したものによ り溶接したものであること。 <br> なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のらち水用の容器又は管であって，最高使用温度 $100^{\circ} \mathrm{C}$ 未満の ものについては，最高使用圧力 1960 kPa ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管については，最高使用圧力 980 kPa （長手継手の部分にあっては， 490 kPa ）以上の圧力が加えられる部分について溶接を必要とするものをいう。また，蒸気タービンに係る外径 150 mm 以上の管のうち，耐圧部について溶接を必要とするものを いう。 <br> 蒸気タービンの附属設備の機器仕様は，運転中に想定される最大の圧力•温度，必要な容量等を考慮した設計とする。 |  |
| 2．主要対象設備 <br> 蒸気タービンの対象となる主要な設備について，「表 1 蒸気タービン の主要設備リスト」に示す。 | 2．主要対象設備 <br> 蒸気タービンの対象となる主要な設備について，「表 1 蒸気タービン の主要設備リスト」に示す。 |

O 2 （1）II R 0

表1蒸気タービンの主要設備リスト $(1 / 10)$

|  | $\begin{aligned} & \text { 奚 } \\ & \text { 維 } \\ & \text { 䖽 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設 ${ }^{(3.1}{ }^{\text {1 }}$ ） |  | 重大事故等対処設備 ${ }^{(3)}{ }^{(2)}$ |  | 名称 | 設計基準対象施設（31） |  | 重大事故等対処設備 ${ }^{(3 \times 1)}$ |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス | 耐震重要度分類 |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  |  |  |  | 蒸気加減弁～高圧タービン | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | 高圧タービン～湿分分離加熱器 | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  | －（ ${ }_{\text {a }}$ 2） |  |  |  |
|  |  |  |  | 湿分分離加熱器～組合せ中間弁及び N31－F005 | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  | 板，隔板， |  | 組合せ中間弁～低圧タービン | B－1 | 火力技術基漼 |  | － | 変更なし |  |  |  |  |
|  |  | 車軸並びに |  | 高圧タービン第3段抽気出口～N36－F012A，B | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | 高圧タービン第5段抽気出口～N36－F001A，B | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | クロスアラウンド管分岐点 1～N36－F003A，B | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | 低圧タービン第 10 段抽気出口～N36－F006A，B | B－1 | 火力技術基漼 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | 低圧タービン第 11 段抽気出口～N36－F009A，B | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  | 調速装置及 |  | 主蒸気止め弁 | B－1 | 火力技術基漼 |  | － | 変更なし |  |  |  |  |
|  |  | 速装置並び に調速装置 | － | 蒸気加減弁 | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | 組合せ中間弁 | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |
|  |  | 復水器 | 復水器 | 復水器 | B－1 | 火力技術基準 |  | － | 変更なし |  |  |  |  |

O 2 （1）II R 0

表1蒸気タービンの主要設備リスト $(2 / 10)$

|  | $\begin{aligned} & \text { 奚 } \\ & \text { 縜 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設 ${ }^{(3.1}{ }^{\text {1 }}$ ） |  | 重大事故等対処設備 ${ }^{(3)}{ }^{(2)}$ |  | 名称 |  | 設計基準対象施設（3 1） |  | 重大事故等対処設備 ${ }^{(3 \times 1)}$ |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 熱交換器 |  |  | 湿分分離加熱器 | B－1 | 火力技術基準 |  | － |  | 変更なし |  |  |  |  |
|  | － | 器を含 <br> む。） |  | スチームコンバータ中間熱交換器 | B | 火力技術基準 |  | － |  |  | －（泩 |  |  |  |
|  |  |  |  | N38－F023A，B～湿分分離加熱器第 2 段加熱器 | B－1 | 火力技術基漼 |  | － |  | 変更なし |  |  |  |  |
|  | ビ |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  |  | －（ |  |  |  |
|  | $\begin{aligned} & \text { 暒 } \\ & \text { 巷 } \end{aligned}$ |  |  | N38－F024A，B～湿分分離加熱器第2段加熱蒸気管合流点 | B－1 | 火力技術基準 |  | － |  | 変更なし |  |  |  |  |
|  | 系 |  |  | 蒸気式空気抽出器入口管の安全弁～復水器 | B－1 | 火力技術基準 |  | － |  |  | －（泩 |  |  |  |
|  |  |  |  | N36－F012A，B～湿分分離加熱器第 1 段加熱器 | B－1 | 火力技術基準 |  | － |  | 変更なし |  |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  |  | －（ |  |  |  |
|  |  |  |  | クロスアラウンド管分岐点 $2 \sim N 36-F 022 A, B$ | B－1 | 火力技術基準 |  | － |  | 変更なし |  |  |  |  |
|  |  |  |  | N36－F024A，B～復水器 | B－1 | 火力技術基漼 |  | － |  | 変更なし |  |  |  |  |
|  | 抽 | 管等 | 主配管 | 第3抽気管～グランド蒸気発生器 | B－1 | 火力技術基準 |  | － |  |  | －（ ${ }^{\text {® }}$ |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  |  | －（3） |  |  |  |
|  |  |  |  | グランド蒸気発生器入口管分岐点～グランド蒸気発生器加熱蒸気安全弁 | B－1 | 火力技術基準 |  | － |  |  | －（ |  |  |  |
|  |  |  |  | グランド蒸気発生器加熱蒸気安全弁～復水器 | B－1 | 火力技術基準 |  | － |  |  | －（ ${ }^{\text {（ }}$ |  |  |  |
|  |  |  |  | 主蒸気系～グランド蒸気発生器入口管合流点 | B－1 | 火力技術基準 |  | － |  |  | －（1き |  |  |  |

O 2 （1）II R 0

表1蒸気タービンの主要設備リスト $(3 / 10)$


O 2 （1）II R 0

表1蒸気タービンの主要設備リスト（4／10）

|  | $\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設 ${ }^{\left({ }^{(1)} \text { 1）}\right.}$ |  | 重大事故等対処設備 ${ }^{(3 \times 1}$ 1） |  | 名称 | 設計基準対象施設（3）${ }^{\text {（1）}}$ |  | 重大事故等対処設備 ${ }^{(3 \text { a } 1)}$ |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス | 耐震重要度分類 |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  | $\begin{aligned} & \text { タ } \\ & 1 \\ & \text { ビ } \\ & \text { ジ } \\ & \text { ラ } \\ & \text { ジ } \\ & \text { 脀 } \end{aligned}$ | 管等 | 主配管 |  | 同上レジューサ | B－1 | 火力技術基準 |  | － | $-{ }^{\text {（i®2）}}$ |  |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  | $-{ }^{(32)}$ |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  | －（ ${ }_{\text {（ }}$ 2） |  |  |  |
|  |  |  |  | 加熱蒸気供給管～グランド蒸気発生器出口管合流点 | B－1 | 火力技術基準 |  | － |  | －（ ${ }_{\text {a }}$ |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  | －（ |  |  |  |
|  |  |  |  | グランド蒸気発生器出口管分岐点 1 ～原子炉給水ポンプ駆動用蒸気タービン | B－1 | 火力技術基準 |  | － |  | －（ ${ }^{\text {2 } 22}$ |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  | －（ ${ }^{\text {a } 22}$ |  |  |  |
|  |  |  |  | グランド蒸気発生器出口管分岐点 $2 \sim$ グランド蒸気安全弁 | B－1 | 火力技術基準 |  | － |  | －（ ${ }_{\text {i }}$ |  |  |  |
|  |  |  |  | グランド蒸気安全弁～復水器 | B－1 | 火力技術基準 |  | － |  | －（3）22 |  |  |  |
|  |  |  |  | 高圧タービングランド部～復水器 | B－1 | 火力技術基準 |  | － |  | －（ ${ }^{\text {a } 2)}$ |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基漼 |  | － |  | －（ ${ }^{\text {a } 2)}$ |  |  |  |
|  |  |  |  | 高圧タービングランド部～抽気系 | B－1 | 火力技術基準 |  | － |  | －（3） |  |  |  |
|  |  |  |  | 同上レジューサ | B－1 | 火力技術基準 |  | － |  | －（ |  |  |  |
|  |  |  |  | 主蒸気止め弁～復水器 | B－1 | 火力技術基準 |  | － |  | －（3）2 |  |  |  |

O 2 （1）II R 0

表1蒸気タービンの主要設備リスト（ $5 / 10$ ）


O 2 （1）II R 0

表1蒸気タービンの主要設備リスト（6／10）


O 2 （1）II R 0

表1蒸気タービンの主要設備リスト $(7 / 10)$


O 2 （1）II R 0

表1蒸気タービンの主要設備リスト（8／10）


O 2 （1）II R 0

表1蒸気タービンの主要設備リスト $(9 / 10)$


表1蒸気タービンの主要設備リスト（10／10）

|  | $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 維 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 名称 | 設計基準対象施設 ${ }^{\text {（i）} 1 \text { ）}}$ |  | 重大事故等対処設備 ${ }^{\text {（ia 1）}}$ |  | 名称 |  | 設計基準対象施設 ${ }^{\left(3{ }^{\text {a }} \text { 1）}\right.}$ |  | 重大事故等対処設備 ${ }^{(31)}$ |  |
|  |  |  |  |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | － | 管等 | $\begin{aligned} & \text { 蒸気だめ, } \\ & \text { ドレンタ } \\ & \text { シク } \end{aligned}$ |  | 湿分分離加熱器第1段加熱器ドレンタンク | B－1 | 火力技術基準 |  | － |  | 変更なし |  |  |  |  |
|  |  |  |  |  | 湿分分離加熱器第2段加熱器ドレンタンク | B－1 | 火力技術基準 |  | － |  | 変更なし |  |  |  |  |
|  |  |  |  |  | スチームコンバータフラッシュタンク | B | 火力技術基準 |  | － | $-\left({ }^{\text {a }}\right.$ 3） |  |  |  |  |  |
|  |  |  |  | 安全弁及 び逃がし弁 | N21－F157 ${ }^{\text {（ia 4）}}$ | B－1 | － |  | － | －（潤） |  |  |  |  |  |
|  |  |  |  |  | N33－F006A，B | B－1 | － |  | － | －（ ${ }^{\text {\＃4）}}$ |  |  |  |  |  |
| $\omega_{1}$ |  |  |  |  | N36－F032A，B，C | B－1 | － |  | － | $-{ }^{(3+4)}$ |  |  |  |  |  |
| $\begin{gathered} \omega \\ \omega \\ \omega \end{gathered}$ |  |  |  |  | P63－F005 | B－1 | － |  | － | －（\％4） |  |  |  |  |  |
| OT |  |  |  |  | P63－F015 | B－1 | － |  | － | $-{ }^{\text {（ }}$（4） |  |  |  |  |  |

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
（注 2）当該配管は，主配管に該当しないため記載の適正化を行う。
（注3）本設備は記載の適正化のみ行うものであり，手続き対象外である。
（注 4）当該并は，安全弁及び逃がし弁に該当しないため記載の適正化を行ら。

3．13．4 蒸気タービンに係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: |
| 蒸気タービンに係る工事の方法は，「原子炉本体」における「 9 原子炉本体に係る |  |
| 工事の方法」（「 1.3 燃料体に係る工事の手順と使用前事業者検查」，「2．1．3 燃料体 | 変更なし |
| に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従ら。 |  |

4．計測制御系統施設
4.1 制御方式及び制御方法
（1）発電用原子炉の制御方式
発電用原子炉の反応度の制御方式，ほう酸水注入の制御方式，発電用原子炉の圧力の制御方式，発電用原子炉の水位の制御方式及び安全保護系その他重大事故等発生時に発電用原子炉を安全に停止するための回路の制御方式

発電用原子炉の制御は以下の方式により行う。＊
（1）発電用原子炉の反応度の制御方式＊3
a．制御棒位置制御
（a）制御棒1本ずつの挿入引抜き操作機能
（b）原子炬スクラム信号による全制御棒急速挿入機能
（c）原子炉再循環ポンプトリップ時の選択制御棒急速挿入機能
b．原子炉再循環流量制御
（a）原子炉再循環ポンプ回転数制御機能
（b）タービントリップ又は負荷しゃ断時の原子炉再循環ポンプトリップ機能
a．手動によるほら酸水注入系の起動機能
（3）発電用原子炉の圧力の制御方式＊
a．タービン入口圧力制御機能
（4）発電用原子炉の水位の制御方式＊
a．原子炉水位信号，主蒸気流量信号及び原子炉給水流量信号の三要素制御若しくは原子炉水位信号 の単要素制御による給水制御機能
（5）安全保護系その他重大事故等発生時に発電用原子炬を安全に停止するための回路（以下 4． 1 制御方式及び制御方法において「安全保護系等」という）の制御方式＊7
a．安全保護系の制御方式＊8
（a）原子炉保護系によるスクラム機能
（b）その他の安全保護系起動信号による工学的安全施設の起動機能
（－
（a）ATWS緩和設備（代替制御棒挿入機能）
（b）ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）
（c）手動によるほら酸水注入系の起動機能
（d）ATWS緩和設備（自動減圧系作動阻止機能）
c．原子炉冷却材圧力バウンダリを減圧するための設備の制御方式
（a）代替自動減圧回路（代替自動減圧機能）

注記＊1：記載の適正化を行う。既工事計画書には「制御方式」と記載。
＊ 2 ：記載の適正化を行う。既工事計画書には「原子炉の制御は以下の方式により行われる。」と記載。
＊3：既工事計画書に記載がないため記載の適正化を行う。既工事計画書には「（1）制御棒位置制御」及び「（2）原子炉再循環流量制御」と記載。
＊4：記載の適正化を行う。既工事計画書には「（3）ほう酸水注入系の制御」と記載。
$* 5$ ：記載の適正化を行う。既工事計画書には「（4）圧力制御」と記載。
＊6：記載の適正化を行う。既工事計画書には「（5）原子炉給水制御」と記載。
＊7：記載の適正化を行う。既工事計画書には「（6）安全保護系」と記載。
＊8：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（2）発電用原子炉の制御方法
制御棒の位置の制御方法，原子炉再循環流量の制御方法，ほう酸水注入設備の制御方法，発電用原子炉の圧力の制御方法，給水の制御方法及び安全保護系等の制御方法

御若しくは原子炉水位信号による単要素制御により，タービン駆動原子炉給水ポンプの速度又は給水調節弁の開度を調節し，原子炉水位を一定に保持するよう制御される。
（6）安全保護系等の制御方法＊8
a．安全保護系の制御方洼＊9
原子炬保護系の作動回路は2チャンネルで構成され，原子炬スクラム信号により両チャンネルが
同時にトリップすると原子炉はスクラムする。
また，その他の安全保護系起動信号により工学的安全施設が起動される。
（次頁へ続く）

その他の安全保護系起動信号のらち自動減圧系は，原子炉冷却材喪失時に炉心を冷却するため，原子炉水位低（レベル1）及びドライウェル圧力高の同時信号により，主蒸気逃がし安全弁を作動 させる。
ただし，ATWS緩和設備（自動減圧系作動阻止機能）が作動した場合には，自動減圧系起動信号は発信されない。
（前頁からの続き）

b．緊急停止失敗時に発電用原子灲を未臨界にするための設備の制御方法
（a）ATWS緩和設備（代替制御棒挿入機能）
ATWS緩和設備（代替制御棒挿入機能）は，原子炉圧力高又は原子炉水位低（レベル2）の信号 により，全制御棒を全挿入させて原子炉を未臨界にする。
（b）ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）
ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）は，原子炉圧力高又は原子炉水位低 （レベル2）の信号により，原子炉再循環ポンプ2台を自動停止させて，原子炉の出力を抑制す る。
（c）手動によるほう酸水注入系の起動機能
ほう酸水注入系のポンプを手動で起動し，貯蔵タンク内の五ほう酸ナトリウム溶液を原子炉に注入する。
（d）ATWS緩和設備（自動減圧系作動阻止機能
原子炉緊急停止失敗時に自動減圧系が作動すると，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系から大量の泠水が注水され出力の急激な上昇につながるため，ATWS緩和設備（自動減圧系作動阻止機能）は，中性子束高及び原子炉水位低（レベル2）の信号により，自動減圧系及び代替自動減圧回路（代替自動減圧機能）の作動を阻止する。
c．原子炉冷却材圧力バウンダリを減圧するための設備の制御方式
（a）代替自動減圧回路（代替自動減圧機能）
代替自動減圧回路（代替自動減圧機能）は，原子炉水位低（レベル1）かつ残留熱除去系ポン プ運転（低圧注水モード）又は低圧炉心スプレイ系ポンプ運転の場合に，主蒸気逃がし安全弁を強制的に開放し，原子炉冷却材圧力バウンダリを減圧する

ただし，ATWS緩和設備（自動減圧系作動阻止機能）が作動した場合には，代替自動減圧起動信号は発信されない。

注記＊1：記載の適正化を行う。既工事計画書には「制御方法」と記載
＊2：記載の適正化を行う。既工事計画書には記載なし。
$* 2: ~$ 記載の適止化を行う。既工事計画書には記載なし。
$* 3: ~$ 記載の適正化を行う。既工事計画書には「（1）制御棒位置制御」と記載。
＊4：記載の適正化を行う。既工事計画書には「（2）原子炉再循環流量制御」と記載。
＊5：記載の適正化を行う。既工事計画書には「（3）ほう酸水注入系の制御」と記載
＊6：記載の適正化を行う。既工事計画書には「（4）圧力制御」と記載。
＊7：記載の適正化を行う。既工事計画書には「（5）原子炉給水制御」と記載。
＊8：記載の適正化を行う。既工事計画書には「（6）安全保護系」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

## 4． 2 制御材

（1）制御棒

|  |  |  | 変 更 前 |  | 変 更 後 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | 制御棒 |  | 変更なし |  |
| 種 | 類 | － | 十字形 | 十字形 | 変更なし |  |
| 組 | 成＊${ }^{1}$ | － | ボロンカーバイ ド粉末（理論密度の $70 \%$ ） | ハフニウム板 （純度 $95 \%$ 以上） |  |  |
|  | 応 度 制 御 能 力 | $\Delta \mathrm{k}$ | （過剰反応度 | $\text { 勺 } 0.14 \text { の時) }$ |  |  |
| 停 | 止 余 裕 | －＊2 | 最大価値制御 <br> 実効圷 <br> （設計目標値 | 1 本全引抜時率 $<1$ <br> 以上） |  |  |
|  | 大 反 応 度 価 値 | $\Delta \mathrm{k}$ |  |  |  |  |
|  | 全 長 | mm |  | ]*3 |  | － |
| 主 | 有 効 長 さ | mm |  | $* 3$ |  |  |
| 要 | 幅 | mm |  | ＊3 |  |  |
| 寸 | ブレード厚さ | mm |  | $\left.{ }^{* 3}\right)$ |  |  |
| 法 | シース厚さ | mm | $\square \square^{* 3}$ |  |  |  |
|  | 落下速度リミッタ外径 | mm | $\bar{\square}$ | $\square$ |  |  |
| 個 | 数 | － |  |  |  |  |
| 落 | 下 速 度 | m／s |  | 以下 |  |  |

注：記載の適正化を行う。既工事計画書の「質量」の記載を削除。
注記＊1 ：記載の適正化を行う。既工事計画書には「組成／制御材」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「 $\Delta \mathrm{k} 」$ と記載。
＊3 ：公称値を示す。
（2）ほう酸水

|  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: |
| 名 | 称 | ほう酸水 | 変更なし |
| 種 類 | － | ほう酸水 |  |
| 組 成 | wt\％ | 五ほう酸ナトリウム濃度 $\square$（ $\square \mathrm{m}^{3}$ 時）＊1 |  |
| 反 応 度 制 御 能力＊2 | $\Delta \mathrm{k}$ |  |  |
| 停 止 余 裕 | $\Delta \mathrm{k}$ |  |  |
| 負の反応度添加率 | $\Delta \mathrm{k}$ | 毎分 $\square$ 以上＊3 |  |
| 貯 蔵 量＊4 | $\mathrm{m}^{3}$ | （最小） |  |
| 注記 $* 1$ ：記載の適正化 | 行う。 | 既工事計画書には「五ほう酸ナトリウム濃度 | ］wt\％（ | $\mathrm{m}^{3}$ 時）」と記載。

＊2 ：記載の適正化を行う。既工事計画書には「反応度抑制効果」と記載。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「貯蔵容量」と記載。
4.3 制御材駆動装置
（1）制御棒駆動機構（常設）


注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－1 制御棒駆動機構の強度計算書」による。
＊3：S I 単位に換算したものである。
＊4 ：重大事故等時における使用時の値。
＊5 ：公称値を示す。
＊6：定格値を示す。駆動速度は定格値士 $20 \%$ 以内。
＊ 7 ：記載の適正化を行う。既工事計画書には「全ストロークの $75 \%$ 挿入まで 1.62 秒以下（全炉心平均）」と記載。

[^5]（2）制御棒駆動水圧設備
（2．1）制御棒駆動水圧系
口 容器（常設）

|  |  |  | 変 更 前 | 変更後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | 水圧制御ユニット (アキュムレータ) | 変更なし |
| 種 | 類 | － | たて置円筒形 |  |
| 容 | 量 | L／個 | 以上＊1（18＊2） （水側有効容量） |  |
|  | 高 使 用 圧 力 | MPa | $15.20 * 3$ |  |
| 最 | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | 66 |  |
| ＊4 | 胴 内 径 | mm | $195 * 2$ |  |
| 主 | 胴 板 厚 さ | mm | $]^{* 5}\left(17.5^{* 2}\right)$ |  |
| 寸 | 平 板 厚 d | mm | ${ }^{* 5}(68.0 * 2)$ |  |
| 法 | 高 さ＊6 | mm | 926＊2 |  |
| 材 | 胴 板 | － | SUS304 |  |
| 料 | 平 板 | － | SUSF304 |  |
| 個 | 数 | － | 137 |  |
| $\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 䉯 } \\ & \text { } \end{aligned}$ | 系（ ラ イ $\begin{gathered}\text { 統 } \\ \\ \text {（ }\end{gathered}$ | － | $\begin{gathered} \text { 水圧制御ユニット*1 } \\ \text { アキュムレータ } \\ \text { 制御棒駆動水圧ライン } \\ \hline \end{gathered}$ |  |
|  | 設 置 床 | － | 原子炉建屋 $0 . \mathrm{P} .6 .00 \mathrm{~m}$ |  |
|  | 溢 水 防 護 上 <br> の 区 画 番 号 | － | － |  |
|  | 溢 水 防 護 上 の <br> 配 慮が必要な高さ | － |  |  |

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊3 ：S I 単位に換算したものである。
＊4 ：記載の適正化を行う。既工事計画書の主要寸法「胴外径」の記載を削除。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－2－1 水圧制御ユ ニットの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「全高」と記載。


注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊ 3 ：S I 単位に換算したものである。
＊4：記載の適正化を行う。既工事計画書の主要寸法「胴外径」の記載を削除。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日
付 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－2－1 水圧制御ユニ ットの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

|  |  |  | 変 更 前 | 変更後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 称 |  |  | スクラム排出容器 | 変更なし |
| 種 | 類 | － | たて置円筒形 |  |
| 容 | 量 | L／個 | $112 * 1$ |  |
|  | 高 使 用 圧 力 | MPa | 8． $62 * 2$ |  |
|  | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | 138 |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 胴 外 径 | mm | $318.5 * 1$ |  |
|  | 胴 板 厚 さ | mm | $\square^{* 3}\left(25.4^{* 1}\right)$ |  |
|  | 円すい胴小径端内径 | mm | 179．9＊1，＊3 |  |
|  | 円すい胴板厚さ | mm | $\square * 3\left(18.2{ }^{* 1}\right)$ |  |
|  | 鏡板の形状に係る寸法 | mm | $\text { 267. } 7 * 1, * 3$ <br> （鏡板の内面における長径） |  |
|  |  |  | （鏡板の内面における $93^{* 1, * 3}$ 短径の 2 分の 1 ） |  |
|  | 鏡 板 厚 さ | mm | ${ }^{* 3}\left(25.4^{* 1}\right)$ |  |
|  | 出口 管 台 外 径 | mm | 91．0＊1，＊3 |  |
|  | 出口 管 台 厚 さ | mm | $\square{ }^{* 3}(23.95 * 1, * 3)$ |  |
|  | 水位計管台外径 | mm | 59．0＊1，＊3 |  |
|  | 水位 計 管 台 厚 さ | mm | $]^{* 3}(18.9 * 1, * 3)$ |  |
|  | 高 さ＊4 | mm | $2100 * 1, * 5$ |  |
| 材 <br> 料 | 胴 板 | － | STS42 |  |
|  | 円 す い 胴 板 | － | STS42 |  |
|  | 鏡 板 | － | STS42 |  |
| 個 数 |  | － | 2 |  |
| $\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$ | 系 統 名 <br> $($ ラ   | － | スクラム排出容器＊6制御棒駆動水圧ライン |  |
|  | 設 置 床 | － | 原子炉建屋 <br> 0．P． 6.00 m |  |
|  | 溢 水 防 護 上 <br> の 区 画 番 号 | － | － |  |
|  | 溢 水 防 護 上 の <br> 配慮が必要な高さ | － |  |  |

注記＊1 ：公称値を示す。
＊2 ：S I 単位に換算したものである。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－2－2 スクラム排出容器の強度計算書」による。
＊4：記載の適正化を行う。既工事計画書には「全高」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「2166」と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

|  |  |  | 変 更 前＊1 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | C12－D001－126 | 変更なし |
| 種 | 類 | － | 止め弁 |  |
|  | 高 使 用 圧 力 | MPa | 15． 20 |  |
|  | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | 66 |  |
|  | 呼び径 | － | 25A |  |
| 要 | 弁 箱 厚 さ | mm | 以上（12．0＊2） |  |
| 法 | 弁 ふた厚さ | mm | ］以上（19．5＊2） |  |
| 材 | 弁 箱 | － | SUS316L |  |
| 料 | 弁 ふ た | － | SUS316L |  |
| 駆 | 動 方 法 | － | 空気作動 |  |
| 個 | 数 | － | 137 |  |
| 取 | $\begin{array}{\|llll} \hline \text { 系 } & & \text { 統 } & \text { 名 } \\ \left(\begin{array}{l} \text { ラ } \end{array}\right. \\ \hline \end{array}$ | － | $\begin{gathered} \text { C12-D001-126 } \\ \text { 制御棒駆動水圧ライン } \end{gathered}$ |  |
| 付 | 設 置 床 | － | $\begin{gathered} \text { 原子炬建屋*3 } \\ 0 . \text { P. } 6.00 \mathrm{~m} \end{gathered}$ |  |
| 箇 | $\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 } & \text { 防讙 } & \text { 上 } & \text { の } \\ 区 & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ | － | － |  |
| 所 | 溢水防護上の配慮 が必要な高さ | － |  |  |

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。


注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

ホ 主配管（常設）




注記 $⺌ 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には，「復水給水系からサクションフィルタまで（サクションフィルタ入口配管）」と記載。
＊ 4 ：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「補給水系からサクションフィルタ入口配管まで」と記載。
＊6：記載の適正化を行う。既工事計画書には「制御棒駆動水フィルタから水圧制御ユニットまで」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には「水圧制御ユニット内配管」と記載。
＊8：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号に認可された工事計画の添付書類「IV－3－3－1－2－5－1 管の基本板厚計算書」による。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 10 ：差込み継手の差込み部内径を示す。
＊ 11 ：差込み継手の最小厚さを示す。
＊ 12 ：記載の適正化を行う。既工事計画書には「水圧制御ユニットから制御棒駆動機構ハウジングまで」と記載。
＊ 13 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，制御材駆動装置の制御棒駆動水圧設備（制御棒駆動水圧系）として本工事計画で兼用とする。
＊14：記載の適正化を行う。既工事計画書には「制御棒駆動機構ハウジングから水圧制御ユニットまで」と記載。
＊ 15 ：本設備は既存の設備である。
＊ 16 ：重大事故等クラス 2 配管に使用する場合の記載事項。
＊ 17 ：重大事故等時の使用時の値。
＊18：記載の適正化を行う。既工事計画書には「水圧制御ユニットからスクラム排出容器まで」と記載。

4．4 ほう酸水注入設備
4．4．1 ほう酸水注入系
（1）ポンプ（常設）


注記 $~$ 1 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備 （ほう酸水注入系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「往復式」と記載。
＊3：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊ 4 ：記載の適正化を行う。既工事計画書には「 $\ell / \mathrm{min} /$ 個」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊6 ：公称値を示す。
＊7：S I 単位に換算したものである。
＊8：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「第 7－3－2－2 図 ほら酸水注入系ポンプ構造図」による。
＊9：記載の適正化を行う。既工事計画書には「2（予備 1 ）」と記載。
（2）容器（常設）


注記 $⿻ コ 一^{2} 1$ ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（ほら酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－3－1 ほう酸水注入系貯蔵タンクの強度計算書」による。
＊5 ：記載の適正化を行う。既工事計画書には「平板厚さ」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊7 ：記載の適正化を行う。既工事計画書には「平板」と記載。
（3）安全弁及び逃がし弁（常設）

|  |  |  | 変 更 前＊1 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | C41－F003A，B | C41－F003A，B＊2 |
| 種 | 類 | － | 非平衡型 | 変更なし |
|  | 出 圧 力 | MPa | 10． 79 |  |
| 吹 | 出 量 | kg／h／個 | 15480＊3 |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | － | 25A |  |
|  | のど部 の径 | mm |  |  |
|  | 弁座口 の径 | mm | $13^{* 3}$ |  |
|  | リフフト | mm | $\square$ 以上 |  |
| 材 <br> 料 | 弁 箱 | － | SUSF304 |  |
| 駆 | 動 方 法 | － | － |  |
| 個 | 数 | － | 2 |  |
| $\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \end{aligned}$ |  | － | C41－F003A，B ほう酸水注入系 |  |
|  | 設 置 床 | － | 原子炉建屋 0．P． 22.50 m |  |
|  | $\begin{aligned} & \text { 溢 } \\ & \text { 水防護 上 } \\ & \text { 区 } \\ & \text { 画 } \\ & \text { 番 } \end{aligned} \text { 号 }$ | － | － |  |
|  | 溢 水 防 護 上の配慮が必要な高さ | － |  |  |

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備 （ほう酸水注入系）と兼用。
＊ 3 ：公称値を示す。

|  |  |  | 変 更 前＊1 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | C41－F022 | C41－F022＊2 |
| 種 | 類 | － | 非平衡型 | 変更なし |
| 吹 | 出 圧 力 | MPa | 1.18 |  |
| 吹 | 出 量 | kg／h／個 | 2509＊3 |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | － | 20 A |  |
|  | のど部の径 | mm | $\square * 3$ |  |
|  | 弁 座口の径 | mm | $13 * 3$ |  |
|  | リフフト | mm | 以以上 |  |
| $\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$ | 弁 箱 | － | SUSF304 |  |
| 駆 | 動 方 法 | － | － |  |
| 個 | 数 | － | 1 |  |
| $\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 㯺 } \\ & \text { 俗 } \end{aligned}$ |  | － | C41－F022 <br> ほう酸水注入系 |  |
|  | 設 置 床 | － | $\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . P .22 .50 \mathrm{~m} \end{aligned}$ |  |
|  | $\begin{array}{lclll} \text { 溢 } & \text { 水 防 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$ | － | － |  |
|  | 溢 水 防 護 上の配慮が必要な高さ | － |  |  |

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊ 3 ：公称値を示す。
（5）主配管（常設）

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \begin{array}{c} \text { ( } \left.{ }^{\circ} \mathrm{C}\right) \\ \hline \text { 度 } \\ \hline \end{array}{ }^{2} \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| ほ号酸水注入系 | ほう酸水注入系貯蔵タンク ほう酸水注入系ポンプ | $\begin{aligned} & * 3, * 4 \\ & 1.18 \end{aligned}$ | 66 | 89.1 | （5．5） | SUS304TP | ほう酸水注入系貯蔵タンク ほう酸水注入系ポンプ |  | 変更なし |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 変更なし |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 変更なし$10.34 * 11$ | $\begin{array}{r} \text { 変更なし } \\ 315 * 11 \end{array}$ | 変更なし |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：S I 単位に換算したものである。
＊4：記載の適正化を行う。既工事計画書には「1．37」と記載。
＊5：記載内容は設計図書による。
＊6：エルボを示す。
＊7 ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（ほう酸水注水系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほら酸水注水系）と兼用。
＊8：記載の適正化を行う。既工事計画書には「ほう酸水注入系ポンプから差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）まで」と記載。
＊9 ：差込継手の差込部内径及び最小厚さ。
$* 10$ ：フルカップリングを示す。
＊11 ：重大事故等時の使用時の値。
＊ 12 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，計測制御施設のうちほう酸水注入設備（ほう酸水注入系）として本工事計画で兼用とする。
4.5 計測装置
（1）起動領域計測装置（中性子源領域計測装置，中間領域計測装置）及び出力領域計測装置（常設）

|  |  |  |  | 変 更 前 |  |  |  |  |  |  | 変 | 後 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 検 出 器 の種 類 | 計 測 範 囲 | 警 報 動 作 範 囲 | 個 数 | 取 付 | 箇 所 | 名 称 | 検 出 器 の種 類 | 計測範囲 | $\begin{aligned} & \text { 警報動作 } \\ & \text { 範汫 } \end{aligned}$ | 個 数 | 取 付 箇 | 所 |
| $\begin{aligned} & \text { 起 } \\ & \text { 動 } \\ & \text { 域 } \\ & \text { 采 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 中 } \\ & \text { 性 } \\ & \text { 源 } \\ & \text { 賳 } \end{aligned}$ | 核分裂電離箱 | $*^{*}$ | 警報動作範囲一覧表に示す | 8＊4 | $\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$ | 原子炉核計装系 | 変更なし |  |  |  |  |  |  |
|  |  |  | $\left(\begin{array}{c} 10^{-1} \sim 10^{6} \mathrm{cps} \\ 1 \times 10^{3} \sim \\ 1 \times 10^{9} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \end{array}\right)$ |  |  | 設 置 床 | 原子炉格納容器内 0．P． 6.00 m |  |  |  | 変更なじ | 変更なし | 変更なし |  |
|  | 中 <br> 間 <br> 領 <br> 域 |  | $\left(\begin{array}{c} 0 \sim 40 \% \text { 又は } \\ 0 \sim 125 \% \\ 1 \times 10^{8} \sim \\ 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \end{array}\right)$ |  |  | － |  |  |  |  |  |  | 溢 水 防護上の区 画 番 号 <br> 溢水防護上の配慮 が必要な高さ | － |
| $\begin{aligned} & \text { 出 } \\ & \text { 謒 } \\ & \text { 域 } \\ & \text { 多 } \end{aligned}$ |  | 核分裂電離箱 | $\left(\begin{array}{c} 0 \sim 125 \% \\ 1.2 \times 10^{12} \sim \\ 2.8 \times 10^{14} \\ \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \end{array}\right)$ | 警報動作範囲一覧表に示す | 124＊9 <br> （ただ <br> し，平均 <br> 出力領域 <br> モニタに <br> ついては <br> 93） | $\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$ | 原子炉核計装系 | 変更なし |  |  |  |  |  |  |
|  |  | 設 置 床 |  |  |  | $\quad{ }^{* 5}$ 原子炉 格納容器内 0．P． 6.00 m | $\text { 変更なし }{ }^{* 6}$ |  |  |  | 変更なし | 変更なし |  |
|  |  | － |  |  |  |  |  |  |  |  | 溢 水 防護上の区 画 番 号 | － |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  |

注記＊1：記載の適正化を行う。既工事計画書には「 $10^{-1} \sim 10^{6} \mathrm{cps}\left(1 \times 10^{3} \sim 1 \times 10^{9} \mathrm{nv}\right)$ 」と記載。
$* 2:$ 記載の適正化を行う。既工事計画書には「 $5 \sim 40 \%$ 又は $0 \sim 125 \% ~\left(1 \times 10^{8} \sim 2 \times 10^{13} \mathrm{nv}\right)$ 」と記載。
＊3：各測定レンジにおける出力比を示す。
＊ 4 ：対象計器は，C51－NE001A，C51－NE001B，C51－NE001C，C51－NE001D，C51－NE001E，C51－NE001F，C51－NE001G，C51－NE001H。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊6：設計基準対象施設としての値であり，重大事故等対処設備としては，警報動作が要求される検出器ではない。
＊ 7 ：定格出力時の値に対する比率で示す。
＊8：記載の適正化を行う。既工事計画書には「0～125\％（1．2×10 $\left.{ }^{12} \sim 2.8 \times 10^{14} \mathrm{nv}\right)$ 」と記載。
＊9：対象計器は，C51－NE011A～C51－NE041A，C51－NE011B～C51－NE041B，C51－NE011C～C51－NE041C，C51－NE011D～C51－NE041D。


注記＊1：起動領域モニタ原子炉出力ペリオド指示値
＊2．定格出力時の値に対する比率で示す
$* 3$ ：記載の適正化を行う。既工事計画書には「モードスイッチ」と記載
＊ 4 ：原子炉再循環流量Wdに対し，$\quad(0.62 \mathrm{Wd}+55) \%$ の式により設定する。
＊5：原子炉再循環流量Wdに対し，（ $0.62 \mathrm{Wd}+62$ ）\％の式により設定する。
＊6：原子炉再循環流量Wdに対し，（ $0.62 W d+52) \%$ の式により設定する。
（2）原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含む。）を計測する装置


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 | 検 出 器 <br> の 種 類 | 計測 範 囲 | 警報動作 <br> 範 <br> 囲 | 個数 | 取 付 | 箇 所 | 名 | 称 | $\begin{array}{\|ccc} \hline \text { 検 } & \text { 出 } & \text { 者 } \\ \text { の } & \text { 種 } & \text { 类 } \end{array}$ | 計測 範 囲 | 警報動作 範 囲 | 個数 | 取 付 | 箇 所 |
| 原子炉隔離時冷却系ポンプ出口圧力 | $* 1$ <br> 弹性圧力検出器 | $0 \sim 15 \mathrm{MPa}$ | － | 1 |  | 原子炉隔離時冷却系 ${ }^{* 3}$ | 変更なし |  |  |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炉建屋 0．P．-8.10 m |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  |  | $\begin{array}{llll} \text { 溢 } & \text { 水 } & \text { 方 } & \text { 護 } \\ \text { 区 } & \text { 上 } & \\ \hline \end{array}$ | R－B3F－2 ${ }^{* 8}$ |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | 床上 0.43 m 以上 |  |  |
| 高圧炉心スプレイ系ポンプ出口圧力 | $* 1$ <br> 弹性圧力検出器 | $0 \sim 12 \mathrm{MPa}$ | － | 1 |  | 高圧炉心スプレイ系 ${ }^{* 3}$ |  |  |  |  |  |  | 変更なし |  |  |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炉建屋 <br> 0．P．-0.80 m |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  | $\begin{array}{llll}  & \text { 溢 } & \text { 水 } & \text { 防 } \\ \text { 区 } & \text { 護 } & \text { の } \\ \text { (画 } & \text { 番 } & \text { 号 } \end{array}$ | R－B2F－3 ${ }^{* 9}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | 床上 0.13 m 以上 |  |  |  |  |  |  |  |  |
| 残留熱除去系ポン <br> プ出口圧力 | 弾性圧力検出器 | $0 \sim 4 \mathrm{MPa}$ | － | 3 | $\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \end{gathered}$ | 残留熱除去系 Aライン | 変更なし |  |  |  |  |  | 変更なし |  |  |  |
|  |  |  |  |  |  | 残留熱除去系 Bライン |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 残留熱除去系 Cライン |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 設 置 床 | $\begin{gathered} \text { 原子炉建屋 } \\ \text { O. P. }-0.80 \mathrm{~m}^{* 10} \\ \text { 0. P. }-8.10 \mathrm{~m}^{* 11} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  |  | $\begin{array}{lcll}  & \text { 溢 } & \text { 水 } & \text { 訪 } \\ \text { 区 } & \text { 上 } & \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{R}-\mathrm{B} 2 \mathrm{~F}-1 * 10 \\ & \mathrm{R}-\mathrm{B} 3 \mathrm{~F}-1 * 11 \end{aligned}$ |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | 床上 0.57 m 以上＊${ }^{10}$床上 1.11 m 以上＊11 |  |  |  |  |
| 低圧炉心スプレイ系ポンプ出口圧力 | 弾性圧力検出器 | $0 \sim 5 \mathrm{MPa}$ | － | 1 | $\begin{gathered} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{gathered}$ | 低圧炬心スプレイ系 |  |  |  |  |  |  | 変更なし |  |  |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | $\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. - } 0.80 \mathrm{~m} \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  | R－B2F－2 ${ }^{* 12}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | 床上 0.10 m 以上 |  |  |  |  |  |  |  |  |


| 変 更 前 |  |  |  |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 | 称 | 検 の | 出 | 器 <br> 類 | 計測 範 囲 |  | 報動作囲 | 個数 | 取 | 付 | 箇 | 所 | 名 称 | 検 出 器 <br> の 種 類 | 計測 範 囲 | 警報動作 <br> 範 囲 | 個数 | 取 付 | 箇 所 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  |  |  |  |  |  |  | 復水移送ポンプ出口圧力 | 弾性圧力検出器 | $0 \sim 1.5 \mathrm{MPa}$ | － | 1 | 設 置 床 | $\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .-0.80 \mathrm{~m} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 溢水防護上の <br> 区 画 番 号 |  |  |  |  | R－B2F－5 ${ }^{* 14}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  | 床上 0.10 m 以上 |

注記＊1 ：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。記載内容は，設計図書による。
＊2：S I 単位に換算したものである。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4 ：対象計器は，E51－PT007。
＊5 ：対象計器は，E61－PT003
＊6 ：対象計器は，E71－PT004
＊7－対象計器は E11－PT021
＊7 ：対象計器は，E11－PT021
＊8 ：対象計器は，E51－PT003
＊ 10 ：対象計器は，E11－PT005A，E11－PT005B
＊ 11 ：対象計器は，E11－PT005C
＊ 12 ：対象計器は，E21－PT005。
＊13：本設備は，既存の設備である。
＊14：対象計器は，P13－PT011。
b．温度を計測する装置（常設）


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「温度検出器」と記載。記載内容は，設計図書による。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：対象計器は，E11－TE010A
＊ 4 ：対象計器は，E11－TE010B
＊5：対象計器は，E11－TE007A
＊6：対象計器は，E11－TE007B
c．流量を計測する装置（常設）


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 | $\begin{array}{ccc}\text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 類 }\end{array}$ | 計測 範 囲 | 警報動作 <br> 範 囲 | 個数 | 取 付 | 箇 所 | 名 称 | 検 出 器 <br> の 種 類 | 計測 範 囲 | 警報動作 <br> 範 <br> 囲 | 個数 | 取 付 | 箇 所 |
| 系 統  名 低圧代替注水系 <br> $\left(\begin{array}{ll}\text {（ }\end{array}\right.$     |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  | 直流駆動低圧注水系ポンプ出口流量 | 差圧式流量検出器 | $0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$ | － | 1 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  | 床上 0.07 m 以上 |
| － |  |  |  |  |  |  |  | 代替循環冷却ポン <br> プ出口流量 | 差圧式流量検出器 | $0 \sim 200 \mathrm{~m}^{3} / \mathrm{h}$ | － | 1 | $\begin{array}{ccc} \hline \text { 系 } & \text { 統 } & \text { 名 } \\ \text { (ラ } & \text { 亿ン名 }) \\ \hline \end{array}$ | 代替循環冷却系 |
|  |  |  |  |  |  |  | 設 置 床 |  |  |  |  |  | 原子炉建屋 0．P．-8.10 m |
|  |  |  |  |  |  |  | 区 画 番 号 RW－B3F－1 |  |  |  |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  |  | 床上 0.24 m 以上 |
| 原子炉隔離時冷却系ポンプ出口流量 | 差圧式流量検出器 | $0 \sim 150 \mathrm{~m}^{3} / \mathrm{h}$ | － | 1 | $\begin{array}{\|l\|l\|} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$ | 原子炉隔離時冷却系 ${ }^{* 3}$ | 変更なし |  |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炬建屋 $0 . \mathrm{P} .-8.10 \mathrm{~m}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  | $\begin{array}{lll}\text { 溢 } & \text { 水防櫵 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 }\end{array}$ | R－B3F－2 ${ }^{* 11}$ |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | 床上 0.43 m 以上 |  |  |  |  |  |
| 高圧炉心スプレイ系ポンプ出口流量 | $* 1$ <br> 差圧式 <br> 流量 <br> 検出器 | $0 \sim 1500 \mathrm{~m}^{3} / \mathrm{h}$ | － | 1 | $\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{gathered}$ | 高圧炉心スプレイ系＊＊ |  |  |  |  |  | 変更なし |  |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炉建屋 <br> 0．P．-0.80 m |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  | $\begin{array}{llll} \text { 溢 } & \text { 水防櫵 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } \end{array}$ | R－B2F－3 ${ }^{* 12}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | 床上 0.13 m 以上 |  |  |  |  |  |  |  |  |  |  |



注記＊1 ：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。記載内容は，設計図書による。
＊2 ：対象計器は，G31－FT001A
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：対象計器は，E61－FT004。
＊5 ：本設備は，既存の設備である
＊6：原子炉格納容器本体への泠却材流量を計測する装置と兼用。
＊7：対象計器は，E11－FT017A。
＊8 ：対象計器は，E11－FT017B。
＊9 ：対象計器は，E71－FT005。
＊ 10 ：対象計器は，E11－FT022。
＊11：対象計器は，E51－FT004。
＊ 12 ：対象計器は，F22－FT005B
＊13：対象計器は，E11－FT006A，E11－FT006B
＊14：対象計器は，E11－FT006C
＊ 15 ：対象計器は，E21－FT006。
（3）原子灲圧力容器本体内の圧力又は水位を計測する装置
a．圧力を計測する装置（常設）



注記＊1：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。記載内容は，設計図書による。
＊2 ：S I 単位に換算したものである。
＊3：記載の適正化を行う。既工事計画書には「圧力高スクラム： $73.6 \mathrm{~kg} / \mathrm{cm}^{2}$ 」，「圧力高 $: 72.1 \mathrm{~kg} / \mathrm{cm}^{2}$ 」，「圧力低スクラムバイパス： $42.2 \mathrm{~kg} / \mathrm{cm}^{2}$ 」と記載。記載内容は，設計図書による。
＊ 4 ：記載の適正化を行う。既工事計画書には「5」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「5個のうち，4個はスクラム信号用及びスクラムバイパス信号用の検出器を含む。」と記載。記載内容は，設計図書による。
＊6 ：対象計器は，B21－PT023A，B21－PT023B，B21－PT023C，B21－PT023D。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊8：本設備は記載の適正化を行うものであり，手続き対象外である。
＊9 ：対象計器は，C31－PT062。
＊ 10 ：対象計器は，B21－PT051A，B21－PT051B。
＊11：対象計器は，C31－PT059。
＊ 12 ：対象計器は，B21－PT060A，B21－PT060B。
＊ 13 ：本設備は，既存の設備である。
＊ 14 ：対象計器は，B21－PT045A，B21－PT045B，B21－PT045C，B21－PT045D。
b．水位を計測する装置（常設）




注記＊1 ：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。記載内容は，設計図書による。
＊2 ：計測範囲及び警報動作範囲の零は，原子炉圧力容器零レベルより 1313 cm 上のところとする。（ドライヤスカート底部付近）
＊3：記載の適正化を行う。既工事計画書には「水位低インターロック：-970 mm 」と記載。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には，原子炬水位（広帯域）を含めた「19」と記載。
＊5：8個のうち， 4 個は主蒸気隔離弁閉用， 4 個は高圧炉心スプレイ系起動用の検出器。
＊6 ：対象計器は，B21－LT026A，B21－LT026B，B21－LT026C，B21－LT026D，B21－LT031A，B21－LT031B，B21－LT031C，B21－LT031D。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊8：対象計器は，B21－LT054。
＊9：記載の適正化を行う。既工事計画書には「水位低スクラム：+310 mm 」と記載。記載内容は，設計図書による。
＊10：記載の適正化を行う。既工事計画書には「9」と記載。
＊11：6個のうち，4個はスクラム信号用，2個は自動減圧系許可用の検出器。
＊ 12 ：対象計器は，B21－LT024A，B21－LT024B，B21－LT024C，B21－LT024D，B21－LT038A，B21－LT038B。
＊13：記載の適正化を行う。既工事計画書には「水位高：＋1110mm，水位低：＋850mm」と記載。記載内容は，設計図書による。
＊ 14 ：本設備は記載の適正化を行うものであり，手続き対象外である
＊15：対象計器は，C31－LT061A，C31－LT061B，C31－LT061C。
＊ 16 ：記載の適正化を行う。既工事計画書には「原子炉水位」と記載
＊17：記載の適正化を行う。既工事計画書には，原子炉水位のうちB21－LT026A，B21－LT026B，B21－LT026C，B21－LT026D，B21－LT031A，B21－LT031B，B21－LT031C，B21－LT031D，B21－LT054を含めた「19」と記載。
＊ 18 ：対象計器は，B21－LT052A，B21－LT052B。
＊19：記載の適正化を行う。既工事計画書には「水位低インターロック：－970 mm，-3660 mm 」と記載。記載内容は，設計図書による。
＊ $20: 8$ 個のうち， 4 個は残留熱除去系低圧注水モード起動用，4個は原子炉再循環ポンプトリップ用の検出器。
＊ 21 ：対象計器は，B21－LT036A，B21－LT036B，B21－LT036C，B21－LT036D，B21－LT037A，B21－LT037B，B21－LT037C，B21－LT037D
＊ 22 ：計測範囲の零は，原子炉圧力容器零レベルより 900 cm 上のところとする。（有効燃料棒頂部付近）
＊23：対象計器は，B21－LT044A，B21－LT044B。
＊ 24 ：対象計器は，B21－LT058。
＊ 25 ：対象計器は，B21－LT059
（4）原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置
a．圧力を計測する装置（常設）



注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，設計図書による。
＊ 2 ：対象計器は，B21－PT047A，B21－PT047B，B21－PT047C，B21－PT047D，B21－PT048A，B21－PT048B，B21－PT048C，B21－PT048D，B21－PT055A，B21－PT055B，B21－PT055C，B21－PT055D
＊ 3 ：対象計器は，T48－PT017。
＊4：対象計器は，T48－PT014。
＊5：本設備は，既存の設備である。
＊6：対象計器は，T48－PT034。
＊7 ：対象計器は，T48－PT018A，T48－PT018B。
＊8：対象計器は，T48－PT019
b．温度を計測する装置（常設）

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 | 検 出 器  <br> の 種 類 | 計測 範 囲 | 警報動作 <br> 範 囲 | 個 数 | 取 付 | 箇 所 | 名 称 | $\begin{array}{\|ccc\|}\text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 }\end{array}$ | 計測範囲 | 警報動作 <br> 範 <br> 囲 | 個数 | 取 付 | 箇 所 |
| ドライウェル温度 ${ }^{* 1}$ | 熱電対 | $0 \sim 200^{\circ} \mathrm{C}$ | － | 17 | $\begin{array}{\|l\|l} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$ | 原子炉格納容器調気系 | ドライウェル温度 | 変更なし |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炉 格納容器内 O．P． $22.50 \mathrm{~m}^{* 2}$ O．P． $15.00 \mathrm{~m}^{* 3}$ O．P． $6.00 \mathrm{~m}^{* 4}$ 0．P．$-0.80 \mathrm{~m}^{* 5}$ |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  | $\begin{array}{llll} \hline \text { 溢 } & \text { 水防櫵 } & \text { 上 } \\ \text { 区 } & \text { の画 } & \text { 番 } & \text { 号 } \end{array}$ | － |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  | － |
| － |  |  |  |  |  |  |  | 熱電対 | $0 \sim 300^{\circ} \mathrm{C}$ | － | 11 | $\begin{gathered} \text { 系 } \\ \text { ( } \\ \text { (統 } \\ \text { ラ } \end{gathered} \text { 名 }$ | 原子炉格納容器調気系 |
|  |  |  |  |  |  |  | 設 置 床 |  |  |  |  | 原子炉 格納容器内 0．P． $22.50 \mathrm{~m}^{* 7}$ 0．P． $15.00 \mathrm{~m}^{* 8}$ O．P． $6.00 \mathrm{~m}^{* 9}$ O．P．$-0.80 \mathrm{~m}^{* 10}$ |
|  |  |  |  |  |  |  | $\begin{array}{llll} \hline \text { 溢 } & \text { 水防護 } & \text { 上 } \\ \text { 区 } & \text { a } \\ \hline \end{array}$ |  |  |  |  | － |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  | － |
| 圧力抑制室内空気温度 | 熱電対 | $0 \sim 300^{\circ} \mathrm{C}$ | － | $\begin{aligned} & * 11 \\ & 4 \end{aligned}$ | $\begin{array}{\|c\|c\|l} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$ | 原子炉格納容器調気系 |  | 変更なし |  |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炉 格納容器内 0. P．-0.80 m |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  |  | 溢 水防護 上  <br> 区 画 番 号 | － |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  |  | － |


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 | $\begin{array}{ccc}\text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 類 }\end{array}$ | 計測 範 囲 | 警報動作 <br> 範 囲 | 個 数 | 取 付 | 箇 所 | 名 称 | 検 出 器 <br> の 種 類 | 計測 範 囲 | $\begin{array}{l\|l\|} \hline \text { 警報動作 } \\ \text { 範 } & \text { 囲 } \\ \hline \end{array}$ | 個数 | 取 付 | 箇 所 |
| サプレッションプール水温度 | 測温抵抗体 | $0 \sim 150^{\circ} \mathrm{C}$ | － | $16{ }^{* 12}$ | $\begin{array}{cc} \hline \text { 系 } & \text { 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$ | 原子炉格納容器 | 変更なし |  |  |  |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炉 格納容器内 0. P．-8.10 m |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  | $\begin{array}{llll} \text { 溢 } & \text { 水防櫵 } & \text { 上 } \\ \text { 区 } & \text { の画 } & \text { 番 } & \text { 号 } \end{array}$ | － |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | － |  |  |
|  |  |  |  | $16{ }^{* 13}$ |  | 原子炉格納容器 |  |  |  |  |  | 変更なし |  | 変更なし$0 \sim 200^{\circ} \mathrm{C} * 14$ | 変更なし |  | 変更なし |  |
|  |  |  |  |  | 設 置 床 | 原子炉 格納容器内 0. P．-8.10 m |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  | $\begin{array}{llll} \text { 溢 } & \text { 水 } & \text { 防 櫵 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ | － |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | － |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  | 原子炬格納容器下部温度 | 熱電対 | $0 \sim 700^{\circ} \mathrm{C}$ | － | 12 | (ライ統 名 | 原子炉格納容器調気系 |  |  |  |  |  |
|  |  |  |  |  |  |  | 設 置 床 |  |  |  |  | 原子炉 格納容器内 O．P．$-0.80 \mathrm{~m}^{* 15}$ O．P．$-8.10 \mathrm{~m} * 16$ |  |  |  |  |  |
|  |  |  |  |  |  |  | $\begin{array}{llll} \text { 溢 } & \text { 水 防 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ |  |  |  |  | － |  |  |  |  |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  | － |  |  |  |  |  |

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
$* 2$ ：対象計器は，T48－TE012N，T48－TE012P，T48－TE012R，T48－TE012S，T48－TE012T。
＊3 ：対象計器は，T48－TE012A，T48－TE012B，T48－TE012C，T48－TE012G，T48－TE012H，T48－TE012J。
＊ 4 ：対象計器は，T48－TE012D，T48－TE012E，T48－TE012F。
$* 5$ ：対象計器は，T48－TE012K，T48－TE012L，T48－TE012M。
＊6：本設備は，既存の設備である。
＊ 7 ：対象計器は，T48－TE026A，T48－TE026B。
＊8 ：対象計器は，T48－TE026C，T48－TE026D。
＊9 ：対象計器は，T48－TE026E，T48－TE026F
＊ 10 ：対象計器は，T48－TE026G，T48－TE026H，T48－TE026J，T48－TE026K，T48－TE026L。
＊ 11 ：対象計器は，T48－TE013A，T48－TE013B，T48－TE013C，T48－TE013D。
＊ 12 ：対象計器は，T11－TE001A，T11－TE002A，T11－TE003A，T11－TE004A，T11－TE005A，T11－TE006A，T11－TE007A，T11－TE008A，T11－TE009A，T11－TE010A，T11－TE011A，T11－TE012A，T11－TE013A，T11－TE014A， T11－TE015A，T11－TE016A。
＊13：対象計器は，T11－TE001B，T11－TE002B，T11－TE003B，T11－TE004B，T11－TE005B，T11－TE006B，T11－TE007B，T11－TE008B，T11－TE009B，T11－TE010B，T11－TE011B，T11－TE012B，T11－TE013B，T11－TE014B， T11－TE015B，T11－TE016B。
＊14：重大事故等時における使用時の値
＊ 15 ：対象計器は，T48－L／TE048A，T48－L／TE048B，T48－L／TE049A，T48－L／TE049B，T48－L／TE050A，T48－L／TE050B。
＊ 16 ：対象計器は，T48－L／TE045A，T48－L／TE045B，T48－L／TE046A，T48－L／TE046B，T48－L／TE047A，T48－L／TE047B。
c．酸素がス濃度を計測する装置（常設）


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「計測範囲（\％）」と記載。
＊2：記載の適正化を行う。既工事計画書には「熱磁気風式」と記載。
＊3：記載の適正化を行う。既工事計画書には「0～30」と記載。
＊ 4 ：警報動作が要求される検出器ではないため，記載の適正化を行う。
＊5：検出器はドライウェル・サプレッションチェンバを切替えて使用する。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊7：対象計器は，D23－0 $\mathbf{2}_{2}$ T003A。
＊8：対象計器は，D23－0 $\mathrm{O}_{2}$ T003B
d．水素ガス濃度を計測する装置（虽設）

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 | $\begin{array}{lll} \hline \text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 } \end{array}$ | 計 測 範 囲 | 警報動作 <br> 範 囲 | 個数 | 取 付 | 箇 所 | 名 称 | 検 出 器 <br> の 種 類 | 計測 範 囲 | 警報動作 範 <br> 範 囲 | 個数 | 取 付 | 箇 所 |
| 系 統 名 格納容器内 <br> $\left(\begin{array}{c}\text { ラ }\end{array}\right.$    |  |  |  |  |  |  |  |  |  |  |  |  |  |
| － |  |  |  |  |  |  | 格納容器内水素濃度（D／W） | 水素吸蔵材料式水素検出器 | $0 \sim 100 \mathrm{vol}$ \％ | － | 2＊2 | 設 置 床 | 原子炉格納容器内 <br> 0．P． 15.00 m |
|  |  |  |  |  |  |  | 溢水防護上 区 画 番 号 溢水防護上の配慮 が必要 な 高 さ |  |  |  |  | － |
| － |  |  |  |  |  |  |  | 格納容器内水素濃度（S／C） | 水素吸蔵材料式水素検出器 | $0 \sim 100 \mathrm{vol} \%$ | － | $2^{* 3}$ |  | $\begin{gathered} \text { 格納容器内 } \\ \text { 雰囲気モタ系 } \end{gathered}$ |
|  |  |  |  |  |  |  | 設 置 床 |  |  |  |  |  | 原子灲格納容器内 <br> 0．P．-0.80 m |
|  |  |  |  |  |  |  | 溢水防 護 上 区 画 番 号 溢水防櫵上の配慮 が必要な 高さ |  |  |  |  |  | － |
| 格納容器内雾囲気水素濃度 | ＊ 4 <br> 熱伝導率式水素検出器 | 0～30vol\％＊5 | －＊6 | $2^{* 7}$ |  | 格納容器内雰囲気モニタ系 | 変更なし | 変更なし |  |  |  |  | 変更なし |
|  |  |  |  |  | 設 置 床 | $\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 22.50 \mathrm{~m} \end{aligned}$ |  |  |  |  |  | 設 置 床 |  |
|  |  |  |  |  | － |  |  |  |  |  |  | $\begin{array}{llll} \hline \text { 溢 } & \text { 水 } & \text { 方 櫵 } & \text { 上 } \\ \text { 区 } & \text { の画 } & \text { 番 } & \text { 号 } \end{array}$ | $\begin{aligned} & \mathrm{R}-2 \mathrm{~F}-2-5 * 9 \\ & \mathrm{R}-2 \mathrm{~F}-2-6 * 10 \end{aligned}$ |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  | $\begin{aligned} & \text { 床上 } 0.00 \mathrm{~m} \text { 以上 } * 9 \\ & \text { 床上 } 0.00 \mathrm{~m} \text { 以上 } * 10 \end{aligned}$ |  |
| － |  |  |  |  |  |  |  | 熱伝導率式水素検出器 | $0 \sim 100 \mathrm{vol}$ \％ | － | $2^{* 7}$ | $\begin{gathered} \text { 系 } \text { 統 } \text { 名 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { 格納容器内 } \\ \text { 雰囲気モニタ系 } \end{gathered}$ |
|  |  |  |  |  |  |  | 設 置 床 |  |  |  |  | $\begin{aligned} & \text { 原子炬建屋 } \\ & 0 . \text { P. } 22.50 \mathrm{~m} \end{aligned}$ |  |
|  |  |  |  |  |  |  | 溢水防護上の区 画 番 号 |  |  |  |  | $\begin{aligned} & \mathrm{R}-2 \mathrm{~F}-2-5^{* 11} \\ & \mathrm{R}-2 \mathrm{~F}-2-6 * 12 \end{aligned}$ |  |
|  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ |  |  |  |  | $\begin{aligned} & \text { 床上 } 0.00 \mathrm{~m} \text { 以上 } * 11 \\ & \text { 床上 } 0.00 \mathrm{~m} \text { 以上 } * 12 \end{aligned}$ |  |

注記＊1：記載の適正化を行ら。既工事計画書には「計測範囲（\％）」と記載。
＊2 ：対象計器は，D23－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ，D23－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$ 。
＊3 ：対象計器は，D23－ $\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~A}, \mathrm{D} 23-\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~B}$ 。
$* 4$ ：記載の適正化を行う。既工事計画書には「「熱伝導率式」と記載。
$* 5$ ：記載の適正化を行う。既工事計画書には「 $0 \sim 30$ 」と記載。
＊6：警報動作が要求される検出器ではないため，記載の適正化を行う。
＊7 ：検出器はドライウェル・サプレッションチェンバを切替えて使用する
＊8 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊9 ：対象計器は，D23－H2T001A。
＊ 10 ：対象計器は，D23－ $\mathrm{H}_{2}$ T001B。
＊11：対象計器は，D23－ $\mathrm{H}_{2}$ T002A。
＊12：対象計器は，D23－ $\mathrm{H}_{2}$ T002B。
（5）非常用炉心椧却設備その他原子炉注水設備に係る容器内又は貯蔵槽内の水位を計測する装置（常設）

| 変 更 前 |  |  |  |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 | 称 | 検 | $\begin{aligned} & \text { 出 } \\ & \text { 種 } \end{aligned}$ | $\begin{array}{\|c}  \\ \hline \end{array}$ | 計測範囲 |  | 報動作 布 | 個数 | 取 | 付 | 箇 | 所 | 名 | 称 | $\begin{array}{lll} \text { 検 } & \text { 出器 } \\ & \text { 種類 } \end{array}$ | 計測範囲 | $\begin{array}{\|l\|l\|} \hline \end{array} \begin{aligned} & \text { 警報動作 } \\ & \text { 範 } \end{aligned}$ | 個数 | 取 付 | 箇 所 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 補給水系 |
|  |  |  |  |  |  |  | － |  |  |  |  |  |  | 復水貯蔵タンク | 差圧式水位 | $0 \sim 3200 \mathrm{~m}^{3}$ | － | 1 | 設 置 床 | $\begin{aligned} & \text { 復水貯蔵タンク } \\ & \text { 連各トンチ. } \\ & \text { O.P. } 6.95 \mathrm{~m} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 水位 | 検出器 |  |  |  | $\begin{array}{\|l\|l\|} \hline \text { 溢水防護上 } \\ \text { 区 } \\ \text { 区 } & \text { 画 } \\ \text { 番 } & \text { 号 } \end{array}$ | CST－2 ${ }^{\text {＊2 }}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 溢水防護上の配慮 が必要な高さ | 床上 $0.65 \mathrm{m以上}$ |

注記 $* 1:$ 本設備は，既存の設備である。
＊ 2 ：対象計器は，P13－LT005。
（7）原子炉冷却材再循睘流量を計測する装置（常設）


注記 $* 1$ ：記載の適正化を行ら。既工事計画書には「差圧検出器」と記載。記載内容は，設計図書による。
＊2：対象計器は，B32－FT001A，B32－FT001E。
$* 3:$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（10）原子炉格納容器本体への泠却材流量を計測する装置（常設）


注記＊1：対象計器は，E11－FT018A，E11－FT018B。
＊2：対象計器は，P13－FT035
以下の設備は，原子炉圧力容器本体の入口の原子炉冷却材の流量を計測する装置であり，原子炉格納容器本体への泠却材流量を計測する装置として本工事計画で兼用する。
残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）
残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器冷却ライン洗浄流量）
代替循環冷却ポンプ出口流量
（11）原子灲格納容器本体の水位を計測する装置（常設）


注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：対象計器は，T48－LT020，T48－LT021。
$* 3$ ：本設備は， 2 個のらち 1 個が既存の設備である。
＊4 ：対象計器は，T48－LT027。
＊5 ：対象計器は，T48－LT027B。
＊6 ：計測範囲の零は，原子炉格納容器下部床面（0．P．－2500）のところとする。
＊7：対象計器は，T48－L／TE048A，T48－L／TE048B，T48－L／TE049A，T48－L／TE049B，T48－L／TE050A，T48－L／TE050B。
＊ 8 ：対象計器は，T48－L／TE045A，T48－L／TE045B，T48－L／TE046A，T48－L／TE046B，T48－L／TE047A，T48－L／TE047B。
＊9：計測範囲の零は，ドライウェル床面（0．P．1150）のところとする。
＊10：対象計器は，T48－L／TE051A，T48－L／TE051B，T48－L／TE052A，T48－L／TE052B，T48－L／TE053A，T48－L／TE053B。
（12）原子炬建屋内の水素ガス濃度を計測する装置（常設）


注記 $* 1$ ：対象計器は， $171-H_{2} E 205$ 。
＊2：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$
＊3：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 203$
＊4：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 201, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202$ ， $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 204$
＊5：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 203$
＊6：対象計器は， $771-\mathrm{H}_{2} \mathrm{E} 201$ 。
＊7：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 202$
＊8：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 204$
4.6 原子炬非常停止信号（常設）




| 変 更 前 |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $* 1$ <br> 原 子 炉非 常 停 止信号の種類 | $\begin{aligned} & \text { 検出器 } \\ & \text { の種類 } \end{aligned}$ | 個数 | 取 付 | 箇 所 | ＊2 <br> 原子炉非常停止に要する信号の個数 | 設 定 値 | 原子炉非常停止信号を発信させない条件 | 原 子 炉非 常 停 止信号の種類 | 検出器 の種類 | 個数 | 取 付 | 箇 | 所 | 原子炉非常停止に要する信号の個数 | 設 定 値 | 原子炉非常停止信号を発信させない条 件 |
| ＊4 <br> 核計測装置動作不能 | $* 25, * 26$ <br> 出力領域中性子束検出器 | $\begin{gathered} * 20, * 21 \\ 6 \end{gathered}$ | $\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \end{gathered}$ | 原子炉核計装系 | $\begin{aligned} & * 20, * 22 \\ & 2 \end{aligned}$ | － | － | 変更なし |  |  | 変更なし |  |  | 変更なし |  |  |
|  |  |  | 設 置 床 | 原子炉 ${ }^{* 7}$ 格納容器内 0．P． 6.00 m |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | － |  |  |  |  |  |  |  | 溢 水 防護上の <br> 区 画 番 号 <br> 溢水防護上の配慮 が必要な高さ | － |  |  |  |  |
|  | 起動領域中性子束検出器 | $8^{* 30}$ | $\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$ | 原子炉核計装系 | $2^{* 31}$ | － | $\begin{gathered} \text { 原子炉モード } \\ \text { スイッチ*35 } \\ \text { 「運転」位置 } \end{gathered}$ | 変更なし |  |  | 変更なし |  |  | 変更なし |  |  |
|  |  |  | 設 置 床 | 原子炉 ${ }^{* 7}$ 格納容器内 O．P． 6.00 m |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | － |  |  |  |  |  |  |  | 溢水防護上の区 画 番 号溢水防護上の配慮 が必要な高さ | － |  |  |  |  |





注記＊1 ：記載の適正化を行う。既工事計画書には「原子炉スクラム信号の種類」と記載。
＊2：記載の適正化を行う。既工事計画書には「原子炉スクラムに要する個数」と記載。
＊3：記載の適正化を行う。既工事計画書には「原子炉スクラムをバイパスするインターロック」と記載。
＊ 4 ：本信号は記載の適正化のみを行らものであり，手続き対象外である。
＊5：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。
＊6 ：対象計器は，B21－PT023A，B21－PT023B，B21－PT023C，B21－PT023D
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 8 ：スクラム回路は，2個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊9 ：S I 単位に換算したものである。
＊ 10 ：記載の適正化を行う。既工事計画書には「 $73.6 \mathrm{~kg} / \mathrm{cm}^{2}$ 」と記載。
＊11：記載の適正化を行う。既工事計画書には「原子炉水位低」と記載。
$* 12:$ 記載の適正化を行う。既工事計画書には「差圧検出器」と記載。
＊ 13 ：本検出器は，工学的安全施設等の起動信号のうちその他の原子炉格納容器隔離弁，非常用ガス処理系の「原子炉水位低（レベル3）」として使用する検出器と同じである。
＊14：対象計器は，B21－LT024A，B21－LT024B，B21－LT024C，B21－LT024D。
＊ 15 ：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下
＊16：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより 1344 cm 上」と記載。
$* 17$ ：本検出器は，工学的安全施設等の起動信号のうちその他の原子炉格納容器隔離弁，非常用ガス処理系の「ドライウェル圧力高」として使用する検出器と同じである。
＊ 18 ：対象計器は，B21－PT055A，B21－PT055B，B21－PT055C，B21－PT055D
＊ 19 ：記載の適正化を行う。既工事計画書には「 $0.14 \mathrm{~kg} / \mathrm{cm}^{2}$ 」と記載。
＊ 20 ：個数は平均出力領域モニタのチャンネル数を示す。

C51－NE035A，B，D，C51－NE036A，C，D，C51－NE037A，B，C，C51－NE038A，C，D，C51－NE039A，B，D，C51－NE040B，C，D，C51－NE041A，C，D
＊ 22 ：スクラム回路は，3個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊23：原子炉モードスイッチには「停止」，「燃料取替」，「起動」及び「運転」の位置がある。
＊24：記載の適正化を行う。既工事計画書には「モードスイッチ「運転」位置で定格出力の $120 \%$ 」と記載。
＊ 25 ：本検出器は，工学的安全施設等の起動信号のうちATWS緩和設備（自動減圧采作動阻止機能）の「中性子束高」として使用する検出器と同じである。
＊26：記載の適正化を行う。既工事計画書には「平均出力領域モニタ」と記載。
＊27：記載の適正化を行う。既工事計画書には「モードスイッチ「運転」位置以外で定格出力の $15 \%$ 」と記載。
＊28：原子炉非常停止信号の設定値と原子炉再循環流量との関係を第1図に示す。
＊29：記載の適正化を行う。既工事計画書には「起動領域モニタ」と記載。
＊30：対象計器は，C51－NE001A，C51－NE001B，C51－NE001C，C51－NE001D，C51－NE001E，C51－NE001F，C51－NE001G，C51－NE001H。
＊31：スクラム回路は，4個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。
$* 32$ ：計測範囲が中間領域における $3 \times 10^{8} \sim 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$ のとき。
$* 33$ ：起動領域モニタ原子炉出力ペリオド指示値。
＊34：記載の適正化を行う。既工事計画書には「10秒」と記載。
＊35：記載の適正化を行う。既工事計画書には「モードスイッチ」と記載。
＊36：記載の適正化を行ら。既工事計画書には「レベルスイッチ」と記載。
＊37：対象計器は，C12－LS016A－2，C12－LS016B－2，C12－LS016C－1，C12－LS016D－1。
＊38：スクラム回路は，各検出器2個ずつからなるA，B2采統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊39：対象計器は，C12－LT016A－1，C12－LT016B－1，C12－LT016C－2，C12－LT016D－2。
＊ 40 ：記載の適正化を行う。既工事計画書には「イオンチェンバ」と記載。
＊41：本検出器は，工学的安全施設等の起動信号のうち主蒸気隔離弁の「主蒸気管放射能高」として使用する検出器と同じである。
＊ 42 ：対象計器は，D11－RE001A，D11－RE001B，D11－RE001C，D11－RE001D。
＊ 43 ：記載の適正化を行う。既工事計画書には「通常運転時の放射能の 10 倍」と記載。
＊44：記載の適正化を行う。既工事計画書には「弁位置スイッチ」と記載。
＊45：スクラム回路は，8個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低2個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊ 46 ：記載の適正化を行う。既工事計画書には「 $90 \%$ 開度」と記載。
＊47：記載の適正化を行う。既工事計画書には「原子炉圧力 $42.2 \mathrm{~kg} / \mathrm{cm}^{2}$ 以下，かつモードスイッチ「運転」位置以外」と記載。
＊ 48 ：対象計器は，N32－PoS115A，N32－PoS115B，N32－PoS115C，N32－PoS115D，N32－PoS120A，N32－PoS120B，N32－PoS120C，N32－PS120D。
＊49：スクラム回路は，4個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低2個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊50 ：対象計器は，N32－PS022A，N32－PS022B，N32－PS022C，N32－PS022D
$* 51$ ：記載の適正化を行う。既工事計画書には $\left\lceil 42 \mathrm{~kg} / \mathrm{cm}^{2}\right.$ 」と記載。
＊52：記載の適正化を行う。既工事計画書には「位置スイッチ」と記載。
＊ 53 ：対象計器は，N32－PoS113A，N32－PoS113B，N32－PoS113C，N32－PoS113D。
＊54：記載の適正化を行う。既工事計画書には「押ボタンスイッチ」と記載
＊55：記載の適正化を行う。既工事計画書には「加速度検出器」と記載。
＊56：対象計器は，C71－VbS001A，C71－VbS001B，C71－VbS001C，C71－VbS001D
＊57：スクラム回路は，水平方向 4 個，鉛直方向 2 個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる
＊58：記載の適正化を行う。既工事計画書には「水平方向200gal（0．P．－8．1m）」と記載
＊59：対象計器は，C71－VbS002A，C71－VbS002B，C71－VbS002C，C71－VbS002D
＊60：記載の適正化を行う。既工事計画書には「水平方向 400 gal （0．P．6．0m）」と記載
＊61：対象計器は，C71－VbS003A，C71－VbS003B，C71－VbS003C，C71－VbS003D。
＊62：記載の適正化を行う。既工事計画書には「鉛直方向100gal（0．P．－8．1m）」と記載。
注：原子炉保護系は 2 系統のトリップシステムによって構成される。
両トリップシステムの電源が喪失したときにはフェイル・セイフの機能により原子炉は緊急停止する。

＊2：記載の適正化を行う。既工事計画書には「第1図 中性子束高一自動可変設定（熱流束相当）のスクラム設定値」と記載。
4.7 工学的安全施設等の起動信号（常設）

| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 工学的安全施設等の起動信号の種類 |  | 検 出器 の種 類 | 個数 | 取 付 | 箇 所 | 工学的安全施設等の起動に要する信号の個数 | 設 定 値 | ＊3 <br> 工学的安全施設等の起動信号を発信 させない条件 | 工学的安全施設等の起動信号の種類 | 検出器 の種 類 | 個数 | 取 付 | 箇 | 所 | 工学的安全施設等の起動に要する信号の個数 | 設 定 値 | 工学的安全施設等の起動信号を発信 させない条件 |
| $\begin{aligned} & \text { 主 } \\ & \text { 烝 } \\ & \text { 気 } \\ & \text { 離 } \\ & \text { 离 } \end{aligned}$ | $\begin{aligned} & \quad * 4, * 5 \\ & \text { 原子炉 } \\ & \text { 水位低 } \\ & (\text { Lベル } \end{aligned}$ | $\begin{aligned} & \quad * 6, * 7 \\ & \text { 原子炉 } \\ & \text { 水位 } \\ & \text { 検出器 } \end{aligned}$ | ${ }_{4}^{* 8}$ | $\begin{array}{\|cc\|} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$ | $\text { 原子炉系 }{ }^{* 9}$ | $2^{* 10}$ | ＊ 12 <br> 原子炉圧力容器零 レベル＊11 より 1216cm以上 | － | 変更なし |  |  | 変更なし |  |  | 変更なし |  |  |
|  |  |  |  | 設 置 床 | 原子炉建屋 <br> 0．P． 6.00 m |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | － |  |  |  |  |  |  |  | 溢水防護上の <br> 区 画 番 号溢水防護上の配慮 が必要な高さ |  | － |  |  |  |
|  | ＊ 4 <br> 主蒸気管圧力低 | 主蒸気管圧力検出器 | $\begin{aligned} & { }^{* 14} \\ & 4 \end{aligned}$ | $\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \end{gathered}$ | $\begin{aligned} & \text { タービン } \\ & \text { タービン } \\ & \text { 主蒸気系 } \end{aligned}$ | $2^{* 10}$ | $\begin{gathered} * 16 \\ \text { 5. 86MPa } \\ * 15 \text { 以上 } \end{gathered}$ | $\begin{gathered} \text { 原子炉モード } \\ \text { スイッチ*17 } \end{gathered}$ <br> 「運転」位置以外 | 変更なし |  |  | 変更なし |  |  | 変更なし |  |  |
|  |  |  |  | 設 置 床 | $\begin{aligned} & \quad{ }^{* 9} \\ & \text { タービン建屋 } \\ & \text { 0. P. } 15.00 \mathrm{~m} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  | 溢水防護上の区 画 番 号溢水防護上の配慮 が必要な高さ |  | － |  |  |  |
|  |  |  |  | $\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \end{gathered}$ | $\begin{gathered} \text { プロセス放射線 } \\ \text { モニタ系 } \\ \hline \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ＊ 4 <br> 主蒸気管放射能高 | 主蒸気管放射能 | $\begin{aligned} & * 20 \\ & 4 \end{aligned}$ | 設 置 床 | 原子炉建屋 <br> 0．P． 15.00 m | $2^{* 10}$ | 通常運転時の放射能の | － |  | 更なし |  |  |  |  |  | 変更なし |  |
|  |  |  |  |  | $-$ |  | 10 倍以下 |  |  |  |  | 溢 水防護 上  <br> 区 画 番 号 <br> 等   溢水防護上の配慮 が必要な高さ |  | － |  |  |  |








| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＊1 <br> 工学的安全施設等の起動信号の種類 |  | 検出器 <br> の種 類 | 個数 | 取 付 | 箇 所 | 工学的安全施設等の起動に要する信号の個数 | 設 定 値 | 工学的安全施設等の起動信号を発信 させない条件 | 工学的安全施設等の起動信号の種類 | 検出器 の種 類 | 個 数 | 取 付 | 箇 所 | 工学的安全施設等の起動に要する信号の個数 | 設 定 値 | 工学的安全施設等の起動信号を発信 させない条件 |
| $\begin{aligned} & \text { 自 } \\ & \text { 動 } \\ & \text { 減 } \\ & \hline \text { 采 } \end{aligned}$ | 原子炉 <br> 水位低 <br> （レベル <br> 1）＊5と ドライ ウェル <br> 圧力高の <br> 同時信号 | $\begin{gathered} * 13, * 66 \\ \text { ドライ } \\ \text { ウェル } \\ \text { 圧力 } \\ \text { 検出器 } \end{gathered}$ | $\begin{aligned} & * 62 \\ & 4 \end{aligned}$ |  | 原子炬系 ${ }^{* 9}$ | ＊67 | 13． 7 kPa ＊${ }^{15}$ 以下 | - | 変更なし |  |  | 変更なし |  | 変更なし |  | ATWS緩和設備 （自動減圧系作動阻止機能）が作動し た場合 |
|  |  |  |  | 設 置 床 | $\quad{ }^{* 9}$ 原子炉建屋 0. P． 22.50 m |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | － |  |  |  |  |  |  |  | 溢水防護上の区 画 番 号溢水防護上の配慮 が必要な高さ | － |  |  |  |
|  |  | $\begin{gathered} * 6, * 68 \\ \text { 原子炉 } \\ \text { 水位 } \\ \text { 検出器 } \end{gathered}$ | 4 | $\begin{array}{\|l\|l} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$ | 原子炉系 ${ }^{* 9}$ | $2^{* 69}$ | ＊59 <br> 原子炉圧力容器零 レベル＊11 より 947 cm以上 |  | 変更なし |  |  | 変更なし |  | 変更なし |  |  |
|  |  |  |  | 設 置 床 | $\quad{ }^{* 9}$ <br> 原子炉建屋 <br> 0. P． 6.00 m |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | $-$ |  |  |  |  |  |  |  | 溢 水防 護 上  <br> 区 画 番 号溢水防護上の配慮 が必要な高さ | $\mathrm{R}-\mathrm{B} 1 \mathrm{~F}-1 * 65$ 床上 0.24 m 以上 |  |  |  |

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「安全保護系起動信号の種類」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「安全保護系起動に要する個数」と記載
＊3：記載の適正化を行う。既工事計画書には「安全保護系起動バイパス条件」と記載。
＊4：本信号は記載の適正化のみを行うものであり，手続き対象外である。
＊5 ：記載の適正化を行う。既工事計画書には「原子炉水位低」と記載。
＊6：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。
＊7 ：本検出器は，工学的安全施設の起動信号のうちその他の原子炉格納容器隔離弁の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊ 8 ：対象計器は，B21－LT026A，B21－LT026B，B21－LT026C，B21－LT026D。
＊9 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊10：主蒸気隔離弁の作動回路は，2個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，主蒸気隔離弁は閉となる。
＊11：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。
＊12：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより 1216 cm 上」と記載。
＊13：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。
＊14：対象計器は，N11－PT005A，N11－PT005B，N11－PT005C，N11－PT005D。
＊ 15 ：S I 単位に換算したものである。
＊ 16 ：記載の適正化を行う。既工事計画書には「59．8kg／cm²」と記載。
＊17：記載の適正化を行う。既工事計画書には「モードスイッチ」と記載
＊18：記載の適正化を行う。既工事計画書には「イオンチェンバ」と記載。
＊19：本検出器は，原子炉非常停止信号の「主蒸気管放射能高」として使用する検出器と同じである。
＊20 ：対象計器は，D11－RE001A，D11－RE001B，D11－RE001C及びD11－RE001D。
＊21：記載の適正化を行う。既工事計画書には「通常運転時の放射能の 10 倍」と記載。
＊22：記載の適正化を行う。既工事計画書には「温度検出器」と記載。
＊ 23 ：対象計器は，E31－TE001A，E31－TE001B，E31－TE001C，E31－TE001D，E31－TE002A，E31－TE002B，E31－TE002C，E31－TE002D，E31－TE003A，E31－TE003B，E31－TE003C，E31－TE003D。
＊24：対象計器は，E31－TE004A，E31－TE004B，E31－TE004C，E31－TE004D，E31－TE005A，E31－TE005B，E31－TE005C，E31－TE005D，E31－TE006A，E31－TE006B，E31－TE006C，E31－TE006D。
 E31－TE010D，E31－TE011A，E31－TE011B，E31－TE011C，E31－TE011D，E31－TE012A，E31－TE012B，E31－TE012C，E31－TE012D。
＊26：主蒸気隔離弁の作動回路は，22個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，主蒸気隔離弁は閉となる。
＊27：記載の適正化を行う。既工事計画書には「通常運転最高温度の 1.5 倍」と記載。
＊ 28 ：対象計器は，B21－dPT001A，B21－dPT001B，B21－dPT001C，B21－dPT001D，B21－dPT001E，B21－dPT001F，B21－dPT001G，B21－dPT001H，B21－dPT001J，B21－dPT001K，B21－dPT001L，B21－dPT001M，B21－dPT001N， B21－dPT001P，B21－dPT001R，B21－dPT001S。
＊29：主蒸気隔離弁の作動回路は，8個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，主蒸気隔離弁は閉となる。
＊30：記載の適正化を行う。既工事計画書には「定格流量の $140 \%$ 」と記載。
＊31：対象計器は，N61－PT020A，N61－PT020B，N61－PT020C，N61－PT020D。
＊32：記載の適正化を行う。既工事計画書には「真空度 216 mmHg 」と記載。
 る。
＊ 34 ：本検出器は，原子炉非常停止信号及び工学的安全施設の起動信号のうち非常用ガス処理系の「ドライウェル圧力高」として使用する検出器と同じである。
＊ 35 ：対象計器は，B21－PT055A，B21－PT055B，B21－PT055C，B21－PT055D
＊ 36 ：内側及び外側隔離弁の各作動回路は，各検出器 1 個ずつからなるA，B2系統のチャンネルで構成され，A，B各々に属する最低 1 個の検出器が同時に動作すれば，隔離弁は閉となる
＊37：記載の適正化を行う。既工事計画書には「0． $14 \mathrm{~kg} / \mathrm{cm}^{2}$ 」と記載。
＊38：本検出器は，原子炉非常停止信号及び工学的安全施設の起動信号のうち非常用ガス処理系の「原子炉水位低（レベル3）」として使用する検出器と同じである。
＊ 39 ：対象計器は，B21－LT024A，B21－LT024B，B21－LT024C，B21－LT024D
＊ 40 ：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより $1344 \mathrm{~cm} 上 」$ と記載。
＊ 41 ：本信号により，残留熱除去系に属する格納容器隔離弁が作動する。
＊42：内側及び外側隔離弁の各作動回路は，検出器 1 個からなるA，B2系統のチャンネルで構成され，A，B各々に属する 1 個の検出器が同時に動作すれば，隔離弁は閉となる。
＊ 43 ：本信号により，原子炉泠却材浄化系，計装用圧縮空気系に属する格納容器隔離并が作動する。
$* 44$ ：本検出器は，工学的安全施設の起動信号のうち主蒸気隔離弁の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊45：記載の適正化を行う。既工事計画書には「半導体式」と記載。
＊ 46 ：対象計器は，D11－RE002A，D11－RE002B，D11－RE002C及びD11－RE002D
＊ 47 ：対象計器は，D11－RE003A，D11－RE003B，D11－RE003C及びD11－RE003D
出器が同時に動作すれば，非常用ガス処理系起動となる。
＊ 49 ：本検出器は，原子炉非常停止信号及び工学的安全施設の起動信号のうちその他原子炬格納容器隔離弁の「ドライウェル圧力高」として使用する検出器と同じである
＊50：非常用ガス処理系A，Bの各作動回路は，各検出器1個ずつからなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，非常用ガス処理系起動となる。
$* 51$ ：本検出器は，原子炉非常停止信号及び工学的安全施設の起動信号のうちその他原子炉格納容器隔離弁の「原子炉水位低（レベル3）」として使用する検出器と同じである。
＊52：対象計器は，B21－PT047A，B21－PT047B，B21－PT047C，B21－PT047D。
＊53：高圧炉心スプレイ系の作動回路は，4個の検出器からなる並列の論理和回路で構成され，最低2個の検出器が同時に動作すれば，高圧炉心スプレイ系起動となる。
＊54：対象計器は，B21－LT031A，B21－LT031B，B21－LT031C，B21－LT031D。
＊55：本検出器は，工学的安全施設の起動信号のらち残留熱除去系及び自動減圧系の「ドライウェル圧力高」として使用する検出器と同じである。
＊56：対象計器は，B21－PT048A，B21－PT048C。
＊57：低圧炉心スプレイ系の作動回路は，各検出器2個ずつの計4個の検出器からなる並列の論理和回路で構成され，最低2個の検出器が同時に動作すれば，低圧炉心スプレイ系起動となる。
動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊59：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより 947 cm 上」と記載。
＊60 ：対象計器は，B21－LT037A，B21－LT037C。
＊61：本検出器は，工学的安全施設の起動信号のうち低圧炬心スプレイ系及び自動減圧系の「ドライウェル圧力高」として使用する検出器と同じである。
＊62：対象計器は，B21－PT048A，B21－PT048B，B21－PT048C，B21－PT048D
起動となる。
備（自動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊ 65 ：対象計器は，B21－LT037A，B21－LT037B，B21－LT037C，B21－LT037D。
＊ 66 ：本検出器は，工学的安全施設の起動信号のうち低圧炉心スプレイ系及び残留熱除去系の「ドライウェル圧力高」として使用する検出器と同じである
＊67：自動減圧系の作動信号は，2個の検出器からなるA，B2系統のチャンネルで構成され，同じチャンネルに属する2個の検出器及び「原子炉水位低（レベル1）」が同時に動作すれば，自動減圧系起動となる。
設備（自動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊69：自動減圧系の作動信号は，2個の検出器からなるA，B2系統のチャンネルで構成され，同じチャンネルに属する 2 個の検出器及び「ドライウェル圧力高」が同時に動作すれば，自動減圧系起動となる。

4．7．2 ATWS緩和設備（代替制御棒挿入機能）の起動信号（常設）


## ＊ 1 ：本設備は，既存の設備である

＊2：本検出器は，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号の「原子炉圧力高」として使用する検出器と同じである。
＊3：対象計器は，B21－PT045A，B21－PT045B，B21－PT045C，B21－PT045D。
動となる。
＊5：本検出器は，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号及びATWS緩和設備（自動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである ＊6：対象計器は，B21－LT036A，B21－LT036B，B21－LT036C，B21－LT036D。
＊7：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。

4．7．3 ATWS緩和設備（代替原子炬再循環ポンプトリップ機能）の起動信号（常設）


## ＊1：本設佣は，既存の設作である

＊ 2 ：本検出器は，ATWS緩和設備（代替制御棒挿入機能）の起動信号の「原子炉圧力高」として使用する検出器と同じである。
＊3：対象計器は，B21－PT045A，B21－PT045B，B21－PT045C，B21－PT045D
子炉再循環ポンプトリップ機能）作動となる。
＊5：本検出器は，ATWS緩和設備（代替制御棒挿入機能）の起動信号及びATWS緩和設備（自動減圧系作動阻止機能）の起動信号の「原子师水位低（レベル2）」として使用する検出器と同じである。
＊6：対象計器は，B21－LT036A，B21－LT036B，B21－LT036C，B21－LT036D。
＊7：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。

4．7．4 ATWS緩和設備（自動減圧系作動阻止機能）の起動信号（常設）

 と同じである。
＊3：本検出器は，ATWS緩和設備（代替制御棒挿入機能）の起動信号及びATWS緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊ 4 ：対象計器は，B21－LT036C，B21－LT036D，B21－LT037A，B21－LT037B，B21－LT037C，B21－LT037D。
動減圧系作動阻止機能）作動となる。
＊6 ：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。
＊7 ：本検出器は，原子炉非常停止信号の「中性子束高」として使用する検出器と同じである。
＊ 8 ：個数は平均出力領域モニタのチャンネル数を示す
 C51－NE022A，C，D，C51－NE023A，B，D，C51－NE024B，C，D，C51－NE025A，B，D，C51－NE026A，C，D，C51－NE027A，B，C，C51－NE028A，B，D，C51－NE029B，C，D，C51－NE030A，B，C，C51－NE031A，C，D，C51－NE032A，B，C，C51－NE033A，B，D， C51－NE034B，C，D，C51－NE035A，B，D，C51－NE036A，C，D，C51－NE037A，B，C，C51－NE038A，C，D，C51－NE039A，B，D，C51－NE040B，C，D，C51－NE041A，C，D。
和設備（自動減圧系作動阻止機能）作動となる。
＊11：定格出力時の値に対する比率で示す。

4．7．5 代替自動減圧回路（代替自動減压機能）の起動信号（常設）


注記 $* 1:$ 本設備は，既存の設備である。
「原子炉水位低（レベル2）」として使用する検出器と同じである。
減圧機能）作動となる。
$* 5$ ：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。

4．8．1 高圧窒素ガス供給系
（2）容器（可搬型）


注記＊1 ：制御用空気設備（代替高圧窒素ガス供給系）と兼用。
＊2 ：公称値を示す。
＊3 ：重大事故等時における使用時の値。
＊ 4 ：当該取付箇所は，制御用空気設備（代替高圧窒素ガス供給系）と兼用。
（3）安全弁（常設）

|  |  |  | 変 更 前＊1 |  | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | P54－F065A，B |  | 変更なし |
| 種 | 類 | － | 非平衡型 |  |  |
| 吹 | 出 圧 力 | MPa | $\square$ |  |  |
| 吹 | 出 量 | kg／h／個 | 244．2＊2 |  |  |
| 主要法 | 呼び径 | － | 25A |  |  |
|  | のど部の径 | mm |  |  |  |
|  | 弁 座口の径 | mm | 15．0＊2 |  |  |
|  | リフフト | mm | $\square$ 以上 |  |  |
| $\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$ | 弁 箱 | － | SCS13A |  |  |
| 個 | 数 | － | 2 |  |  |
|  |  | － | P54-F065A <br> 高圧窒素ガス供給系 | P54-F065B <br> 高圧窒素ガス供給系 |  |
| 取 付 箇 | 設 置 床 | － | $\begin{aligned} & \text { 原子, } \\ & 0 . P . \end{aligned}$ | 建屋 <br> 5． 00 m |  |
| 所 |  | － |  |  |  |
|  | 溢 水 防護上の配慮が必要な高さ | － |  |  |  |

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
（5）主配管（常設）






|  | 変更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 |  | $\begin{gathered} \left\lvert\, \begin{array}{c} \text { 最高使用 } \\ \text { 圧 } \\ (\mathrm{MPa}) \end{array}\right. \\ \hline \end{gathered}$ | $\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } & \text { ( }{ }^{\circ} \mathrm{C} \text { 度 } \end{array}$ | $\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ \hline \text { 径*1 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 }{ }_{(\mathrm{mm})}^{\text {*2 }} \\ \hline \end{gathered}$ | 材 料 |  | 名 称 | $\begin{array}{\|c\|} \hline \text { 最高使用 } \\ \text { 压 } \\ (\mathrm{MPa}) \end{array}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ |  | $\begin{gathered} \text { 厚 } \underset{(\mathrm{mm})}{\text { さ }^{* 2}} \\ \hline \end{gathered}$ | 材 | 料 |
|  |  |  |  |  |  |  |  |  | B21－F023A <br> ＊13 <br> 主蒸気逃がし安全弁自動減圧機能用アキュムレータ（A）出口配管合流点 | 3．原子炉冷 <br> 3.4 原子炧 3．4．1 に記載する。 | 却系統施設冷却材の循環蒸気系 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 主蒸気逃がし安全弁自動減压機能用アキュムレータ（A）出口配管合流点 <br> B21－F001A | 3．原子炉冷去 <br> 3.4 原子炉 <br> 3．4．1 主 <br> に記載する。 | 却系統施設冷却材の循瓄蒸気系 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | B21－F023C <br> $\sim$ <br> 主蒸気逃がし安全弁自動減圧機能用アキュムレータ（C）出口配管合流点 | 3．原子炉冷去 <br> 3.4 原子炉 <br> 3．4．1 主 <br> に記載する。 | 却系統施設冷却材の循環蒸気系 |  |  |  |  |
| $\begin{aligned} & 0 \\ & \approx \\ & = \\ & \Theta \end{aligned}$ | $\begin{aligned} & \text { 高 } \\ & \text { 压 } \\ & \hline \text { 寀 } \end{aligned}$ |  |  | － |  |  |  | $\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \text { 窒 } \\ & \text { 素 } \end{aligned}$ | 主蒸気逃がし安全弁自動減圧機能用アキュムレータ（C）出口配管合流点 <br> B21－F001C | 3．原子炉冷 <br> 3.4 原子滪 <br> 3．4．1 主 <br> に記載する。 | 却系統施設冷却材の循環蒸気系 |  |  |  |  |
| $\begin{aligned} & \text { N } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { ガ } \\ & \text { ス } \\ & \text { 供 } \\ & \text { 給 } \\ & \text { 系 } \end{aligned}$ |  |  |  |  |  |  | $\begin{aligned} & \text { 系 } \\ & \text { か } \\ & \text { 供 } \\ & \text { 給 } \\ & \text { 系 } \end{aligned}$ | B21－F023E <br> ＊ 13 <br> 主蒸気逃がし安全弁自動減圧機能用アキュムレータ（E）出口配管合流点 | 3．原子炉冷 <br> 3.4 原子滪 <br> 3．4．1 主 <br> に記載する。 | 却系統施設冷却材の循環蒸気系 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 主蒸気逃がし安全弁自動減圧機能用アキュムレータ（E）出口配管合流点 B21－F001E | 3．原子炉冷 <br> 3.4 原子炧 <br> 3．4．1 主 <br> に記載する。 | 却系統施設冷却材の循瓄蒸気系 |  |  |  |  |
|  |  | 9 |  |  | 60.5 | （5．5） | STPT38 |  |  |  |  |  |  |  |  |
|  |  | T48－F030 | 1.77 | 66 | 60.5 | （3．9） | SUS304TP |  |  |  | 変更なし |  |  |  |  |
|  |  | P54－F015およびP54－F069A，B |  |  | 34.0 | （3．4） | SUS304TP |  |  |  |  |  |  |  |  |
|  |  | P54-F069A <br> 高圧窒素がス供給系A系窒素供給配管合流点 | 1.77 | 66 | 60.5 | （3．9） | SUS304TP |  |  |  | 変更なし |  |  |  |  |



注記 $* 1$ ：公称値を示す。
＊2：（）内は公称値を示す
$* 3$ ：本設備は既存の設備である。
＊4：重大事故等時における使用時の値。
$* 5$ ：差込継手の差込部内径及び最小厚さ。
＊ 6 ：エルボを示す。
＊7：フルカップリングを示す。
＊ 8 ：キャップを示す。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊ 10 ：重大事故等クラス2配管に使用する場合の記載事項。
＊11：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行ら
＊ 12 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，制御用空気設備（高圧窒素ガス供給系）として本工事計画で兼用とする。
$* 13$ ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材の循環設備（主蒸気系）であり，制御用空気設備（高圧窒素ガス供給系）として本工事計画で兼用とする。
（5）主配管（可搬型）

| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名称 | 最高使用圧 力 （MPa） | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$ | 材料 | 個数 | 取付箇所 |  | 名称 | $\begin{aligned} & \text { 最高使用*1 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & \text { 最高使用*1 } \\ & \text { 温 } \text {. } 1 \text { 度 } \end{aligned}$ <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外径*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 厚さ＊3 <br> （mm） | 材料 | 個数 | 取付箇所 |
|  |  |  |  |  |  |  |  |  |  | 連結管＊4 | 19． 6 | 66 | 7.0 | （1．5） | SUS304TP | 8 （予備8） | 保管場所： <br> 原子炉建屋付属棟 0．P． 15.00 m <br> 取付箇所： $\left(\begin{array}{ll} 8 \text { 台 } & \\ \text { 原子炉建屋付属棟 } & 0 . \text { P. } 15.00 \mathrm{~m} \end{array}\right)$ |

注記 $* 1$ ：重大事故等時における使用時の値。
＊2 ：外径は公称値を示す。
＊ 3 ：（ ）内は公称値を示す。
＊4 ：本設備は既存の設備である。

4．8．2 代替高圧窒素ガス供給系
（2）容器（可搬型）


注記 $* 1$ ：本設備は，制御用空気設備（高圧窒素ガス供給系）であり，制御用空気設備（代替高圧窒素ガス供給系）として本工事計画で兼用とする。
（3）安全弁（可搬型）


注記 $* 1$ ：公称値を示す。
（5）主配管（常設）


（5）主配管（可搬型）


注記 $* 1$ ：重大事故等時における使用時の値。
＊2 ：外径は公称値を示す。
＊3：（ ）内は公称値を示す。
＊ 4 ：伸縮継手部の外径及び厚さ。
4.10 計測制御系統施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

| 変更前 | 変更後 |
| :---: | :---: |
| 用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 | 用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 |
| 第1章 共通項目 <br> 計測制御系統施設の共通項目である「1．地盤等，2．自然現象， 3 ．火災，4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。 | 第1章 共通項目 <br> 計測制御系統施設の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービ ンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。 |
| 第2章 個別項目 <br> 1．計測制御系統施設 <br> 1.1 反応度制御系統及び原子炉停止系統共通 <br> 発電用原子炉施設には，制御棒の挿入位置を調節することによって反応度を制御する制御棒及び制御棒駆動系と，再循環流量を調整すること によって反応度を制御する再循環流量制御系の独立した原理の異なる反応度制御系統を施設し，計画的な出力変化に伴う反応度変化を燃料要素の許容損傷限界を超えることなく制御できる能力を有する設計とす る。 <br> 通常運転時の高温状態において，独立した原子炉停止系統である制御 | 第2章 個別項目 <br> 1．計測制御系統施設 <br> 1．1 反応度制御系統及び原子炉停止系統共通 <br> 発電用原子炉施設には，制御棒の挿入位置を調節することによって反応度を制御する制御棒及び制御棒駆動系と，再循環流量を調整すること によって反応度を制御する再循環流量制御系の独立した原理の異なる反応度制御系統を施設し，計画的な出力変化に伴ら反応度変化を燃料要素の許容損傷限界を超えることなく制御できる能力を有する設計とす る。 <br> 通常運転時の高温状態において，独立した原子炉停止系統である制御 |

## 変更前

棒及び制御棒駆動系による制御棒の炉心～の挿入並びにほう酸水注入系による泠却材中へのほう酸注入は，それぞれ発電用原子炉を臨界未満 にでき，かつ，維持できる設計とする。

運転時の異常な過渡変化時の高温状態においても，制御棒及び制御棒駆動系による制御棒の炉心への挿入により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界未満にでき，かつ，維持できる設計 とする。
設置（変更）許可を受けた冷却材喪失その他の設計基準事故時の評価 において，制御棒及び制御棒駆動系は，原子炉スクラム信号によって，水圧制御ユニット（アキュムレータ）の圧力により制御棒を緊急挿入で きる設計とするとともに，制御棒が確実に挿入され，炉心を臨界未満に でき，かつ，それを維持できる設計とする。
制御棒及びほう酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。
1.2 制御棒及び制御棒駆動系

制御棒は，最大の反応度価値を持つ制御棒 1 本が完全に炉心の外に引抜かれていて，その他の制御棒が全挿入の場合，高温状態及び低温状態において常に炉心を臨界未満にできる設計とする。また，発電用原子炉運転中に，完全に挿入されている制御棒を除く，他のいずれかの制御棒が動作不能となった場合は，動作可能な制御棒のうち最大反応度価値 を有する制御棒 1 本が完全に炉心の外に引抜かれた状態でも，他のす べての動作可能な制御棒により，高温状態及び低温状態において炉心を

## 変更後

棒及び制御棒駆動系による制御棒の炉心への挿入並びにほう酸水注入系による泠却材中へのほう酸注入は，それぞれ発電用原子炉を臨界未満 にでき，かつ，維持できる設計とする。

運転時の異常な過渡変化時の高温状態においても，制御棒及び制御棒駆動系による制御棒の炉心への挿入により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界未満にでき，かつ，維持できる設計 とする。

設置（変更）許可を受けた泠却材喪失その他の設計基準事故時の評価 において，制御棒及び制御棒駆動系は，原子炉スクラム信号によって，水圧制御ユニット（アキュムレータ）の圧力により制御棒を緊急挿入で きる設計とするとともに，制御棒が確実に挿入され，炉心を臨界未満に でき，かつ，それを維持できる設計とする。

制御棒及びほら酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。
1.2 制御棒及び制御棒駆動系

制御棒は，最大の反応度価値を持つ制御棒 1 本が完全に炉心の外に引抜かれていて，その他の制御棒が全挿入の場合，高温状態及び低温状態において常に炬心を臨界未満にできる設計とする。また，発電用原子炉運転中に，完全に挿入されている制御棒を除く，他のいずれかの制御棒が動作不能となった場合は，動作可能な制御棒のらち最大反応度価値 を有する制御棒 1 本が完全に炉心の外に引抜かれた状態でも，他のす べての動作可能な制御棒により，高温状態及び低温状態において炉心を

| 変更前 |
| :---: |
| 臨界未満に保持できることを評価確認し，確認できない場合には，発電 |用原子炉を停止するように保安規定に定めて管理する。

反応度が大きく，かつ急激に投入される事象による影響を小さくする ため，制御棒の落下速度を設置（変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒落下速度リミッタにより制限するこ とで，制御棒引抜きによる反応度添加率を抑制する。また，「原子炉起動時における制御棒の異常な引抜き」の評価で想定した制御棒引抜き速度に制限するとともに，零出力ないし低出力においては，運転員の制御棒引抜き操作を規制する補助機能として，制御棒価値ミニマイザを設け ることで，制御棒の最大反応度価値を抑制する。更に中性子束高及び原子炉周期短による原子炉スクラム信号を設ける設計とする。これらによ り，想定される反応度投入事象発生時に燃料の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炉冷却材圧力バウンダリを破損せ ず，かつ，炉心の泠却機能を損なうような炉心，炉心支持構造物及び原子炉圧力容器内部構造物の破損を生じさせない設計とする。なお，制御棒引抜き手順については，保安規定に定めて管理する。

制御棒及び制御棒駆動系は，通常運転時及び運転時の異常な過渡変化時における低温状態において，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度添加を制御し，低温状態で炉心を未臨界 に移行して維持できる設計とする。

制御棒は，十字形に組み合わせたステンレス鋼製のU字形シースの中に中性子吸収材を収めたものであり，各制御棒は 4 体の燃料体の中央に，炉心全体にわたって一様に配置する設計とする。

制御棒の下端には制御棒落下速度リミッタを設けるとともに，制御棒

変更後
臨界未満に保持できることを評価確認し，確認できない場合には，発電用原子炉を停止するように保安規定に定めて管理する。

反応度が大きく，かつ急激に投入される事象による影響を小さくする ため，制御棒の落下速度を設置（変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒落下速度リミッタにより制限するこ とで，制御棒引抜きによる反応度添加率を抑制する。また，「原子炉起動時における制御棒の異常な引抜き」の評価で想定した制御棒引抜き速度に制限するとともに，零出力ないし低出力においては，運転員の制御棒引抜き操作を規制する補助機能として，制御棒価値ミニマイザを設け ることで，制御棒の最大反応度価値を抑制する。更に中性子束高及び原子炉周期短による原子炉スクラム信号を設ける設計とする。これらによ り，想定される反応度投入事象発生時に燃料の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炉冷却材圧力バウンダリを破損せ ず，かつ，炉心の泠却機能を損なうような炉心，炉心支持構造物及び原子炉圧力容器内部構造物の破損を生じさせない設計とする。なお，制御棒引抜き手順については，保安規定に定めて管理する。

制御棒及び制御棒駆動系は，通常運転時及び運転時の異常な過渡変化時における低温状態において，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度添加を制御し，低温状態で炉心を未臨界 に移行して維持できる設計とする。

制御棒は，十字形に組み合わせたステンレス鋼製のU字形シースの中に中性子吸収材を収めたものであり，各制御棒は 4 体の燃料体の中央に，炉心全体にわたって一様に配置する設計とする。

制御棒の下端には制御棒落下速度リミッタを設けるとともに，制御棒

| 変更前 | 変更後 |
| :---: | :---: |
| の駆動は，ピストン上部又は下部に駆動水を供給することにより，原子炉圧力容器底部から行ら設計とする。 <br> 通常駆動時は，制御棒駆動水ポンプにより加圧された駆動水で駆動 し，原子炉緊急停止時は，各々の制御棒駆動機構ごとに設ける水圧制御 ユニット（アキュムレータ）の高圧窒素により加圧された駆動水を供給 することで制御棒を駆動する設計とする。 <br> 冷却材の漏えいが生じた場合，その漏えい量が 10 mm （3／8インチ）径 の配管破断に相当する量以下の場合は制御棒駆動水ポンプで補給でき る設計とする。 <br> 制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炉冷却材圧力バウンダリの損傷を防ぐた めに適切な値となるような速度で炬心内に挿入できること，並びに通常運転時において制御棒の異常な引抜きが発生した場合においても，燃料要素の許容損傷限界を超える駆動速度で引抜きできない設計とする。 <br> なお，設置（変更）許可を受けた仕様並びに運転時の異常な過渡変化及び設計基準事故の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時における制御棒の異常な引抜き」及び「出力運転中の制御棒の異常な引抜き」の評価の条件を満足する設計と する。 <br> 制御棒は，原子炉モードスイッチ「停止」位置にある場合，原子炉モ ードスイッチ「燃料取替」位置にある場合で，燃料交換機が原子炉上部 にあり，荷重状態のとき，原子炉モードスイッチ「燃料取替」位置にあ る場合で，引抜かれている制御棒本数が 1 本のとき，原子炉モードスイ ッチ「燃料取替」位置にある場合で，スクラム排出容器水位高によるス | の駆動は，ピストン上部又は下部に駆動水を供給することにより，原子炉圧力容器底部から行ら設計とする。 <br> 通常駆動時は，制御棒駆動水ポンプにより加圧された駆動水で駆動 し，原子炉緊急停止時は，各々の制御棒駆動機構ごとに設ける水圧制御 ユニット（アキュムレータ）の高圧窒素により加圧された駆動水を供給 することで制御棒を駆動する設計とする。 <br> 冷却材の漏えいが生じた場合，その漏えい量が 10 mm （3／8インチ）径 の配管破断に相当する量以下の場合は制御棒駆動水ポンプで補給でき る設計とする。 <br> 制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炉冷却材圧力バウンダリの損傷を防ぐた めに適切な値となるような速度で炉心内に挿入できること，並びに通常運転時において制御棒の異常な引抜きが発生した場合においても，燃料要素の許容損傷限界を超える駆動速度で引抜きできない設計とする。 <br> なお，設置（変更）許可を受けた仕様並びに運転時の異常な過渡変化及び設計基準事故の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時における制御棒の異常な引抜き」及び「出力運転中の制御棒の異常な引抜き」の評価の条件を満足する設計と する。 <br> 制御棒は，原子炉モードスイッチ「停止」位置にある場合，原子炉モ ードスイッチ「燃料取替」位置にある場合で，燃料交換機が原子炉上部 にあり，荷重状態のとき，原子炉モードスイッチ「燃料取替」位置にあ る場合で，引抜かれている制御棒本数が 1 本のとき，原子炉モードスイ ッチ「燃料取替」位置にある場合で，スクラム排出容器水位高によるス |


| 変更前 | 変更後 |
| :---: | :---: |
| クラム信号がバイパスされているとき，スクラム排出容器水位高による制御棒引抜阻止信号のあるとき，原子炉モードスイッチ「起動」位置に ある場合で，起動領域モニタの指示高，指示低若しくは動作不能及び中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」位置にある場合で，出力領域モニタの指示低又は動作不能のとき，出力領域モニタの指示高のとき，制御棒価値ミニマイザによる制御棒引抜阻止信号のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあ るときは，引抜きを阻止できる設計とする。 <br> 制御棒駆動機構は，各制御棒に独立して設けられたラッチ付き水圧ピ ストン・シリンダ方式のものであり，インデックスチューブと駆動ピス トン，コレット集合体等で構成され，制御棒の駆動動力源である制御棒駆動水ポンプによる水圧が喪失した場合においても，ラッチ機構により制御棒を現状位置に保持し，発電用原子炉の反応度を増加させる方向に作動させない設計とする。 <br> また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れ ない構造とする。 <br> 制御棒駆動系にあっては，制御棒の挿入その他の衝撃により制御棒，燃料体，その他の炉心を構成するものを損壊しない設計とする。 <br> 1．3 原子炉再循環流量制御系 <br> 再循環流量は，静止型原子炉再循環ポンプ電源装置により電源周波数 を変化させ，原子炉再循環ポンプ速度を調整することにより制御できる設計とする。 <br> また，タービン・トリップ又は発電機負荷遮断直後の原子炉出力を抑 | クラム信号がバイパスされているとき，スクラム排出容器水位高による制御棒引抜阻止信号のあるとき，原子炉モードスイッチ「起動」位置に ある場合で，起動領域モニタの指示高，指示低若しくは動作不能及び中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」位置にある場合で，出力領域モニタの指示低又は動作不能のとき，出力領域モニタの指示高のとき，制御棒価値ミニマイザによる制御棒引抜阻止信号のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあ るときは，引抜きを阻止できる設計とする。 <br> 制御棒駆動機構は，各制御棒に独立して設けられたラッチ付き水圧ピ ストン・シリンダ方式のものであり，インデックスチューブと駆動ピス トン，コレット集合体等で構成され，制御棒の駆動動力源である制御棒駆動水ポンプによる水圧が喪失した場合においても，ラッチ機構により制御棒を現状位置に保持し，発電用原子炉の反応度を増加させる方向に作動させない設計とする。 <br> また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れ ない構造とする。 <br> 制御棒駆動系にあっては，制御棒の挿入その他の衝撃により制御棒，燃料体，その他の炉心を構成するものを損壊しない設計とする。 <br> 1．3 原子炉再循環流量制御系 <br> 再循環流量は，静止型原子炉再循環ポンプ電源装置により電源周波数 を変化させ，原子炉再循環ポンプ速度を調整することにより制御できる設計とする。 <br> また，タービン・トリップ又は発電機負荷遮断直後の原子炉出力を抑 |


| 変更前 | 変更後 |
| :---: | :---: |
| 制するため，主蒸気止め弁閉又は蒸気加減弁急速閉の信号により，原子炉再循環ポンプ 2 台が同時にトリップする機能を設ける設計とする。 <br> 1.4 ほう酸水注入系 <br> ほう酸水注入系は，制御棒挿入による原子炉停止が不能になった場合，手動で中性子を吸収するほう酸水（五ほう酸ナトリウム）を原子炉内に注入する設備であり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において十分臨界未満に維持できるだけの反応度効果を持つ設計とする。 | 制するため，主蒸気止め弁閉又は蒸気加減弁急速閉の信号により，原子炉再循環ポンプ 2 台を同時にトリップする機能を設ける設計とする。 <br> 1．4ほう酸水注入系 <br> ほう酸水注入系は，制御棒挿入による原子炉停止が不能になった場合，手動で中性子を吸収するほう酸水（五ほう酸ナトリウム）を原子炉内に注入する設備であり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において十分臨界未満に維持できるだけの反応度効果を持つ設計とする。 <br> 運転時の異常な過渡変化時において発電用原子炉の運転を緊急に停止することができない事象が発生するおそれがある場合又は当該事象 が発生した場合においても炉心の著しい損傷を防止するため，原子炉冷却材圧力バウンダリ及び原子炉格納容器の健全性を維持するとともに，発電用原子炉を未臨界に移行するために必要な重大事故等対処設備と して，ほう酸水注入系を設ける設計とする。 <br> 原子炉保護系，制御棒，制御棒駆動機構，水圧制御ユニットの機能が喪失した場合の重大事故等対処設備として，ほう酸水注入系は，ほう酸水注入系ポンプにより，ほう酸水注入系貯蔵タンクのほう酸水を原子炉圧力容器へ注入することで，発電用原子炉を未臨界にできる設計とす る。 <br> ほう酸水注入系の流路として，ほう酸水注入系の配管及び弁を重大事故等対処設備として使用できる設計とする。 <br> その他，設計基準対象施設である原子炉圧力容器，炉心支持構造物及 び原子炉圧力容器内部構造物を重大事故等対処設備として使用できる |


| 変更前 | 変更後 |
| :---: | :---: |
| 1.5 原子炉圧力制御系 <br> 圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及びタ ービンバイパス弁の開度を自動制御する設計とする。 <br> また，原子炉圧力が急上昇するような場合，タービンバイパス弁を開 き，原子炉圧力の過度の上昇を防止する設計とする。 <br> 圧力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減弁及びタービンバイパス弁の開度を制御することにより，負荷の変動その他の発電用原子炉の運転に伴ら原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。 <br> 1． 6 原子炉給水制御系 <br> 原子炉給水制御系は，原子炉水位を一定に保つようにするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポンプの速度を調整することなどにより原子炉給水流量 を自動的に制御できる設計とする。 | 設計とする。 <br> 1.5 原子炉圧力制御系 <br> 圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及びタ ービンバイパス弁の開度を自動制御する設計とする。 <br> また，原子炉圧力が急上昇するような場合，タービンバイパス弁を開 き，原子炉圧力の過度の上昇を防止する設計とする。 <br> 圧力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減弁及びタービンバイパス弁の開度を制御することにより，負荷の変動その他の発電用原子炉の運転に伴う原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。 <br> 1． 6 原子炉給水制御系 <br> 原子炉給水制御系は，原子炉水位を一定に保つようにするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポンプの速度を調整することなどにより原子炉給水流量 を自動的に制御できる設計とする。 |
| 2．計測装置等 <br> 2.1 計測装置 <br> 2．1．1 通常運転時，運転時の異常な過渡変化時における計測 <br> 計測制御系統施設は，炉心，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ並びにこれらに関する系統の健全性を確 | 2．計測装置等 <br> 2.1 計測装置 <br> 2．1．1 通常運転時，運転時の異常な過渡変化時及び重大事故等時におけ る計測 <br> 計測制御系統施設は，炉心，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ並びにこれらに関する系統の健全性を確 |


| 変更前 | 変更後 |
| :---: | :---: |
| 保するために監視することが必要なパラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視で きる設計とする。 <br> 設計基準事故が発生した場合の状況把握及び対策を講じるため に必要なパラメータは，設計基準事故時に想定される環境下におい て十分な測定範囲及び期間にわたり監視できるとともに，発電用原子炉の停止及び炉心の泠却に係るものについては，設計基準事故時 においても二種類以上監視又は推定できる設計とする。 <br> 炉心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域及び出力領域の 2 つの領域に分けて中性子束を計測できる設計とする。 <br> 炉周期は起動領域モニタの計測結果を用いて演算できる設計と する。 | 保するために監視することが必要なパラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視で きる設計とする。 <br> 設計基準事故が発生した場合の状況把握及び対策を講じるため に必要なパラメータは，設計基準事故時に想定される環境下におい て十分な測定範囲及び期間にわたり監視できるとともに，発電用原子炉の停止及び炉心の泠却に係るものについては，設計基準事故時 においても二種類以上監視又は推定できる設計とする。 <br> 炉心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域及び出力領域の 2 つの領域に分けて中性子束を計測できる設計とする。 <br> 炉周期は起動領域モニタの計測結果を用いて演算できる設計と する。 <br> 重大事故等が発生し，計測機器（非常用のものを含む。）の故障 により，当該重大事故等に対処するために監視することが必要なパ ラメータを計測することが困難となった場合において，当該パラメ ータを推定するために必要なパラメータを計測する設備を設置又 は保管する設計とする。 <br> 重大事故等が発生し，当該重大事故等に対処するために監視する ことが必要なパラメータとして，原子炉圧力容器内の温度，圧力及 び水位，原子炉圧力容器及び原子炉格納容器への注水量，原子炉格納容器内の温度，圧力，水位，水素濃度及び酸素濃度，原子炉建屋原子炉棟内の水素濃度，未臨界の維持又は監視，最終ヒートシンク の確保，格納容器バイパスの監視並びに水源の確保に必要なパラメ |






|  | 変更前 | 変更後 |  |
| :---: | :---: | :---: | :---: |
| 2.2 |  | 2. | 警報装置等 |
|  | 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の |  | 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪 |
|  | ，誤操作その他の異常により発電用原子炉の運転に著しい支障を及 |  | 失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ |
|  | おそれが発生した場合（中性子束，温度，圧力，流量等のプロセス変 |  | すおそれが発生した場合（中性子束，温度，圧力，流量等のプロセス変 |
|  | が異常値になった場合，工学的安全施設が作動した場合等）に，これ |  | 数が異常値になった場合，工学的安全施設が作動した場合等）に，これ |
|  | らを確実に検出して自動的に警報（原子炉水位低又は高，原子炉圧力高， |  | らを確実に検出して自動的に警報（原子炉水位低又は高，原子炉圧力高， |
|  | 等）を発信する装置を設けるとともに，表示ランプの点灯及 |  | 中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯及 |
|  | びブザ |  | びブザー鳴動等により運転員に通報できる設計とする。 |
|  | 発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の |  | 発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の動 |
|  | 作状態を正確，かつ迅速に把握できるようポンプの運転停止状態及び弁 |  | 作状態を正確，かつ迅速に把握できるようポンプの運転停止状態及び弁 |
|  | の開閉状態等を |  | の開閉状態等を表示灯により監視できる設計とする。 |
|  | 計測結果の表示，記録及び保存 | 2.3 | 計測結果の表示，記録及び保存 |
|  | 発電用原子炉の停止及び炉心の冷却並びに放射性物 | 発電用原子炉の停止及び炉心の泠却並びに放射性物質の閉じ込めの |  |
|  | 機能の状況を監視するために必要なパラメータは，設計基準事故時にお | 機能の状況を監視するために必要なパラメータは，設計基準事故時にお |  |
|  | いても確実に記録できる設計 | いても確実に記録し，保存できる設計とする。 |  |
|  | 設計基準対象施設として，炉心における中性子束密度を計測するため | 設計基準対象施設として，炉心における中性子束密度を計測するため |  |
|  | の計測装置，原子炉圧力容器内の水位を計測するための原子炉水位（停 | の計測装置，原子炉圧力容器内の水位を計測するための原子炉水位（停 |  |
|  | 止域，燃料域，広帯域並びに狭帯域）を計測する装置，原子炉格納容器 | 止域，燃料域，広帯域並びに狭帯域）を計測する装置，原子炉格納容器 |  |
|  | 内の圧力，温度及び可燃性ガス濃度を計測するためのドライウェル圧 | 内の圧力，温度及び可燃性ガス濃度を計測するためのドライウェル圧 |  |
|  | ，サプレッションチェンバ圧力，ドライウェル雰囲気温度，サプレッ | 力，サプレッションチェンバ圧力，ドライウェル雰囲気温度，サプレッ |  |
|  | ョンチェンバ雰囲気温度，格納容器内水素濃度及び格納容器内酸素濃 | ションチェンバ雰囲気温度，格納容器内水素濃度及び格納容器内酸素濃 |  |
|  | 度を計測する装置を設け，これらの計測装置は計測結果を中央制御室に | 度を計測する装置を設け，これらの計測装置は計測結果を中央制御室に |  |
|  | 表示できる設計とする。また，計測結果を記録できる設計とする。 | 表示できる設計とする。また，計測結果を記録し，保存できる設計とす |  |


| 変更前 | 変更後 |
| :---: | :---: |
| 制御棒の位置を計測する装置，原子炉圧力容器の入口及び出口におけ る圧力，温度及び流量を計測するため，原子炉給水圧力及び主蒸気圧力，原子炉給水温度及び主蒸気温度並びに原子炉給水流量及び主蒸気流量 を計測する装置並びに冷却材の不純物の濃度を測定するための導電率 を計測する装置を設けっこれらの計測装置は計測結果を中央制御室に表示できる設計とする。また，記録はプロセス計算機から帳票として出力 できる設計とする。 <br> 泠却材の不純物の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録する。 | る。 <br> 制御棒の位置を計測する装置，原子炉圧力容器の入口及び出口におけ る圧力，温度及び流量を計測するため，原子炉給水圧力及び主蒸気圧力，原子炉給水温度及び主蒸気温度並びに原子炉給水流量及び主蒸気流量 を計測する装置並びに泠却材の不純物の濃度を測定するための導電率 を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とする。また，記録はプロセス計算機から帳票として出力 し保存できる設計とする。 <br> 泠却材の不純物の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録し，及び保存する。 <br> 炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータを計測す る装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするとともに，重大事故等 が発生し，当該重大事故等に対処するために監視することが必要な原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炉格納容器への注水量等のパラメータの計測が困難となった場合又は計測範囲を超えた場合に，代替パラメータにより推定ができる設計とする。 <br> 重大事故等時に設計基準を超える状態における発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等）） を明確にするとともに，パラメータの計測が困難となった場合又は計測範囲を超えた場合の代替パラメータによる推定等，複数のパラメータの中から確からしさを考慮した優先順位を保安規定に定めて管理する。 <br> 原子炉格納容器内の温度，圧力，水位，水素濃度等想定される重大事 |



| 変更前 | 変更後 |
| :---: | :---: |
| 3．安全保護装置等 <br> 3.1 安全保護装置 <br> 3．1．1 安全保護装置の機能及び構成 <br> 安全保護装置は，運転時の異常な過渡変化が発生する場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において， その異常な状態を検知し及び原子炉保護系その他系統と併せて機能することにより，燃料要素の許容損傷限界を超えないようにでき るものとするとともに，設計基準事故が発生する場合において，そ の異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的 に作動させる設計とする。 <br> 運転時の異常な過渡変化及び設計基準事故時に対処し得る複数 の原子炉スクラム信号及びその他の安全保護装置起動信号を設け る設計とする。 <br> なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価の条件を満足する設計とする。 <br> 安全保護装置を構成する機械若しくは器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。 <br> 安全保護装置を構成するチャンネルは，それぞれ互いに分離し， それぞれのチャンネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を確保する設計とする。 <br> また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 | 3．安全保護装置等 <br> 3.1 安全保護装置 <br> 3．1．1 安全保護装置の機能及び構成 <br> 安全保護装置は，運転時の異常な過渡変化が発生する場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において， その異常な状態を検知し及び原子炉保護系その他系統と併せて機能することにより，燃料要素の許容損傷限界を超えないようにでき るものとするとともに，設計基準事故が発生する場合において，そ の異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的 に作動させる設計とする。 <br> 運転時の異常な過渡変化及び設計基準事故時に対処し得る複数 の原子炉スクラム信号及びその他の安全保護装置起動信号を設け る設計とする。 <br> なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価の条件を満足する設計とする。 <br> 安全保護装置を構成する機械若しくは器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。 <br> 安全保護装置を構成するチャンネルは，それぞれ互いに分離し， それぞれのチャンネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を確保する設計とする。 <br> また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 |


| 変更前 | 変更後 |
| :---: | :---: |
| 安全保護装置は，駆動源の喪失，系統の遮断その他の不利な状況 が発生した場合においても，フェイル・セイフとすることで発電用原子炉施設をより安全な状態に移行するか，又は当該状態を維持す ることにより，発電用原子炉施設の安全上支障がない状態を維持で きる設計とする。 <br> 計測制御系統施設の一部を安全保護装置と共用する場合には，そ の安全機能を失わないよう，計測制御系統施設から機能的に分離し た設計とする。 <br> また，運転条件に応じて作動設定値を変更できる設計とする。非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動 をしないようにできる設計とする。 | 安全保護装置は，駆動源の喪失，系統の遮断その他の不利な状況 が発生した場合においても，フェイル・セイフとすることで発電用原子炉施設をより安全な状態に移行するか，又は当該状態を維持す ることにより，発電用原子炉施設の安全上支障がない状態を維持で きる設計とする。 <br> 計測制御系統施設の一部を安全保護装置と共用する場合には，そ の安全機能を失わないよう，計測制御系統施設から機能的に分離し た設計とする。 <br> また，運転条件に応じて作動設定値を変更できる設計とする。 <br> 非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動 をしないようにできる設計とする。 <br> 3．1．2 安全保護装置の不正アクセス行為等の被害の防止 <br> 安全保護装置のうち，アナログ回路で構成する機器は，外部ネッ トワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作の防止並びに物理的及び電気的アクセスの制限を設け，シス テムの据付，更新，試験，保守等で，承認されていない者の操作を防止する措置を講じることで，不正アクセス行為その他の電子計算機に使用目的に沿うべき動作をさせず，又は使用目的に反する動作 をさせる行為による被害を防止できる設計とする。 <br> 安全保護装置のうち，一部デジタル演算処理を行う機器は，外部 ネットワークと物理的分離及び機能的分離，外部ネットワークから |




|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$ |  | 運転時の異常な過渡変化時において発電用原子炉の運転を緊急に停止することができない事象が発生した場合の重大事故等対処設備とし て，ATWS 緩和設備（自動減圧系作動阻止機能）は，中性子束高及び原子炉水位低（レベル2）の信号により，自動減圧系及び代替自動減圧回路 （代替自動減圧機能）の作動を阻止できる設計とする。 <br> 原子炉緊急停止失敗時に自動減圧系が作動すると，高圧烼心スプレイ系，残留熱除去系（低圧注水モード）及び低圧炝心スプレイ系から大量 の椧水が注水され出力の急激な上昇につながるため，ATWS 緩和設備（自動減圧系作動阻止機能）により自動減圧系及び代替自動減圧回路（代替自動減圧機能）による自動減圧を阻止できる設計とする。 <br> また，ATWS 緩和設備（自動減圧系作動阻止機能）は，中央制御室の操作スイッチを手動で操作することで，自動減圧系及び代替自動減圧回路（代替自動減圧機能）の作動を阻止させることができる設計とする。 <br> 3.5 代替自動減圧回路（代替自動減圧機能） <br> 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能）を設ける設計とする。 <br> 自動減圧機能が喪失した場合の重大事故等対処設備として，代替自動減圧回路（代替自動減圧機能）は，原子炉水位低（レベル1）及び残留熱除去系ポンプ運転（低圧注水モード）又は低圧炬心スプレイ系ポンプ |






|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { A } \\ & \stackrel{1}{1} \\ & 0 \end{aligned}$ |  | 電話機及び加入 FAX），専用電話設備（地方公共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災 ネットワークを用いた通信連絡設備（テレビ会議システム，IP 電話及 び IP－FAX）を設置又は保管する設計とする。 <br> また，発電所内から発電所外の緊急時対策支援システム（ERSS）～必要なデータを伝送できる設備として，データ伝送設備を設置する設計と する。 <br> 通信連絡設備（発電所外）及びデータ伝送設備については，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を碓保した通信回線に接続する。 <br> 電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び衛星保安電話（固定型）），統合原子力防災ネットワークを用いた通信連絡設備（テ レビ会議システム，IP 電話及び IP—FAX），専用電話設備（地方公共団体向ホットライン），社内テレビ会議システム及びデータ伝送設備は，専用通信回線に接続し，輻輳等による制限を受けることなく常時使用で きる設計とする。また，これらの専用通信回線の容量は，通話及びデー夕伝送に必要な容量に対し，十分な余裕を確保した設計とする。 <br> 通信連絡設備（発電所外）及びデータ伝送設備については，非常用所内電源又は無停電電源（充電器等を含む。）に接続し，外部電源が期待 できない場合でも動作可能な設計とする。 <br> 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常が発生した場合において，データ伝送設備は，基準地震動S s による地震力に対し，地震時及び地震後においても，緊急時対策支援システム （ERSS）～必要なデータを伝送する機能を保持するため，固縛又は固定 |


|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| $$ |  | による転倒防止措置等を実施するとともに，信号ケーブル及び電源ケー ブルは，耐震性を有する電線管等の電路に敷設する設計とする。 <br> 重大事故等が発生した場合において，発電所外（社内外）の通信連絡 をする必要のある場所と通信連絡を行らために必要な通信連絡設備（発電所外）及び計測等を行った特に重要なパラメータを発電所外（社内外） の必要な場所で共有するための通信連絡設備（発電所外）として，必要 な数量の衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP電話及び IP－FAX）を設置又は保管する設計とする。なお，可搬型につ いては必要な数量に加え，故障を考慮した数量の予備を保管する。 <br> 衛星電話設備（携帯型）は，緊急時対策所内に保管する設計とする。 <br> 衛星電話設備（固定型）は，中央制御室及び緊急時対策所内に設置す る設計とする。 <br> 統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議シス テム，IP 電話及び IP—FAX）は，緊急時対策所内に設置する設計とす る。 <br> 重大事故等が発生した場合において，発電所内から発電所外の緊急時対策支援システム（ERSS）～必要なデータを伝送できる設備として，SPDS伝送装置で構成するデータ伝送設備を緊急時対策所内に設置する設計 とする。 <br> 衛星電話設備（固定型）は，屋外代設置したアンテナと接続すること により，屋内で使用できる設計とする。 <br> 中央制御室内に設置する衛星電話設備（固定型）は，非常用交流電源設備に加えて，全交流動力電源が震失した場合においても，代替電源設 |



| 変更前 | 変更後 |
| :---: | :---: |
| 4.2 設備の共用 <br> 通信連絡設備の一部は，第 1 号機，第 2 号機及び第 3 号機で共用する が，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。 | 4.3 設備の共用 <br> 通信連絡設備の一部は，第 1 号機，第 2 号機及び第 3 号機で共用する が，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。 |
| 5．制御用空気設備 <br> 5． 1 計装用圧縮空気系 <br> 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備と して，計装用圧縮空気系を設ける。 <br> 計装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計とする。 <br> 計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によって，計装用圧縮空気系に圧縮空気を供給できる設計と する。 <br> 所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経て各負荷先へ圧縮空気を供給でき る設計とする。 | 5．制御用空気設備 <br> 5． 1 計装用圧縮空気系 <br> 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備と して，計装用圧縮空気系を設ける。 <br> 計装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計とする。 <br> 計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によって，計装用圧縮空気系に圧縮空気を供給できる設計と する。 <br> 所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経て各負荷先へ圧縮空気を供給でき る設計とする。 <br> 5．2 高圧窒素ガス供給系 <br> 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として， |



| 変更前 | 変更後 |
| :---: | :---: |
|  | 素ガス供給系は，主蒸気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキュムレータ及び主蒸気逃がし安全弁自動減圧機能用アキュムレータの充填圧力が喪失した場合において，主蒸気逃がし安全弁のアクチュエータに高圧窒素ガスボンべにより直接窒素を供給 することで，主蒸気逃がし安全弁（4個）を一定期間にわたり連続して開状態を保持できる設計とする。 <br> 高圧窒素ガスボンベの圧力が低下した場合は，現場で高圧窒素ガスボ ンべの取替えが可能な設計とする。 <br> 代替高圧窒素ガス供給系の流路として，代替高圧窒素ガス供給系の配管，弁及びホースを重大事故等対処設備として使用できる設計とする。 <br> その他，設計基準事故対処設備である主蒸気逃がし安全弁を重大事故等対処設備として使用できる設計とする。 |
| 6．主要対象設備 <br> 計測制御系統施設の対象となる主要な設備について，「表 1 計測制御系統施設の主要設備リスト」に示す。 | 6．主要対象設備 <br> 計測制御系統施設の対象となる主要な設備について，「表1計測制御系統施設の主要設備リスト」に示す。 <br> 本施設の設備として兼用する場合に主要設備リストに記載されない設備については「表2 計測制御系統施設の兼用設備リスト」に示す。 |

O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト $(1 / 15)$

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設（ial） |  | 重大事故等対処設備 ${ }^{(3 \text {（3）} 1)}$ |  | 名称 | 設計基準対象施設（3）${ }^{\text {（1）}}$ |  | 重大事故等対処設備 ${ }^{(3 \text { a } 1)}$ |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス | 耐震 <br> 重要度 <br> 分類 |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  |  |  |  | － |  |  | － | 発電用原子炉の反応度の制御方式，ほう酸水注入の制御方式，発電用原子炉の圧力の制御方式，発電用原子炉の水位の制御方式及び安全保護系その他重大事故等発生時に発電用原子炉を安全に停止する ための回路の制御方式 ${ }^{(\text {（i）}}$ | － |  | － |  |
|  |  |  |  |  | － |  |  | － | 制御棒の位置の制御方法，原子炉再循環流量の制御方法，ほう酸水注入設備の制御方法，発電用原子炉の圧力の制御方法，給水の制御方法及び安全保護系等の制御方法 ${ }^{(2 \times 2)}$ |  | － | － |  |
|  |  | 制御棒 |  |  | 制御棒 | S | － |  | － | 変更なし |  |  | 常設耐震／防止 | － |
|  |  | ほう酸 |  | ほう酸水 |  | － |  | － | 変更なし（ ${ }^{(3)}$ |  | － | － |  |
|  | － | 制御棒 | 区動機構 | 制御棒駆動機構 | S | $\begin{gathered} \text { クラス } 1 \text { (洋 4) } \\ \text { クラス } 3 \end{gathered}$ |  | － | 変更なし |  |  | 常設耐震／防止 | － |
|  |  |  |  | 水圧制御ユニット（アキュムレータ） | S | クラス 2 |  | － | 変更なし |  |  | 常設耐震／防止 | SA クラス 2 |
| 制 |  |  | 容器 | 水圧制御ユニット（窒素容器） | S | クラス 2 |  | － | 変更なし |  |  | 常設耐震／防止 | SA クラス 2 |
| 装 | $\begin{aligned} & \text { 駆 } \\ & \text { 動 } \end{aligned}$ | 働 |  | スクラム排出容器 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | C12－D001－126 | S | クラス 2 |  | － | 変更なし |  |  | 常設耐震／防止 | SAクラス 2 |
|  |  |  |  | C12－D001－127 | S | クラス 3 |  | － | 変更なし |  |  | 常設耐震／防止 | SAクラス 2 |

O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（2／15）


O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（3／15）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設（3 1） |  | 重大事故等対処設備 ${ }^{(3 \text { ¹ 1）}}$ |  | 名称 | 設計基漼対象施設 ${ }^{(31)}$（1） |  | 重大事故等対処設備 ${ }^{(31)}$ |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス | 耐震重要度分類 |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & \text { 制 } \\ & \text { 御 } \\ & \text { 駆 } \\ & \text { 憅 } \\ & \text { 罭 } \end{aligned}$ | $\begin{aligned} & \text { 制 } \\ & \text { 蓹 } \\ & \text { 駆 } \\ & \text { 憅 } \\ & \text { 原 } \\ & \text { 系 } \end{aligned}$ |  | 主配管 |  | 制御棒駆動水圧系アキュムレータ出口配管合流点～C12－D001－126 | S | クラス 2 |  | － | 変更 |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | 制御棒駆動水圧系窒素容器～制御棒駆動水圧系アキュムレータ | S | クラス 2 |  | － | 変更 |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | 制御棒駆動水圧系アキュムレータ～制御棒駆動水圧系アキュムレータ出口配管合流点 | S | クラス 2 |  | － | 変更 |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | C12－D001－126～水圧制御ユニット（挿入配管） | S | クラス 2 |  | － | 変更な |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | 水圧制御ユニット（引抜配管）～C12－D001－ 127 | S | クラス 3 |  | － | 変更 |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | C12－D001－127～マニホールド（3．5） | B－1 | クラス 3 |  | － | 変更 |  |  | － |  |
|  |  |  |  | C12－D001－127～水圧制御ユニット（スクラ ム排出ヘッダー入口） | B－1 | クラス 3 |  | － | 変更 |  |  | － |  |
|  |  |  |  | 水圧制御ユニット（挿入配管）～原子炉格納容器配管貫通部（X－20） | S | クラス 2 |  | － | 変更な |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－20） |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－20）～制御棒駆動機構ハウジング | S | クラス 2 |  | － | 変更 |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | 制御棒駆動機構ハウジング～原子炉格納容器配管貫通部（X－21） | S | クラス 2 |  | － | 変更 |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－21） |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-21$ ）～水圧制御コニット（引抜配管） | S | クラス 2 |  | － | 変更 |  |  | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | 水圧制御ユニット（スクラム排出ヘッダー入口）～スクラム排出容器 | B－1 | クラス 3 |  | － | 変更 |  |  | － |  |

O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（4／15）


O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（5／15）


O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（6／15）


O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（7／15）


O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（8／15）


O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（9／15）


表1計測制御系統施設の主要設備リスト（10／15）

| $\begin{aligned} & \text { 設 } \\ & \text { 譔 } \\ & \text { 分 } \end{aligned}$ | $\begin{array}{\|l\|l} \hline \text { 䍃 } \\ \text { 森 } \end{array}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 名称 | 設計基淮対象施設（e̊1） |  | 重大事故等対処設備 ${ }^{(3+1)}$ |  | 名称 | 設計基漼対象施設 ${ }^{(121)}$ |  | 重大事故等対処設備 ${ }^{(311)}$ |  |
|  |  |  |  | $\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |  | $\begin{aligned} & \hline \text { 䟦 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  | － | － | 高圧炬ふスプレイ系 $\begin{aligned} & \text { 原子炬水位低（レベ }\end{aligned}$ |  | － |  | － | 変更なし |  |  |  |  |
|  |  |  | 低圧炉心スプレイ系ドライウェル圧力高 |  | － |  | － | 変更なし |  |  |  |  |
|  |  |  | 低圧炬ふスプレイ系 1 原子炉水位低（レべ |  | － |  | － | 変更なし |  |  |  |  |
|  |  |  | 残留熱除去系 低圧注水系 ドライウェル压力高 |  | － |  | － | 変更なし |  |  |  |  |
|  |  |  | 残留熱除去系 低圧注水系 原子炉水位低 （レベル1） |  | － |  | － | 変更なし |  |  |  |  |
|  |  |  | 残留熱除去系 格納容器スプレイ冷却系手動 |  |  |  | － | 変更なし |  |  |  |  |
|  |  |  | 自動減圧系 原子炉水位低（レベル 1）とド ライウェル圧力高の同時信号 |  | － |  | － | 変更なし |  |  |  |  |
|  |  |  |  | － |  |  |  | ATWS 緩和設備（代替制御棒挿入機能）原子炉圧力高 |  | － |  |  |
|  |  |  |  | － |  |  |  | ATWS 緩和設備（代替制御棒挿入機能）原子炉水位低（レベル 2） |  | － |  |  |
|  |  |  |  | － |  |  |  | ATWS 緩和設備（代替原子炉再循環ポンプト リップ機能）原子炉圧力高 |  | － |  |  |
|  |  |  |  | － |  |  |  | ATWS 緩和設備（代替原子炬再循環ポンプト リップ機能）原子炉水位低（レベル 2） |  | － |  |  |
|  |  |  |  | － |  |  |  | ATWS 緩和設備（自動減圧系作動阻止機能）原子炉水位低（レベル 2）と中性子束高の同時信号 |  | － |  |  |

O 2 （1）II R 0

表1計測制御系統施設の主要設備リスト（11／15）


表1計測制御系䖻施設の主要設備リスト（12／15）

|  | $\begin{aligned} & \text { 綡 } \\ & \text { 森 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 名称 | 設計基準対象施設 ${ }^{\text {（et1）}}$ |  | 重大事故等対処設備 ${ }^{(121)}$ |  | 名称 | 設計基淮対象施設 ${ }^{\text {（14）}}$ ） |  | 重大事故等対処設備 ${ }^{(121)}$ |  |
|  |  |  |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設借分類 | 重大事故等機器クラス |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  |  | － |  |  |  |  | 主蒸気逃がし安全弁自動減圧機能用アキ ユムレータ（H）出口配管合流点～B21－ F001H |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | B21－F023J～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（J）出口配管合流点 |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | 主蒸気逃がし安全弁自動減圧機能用アキ ユムレータ（J）出口配管合流点～B21－ F001J |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | B21－F023L～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（L）出口配管合流点 |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | 主蒸気逃がし安全弁自動減圧機能用アキ ュムレータ（L）出口配管合流点～B21－ F001L |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | 連結管～高圧窒素ガス供給系 B 系窒素供給配管合流点 |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | 高圧空素ガス供給系 B 系窒素供給配管合流点～P54－F068B | S | クラス3 |  | － | 変更なし |  |  | 常設耐震／防止 | SAクラス 2 |
|  |  |  | $\begin{aligned} & \text { P54-F068B~原子炉格納容器配管貫通部 } \\ & \text { (X-72B) } \end{aligned}$ | S | クラス2 |  | － | 変更なし |  |  | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－72B） |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | 原子炉格納容器配管貫通部（X－72B）$\sim$ P54－ F070B | S | クラス2 |  | － | 変更なし |  |  | 常設耐震／防止 | SAクラス 2 |
|  |  |  | P54－F070B $\sim$ B21－F023A，C，E | S | クラス3 |  | － | 変更なし |  |  | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | B21－F023A～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（A）出口配管合流点 |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | 主蒸気逃がし安全㚏自動减压機能用アキ ュムレータ（A）出口配管合流点～B21－ F001A |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | B21－F023C～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（C）出口配管合流点 |  | － | 常設耐震／防止 | SAクラス 2 |

表1計測制御系統施設の主要設備リスト（13／15）

|  | $\begin{array}{l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \text { 区 } \\ \text { 分 } \end{array}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 綵 } \\ & \text { 称 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 |  |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  | 名称 | 設計基準対象施設 ${ }^{(3)}$ |  | 重大事故等対処設備 ${ }^{(3 \times 1)}$ |  |
|  |  |  |  |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  | 制蓹鹪気設備 |  | 主配管 | $-\quad$主蒸気逃がし安全弁自動減圧機能用アキ <br> ニムレータ（C）出口配管合流点～B21－ <br> F001C |  |  |  |  |  |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | B21－F023E～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（E）出口配管合流点 |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 主蒸気逃がし安全弁自動減圧機能用アキ ニムレータ（E）出口配管合流点～B21－ F001E |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | $\underset{\substack{\text { T48－F } \\ \text {（i 5）}}}{\text { 230 }}$～P54－F015 および P54－F069A，B | C | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | P54－F069A～高圧窒素ガス供給系A系窒素供給配管合流点 | S | クラス 3 |  | － | 変更なし |  |  | － |  |
| $\begin{aligned} & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{1}{\bullet} \end{aligned}$ |  |  |  | P54－F069B～高圧窒素ガス供給系B系窒素供給配管合流点 | S | クラス 3 |  | － | 変更なし |  |  | － |  |
| $\stackrel{\rightharpoonup}{\omega}$ |  |  |  | P54－F015～原子炉格納容器配管貫通部（X－ 73） | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | 原子炉格納容器配管貫通部（X－73）～P54－ F020 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | $\begin{aligned} & \text { P54-F020~B21- } \\ & \text { F022A, B, C, D, E, F, G, H, J, K, L }{ }^{(3 \text { ² 5) }} \end{aligned}$ | C | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | － |  |  |  |  | 連結管 |  | － | 可搬／防止 | SA クラス 3 |
|  |  | $\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 高 } \\ & \text { 臺 } \\ & \text { 愫 } \\ & \text { 硔 } \\ & \text { 給 } \end{aligned}$ | 容器 | － |  |  |  |  | 高圧窒素ガスボンべ |  | － | 可搬／防止 | SA クラス 3 |
|  |  |  | 安全弁 | － |  |  |  |  | P54－F1005A，B |  | － | 可搬／防止 | － |
|  |  |  | 主配管 | － |  |  |  |  | 恒設配管取合点接続管／恒設配管取合点 （A）～原子炉格納容器電気配線貫通部（X－ 106B） |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器電気配線貫通部（X－106B） |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器電気配線貫通部（X－106B） ～B21－F001A |  | － | 常設耐震／防止 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器電気配線貫通部（X－106B） ～B21－F001L |  | － | 常設耐震／防止 | SA クラス 2 |

表1計測制御系統施設の主要設備リスト（14／15）

| $\begin{aligned} & \text { 秴 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 穱 } \\ & \text { 䅛 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 名称 | 設計基漼対象施設 ${ }^{\text {（eı1）}}$ ） |  | 重大事故等対処設価 ${ }^{(3+1)}$ |  | 名称 | 設計基漼対象施設（ ${ }^{\text {（111）}}$ |  | 重大事故等対処設借 ${ }^{(121)}$ |  |
|  |  |  |  | $\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 主配管 | － |  |  |  |  | 恒設配管取合点接続管／恒設配管取合点 （B）～原子炉格納容器配管貫通部（X－91） |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－91） |  | － | 常設耐震／防止 | SAクラス2 |
|  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－91）～B21－ F001E |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－91）～B21－ F001J |  | － | 常設耐震／防止 | SAクラス 2 |
|  |  |  |  | － |  |  |  | 連結管 |  | － | 可搬防止 | SAクラス 3 |
|  |  |  |  | － |  |  |  | 連結管～フレキシブルホース／恒設配管取合点 |  | － | 可搬防止 | SAクラス 3 |
|  |  |  |  | － |  |  |  | 代替高圧窒素ガス供給用フレキシブルホ ース（ $\dagger 32.9,6 m, 8 m)$ |  | － | 可搬防止 | SAクラス 3 |
|  |  |  |  | － |  |  |  | 恒設配管取合点接続管 |  | － | 可搬防止 | SAクラス 3 |

## 表1計測制御采統施設の主要設備リスト（15／15）



表2計測制御系統施設の兼用設備リスト $(1 / 2)$

|  | $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$ | $\begin{aligned} & \text { 機 } \\ & \text { 爻 } \\ & \text { 分 } \end{aligned}$ | 主たる機能の施設／設備区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 名称 | 設計基準対象施設（＊1） |  | 重大事故等対処設備 ${ }^{\text {（3i }}$（1） |  | 名称 | 設計基準対象施設（＊1） |  | 重大事故等対処設備 ${ }^{(311)}$ |  |
|  |  |  |  |  |  | $\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \end{gathered}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | $\begin{aligned} & \text { ほ } \\ & \text { 青 } \\ & \text { 酸 } \\ & \text { 水 } \\ & \text { 主 } \\ & \text { 系 } \end{aligned}$ | － | 子炉本体 | － |  |  |  |  | 灲心シュラウド |  |  | 常設耐震／防止常設／緩和 | － |
|  |  |  |  |  | － |  |  |  |  | シュラウドサポート |  |  | 常設耐震／防止常設／緩和 | － |
|  |  |  |  |  | － |  |  |  |  | 炉心シュラウド支持ロッド |  |  | 常設耐震／防止常設／緩和 | － |
|  |  |  |  |  | － |  |  |  |  | 上部格子板 |  | － | 常設耐震／防止常設／緩和 | － |
|  |  |  |  |  | － |  |  |  |  | 炉心支持板 |  |  | 常設耐震／防止常設／緩和 | － |
|  |  |  |  |  | － |  |  |  |  | 中央燃料支持金具 |  |  | 常設耐震／防止常設／緩和 | － |
| $\begin{aligned} & 1 \\ & \stackrel{1}{0} \\ & \stackrel{1}{2} \end{aligned}$ |  |  |  |  | － |  |  |  |  | 周辺燃料支持金具 |  | － | 常設耐震／防止常設／緩和 | － |
|  |  |  |  |  | － |  |  |  |  | 制御棒案内管 |  | － | 常設耐震／防止常設／緩和 | － |
|  |  |  |  | 原子炉本体原子炉圧力容器 | － |  |  |  |  | 原子炉圧力容器 |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉本体 <br> 原子炉圧力容器付属構造物 | － |  |  |  |  | 差圧検出・ほう酸水注入系配管（ティーより N11 ノズルま での外管） |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉本体 <br> 原子炬圧力容器内部構造物 | － |  |  |  |  | 差圧検出・ほう酸水注入系配管（原子炬圧力容器内部） | － |  | 常設耐震／防止常設／緩和 | － |

表2計測制御系統施設の兼用設備リスト $(2 / 2)$

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$ | $\begin{aligned} & \text { 機 } \\ & \text { 器 } \\ & \text { 分 } \end{aligned}$ | 主たる機能の施設／設備区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設（＊）${ }^{\text {a }}$ |  | 重大事故等対処設備 ${ }^{(011)}$ |  | 名称 | 設計基準対象施設（＊）${ }^{\text {a }}$ |  | 重大事故等対処設備（＊＊1） |  |
|  |  |  |  |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| 制御用䳐設備 |  |  |  | － |  |  |  |  | 主蒸気逃がし安全弁自動減圧機能用アキュムレータ |  |  | 常設耐震／防止 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | B21－F001A，C，E，H，J，L |  |  | 常設耐震／防止 | － |
|  |  | － | 原子炬冷却系統施設原子炉冷却材の循環設備 | － |  |  |  |  | B21－F001A，E，J，L | － |  | 常設耐震／防止 | － |

（注1）表2に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
4.11 計測制御系統施設（発電用原子炉の運転を管理するための制御装置を除く。）に係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: |
| 計測制御系統施設（発電用原子炉の運転を管理するための制御装置を除く。）に係 る工事の方法は，「原子炉本体」における「9 原子炉本体に係る工事の方法」（「1．3燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従う。 | 変更なし |

4.12 発電用原子炉の運転を管理するための制御装置

4．12．1 制御方式

|  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 変更前＊ |  |  |  |  |  |  |
| 制 | 中央制御方式による自動及び手動制御 | 変更後 |  |  |  |  |  |
| 御 |  | 制 | 変更なし |  |  |  |  |
| 方 | 御 |  |  |  |  |  |  |
| 式 | 方 |  |  |  |  |  |  |

注記＊：記載の適正化を行う。既工事計画書には，附帯設備のうち発電所の運転を管理するための制御装置に記載。

4．12．2 中央制御室機能及び中央制御室外原子炉停止機能
（1）中央制御室機能
中央制御室は以下の機能を有する。
中央制御室は耐震性を有する制御建屋内に設置し，基準地震動に よる地震力に対して機能を喪失しない設計とするとともに，発電用原子炉の反応度制御系統及び原子炉停止系統に係る設備，非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するため の設備を操作できる設計とする。

発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポ ンプの起動•停止状態，発電用原子炉及び原子炉冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保するために必要な操作を手動により行うこ とができる設計とする。
a．中央制御室制御盤等
中央制御室制御盤は，原子炉制御関係，原子炉プラントプロセ ス計装関係，原子炉保護系関係，原子灲補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するために必要なパラメータ（炉心の中性子束，制御棒位置，冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるとともに，全 てのプラント運転状態において，運転員に過度な負担とならない

変更後
（1）中央制御室機能
中央制御室は以下の機能を有する。
中央制御室は耐震性を有する制御建屋内に設置し，基準地震動S s による地震力に対して機能を喪失しない設計とするとともに，発電用原子炉の反応度制御系統及び原子炉停止系統に係る設備，非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保する ための設備を操作できる設計とする。
発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポ ンプの起動•停止状態，発電用原子炉及び原子炉冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保するために必要な操作を手動により行うこ とができる設計とする。
a．中央制御室制御盤等
中央制御室制御盤は，原子炉制御関係，原子炉プラントプロセ ス計装関係，原子炉保護系関係，原子炉補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するために必要なパラメータ（炉心の中性子束，制御棒位置，冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるとともに，全 てのプラント運転状態において，運転員に過度な負担とならない

変更前＊
よう，中央制御室制御盤において監視，操作する対象を定め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応に必要 な操作器，指示計，記録計及び警報装置（核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。

なお，安全保護装置及びそれにより駆動又は制御される機器に ついては，バイパス状態，使用不能状態について表示すること等 により運転員が的確に認知できる設計とする。

また，運転員の監視及び操作を支援するための装置及びプラン ト状態の把握を支援する装置として CRT 等を有する設計とする。
非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，使用状態を運転員が的確に識別できるよう表示装置を設ける設計とする。

緊急時対策所との連絡及び連携の機能に係る情報伝達の不備 や誤判断が生じないよう，緊急時対策に必要な情報について運転員を介さずとも確認できる設計とする。

設計基準対象施設は，プラントの安全上重要な機能に支障をき たすおそれがある機器•弁等に対して，色分けや銘板取り付け等 の識別管理や人間工学的な操作性も考慮した監視操作エリア・設備の配置，中央監視操作の盤面配置，理解しやすい表示方法によ り発電用原子炉施設の状態が正確，かつ迅速に把握できる設計と するとともに施錠管理を行い，運転員の誤操作を防止する設計と

よう，中央制御室制御盤において監視，操作する対象を定め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応に必要 な操作器，指示計，記録計及び警報装置（核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。

なお，安全保護装置及びそれにより駆動又は制御される機器に ついては，バイパス状態，使用不能状態について表示すること等 により運転員が的確に認知できる設計とする。

また，運転員の監視及び操作を支援するための装置及びプラン ト状態の把握を支援する装置としてCRT 等を有する設計とする。
非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，使用状態を運転員が的確に識別できるよう表示装置を設ける設計とする。
緊急時対策所との連絡及び連携の機能に係る情報伝達の不備 や誤判断が生じないよう，緊急時対策に必要な情報について運転員を介さずとも確認できる設計とする。

設計基準対象施設は，プラントの安全上重要な機能に支障をき たすおそれがある機器•弁等に対して，色分けや銘板取り付け等 の識別管理や人間工学的な操作性も考慮した監視操作エリア・設備の配置，中央監視操作の盤面配置，理解しやすい表示方法によ り発電用原子炉施設の状態が正確，かつ迅速に把握できる設計と するとともに施錠管理を行い，運転員の誤操作を防止する設計と

また，保守点検において誤りが生じにくいよう留意した設計と する。

中央制御室の制御盤は，盤面器具（指示計，記録計，操作器具，表示装置，警報表示）を系統毎にグループ化して主制御盤に集約 し，操作器具の統一化（色，形状，大きさ等の視覚的要素での識別），操作器具の操作方法に統一性を持たせること等により，通常運転，運転時の異常な過渡変化及び設計基準事故時において運転員の誤操作を防止するとともに，容易に操作ができる設計とす る。
中央制御室主制御盤に手摺を設置することにより，地震発生時 における運転員の安全碓保及び制御盤上の操作器具への誤接触 を防止できる設計とする。
運転員が運転時の異常な過渡変化及び設計基準事故に対応す るための設備を中央制御室において容易に操作することができ る設計とするとともに，現場操作についても運転時の異常な過渡変化及び設計基準事故時に操作が必要な箇所は環境条件を想定 し，適切な対応を行うことにより容易に操作することができる設計とする。

変更後
する。
また，保守点検において誤りが生じにくいよう留意した設計と する。
中央制御室の制御盤は，盤面器具（指示計，記録計，操作器具，表示装置，警報表示）を系統毎にグループ化して主制御盤に集約 し，操作器具の統一化（色，形状，大きさ等の視覚的要素での識別），操作器具の操作方法に統一性を持たせること等により，通常運転，運転時の異常な過渡変化及び設計基準事故時において運転員の誤操作を防止するとともに，容易に操作ができる設計とす る。
中央制御室主制御盤に手摺を設置することにより，地震発生時 における運転員の安全碓保及び制御盤上の操作器具への誤接触 を防止できる設計とする。
当該操作が必要となる理由となった事象が有意な可能性をも って同時にもたらされる環境条件及び発電用原子炉施設で有意 な可能性をもって同時にもたらされる環境条件（地震，内部火災，内部溢水，外部電源喪失並びに燃焼がス，ばい煙，有毒がス，降下火砕物及び涷結による操作雰囲気の悪化）を想定しても，運転員が運転時の異常な過渡変化及び設計基準事故に対応するため の設備を中央制御室において操作に必要な照明の確保等により容易に操作することができる設計とするとともに，現場操作につ いても運転時の異常な過渡変化及び設計基準事故時に操作が必要な箇所は環境条件を想定し，適切な対応を行らことにより容易
(続き)


気体状の放射性物質並びに火災等により発生する燃焼ガス及び有毒ガスに対する換気設備の隔離その他の適切な防護措置を講 じることにより，発電用原子炉の運転の停止その他の発電用原子炉施設の安全性を確保するための措置をとるための機能を有す るとともに連絡する通路及び出入りするための区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計とする。

変更後
気体状の放射性物質並びに火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切な防護措置を講じることにより，発電用原子炉の運転の停止そ の他の発電用原子炉施設の安全性を確保するための措置をとる ための機能を有するとともに連絡する通路及び出入りするため の区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計とする。

重大事故等が発生し，中央制御室の外側が放射性物質により汚染したような状況下において，運転員が中央制御室の外側から中央制御室に放射性物質による汚染を持込むことを防止するため，身体サーベイ及び作業服の着替え等を行うための区画を設ける設計とする。
また，照明については，乾電池内蔵型照明により確保できる設計とする。

炉心の著しい損傷が発生した場合においても，可搬型照明 （SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室しゃへい壁，中央制御室待避所遮蔽，補助しやへい，2 次しゃへい壁，差圧計（中央制御室待避所用），酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）により，中央制御室内にとどまり必要な操作ができる設計とする。
炉心の著しい損傷が発生した場合において，原子炉格納施設の

（続き）

|  |  | 変更後 |  |
| :---: | :---: | :---: | :---: |
| 中 <br> 央 <br> 制 <br> 御 <br> 室 <br> 機 <br> 能 |  | 中 <br> 央 <br> 制 <br> 御 <br> 室 <br> 機 <br> 能 | えいした放射性物質を含む気体を排気筒から排気することで，中央制御室にとどまる運転員を過度の被ばくから防護する設計と する。 <br> 灲心の著しい損傷が発生し，非常用ガス処理系を起動する際 に，原子炉建屋ブローアウトパネルを閉止する必要がある場合に は，中央制御室から原子炬建屋ブローアウトパネル閉止装置を操作し，容易かつ確実に開口部を閉止できる設計とする。また，原子炉建屋ブローアウトパネル閉止装置は現場においても，人力に より操作できる設計とする。 <br> 設計基準事故時及び灯心の著しい損傷が発生した場合におい て，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握できるよう，酸素濃度計（中央制御室用）（個数 2 （予備 1））及び二酸化炭素濃度計（中央制御室用）（個数 2 （予備 1））を中央制御室内に保管す る設計とする。 <br> 重大事故等時に，中央制御室内及び中央制御室待避所内での操作等に必要な照度の確保は，可搬型照明（SA）（個数6（予備 1）） によりできる設計とする。 <br> 灲心の著しい損傷が発生した場合においても中央制御室に運転員がとどまるため，以下の設備を設置又は保管する。 <br> 中央制御室待避所に待避した運転員が，緊急時対策所と通信連絡を行らため，無線連絡設備（固定型）及び衛星電話設備（固定型）を設置する設計とする。 |

（続き）


注記＊：既工事計画書に記載がないため記載の適正化を行う。

| 変更前＊ |  |  | 変更後 |
| :---: | :---: | :---: | :---: |
|  | （2）中央制御室外原子炉停止機能 <br> 中央制御室外原子炉停止機能は以下の機能を有する。 <br> 火災その他の異常な状態により中央制御室が使用できない場合 において，中央制御室以外の場所から，発電用原子炉を高温停止の状態に直ちに移行及び必要なパラメータを想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持させるために必要な機能を有する中央制御室外原子炉停止装置を設ける設計とする。 | 中 <br> 央 <br> 制 <br> 御 <br> 室 <br> 外 <br> 原 <br> 子 <br> 炉 <br> 停 <br> 止 <br> 機 <br> 能 | 変更なし |

注記 $~: ~$ 既工事計画書に記載がないため記載の適正化を行う。

4．12．4 発電用原子炉の運転を管理するための制御装置に係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: |
| 発電用原子炉の運転を管理するための制御装置に係る工事の方法は，「原子炉本体」における「9 原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従う。 | 変更なし |

5．放射性廃棄物の廃棄施設
5.2 気体，液体又は固体廃棄物処理設備

5．2．1 気体廃棄物処理系
5.2 .1
（10） 気体廃棄
主配管

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 } \quad \text { 铱) } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ \hline \end{array} \end{aligned}$ | $\begin{gathered} \text { 外 } \text { 径*1 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 気 } \\ & \text { 体 } \\ & \text { 庫 } \\ & \text { 物 } \\ & \text { 理 } \\ & \text { 采 } \end{aligned}$ | N21－F155及びN21－F156 ＊3 排ガス予熱器 | 2． $45^{* 4}$ | 205 | 216.3 267.4 | （10．3） （12．7） | STPT42 STPT42 | $\begin{aligned} & \text { 気 } \\ & \text { 体 } \\ & \text { 庫 } \\ & \text { 物 } \\ & \text { 理 } \\ & \text { 采 } \end{aligned}$ | 変更なし |  |  |  |  |  |  |
|  | 排ガス予熱器 <br> 排ガス再結合器 | 2． $45^{* 4}$ | 450 | 267.4 | （9．3） | SUS316LTP |  | 変更なし |  |  |  |  |  |  |
|  | 排ガス再結合器排ガス復水器 | 2． $45^{* 4}$ | 450 | 318.5 | （10．3） | SUS316LTP |  | 変更なし |  |  |  |  |  |  |
|  | 排ガス復水器排ガス予冷器 | 2． $45^{* 4}$ | 66 | 89.1 | （7．6） | STPT42 |  | 変更なし |  |  |  |  |  |  |
|  |  | $0.11^{* 4}$ | 66 | 89.1 | （7．6） | STPT42 |  |  |  |  |  |  |  |  |
|  |  |  |  | 60.5 | （5．5） | STPT42 |  |  |  |  |  |  |  |  |
|  | 排ガス予泠器 | $0.11^{* 4}$ | 66 | 60.5 | （5．5） | STPT42 |  | 変更なし |  |  |  |  |  |  |
|  | $\sim$ |  |  | 89.1 | （7．6） | STPT42 |  |  |  |  |  |  |  |  |
|  | 排カス乾燥器 |  | 100 | 89.1 | （5．5） | SUS304TP |  |  |  |  |  |  |  |  |
|  | 排ガス乾燥器 | $0.11^{* 4}$ | 100 | 89.1 | （5．5） | SUS304TP |  | 変更なし |  |  |  |  |  |  |
|  | 前置フィルタ |  | 66 | 89.1 | （5．5） | SUS304TP |  |  |  |  |  |  |  |  |
|  | 前置フィルタ <br> 活性炭式希ガスホールドアッ プ塔 | 0．11＊4 | 66 | 89.1 | （7．6） | STPT42 |  | 変更なし |  |  |  |  |  |  |
|  | 活性炭式希ガスホールドアッ プ塔連絡管 | 0．11＊4 | 66 | 89.1 | （7．6） | STPT42 |  | 変更なし |  |  |  |  |  |  |
|  | 活性炭式希ガスホールドアッ プ塔 <br> 排ガス粒子フィルタ | 0．11＊4 | 66 | 89.1 | （7．6） | STPT42 |  | 変更なし |  |  |  |  |  |  |
|  | 排ガス粒子フィルタ排ガス真空ポンプ | 0．11＊4 | 66 | 89.1 | （7．6） | STPT42 |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 60.5 | （5．5） | STPT42 |  |  |  |  |  |  |  |  |
|  |  |  |  | 34.0 | （6．4） | STPT42 |  |  |  |  |  |  |  |  |
|  |  |  |  | 114.3 | （8．6） | STPT42 |  |  |  |  |  |  |  |  |
|  |  |  |  | 76.3 | （5．2） | SUS304TP |  |  |  |  |  |  |  |  |


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\circ} \text { 鲑) } \end{array} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| 気体廃䓪処理系 | 排ガス真空ポンプ排ガス循環水タンク | 0．11＊4 | 66 | 76.3 89.1 | （5．2） （5．5） | SUS304TP SUS304TP | $\begin{aligned} & \text { 気 } \\ & \text { 体 } \\ & \text { 廃 } \\ & \text { 物 } \\ & \text { 理 } \\ & \text { 采 } \end{aligned}$ | 変更なし |  |  |  |  |  |  |
|  | 排ガス循環水タンク排気筒 | 0．11＊4 | 66 | 114.3 | （8．6） | STPT42 |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 89.1 | （7．6） | STPT42 |  |  |  |  |  |  |  |  |
|  |  | $0.35 * 4$ | 94 | 89.1 | （7．6） | STPT42 |  |  |  |  |  |  |  |  |
|  |  |  |  | 89.1 | （7．6） | STPT38 |  |  |  |  |  |  |  |  |
|  |  |  |  | 609.6 | ］＊7（9．5） | SM41B |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 変更なし |  |  |  |  |
|  |  |  |  |  |  |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

注記＊1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「復水器空気抽出系から排ガス予熱器まで」と記載。
＊4：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「排ガス粒子フィルタから排ガス真空ポンプまで（排ガス粒子フィルタ出口配管）」と記載
＊6：記載の適正化を行う。既工事計画書には「排ガス循環水タンクから排気筒まで（排ガス循環水タンク出口配管）」と記載。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年1月24日付け2資庁第10151号にて認可された工事計画の添付書類「IV－3－1－2－10 管の強度計算書」による。
＊8：記載の適正化を行う。既工事計画書には「排ガス循環水タンク出口配管から排ガス粒子フィルタ出口配管まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「タービングランド蒸気系から排ガス循環水タンク出口配管まで」と記載。
（16）排気筒


注記＊1 ：原子炉冷却系統施設のらち残留熱除去設備（耐圧強化ベント系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系）と兼用。
＊2：公称値を示す。
＊ 3 ：記載の適正化を行う。既工事計画書には「口径」と記載。
＊ 4 ：記載の適正化を行う。既工事計画書には「地表高さ」と記載。

## 5．2．2 液体廃棄物処理系

5．2．2．1 放射性ドレン移送系
（9）主要弁


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「80」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器内」と記載。記載内容は，設計図書による。


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F004」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「80」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F103」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「65」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器内」と記載。記載内容は，設計図書による。


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F104」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「65」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

## （10）主配管



| 変更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{gathered} \text { 最高使用 } \\ \text { 压 } \begin{array}{c} \text { (MPa) } \end{array} \\ \hline \end{gathered}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | $\begin{gathered} \text { 外 } \\ \left(\begin{array}{c} \text { 径*1 } \\ (\mathrm{mm}) \end{array}\right. \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 |  | $\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array}$ | $\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ \hline \text { 径*1 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
|  | 原子炬建屋原子炉棟床ドレン サンプポンプ <br> ～ <br> 床ドレン・化学廃液収集タン <br> ク入口収集管（床ドレン用） | 0． $98^{* 4}$ | 66 | 60.5 76.3 | （3．9） （5．2） | SUS304TP SUS304TP |  | 変更なし |  |  |  |  |  |  |
| $\begin{aligned} & \text { 放 } \\ & \text { 椎 } \\ & \text { F } \end{aligned}$ | 原子炉建屋廃棄物処理区域高電導度ドレンサンプポンプ ～床ドレン・化学廃液収集タン ク入口収集管（化学廃液用） | 0． $98{ }^{* 4}$ | 66 | 60.5 76.3 | （3．9） （5．2） | SUS316LTP <br> SUS316LTP |  |  |  | 変更なし |  |  |  |  |
| $\begin{aligned} & \text { V } \\ & \text { 移 } \\ & \text { 送 } \end{aligned}$ | タービン建屋高電導度ドレン サンプポンプ <br> ～ <br> 床ドレン・化学廃液収集タン <br> ク入口収集管（化学廃夜用） | $0.98 * 4$ | 66 | 60.5 76.3 | （3．9） （5．2） | SUS316LTP <br> SUS316LTP |  |  |  | 変更なし |  |  |  |  |
|  | タービン建屋床ドレンサンプ ポンプ <br> ～ <br> 床ドレン・化学廃液収集タン <br> ク入口収集管（床ドレン用） | $0.98 * 4$ | 66 | 60.5 76.3 | （3．9） （5．2） | SUS304TP SUS304TP |  |  |  | 変更なし |  |  |  |  |

注記＊1 ：外径は公称値を示す。
＊2：（）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「ドライウェル機器ドレンサンプポンプから廃液収集槽入口収集管まで（ドライウェル機器ドレンサンプポンプ出ロ配管）」と記載
＊4：S I 単位に換算したものである
＊5：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊6：記載の適正化を行う。既工事計画書には「ドライウェル床ドレンサンプポンプからドライウェル機器ドレンサンプポンプ出口配管まで」と記載。


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | 最高使用  <br> 温．  <br>  $\left({ }^{\circ} \mathrm{C}\right)$ 度 | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 機 } \\ & \text { 㗊 } \\ & \text { K } \\ & \text { 系 } \end{aligned}$ | $\begin{aligned} & \text { 廃液サンプルポンプ } \\ & \sim \\ & \text { P13-F035 } \end{aligned}$ | 0． $98 * 3$ | 66 | 76.3 | （5．2） | SUS304TP | 機器トV系 | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 114.3 | （6．0） | SUS304TP |  |  |  |  |  |  |  |  |
|  |  |  |  | 89.1 | （5．5） | SUS304TP |  |  |  |  |  |  |  |  |
|  | 廃液ろ過器$\underset{\sim}{\sim} 21-F 103$ | 1． $94^{* 3}$ | 66 | 76.3 | （5．2） | SUS304TP |  | 変更なし |  |  |  |  |  |  |
|  |  | $0.98 * 3$ | 66 | 76.3 | （5．2） | SUS304TP |  |  |  |  |  |  |  |  |
|  | 廃液脱塩器 <br> 床ドレン・化学廃液脱塩器出口配管合流点 | 1． $94^{* 3}$ | 66 | 60.5 | （3．9） | SUS304TP |  | 変更なし |  |  |  |  |  |  |
|  |  | $0.98 * 3$ | 66 | 60.5 | （3．9） | SUS304TP |  |  |  |  |  |  |  |  |

注記 $* 1$ ：外径は公称値を示す。
$* 2: ~(~) ~ 内 は ~$
$*$
$* 3:$ 称値を示す。
単位に換算したものである
＊3－S I 単位に換算したものてある。
＊4 ：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊5：記載の適正化を行う。既工事計画書には「廃液サンプルポンプから補給水系まで」と記載
＊6：記載の適正化を行う。既工事計画書には「廃液ろ過器から廃スラッジ系まで」と記載。
＊7：記載の適正化を行う。既工事計画書には「廃液脱塩器から床ドレン・化学廃液系まで」と記載。

5．2．2．3 床ドレン・化学廃液系
（10）主配管

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | $\begin{gathered} \text { 最高使用 } \\ \text { 温 }{ }^{\circ} \text { 度 } \\ \\ \hline \end{gathered}$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 最高使用 } \\ \text { 温 }{ }^{\circ} \text { 度 } \\ \\ \left.\hline{ }^{\circ} \mathrm{C}\right) \end{gathered}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 床 } \\ & \text { ド } \\ & \text { L } \\ & シ \\ & \text { 化 } \\ & \text { 学 } \\ & \text { 発 } \\ & \text { 隹 } \end{aligned}$ | 床ドレン・化学廃液収集タン ク入口収集管 （床ドレン用） | 0． $98^{* 3}$ | 66 | 89.1 165.2 | （5．5） （7．1） | SUS304TP SUS304TP |  |  |  |  |  |  |  |  |
|  | 床ドレン・化学廃液収集タン ク入口収集管 （化学廃液用） | 0． $98^{* 3}$ | 66 | 114.3 | （6． 0 ） | SUS316LTP |  | 変更なし <br> 変更なし |  |  |  |  |  |  |
|  | 床ドレン・化学廃液収集タン | 静水頭 | 66 | 165.2 | （7．1） | SUS316LTP |  |  |  |  |  |  |  |  |
|  | 床ドレン・化学廃液収集ポン プ | $0.98 * 3$ | 66 | $\begin{array}{r} 165.2 \\ 139.8 \end{array}$ | （7．1） （6．6） | SUS316LTP SUS316LTP |  |  |  | 変更なし |  |  |  |  |
|  |  |  |  | 89.1 | （5．5） | SUS316LTP |  |  |  |  |  |  |  |  |
|  |  |  | 66 | 139.8 | （6．6） | SUS316LTP |  |  |  |  |  |  |  |  |
|  | 床ドレン・化学廃液収集ポン | 0． $98{ }^{* 3}$ |  | 48.6 | （3．7） | SUS316LTP |  |  |  |  |  |  |  |  |
|  |  |  |  | 48.6 | ＊5 $(3.7)$ | GNCF1 |  |  |  | 変更なし |  |  |  |  |
|  | 床ドレン・化学廃液蒸発濃縮 |  |  | 60.5 | ＊5 $(3.9)$ | GNCF1 |  |  |  |  |  |  |  |  |
|  | 装置加熱器入口配管合流点 | 0.3 | 148 | 60.5 | ＊5（3．9） | GNCF1 |  |  |  |  |  |  |  |  |
|  |  | 0.3 | 148 | 178.0 | ］＊5（54．0） | GNCF1 |  |  |  |  |  |  |  |  |
|  | $\qquad$ <br> 床ドレン・化学廃液蒸発濃縮装置循環ポンプ <br> ～ <br> 床ドレン・化学廃液蒸発濃縮装置加熱器 | $0.34 * 3$ | 148 | 355.6 355.6 | ＊5（6．0） ${ }^{5}$（6． 0 ） | GNCF1 GNCF1 |  |  |  | 変更なし |  |  |  |  |
|  | 床ドレン・化学廃液蒸発濃縮装置加熱器 <br> 床ドレン・化学廃液蒸発濃縮装置蒸発缶 | 0． $34 * 3$ | 148 | 355.6 355.6 | ${ }^{5}(6.0)$ ${ }^{5}$（6．0） | GNCF1 GNCF1 |  |  |  | 変更なし |  |  |  |  |




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{変 更 前} \& \multicolumn{8}{|c|}{変 更 後} \\
\hline \& 名 称 \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 温 } \left.\quad \text { ( }{ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] \& \[
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 料 \& \& 称 \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 圧 } \begin{array}{c}
\text { 力 } \\
(\mathrm{MPa})
\end{array} \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { 最 高使 用 } \\
\& \text { 温 度 }
\end{aligned}
\] \\
（ \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \& \[
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 \& 料 \\
\hline \[
\begin{aligned}
\& \text { 床 } \\
\& \text { F } \\
\& \text { シ } \\
\& \vdots \\
\& \text { 华 } \\
\& \text { 学 } \\
\& \text { 喺 }
\end{aligned}
\] \& \begin{tabular}{l}
第1号機ランドリドレン系放水路 \\
（第1，2号機共用）
\end{tabular} \& \(1.04 * 3\)
\(0.98 * 3\) \& 66
66 \& 89.1
89.1 \& （5．5）

（5．5） \& STPT370
＊11

| STPT38 |
| :--- |
| STPT370 | \& \[

$$
\begin{aligned}
& \text { 床 } \\
& \text { ド } \\
& \text { L } \\
& \text { 化 } \\
& \text { 学 } \\
& \text { 倠 } \\
& \text { 采 }
\end{aligned}
$$
\] \& \& \& 変更なし \& \& \& \& <br>

\hline
\end{tabular}


＊2 ：（ ）内は公称値を示す
＊3：S I 単位に換算したものである。
＊4：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液収集ポンプから床ドレン・化学廃液蒸発濃縮装置加熱器入口配管まで（床ドレン・化学廃液収集ポンプ出口配管）」と記載。
＊5 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年1月24日付け2資庁第10151号にて認可された工事計画の添付書類「IV－3－1－3－15－1 管の基本板厚計算書」による。
＊6：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液烝発濃縮装置循環ポンプから床ドレン・化学廃液蒸発濃縮装置加熱器まで（床ドレン・化学廃液蒸発濃縮装置加熱器入口配管）」と記載。
＊7：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液収集ポンプ出口配管から濃縮廃液系まで」と記載。
＊8：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液脱塩器から廃スラッジ系まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液サンプルポンプから機器ドレン系まで（床ドレン・化学廃液サンプルポンプ出ロ配管）」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液サンプルポンプ出口配管から放水路配管まで」と記載
＊11：記載の適正化を行ら。既工事計画書には「STPT38」と記載。
＊ 12 ：本設備は記載の適正化を行うものであり，手続き対象外である

5．2．2．4 サプレッションプール水貯蔵系
（2）ポンプ

|  |  |  |  | 変 更 前 | 変更後 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 |  |  |  | サプレッションプール水移送ポンプ | 撤 去 |
|  | 種 | 類 | － | うず巻形 |  |
|  |  | $\begin{gathered} { }^{* 1} \\ \text { 量 } \end{gathered}$ | $\mathrm{m}^{3} / \mathrm{h} /$ 個 | $\square$ 以上＊2 $\left(60{ }^{* 3}\right)$ |  |
|  |  | ＊ 4程 | m | $\square$ 以上＊2 $(75 * 3)$ |  |
|  | 最 | 高使 用 圧 力 | MPa | 0． $98 * 2, * 5$ |  |
|  | 最 | 高使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | $66^{* 2}$ |  |
|  |  | 吸 込 内 径 | mm | 以上＊2 $(100 * 2, * 3)$ |  |
|  | 主 | 吐 出内径 | mm | $\square$ 以上＊2 $(65 * 2, * 3)$ |  |
|  |  | た $て$ | mm | $600 * 2, * 3$ |  |
|  |  | 横 | mm | $\square$ 以上＊2 $(880 * 2, * 3)$ |  |
|  |  | 高 さ | mm | $825 * 2, * 3$ |  |
|  | 材 料 | ケーシング | － | SC46 |  |
|  | 個 | 数 | － | 1 |  |
| $\begin{aligned} & \text { 原 } \\ & \text { 動 } \end{aligned}$ | 種 | 類 | － | 誘導電動機 |  |
|  | 出 | 力 | kW／個 | 37 |  |
|  | 個 | 数 | － | 1 |  |

注記＊1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊5 ：S I 単位に換算したものである。

以下の設備は，既存の第 1 号機設備，第 1,2 号機共用であり，本工事計画で第 1 号機設備とす る。

サプレッションプール水移送ポンプ（第1号機設備）
（4）容器（常設）


注記＊1 ：公称値を示す。
＊2 ：S I 単位に換算したものである。
＊3 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊5 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年1月24日付 2 資庁第 10151 号にて認可された工事計画の添付書類「IV－3－1－3－7 サプレッショ ンプール水貯蔵タンクの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「制御方法」と記載。

以下の設備は，既存の第 1 号機設備，第 1,2 号機共用であり，本工事計画で第 1 号機設備とす る。

サプレッションプール水貯蔵タンク（第 1 号機設備）
（9）主要弁


注記＊ 1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F001」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6 ：公称値を示す。
＊7 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
（10）主配管

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{変 更 前} \& \multicolumn{8}{|c|}{変 更 後} <br>
\hline \& 名 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 力 } \\
& (\mathrm{MPa})
\end{aligned}
$$ \& 最高使用
温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度 \& $$
\begin{gathered}
\text { 外 } \text { 径*1 }^{*} \\
(\mathrm{~mm}) \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& 材 料 \& \& 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 力 } \\
& (\mathrm{MPa}) \\
& \hline
\end{aligned}
$$ \& 最高使用
温

$\left({ }^{\circ} \mathrm{C}\right)$ 度 \& \[
$$
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$
\] \& 材 \& 料 <br>

\hline \multirow{7}{*}{} \& サプレッションチェンバ＊3 \& 0． 43 ＊4 \& 104 \& 114.3 \& （6．0） \& STS42 \& \multirow{7}{*}{$$
\begin{aligned}
& \text { サ } \\
& \text { プ } \\
& \nu \\
& \text { y } \\
& シ ョ \\
& ョ \\
& シ \\
& \text { プ } \\
& 1 \\
& \text { ル } \\
& \text { 水 } \\
& \text { 臓 }
\end{aligned}
$$} \& \multicolumn{7}{|c|}{\multirow[b]{2}{*}{撤去}} <br>

\hline \& サプレッションプール水移送
ポンプ \& $0.98 * 4$ \& 66 \& 114． 3 \& （6．0） \& STPT38 \& \& \& \& \& \& \& \& <br>
\hline \& サプレッションプール水移送 \& \& \& 76.3 \& （5．2） \& STPT38 \& \& \& \& \& \& \& \& <br>

\hline \& $$
\begin{aligned}
& \text { P81-F005 } \\
& \text { (予備配管を含む) }
\end{aligned}
$$ \& $0.98 * 4$ \& 66 \& 114.3 \& （6．0） \& \[

$$
\begin{gathered}
\text { STPT38 } \\
\text { STPT370 }
\end{gathered}
$$
\] \& \& \& \& 撤去又は廃止 \& \& \& \& <br>

\hline \& | サプレッションプール水移送 ポンプ出口配管分岐点 |
| :--- |
| サプレッションチェンバ出口配管合流点 | \& $0.98 * 4$ \& 66 \& 114.3 \& （6．0） \& STPT38 \& \& \& \& 撤去 \& \& \& \& <br>

\hline \& サプレッションプール水貯蔵 タンク入口配管分岐点 \& 1． $04 * 4$ \& 66 \& 114． 3 \& （6．0） \& STPT370 \& \& \& \& 撤去又は廃止 \& \& \& \& <br>
\hline \& サプレッションプール水貯蔵 タンク（第1，2号機共用） \& $0.98 * 4$ \& 66 \& 114.3 \& （6．0） \& STPT370 \& \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

注記＊1 ：外径は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「サプレッションチェンバからサプレッションプール水移送ポンプまで（サプレッションチェンバ出ロ配管）」と記載
＊4－S I 単位に換算したものである
＊5：記載の適正化を行う。既工事計画書には「サプレッションプール水移送ポンプから第 1 号機床ドレン系まで（予備配管を含む。）（サプレッションプール水移送ポンプ出ロ配管）」と記載。
＊6：記載の適正化を行う。既工事計画書には「サプレッションプール水移送ポンプ出口配管からサプレッションチェンバ出口配管まで」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には「第 1 号機サプレッションプール水貯蔵系からサプレッションプール水貯蔵タンクまで」と記載。

以下の設備は，既存の第 1 号機設備，第 1,2 号機共用であり，本工事計画で第 1 号機設備とする。
主配管（SPT－V－1～サプレッションプール水移送ポンプ）（第1号機設備）
主配管（サプレッションプール水移送ポンプ～サプレッションプール水貯蔵タンク）（第1号機設備）
主配管（サプレッションプール水移送ポンプ出口配管分岐点～サプレッションチェンバ出口配管合流点）（第 1 号機設備）
主配管（SPT－V－11～残留熱除去系配管合流点）（第1号機設備）
主配管（RHR－V－514～SPT－V－11）（第1号機設備）
主配管（P81－F005～RHR－V－514）（第1号機設備）


注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3 ：S I 単位に換算したものである。
（10）主配管


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm})^{* 1} \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 廃 } \\ & \text { ラ } \\ & \text { " } \\ & \text { ジ } \\ & \text { 系 } \end{aligned}$ | 使用済樹脂貯蔵槽 スラッジ放出ポンプ | 静水頭 | 66 | 48.6 | （3．7） | SUS304TP | $\begin{aligned} & \text { 廃 } \\ & \text { ラ } \\ & \text { " } \\ & \text { 采 } \end{aligned}$ | 変更なし |  |  |  |  |  |  |
|  |  | 1． $37 * 4$ | 66 | 48.6 | （3．7） | SUS304TP |  |  |  |  |  |  |  |  |
|  |  |  |  | 60.5 | （3．9） | SUS304TP |  |  |  |  |  |  |  |  |
|  | スラッジ放出ポンプ <br> 固化系乾燥機給液タンク | 1． $37 * 4$ | 66 | 34.0 | （3．4） | SUS304TP |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 48.6 | （3．7） | SUS304TP |  |  |  |  |  |  |  |  |

注記 $~ * ~ 1 ~: ~$ 外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「デカントポンプから機器ドレン系まで」と記載。
＊4：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊6：記載の適正化を行う。既工事計画書には「使用済樹脂貯蔵槽からデカントポンプ入口配管まで」と記載。
＊7：記載の適正化を行う。既工事計画書には「浄化系沈降分離槽からスラッジ放出ポンプ入口配管まで」と記載。
＊8：記載の適正化を行う。既工事計画書には「原子炉泠却材浄化系から浄化系沈降分離槽まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「機器ドレン系から浄化系沈降分離槽まで」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「復水浄化系から使用済樹脂貯蔵槽まで」と記載。
＊11：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液系から使用済樹脂貯蔵槽まで」と記載。
＊12：記載の適正化を行う。既工事計画書には「スラッジ放出ポンプから固化系まで」と記載。

5．2．3．3 濃縮廃液系
（10）主配管

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | $\operatorname{lil}_{\text {外 }}^{\text {径*1 }}{ }_{(1)}^{(\mathrm{mm})}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { 最 高 使 用 } \\ & \text { 温 } \begin{array}{c} \text { ( } \left.{ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \end{aligned}$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
|  | K22-F001A, B <br> 濃縮廃液貯蔵タンク | $0.98 * 4$ | 105 | 60.5 | （3．9） | SUS316LTP | $\begin{aligned} & \text { 濃 } \\ & \text { 縮 } \\ & \text { 廃 } \\ & \text { 液 } \\ & \text { 系 } \end{aligned}$ | 変更なし |  |  |  |  |  |  |
| 縮 | 濃縮廃液貯蔵タンク濃縮廃液ポンプ | 静水頭 | 105 | 89.1 | （5．5） | SUS316LTP |  | 変更なし |  |  |  |  |  |  |
| 廃 |  | 1． $37 * 4$ | 95 | 89.1 | （5．5） | SUS316LTP |  |  |  |  |  |  |  |  |
| 液 |  |  |  | 114.3 | （6．0） | SUS316LTP |  |  |  |  |  |  |  |  |
| 系 | 濃縮廃液ポンプ <br> 固化系乾燥機給液タンク | 1． $37^{* 4}$ | 95 | 60.5 | （3．9） | SUS316LTP |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 89.1 | （5．5） | SUS316LTP |  |  |  |  |  |  |  |  |
|  |  |  |  | 34.0 | （3．4） | SUS316LTP |  |  |  |  |  |  |  |  |
|  |  |  | 66 | 34.0 | （3．4） | SUS316LTP |  |  |  |  |  |  |  |  |

注記 $* 1$ ：外径は公称値を示す
＊2－（ ）内は公称値を示
＊3：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液系から濃縮廃液貯蔵タンクまで」と記載。
＊ 4 ：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「濃縮廃液ポンプから固化系まで」と記載。

## 5．3 堰その他の設備

5．3．1 その他（堰）
（2）施設外への漏えいを防止するために施設する堰その他の設備

|  |  |  | 変更前 | 変更後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 称 |  |  | サプレッションプール水貯蔵タンク エリア及びサプレッションプール水貯蔵タンク連絡ダクトの施設外との境界壁面及びこれに囲まれた床面 | 廃止 |
| 主 要 寸 法 | 堰の 高 さ | mm | － |  |
| 床面及び壁面の塗装の範囲＊1 |  | － | 床面及び床面から 13 cm までの壁面 |  |
| 材 <br> 料 | 堰 | － | － |  |
|  | 床面及び壁面の塗装＊2 | － | エポキシ樹脂 |  |
| 取 <br> 付 <br> 箇 <br> 所 |  | － | － |  |
|  | 設 置 床 | － | サプレッションプール水貯蔵タンク エリア及びサプレッションプール水貯蔵タンク連絡ダクト <br> 0．P． 11.55 m |  |
|  | $\begin{array}{cccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$ | － | － |  |
|  | 溢 水 防 護 上 の配慮が必要な高さ | － |  |  |

注記＊1 ：記載の適正化を行う。既工事計画書には「床•壁の塗装（主要寸法）」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「床•壁の塗装（材料）」と記載。
＊ 3 ：記載の適正化を行う。既工事計画書には「サプレッションプール水貯蔵タンク エリア及びサプレッションプール水貯蔵タンク連絡ダクト」と記載。

以下の設備は，既存の第1号機設備，第1，2号機共用であり，本工事計画で第1号機設備とする。

サプレッションプール水貯蔵タンクエリア及び配管エリアと施設外との境界壁面及 び床面（1号機設備）


注記 $* 1$ ：浸水防護施設のらち内郭浸水防護設備と兼用する。
$* 2: ~$ 浸水防護施設のうち内郭浸水防護設備に使用する場合の事項を記載。
＊3：0．P． 15.00 m からの高さ。
＊4：記載の適正化を行う。既工事計画書には「床•壁の塗装」と記載。
＊5：記載の適正化を行う。既工事計画書には「塗装 原子炉建屋地上1階」，「堰 原子炉建屋地上1階階段室出入口，原子炉建屋地上 1 階 エレベータ出入口，原子炉建屋地上 1 階屋外への出入口，原子炉建屋地上 1 階タービン建屋を結ぶ連絡通路，原子炉建屋地上 1 階通路部出入口，原子炉建屋地上 1 階廃棄物処理系制御室出入口，原子炉建屋地上 1 階床開口部境界」と記載。
＊6：記載の適正化を行う。既工事計画書には「 13 cm 以上」と記載。

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称 |  | タービン建屋地下 2 階及び制御建屋地下 2 階配管エ リアの施設外との境界壁面及びこれに囲まれた床面 | タービン建屋地下 2 階及び制御建屋地下 2 階配管エ リアの施設外との境界壁面及びこれに囲まれた床面 |
|  |  |  | タービン建屋地下 2 階 TCW 熱交換器室出入口 | タービン建屋地下 2 階 TCW 熱交換器室出入口＊1 |
|  | 種 類＊2 | － | 堰 | 変更なし |
| 主 要 年 法 | 堰の高さ | mm | 130 以上＊3，＊6 |  |
| 床面及び壁面の塗装の範囲＊4 |  | － | 床面及び床面から堰の高さ以上までの壁面 |  |
| $\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$ | 堰 | － | 鉄筋コンクリート |  |
|  | 床面及び壁面の塗装＊＊ | － | エポキシ樹脂 |  |
| 取付箇所 | $\begin{gathered} \text { 系統名 } \\ \text { (ライン名) } \\ \hline \end{gathered}$ | － | － |  |
|  | 設置床 | m | $\begin{gathered} \text { タービン建屋 } \\ \text { 0.P. 0. } 80 * 5 \end{gathered}$ |  |
|  | $\begin{gathered} \text { 溢水防護上の } \\ \text { 区画番号 } \\ \hline \end{gathered}$ | － | － |  |
|  | 溢水防護上の配慮が必要な高さ | － | － |  |

注記 $* 1$ ：浸水防護施設のらち内郭浸水防護設備と兼用する。
＊2：浸水防護施設のうち内郭浸水防護設備に使用する場合の事項を記載。
＊3：0．P．0．80m からの高さ。
＊4：記載の適正化を行う。既工事計画書には「床•壁の塗装」と記載。
＊5：記載の適正化を行う。既工事計画書には「塗装 タービン建屋地下 2 階及び制御建屋地下 2 階配管エリア」，「堰 タービン建屋地下 2階 TCW 熱交換器室出入口」と記載。
＊6：記載の適正化を行う。既工事計画書には「 13 cm 以上」と記載。

5． 4 原子炉格納容器本体外の廃棄物貯蔵設備又は廃棄物処理設備からの流体状の放射性廃棄物の漏えいの検出装置又は自動警報装置

以下の設備は，既存の第 1 号機設備，第 $1, ~ 2$ 号機共用であり，本工事計画で第 1 号機設備とす る。

サプレッションプール水貯蔵タンクの漏えいの検出装置及び警報装置（第1号機設備）
5.5 放射性廃棄物の廃棄施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

| 変更前 | 変更後 |
| :---: | :---: |
| 用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 | 用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 |
| 第1章 共通項目 <br> 放射性廃棄物の廃棄施設の共通項目である「1．地盤等，2．自然現象， 3．火災，4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とす る。 | 第1章 共通項目 <br> 放射性廃棄物の廃棄施設の共通項目である「1．地盤等， 2 ．自然現象， 3．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガス タービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」 の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章共通項目」に基づく設計とする。 |
| 第2章 個別項目 <br> 1．廃棄物貯蔵設備，廃棄物処理設備等 <br> 1.1 廃棄物貯蔵設備 <br> 放射性廃棄物を貯蔵する設備の容量は，通常運転時に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定した設計とする。 <br> 放射性廃棄物を貯蔵する設備は，放射性廃棄物が漏えいし難い設計と する。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著し く腐食しない設計とする。 | 第2章 個別項目 <br> 1．廃棄物貯蔵設備，廃棄物処理設備等 <br> 1.1 廃棄物貯蔵設備 <br> 放射性廃棄物を貯蔵する設備の容量は，通常運転時に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定した設計とする。 <br> 放射性廃棄物を貯蔵する設備は，放射性廃棄物が漏えいし難い設計と する。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著し く腐食しない設計とする。 |


| 変更前 | 変更後 |
| :---: | :---: |
| 1.2 廃棄物処理設備 <br> 放射性廃棄物を処理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となるように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。 <br> 更に，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保 つ設計とし，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」 を満足する設計とする。 <br> 放射性廃棄物を処理する設備は，放射性廃棄物が漏えいし難い又は放射性廃棄物を処理する過程において散逸し難い構造とし，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食 しない設計とする。 <br> 気体状の放射性廃棄物はフィルタを通し放射性物質の濃度を監視可能な排気筒等から放出する設計とする。 <br> また，フィルタは，放射性物質による汚染の除去又は交換に必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な設計とする。 <br> 気体廃棄物処理系は，蒸気式空気抽出器排ガス中の水素と酸素とを結合させる排ガス再結合器，排ガス復水器，活性炭式希ガスホールドアッ プ塔等で構成し，排気は，放射性物質の濃度をモニタしつつ排気筒から放出する設計とする。 <br> 活性炭式希ガスホールドアップ塔でキセノンを約 18 日間，クリプト | 1.2 廃棄物処理設備 <br> 放射性廃棄物を処理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となるように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。 <br> 更に，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保 つ設計とし，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」 を満足する設計とする。 <br> 放射性廃棄物を処理する設備は，放射性廃棄物が漏えいし難い又は放射性廃棄物を処理する過程において散逸し難い構造とし，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食 しない設計とする。 <br> 気体状の放射性廃棄物はフィルタを通し放射性物質の濃度を監視可能な排気筒等から放出する設計とする。 <br> また，フィルタは，放射性物質による汚染の除去又は交換に必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な設計とする。 <br> 気体廃棄物処理系は，蒸気式空気抽出器排ガス中の水素と酸素とを結合させる排ガス再結合器，排ガス復水器，活性炭式希ガスホールドアッ プ塔等で構成し，排気は，放射性物質の濃度をモニタしつつ排気筒から放出する設計とする。 <br> 活性炭式希ガスホールドアップ塔でキセノンを約 18 日間，クリプト |


| 変更前 | 変更後 |
| :---: | :---: |
| ンを約 24 時間保持する設計とする。 <br> 液体廃棄物処理系は，液体廃棄物を分離収集し，廃液の性状に応じて，機器ドレン系，床ドレン・化学廃液系及びランドリドレン系（第 1 号機設備，第 1,2 号機共用）で処理する設計とする。 <br> 放射性物質を含む冷却材を通常運転時において原子炉冷却系統外に排出する場合は，床ドレン・化学廃液系及び機器ドレン系のサンプを介 して，液体廃重物処理系へ導く設計とする。 <br> 放射性廃蓑物を処理する設備は，放射性廃重物以外の廃棄物を処理す る設備と区別し，放射性廃棄物以外の流体状の廃衰物を流体状の放射性廃棄物を処理する設備に導かない設計とする。 <br> 流体状の放射性廃棄物は，管理区域内で処理することとし，流体状の放射性廃棄物を管理区域外において運搬するための容器は設置しない。 <br> 固体廃棄物処理系は，廃棄物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッジを固型化するプラスチック固化式固化装置（第 1，2号機共用），濃縮廃液を固型化するセメント固化式固化装置（第 1 号機設備，第 1， 2 号機共用（以下同じ。））及び可燃性雑固体廃重物，脱塩装置 から発生する使用済樹脂及びランドリ廃スラッジを焼却する固体廃棄物焼却設備（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。）），並び に不燃性雑固体廃棄物を圧縮する減容装置（「第 1 号機設備，第 1,2 ， 3 号機共用」，「第 2 号機設備，第 1，2， 3 号機共用」及び「第 3 号機設備，第 1，2， 3 号機共用」（以下同じ。））及び固型化処理用減容機（第 3 号機設備，第 1，2，3号機共用（以下同じ。））で処理する設計とする。原子炬冷却材圧力バウンダリ内に施設されたものから発生する高放射性の固体状の放射性廃棄物（放射能量が科技庁告示第 5 号第 3 条第 1 | ンを約 24 時間保持する設計とする。 <br> 液体廃棄物処理系は，液体廃棄物を分離収集し，廃液の性状に応じて，機器ドレン系，床ドレン・化学廃液系及びランドリドレン系（第 1 号機設備，第 1,2 号機共用）で処理する設計とする。 <br> 放射性物質を含む冷却材を通常運転時において原子炉冷却系統外に排出する場合は，床ドレン・化学廃液系及び機器ドレン系のサンプを介 して，液体廃棄物処理系へ導く設計とする。 <br> 放射性廃棄物を処理する設備は，放射性廃棄物以外の廃棄物を処理す る設備と区別し，放射性廃棄物以外の流体状の廃棄物を流体状の放射性廃棄物を処理する設備に導かない設計とする。 <br> 流体状の放射性廃棄物は，管理区域内で処理することとし，流体状の放射性廃棄物を管理区域外において運搬するための容器は設置しない。 <br> 固体廃棄物処理系は，廃棄物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッジを固型化するプラスチック固化式固化装置（第 1，2号機共用），濃縮廃液を固型化するセメント固化式固化装置（第 1 号機設備，第1，2号機共用（以下同じ。））及び可燃性雑固体廃棄物，脱塩装置 から発生する使用済樹脂及びランドリ廃スラッジを焼却する固体廃棄物焼却設備（第 1 号機設備，第 1，2， 3 号機共用（以下同じ。）），並び に不燃性雑固体廃棄物を圧縮する減容装置（「第1号機設備，第1，2， 3 号機共用」，「第 2 号機設備，第 1，2， 3 号機共用」及び「第 3 号機設備，第 1,2 ， 3 号機共用」（以下同じ。））及び固型化処理用減容機（第 3 号機設備，第 1，2，3号機共用（以下同じ。））で処理する設計とする。原子炉冷却材圧力バウンダリ内に施設されたものから発生する高放射性の固体状の放射性廃棄物（放射能量が科技庁告示第 5 号第 3 条第 1 |


| 変更前 | 変更後 |
| :---: | :---: |
| 号に規定する $A_{1}$ 値又は $A_{2}$ 値を超えるもの（除染等により線量低減がで きるものは除く））を管理区域外において運搬するための固体廃棄物移送容器（第 1 号機設備，第 1 ，2， 3 号機共用（以下同じ。））は，容易か つ安全に取扱うことができ，かつ，運搬中に予想される温度及び内圧の変化，振動等により，亀裂，破損等が生じるおそれがない設計とする。 また，固体廃棄物移送容器は，放射性廃棄物が漏えいし難い構造であ り，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食し ない設計とする。 <br> 固体廃棄物移送容器は，内部に放射性廃棄物を入れた場合に，放射線障害を防止するため，その表面の線量当量率及びその表面から 1 m の距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超えない設計とする。 <br> 1.3 汚染拡大防止 <br> 1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏えいの拡大防止 <br> 放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のうち，流体状の放射性廃棄物の漏えいが拡大するおそれがある部分の漏え いし難い構造，漏えいの拡大防止，堰については，次のとおりとす る。 <br> （1）漏えいし難い構造 <br> 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐 | 号に規定する $\mathrm{A}_{1}$ 値又は $\mathrm{A}_{2}$ 値を超えるもの（除染等により線量低減がで きるものは除く））を管理区域外において運搬するための固体廃棄物移送容器（第 1 号機設備，第 1 ，2， 3 号機共用（以下同じ。））は，容易か つ安全に取扱うことができ，かつ，運搬中に予想される温度及び内圧の変化，振動等により，亀裂，破損等が生じるおそれがない設計とする。 また，固体廃棄物移送容器は，放射性廃棄物が漏えいし難い構造であ り，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食し ない設計とする。 <br> 固体廃棄物移送容器は，内部に放射性廃棄物を入れた場合に，放射線障害を防止するため，その表面の線量当量率及びその表面から 1 m の距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超えない設計とする。 <br> 1.3 汚染拡大防止 <br> 1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏えいの拡大防止 <br> 放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のうち，流体状の放射性廃棄物の漏えいが拡大するおそれがある部分の漏え いし難い構造，漏えいの拡大防止，堰については，次のとおりとす る。 <br> （1）漏えいし難い構造 <br> 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐 |


| 変更前 | 変更後 |
| :---: | :---: |
| 水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造 とする。また，その貫通部は堰の機能を失わない構造とする。 <br> （2）漏えいの拡大防止 <br> 床面は，床面の傾斜又は床面に設けられた溝の傾斜により流体状 の放射性廃棄物が排液受け口に導かれる構造とし，かつ，気体状の ものを除く流体状の放射性廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施設し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。 <br> （3）放射性廃棄物処理施設に係る堰の施設 <br> 放射性廃棄物処理施設外に通じる出入口又はその周辺部には，堰 を施設することにより，流体状の放射性廃棄物が施設外へ漏えいす ることを防止する設計とする。 <br> 施設外へ漏えいすることを防止するための堰は，処理する設備に係わる配管について，長さが当該設備に接続される配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃棄物の漏えい量のうち最大の漏えい量をもつてしても，流体状の放射性廃棄物の漏えいが広範囲に拡大することを防止する設計とす る。 <br> この場合の仮定は堰の能力を算定するためにのみに設けるもの であり，開口は施設内の貯蔵設備に 1 ヶ所想定し，漏えい時間は漏 えいを適切に止めることができるまでの時間とし，床ドレンファン ネルの排出機能を考慮する。床ドレンファンネルは，その機能が確実なものとなるように設計する。 | 水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造 とする。また，その貫通部は堰の機能を失わない構造とする。 <br> （2）漏えいの拡大防止 <br> 床面は，床面の傾斜又は床面に設けられた溝の傾斜により流体状 の放射性廃棄物が排液受け口に導かれる構造とし，かつ，気体状の ものを除く流体状の放射性廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施設し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。 <br> （3）放射性廃棄物処理施設に係る堰の施設 <br> 放射性廃棄物処理施設外に通じる出入口又はその周辺部には，堰 を施設することにより，流体状の放射性廃棄物が施設外へ漏えいす ることを防止する設計とする。 <br> 施設外へ漏えいすることを防止するための堰は，処理する設備に係わる配管について，長さが当該設備に接続される配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃葉物の漏えい量のうち最大の漏えい量をもつてしても，流体状の放射性廃棄物の漏えいが広範囲に拡大することを防止する設計とす る。 <br> この場合の仮定は堰の能力を算定するためにのみに設けるもの であり，開口は施設内の貯蔵設備に 1 ヶ所想定し，漏えい時間は漏 えいを適切に止めることができるまでの時間とし，床ドレンファン ネルの排出機能を考慮する。床ドレンファンネルは，その機能が確実なものとなるように設計する。 |


| （4）変更前 |
| :---: |
| 放射性廃棄物貯蔵施設に係る堰の施設 |
| 放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰 |
| を施設することにより，流体状の放射性廃棄物が施設外へ漏えいす |
| ることを防止する設計とする。 |
| 漏えいの拡大を防止するための堰及び施設外へ漏えいすること |
| を防止するための堰は，開口を仮定する貯蔵設備が設置されている |
| 区画内の床ドレンファンネルの排出機能を考慮しないものとし，流し |
| 体状の放射性廃棄物の施設外への漏えいを防止できる能力をもつ |
| 設計とする。 |

1．3．2 固体状の放射性廃棄物の汚染拡大防止
固体状の放射性廃棄物を貯蔵する設備が設置される発電用原子炉施設は，固体状の放射性廃棄物をドラム缶に詰める，容器に入れ る又はタンク内に貯蔵することによる汚染拡大防止措置を講じる ことにより，放射性廃棄物による汚染が広がらない設計とする。

1．4 排水路
液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれに関連する施設を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流 れる排水路を施設しない設計とする。

また，液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連す る施設を設ける建屋内部には発電所外に管理されずに排出される排水 が流れる排水路に通じる開口部を設けない設計とする。

変更後
（4）放射性廃棄物貯蔵施設に係る堰の施設
放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰 を施設することにより，流体状の放射性廃棄物が施設外へ漏えいす ることを防止する設計とする。

漏えいの拡大を防止するための堰及び施設外へ漏えいすること を防止するための堰は，開口を仮定する貯蔵設備が設置されている区画内の床ドレンファンネルの排出機能を考慮しないものとし，流体状の放射性廃棄物の施設外への漏えいを防止できる能力をもつ設計とする。

1．3．2 固体状の放射性廃棄物の汚染拡大防止
固体状の放射性廃棄物を貯蔵する設備が設置される発電用原子炉施設は，固体状の放射性廃棄物をドラム缶に詰める，容器に入れ る又はタンク内に貯蔵することによる汚染拡大防止措置を講じる ことにより，放射性廃棄物による汚染が広がらない設計とする。

1．4 排水路
液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれに関連する施設を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流 れる排水路を施設しない設計とする。

また，液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連す る施設を設ける建屋内部には発電所外に管理されずに排出される排水 が流れる排水路に通じる開口部を設けない設計とする。

| 変更前 | 変更後 |
| :---: | :---: |
| 1.5 設備の共用 <br> プラスチック固化式固化装置は休止しており，今後も使用しないこと から，共用により安全性を損ならことはない。 <br> 固体廃棄物貯蔵所（第 1 号機設備，第 $1,2,3$ 号機共用），固体廃棄物焼却設備，サイトバンカ（第 1 号機設備，第 $1,2,3$ 号機共用），雑固体廃棄物保管室（第 1 号機設備，第 $1,2,3$ 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損なわない設計とする。 <br> 排気筒の支持構造物（第 2,3 号機設備，第 $2, ~ 3$ 号機共用）は，第 3号機と共用するが，支持機能を十分維持できる設計とすることで，共用 により安全性を損なわない設計とする。 <br> サプレッションプール水貯蔵系は，第1号機及び第2号機で共用す るが，サプレッションプール水貯蔵タンク（第 1 号機設備，第 1,2 号機共用）及びサプレッションプール水貯蔵タンク（第1，2号機共用） を用いることで，第 1 号機又は第 2 号機のサプレッションチェンバの プール水の最大容量を貯蔵でき，安全性を損なわない設計とする。 | 1.5 設備の共用 <br> プラスチック固化式固化装置は休止しており，今後も使用しないこと から，共用により安全性を損ならことはない。 <br> 固体廃棄物貯蔵所（第 1 号機設備，第 $1,2,3$ 号機共用），固体廃棄物焼却設備，サイトバンカ（第 1 号機設備，第 $1,2,3$ 号機共用），雑固体廃棄物保管室（第 1 号機設備，第 $1,2,3$ 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損なわない設計とする。 <br> 排気筒の支持構造物（第 2,3 号機設備，第 2 ， 3 号機共用）は，第 3号機と共用するが，支持機能を十分維持できる設計とすることで，共用 により安全性を損なわない設計とする。 |
| 2．警報装置等 <br> 流体状の放射性廃棄物を処理し，又は貯蔵する設備から流体状の放射性廃棄物が著しく漏えいするおそれが発生した場合（床への漏えい又はその おそれ（数滴程度の微少漏えいを除く。））を早期に検出するよう，タンク の水位，漏えい検知等によりこれらを確実に検出して自動的に警報（機器 ドレン，床ドレンの容器又はサンプの水位）を発信する装置を設けるとと | 2．警報装置等 変更なし |


| 変更前 | 変更後 |
| :---: | :---: |
| もに，表示ランプの点灯及びブザー鳴動等により運転員に通報できる設計 とする。 <br> また，タンク水位の検出器，インターロック等の適切な計測制御設備を設けることにより，漏えいの発生を防止できる設計とする。 <br> 放射性廃棄物を処理し，又は貯蔵する設備に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握できるようポンプの運転停止状態及び弁 の開閉状態等を表示灯により監視できる設計とする。 |  |
| 3．主要対象設備 <br> 放射性廃棄物の廃棄施設の対象となる主要な設備については，「表 1放射性廃棄物の廃棄施設の主要設備リスト」に示す。 | 3．主要対象設備 <br> 放射性廃棄物の廃棄施設の対象となる主要な設備については，「表 1放射性廃棄物の廃棄施設の主要設備リスト」に示す。 |

表1放射性廃毫物の廃㯨施設の主要設備リスト（ $1 / 9$ ）

|  | $\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 名称 | 設計基準対象施設 ${ }^{(31)}$ |  | 重大事故等対処設備 ${ }^{(1+1)}$ |  | 名称 | 設計基準対象施設 ${ }^{(31)}$ |  | 重大事故等対処設備 ${ }^{(2+1)}$ |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  |  | N21－F155A，B 及び N21－F156～排ガス予熱器 | B－1 | クラス 3 | － |  | 変更なし |  |  | － |  |
|  |  |  | 排ガス予熱器～排ガス再結合器 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス再結合器～排ガス復水器 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス復水器～排ガス予泠器 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス予泠器～排ガス乾燥器 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス乾燥器～前置フィルタ | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 前置フィルタ～活性炭式希ガスホールドアッ プ塔 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 活性炭式希ガスホールドアップ塔連絡管 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 活性炭式希ガスホールドアップ塔～排ガス粒子フィルタ | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス粒子フィルタ～排ガス真空ポンプ | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス真空ポンプ～排ガス循環水タンク | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス循環水タンク～排気筒 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 排ガス循環水タンク出口配管分岐点～排ガス粒子フィルタ出口配管合流点 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  | N33－F152A，B～排ガス循環水タンク出口配管合流点 | B－1 | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  | 排気筒 | 排気筒 | S | － |  | － | 変更なし |  |  | － |  |

表1放射性廃㯨物の廃㯨施設の主要設備リスト $(2 / 9)$

| $\begin{aligned} & \text { 筑 } \\ & \text { 供 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 絞 } \\ & \text { 称 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 名称 | 設計基淮対象施設 ${ }^{\text {（tat）}}$ |  | 重大事故等対処設備（41） |  | 名称 | 設計基漼対象施設 ${ }^{\text {（ex }}$（ ${ }^{\text {a }}$ |  | 重大事故等対処設侔 ${ }^{(0+1 \text { ）}}$ |  |
|  |  |  |  | $\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \end{gathered}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |  | $\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 主要弁 | K11－F003 | S | クラス2 |  | － | 変更なし |  |  |  |  |
|  |  |  | K11－F004 | s | クラス2 |  | － | 変更なし |  |  |  |  |
|  |  |  | K11－F103 | S | クラス2 |  | － | 変更なし |  |  |  |  |
|  |  |  | K11－F104 | S | クラス2 |  | － | 変更なし |  |  |  |  |
|  |  | 主配管 | $\begin{aligned} & \text { ドライウェル機器ドレンサンプポンプ~K11- } \\ & \text { F003 } \end{aligned}$ | B－1 | クラス3 |  | － | 変更なし |  |  |  |  |
|  |  |  | K11－F003～原子炉格納容器配管貫通部（ X －51） | s | クラス2 |  | － | 変更なし |  |  |  |  |
|  |  |  | K11－F004～廃液収集槽入口収集管 | B－1 | クラス3 |  | － | 変更なし |  |  |  |  |
|  |  |  | $\begin{array}{\|l\|} \hline \text { ドライウェル床ドレンサンプポンプ~K11- } \\ \text { F103 } \end{array}$ | B－1 | クラス3 |  | － | 変更なし |  |  |  |  |
|  |  |  | K11－F104～ドライウェル機器ドレンサンプポ <br> ンプ出口配管合流点 | B－1 | クラス3 |  | － | 変更なし |  |  |  |  |
|  |  |  | 原子炬建屋原子炉棟機器ドレンサンプポンプ <br> ～廃液収集槽入口収集管 | B－1 | クラス3 |  | － | 変更なし |  |  |  |  |
|  |  |  | 原子炬建屋廃董物処理区域機器ドレンサンプ ポンプ～廃液収集槽入口収集管 | B－1 | クラス3 |  | － | 変更なし |  |  |  |  |
|  |  |  | $\begin{aligned} & \text { タービン建屋機器ドレンサンプポンプ~廃液 } \\ & \text { 収集槽入口収管 } \end{aligned}$ | B－1 | クラス3 |  | － | 変更なし |  |  |  |  |

表1放射性廃稁物の廃実施設の主要設備リスト（3／9）

| $\begin{aligned} & \text { 設諼 } \\ & \text { 爻 } \end{aligned}$ | $\begin{aligned} & \text { 䆌 } \\ & \text { 称 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 名称 | 設計基淮対象施設（ ${ }^{(011 \text { ）}}$ |  | 重大事故等対処設備 ${ }^{(4) 1 \text { ）}}$ |  | 名称 | 設計基準対象施設（141） |  | 重大事故等対処設備 ${ }^{(0+1 \text { ）}}$ |  |
|  |  |  |  | $\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$ | 機器クラス | 設備分類 | $\begin{aligned} & \text { 重大事故等 } \\ & \text { 機器クラス } \end{aligned}$ |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  |  |  | B－1 | クラス3 | － |  | 変更なし |  |  | － |  |
|  |  |  |  | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  | 主配管 | 廃液収集槽入口収集管 | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液収集槽～廃液収集ポンプ | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液収集ポンプ～廃液移送ポンプ | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液移送ポンプ～廃液万過器 | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液ち過器～廃液㙂塩器 | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液脫塩器～廃腋サンプル槽 | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃腋サンプル槽～廃夜サンプルポンプ | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液サンプルポンプ～P13－F035 | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液ち過器～K21－F103 | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |
|  |  |  | 廃液脱塩器～床ドレン・化学廃液脱塩器出口配管合流点 | B－1 | クラス3 |  | － | 変更なし |  |  | － |  |

表1放射性廃㯨物の廃㯨施設の主要設備リスト（4／9）

|  | $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 㸘 } \end{aligned}$ | $\begin{aligned} & \text { 系 } \\ & \text { 縂 } \\ & \text { 称 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設 ${ }^{(3 \pm 1)}$ |  | 重大事故等対処設備 ${ }^{(121)}$ |  | 名称 | 設計基準対象施設 ${ }^{(3+1)}$ |  | 重大事故等対処設備 ${ }^{(1+1)}$ |  |
|  |  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | $\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \\ & \hline \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & \stackrel{1}{N} \\ & \stackrel{y}{n} \end{aligned}$ |  | 床ト亡シ华学焲系 | 主配管 | 床ドレン・化学廃液収集タンク入口収集管（床 ドレン用） | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液収集タンク入口収集管（化学廃液用） | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃夜収集タンク～床ドレン・化学廃液収集ポンプ | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液収集ポンプ～床ドレン・化学廃液蒸発濃縮装置加熱器入口配管合流点 | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液蒸発濃縮装置循環ポンプ～床ドレン・化学廃液蒸発濃縮装置加熱器 | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液蒸発濃縮装置加熱器～床ド レン・化学廃液蒸発濃縮装置蒸発缶 | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液蒸発濃縮装置蒸発缶～床ド レン・化学廃液蒸発濃縮装置循環ポンプ | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | $\begin{aligned} & \hline \text { 床ドレン・化学廃液収集ポンプ出口配管分岐点 } \\ & \text { ~K22-F001A, B } \end{aligned}$ | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液蒸発濃縮装置蒸発缶～床ド レン・化学廃液蒸発濃縮装置デミスタ | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液蒸発濃縮装置デミスタ～床 ドレン・化学廃液蒸発濃縮装置復水器 | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液蒸発濃縮装置復水器～床ド レン・化学廃液調整タンク | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液調整タンク～床ドレン・化学廃液調整ポンプ | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |
|  |  |  |  | 床ドレン・化学廃液調整ポンプ～床ドレン・化学廃液脱塩器 | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |

表1放射性廃㯨物の廃㯨施設の主要設備リスト $(5 / 9)$


表1放射性廃㯨物の廃㯨施設の主要設備リスト（6／9）

|  | $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$ | 機器区分 | 変更前 |  |  |  |  | 変更後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }^{\left({ }^{(1) 1)}\right.}$ |  | 重大事故等対処設備 ${ }^{(121)}$ |  | 名称 |  | 設計基淮対象施設 ${ }^{(3+1)}$ |  | 重大事故等対処設備 ${ }^{(31 \times 1)}$ |  |
|  |  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & q \\ & \uparrow \\ & \uparrow \\ & \stackrel{1}{\Delta} \end{aligned}$ | 気体液体又は目噔重物理設備 |  | 主配管 | サプレッションプール水移送ポンプ～P81－ F005（予備配管を含む。） | B－1 | クラス 3 |  | － | 撤去又は廃止 |  |  |  |  |  |
|  |  |  |  | サプレッションプール水移送ポンプ出口配管分岐点～サプレッションチェンバ出口配管合流点 | B－1 | クラス 3 |  | － | 撤去 |  |  |  |  |  |
|  |  |  |  | サプレッションプール水貯蔵タンク入口配管分岐点～サプレッションプール水貯蔵タンク （第 1,2 号機共用） | B－1 | クラス 3 |  | － | 撤去又は廃止 |  |  |  |  |  |
|  |  |  |  | SPT－V－1～サプレッションプール水移送ポンプ （第 1 号機設備，第 1,2 号機共用） | B－1 | クラス 3 |  | － | 共用取りやめ |  |  |  |  |  |
|  |  |  |  | サプレッションプール水移送ポンプ～サプレ ッションプール水貯蔵タンク <br> （第 1 号機設備，第 1,2 号機共用） | B－1 | クラス 3 |  | － | 共用取りやめ |  |  |  |  |  |
|  |  |  |  | サプレッションプール水移送ポンプ出口配管分岐点～サプレッションチェンバ出口配管合流点 <br> （第1号機設備，第 1,2 号機共用） | B－1 | クラス 3 |  | － | 共用取りやめ |  |  |  |  |  |
|  |  |  |  | SPT－V－11～残留熱除去系配管合流点 （第 1 号機設備，第 1,2 号機共用） | B－1 | クラス 3 |  | － | 共用取りやめ |  |  |  |  |  |
|  |  |  |  | RHR－V－514～SPT－V－11 <br> （第 1 号機設備，第 1,2 号機共用） | B－1 | クラス 3 |  | － | 共用取りやめ |  |  |  |  |  |
|  |  |  |  | P81－F005～RHR－V－514 <br> （第1号機設備，第 1，2号機共用） | B－1 | クラス 3 |  | － | 共用取りやめ |  |  |  |  |  |
|  |  | サイハバ方設備 | 主配管（第 1 号機設備，第 $1,2,3$ 号機共用） | サイトバンカ貯蔵プール～スキマサージタン ク <br> （第 1 号機設備，第 $1,2,3$ 号機共用） | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |  |
|  |  |  |  | スキマサージタンク～プール水循環ポンプ （第1号機設備，第1，2，3号機共用） | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |  |
|  |  |  |  | プール水循環ポンプ～プール水ろ過器 （第1号機設備，第1，2，3号機共用） | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |  |
|  |  |  |  | プール水ろ過器～サイトバンカ貯蔵プール （第1号機設備，第1，2，3号機共用） | B－1 | クラス 3 |  | － | 変更なし |  |  |  | － |  |

表1放射性廃毫物の廃実施設の主要設備リスト（7／9）


表1放射性廃棄物の廃棄施設の主要設備リスト（8／9）


表1放射性㢕乗物の㾌乗施設の主要設備リスト（9／9）

|  |  | $\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$ | $\begin{aligned} & \text { 機器铞 } \end{aligned}$ | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基淮対象施設（101） |  | 重大事故等対処設谖 ${ }^{(421)}$ |  | 名称 | 設計基漼対象施設 ${ }^{\text {ext }}$ |  | 重大事故等対処設備 ${ }^{(0+1 \text { ）}}$ |  |
|  |  |  |  |  |  | 機器クラス | $\begin{aligned} & \text { 設備分 } \\ & \text { 頪 } \end{aligned}$ | 重大事故等機器クラス |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & \stackrel{0}{1} \\ & \stackrel{1}{\Delta} \\ & \stackrel{y}{n} \end{aligned}$ |  | － | － | サプレッションプール水貯蔵タンクの漏え いの検出装置及び警報装置 （第1号機設備，第 1,2 号機共用） | c | － |  | － |  | りやめ |  |  |  |

（注 2）当該配管は，主配管に該当しないため記載の適正化を行う。
（注 3）「発電用原子力設備規格 設計•建設規格（2005年度（2007年追補版含む））」＜第 I 編 軽水炉規格＞J S ME S N C 1 －2005／2007」（日本機械学会）における「クラス 3 ポンプ」である。
5.6 放射性廃棄物の廃棄施設に係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: |
| 放射性廃棄物の廃棄施設に係る工事の方法は，「原子炬本体」における「9 原子炉 |  |
| 本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」， | 変更なし |
| 「2．1．3 燃料体に係る検査」及び「3．2 燃料体の加工に係る工事上の留意事項」を |  |
| 除く。）に従う。 |  |

6．放射線管理施設
6.1 放射線管理用計測装置
（1）プロセスモニタリング設備

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 | $\begin{array}{lll} \text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 } \end{array}$ | 計測 範 囲 | 警報動作 <br> 範 囲 | 取 付 | 箇 所 | 個数 | 名 | 称 | 検 の | $\begin{array}{ll}\text { 出 } & \text { 器 } \\ \text { 種 類 }\end{array}$ | 計測 範 囲 | 警報動作 <br> 範 囲 | 取 | 付 | 箇 | 所 | 個数 |
| 主蒸気管放射線モニタ | 電離箱＊${ }^{\text {P }}$ | $10^{-13} \sim 10^{-6} \mathrm{~A}$ | $\begin{gathered} \quad{ }^{* 2} \\ 10^{-13} \sim \\ 10^{-6} \mathrm{~A} \end{gathered}$ | $\begin{gathered} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{gathered}$ | プロセス放射線モニタ系 ${ }^{* 3}$ | $4^{* 4}$ | 変更なし |  |  |  |  |  | 変更なし |  |  |  | $\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$ |
|  |  |  |  | 設 置 床 | 原子炉建屋 <br> 0．P． 15.00 m <br> （監視•記録は中央制御室にて行う。） |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  |  |  |  | － |  |  |

注記＊1：記載の適正化を行う。既工事計画書には「イオンチェンバ」と記載。
＊2：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：対象計器は，D11－RE001A，D11－RE001B，D11－RE001C，D11－RE001D。

口 原子炉格納容器本体内の放射性物質涱度を計測する装置（常設）


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「格納容器内雾囲気放射線モニ夕」と記載。
＊2：記載の適正化を行う。既工事計画書には「イオンチェンバ」と記載。
＊ 3 ：警報動作が要求される検出器ではないため，記載の適正化を行う。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5：対象計器は，D23－RE005A，D23－RE005B。
＊6：対象計器は，D23－RE006A，D23－RE006B

八 放射性物質により汚染するおそれがある管理区域から環境に放出する排水中又は排気中の放射性物質濃度を計測する装置（常設）



注記 $* 1$ ：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
$* 2:$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：対象計器は，D11－RE003A，D11－RE003B，D11－RE003C，D11－RE003D。
＊4：対象計器は，D11－RE002A，D11－RE002B，D11－RE002C，D11－RE002D。
＊5：対象計器は，D11－RE012A，D11－RE012B。
＊6：対象計器は，D11－RE012C，D11－RE012D。
＊7：対象計器は，T63－RE009A，T63－RE009B。
＊ 8 ：対象計器は，D11－RE019A，D11－RE019B。
（2）エリアモニタリング設備
八 緊急時対策所の線量当量率を計測する装置（可搬型）

| 変 更 前 |  |  |  |  |  | 変 更 後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名称 | 検出器の <br> 種類 | 計測範囲 | 警報動作範囲 | 取付箇所 | 個数 | 名称 | 検出器の <br> 種類 | 計測範囲 | 警報動作 <br> 範囲 | 取付箇所 | 個数 |
|  |  |  |  |  |  | 緊急時対策所 <br> 可搬型エリア モニタ | 半導体式 | $\begin{gathered} 0.01 \mu \mathrm{~Sv} / \mathrm{h} \sim \\ 999.9 \mathrm{mSv} / \mathrm{h} \end{gathered}$ | － | 保管場所： <br> －緊急時対策所（0．P．約 52 m ）取付箇所： $\binom{1 \text { 個 }}{\cdot \text { 緊急時対策所 }(0 . \text { P. 約 } 52 \mathrm{~m})}$ <br> （ 監視•記録は緊急時対策所 | $\begin{gathered} 1 \\ (\text { 予備 } 1 \text { ) } \end{gathered}$ |

二 使用済燃料貯蔵槽エリアの線量当量率を計測する装置（常設）


注記 $* 1$ ：本設備は記載の適正化のみを行うものであり，手続き対象外である。
＊2：記載の適正化を行う。既工事計画書には「原子炉建屋放射線モニタ」と記載。
＊3：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5：対象計器は，D21－RE004。
＊6：対象計器は，D21－RE043。
＊7：対象計器は，D21－RE044
（3）固定式周辺モニタリング設備

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名称 | 検出器の種類 | 計測範囲 | 警報動作範囲 |  | 取付箇所 | 個数 | 名称 | 検出器の <br> 種類 | 計測範囲 | 警報動作範囲 |  | 取付箇所 | 個数 |
| $\begin{gathered} \text { モニタリング } \\ \text { ポスト } \end{gathered}$ <br> （第1号機設 <br> 備，第 1，2， 3 号 <br> 機共用）＊1 | NaI（T1） <br> シンチレー <br> ション | $\begin{gathered} 0 \sim 2 \times 10^{4} \\ \mathrm{nGy} / \mathrm{h} \end{gathered}$ | $\begin{gathered} 0 \sim 2 \times 10^{4} \\ \mathrm{nGy} / \mathrm{h}^{* 2} \end{gathered}$ | $\begin{gathered} \text { 系統名 } \\ \text { (ライン名) } \end{gathered}$ | － |  | 変更なし |  |  |  | $\begin{gathered} \text { 系統名 } \\ \text { (ライン名) } \end{gathered}$ | 変更なし | 変更なし |
|  |  |  |  | 設置床 | 屋外 <br> 0．P．約 91m，0．P．約 125 m ， <br> 0．P．約 $122 \mathrm{~m}, ~ 0$. P．約 120 m ， <br> 0．P．約 80 m ， 0 ．P．約 38 m <br> 発電所周辺監視区域境界周辺 <br> （監視はモニタリングポスト設 <br> 置場所，中央制御室及び緊急時対 <br> 策所，記録はモニタリングポスト <br> 設置場所及び 1 号機制御建屋）＊3 | $6 * 3, * 4$ |  |  |  |  | 設置床 | 屋外 <br> 0．P．約 91m，0．P．約 125 m ， <br> 0．P．約 $122 \mathrm{~m}, ~ 0$. P．約 120 m ， <br> 0．P．約 49m，0．P．約 38 m <br> 発電所周辺監視区域境界周辺 <br> （監視はモニタリングポスト設 <br> 置場所，中央制御室及び緊急時対 <br> 策所，記録はモニタリングポスト <br> 設置場所及び 1 号機制御建屋） |  |
|  | $\begin{aligned} & \text { イオン } \\ & \text { チェンバ } \end{aligned}$ | $\begin{gathered} 10^{4} \sim 10^{8} \\ \mathrm{nGy} / \mathrm{h} \end{gathered}$ | $\begin{aligned} & 10^{4} \sim 10^{8} \\ & \mathrm{nGy} / \mathrm{h}^{* 2} \end{aligned}$ | 溢水防護上の $\qquad$ <br> 溢水防護上の配慮が必要な高さ | － | $6^{* 3, * 4}$ |  |  |  |  | 溢水防護上の <br> 区画番号 <br> 溢水防護上の <br> 配慮が必要な <br> 高さ | 変更なし |  |

注記＊1：記載の適正化を行う。既工事計画書には「モニタリングポスト」と記載。
＊2：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
＊3：記載の適正化を行う。既工事計画書には「発電所周辺監視区域境界周辺に 6 個所設置（警報，計測値はモニタごとに中央制御室に表示する。）」と記載。
＊ 4 ：モニタリングポストは 6 箇所あり，モニタリングポスト 1 箇所あたりの検出器の個数は「 1 」である。

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名称 | 検出器の種類 | 計測範囲 | 警報動作 <br> 範囲 |  | 取付箇所 | 個数 | 名称 | 検出器の種類 | 計測範囲 | 警報動作 <br> 範囲 | 取付箇所 | 個数 |
| 構内ダスト モニタ*1 <br> （第1号機設備，第 1，2， 3 号機共用）＊2 | $\begin{aligned} & \text { プラスチッ } \\ & \text { クシンチレ } \\ & \text { ーション式 } \end{aligned}$ | 測定対象 <br> 空間放射性粒子濃度 <br> 吸引量 <br> 約 $2500 / \mathrm{min}$ <br> 付属装置 <br> 空間放射性粒子計測装置 $10^{-1} \sim 10^{3} \mathrm{cps}$ | － | 系統名 <br> （ライン名） <br> 設置床 <br> 溢水防護上の <br> 区画番号 <br> 溢水防護上の配慮が必要な高さ | 屋外 <br> 0．P．約 78 m ， 0. P．約 77 m <br> 発電所敷地境界内近傍 <br> （監視•記録は構内ダストモニタ設置場所及び 1 号機制御建屋）＊3 | $2^{* 3,4}$ |  |  |  |  |  |  |

注記＊1：本設備は記載の適正化のみを行うものであり，手続き対象外である。
＊2：記載の適正化を行う。既工事計画書には「構内ダストモニタ」と記載。
＊3：記載の適正化を行う。既工事計画書には「発電所敷地境界内近傍に 2 箇所設置」と記載。
＊ 4 ：構内ダストモニタは 2 箇所あり，構内ダストモニタ 1 箇所あたりの検出器の個数は「1」である。
（4）移動式周辺モニタリング設備


注記＊1：本設備は記載の適正化のみを行うものであり，手続き対象外である。
＊2：記載の適正化を行う。既工事計画書には「フィールドモニタ」と記載。
＊3：記載の適正化を行う。既工事計画書には「放射性ダスト測定装置」と記載。
＊ 4 ：記載の適正化を行う。既工事計画書には「放射性よう素測定装置」と記載。
＊5：記載の適正化を行う。既工事計画書には「1チャンネル」と記載。
＊6：記載の適正化を行う。既工事計画書には「放射線移動観測車」と記載。


注記＊：個数のうち，1（予備 1）は緊急時対策所の加圧判断用と兼用する。

| 変 更 前 |  |  |  |  |  | 変 更 後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名称 | 検出器の種類 | 計測範囲 | 警報動作範囲 | 個数 | 取付箇所 | 名称 | 検出器の種類 | 計測範囲 | 警報動作範囲 | 個数 | 取付箇所 |
|  |  |  | － |  |  | $\begin{aligned} & \gamma \text { 線サーベイメ } \\ & \text { ータ } \end{aligned}$ | $\begin{gathered} \mathrm{NaI} \text { (T1)シンチ } \\ \text { レーション } \end{gathered}$ | $\begin{gathered} 0 \sim 30 \mathrm{k} \\ \mathrm{~s}^{-1} \end{gathered}$ | － | $\begin{gathered} 2 \\ (\text { 予備1) } \end{gathered}$ | 保管場所： <br> －緊急時対策建屋 0．P．約57m <br> 取付箇所： $\left[\begin{array}{cc} 2 \text { 個 } & -* \end{array}\right]$ |



| 変 更 前 |  |  |  |  |  | 変 更 後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名称 | 検出器の種類 | 計測範囲 | 警報動作範囲 | 個数 | 取付箇所 | 名称 | 検出器の種類 | 計測範囲 | 警報動作範囲 | 個数 | 取付箇所 |
|  |  |  | － |  |  | $\begin{aligned} & \alpha \text { 線サーベイメ } \\ & \text { ータ } \end{aligned}$ | $\begin{gathered} \mathrm{ZnS}(\mathrm{Ag}) \text { シンチ } \\ \text { レーション } \end{gathered}$ | $\begin{gathered} 0 \sim 100 \mathrm{k} \\ \mathrm{~min}^{-1} \end{gathered}$ | － | $\begin{gathered} 1 \\ \left(\begin{array}{c} \text { 予備1) } \end{array}\right. \end{gathered}$ | 保管場所： <br> －緊急時対策建屋 O．P．約57m <br> 取付箇所： $\left[\begin{array}{cc} 1 \text { 個 } & -* \end{array}\right]$ |


| 変 更 前 |  |  |  |  |  | 変 更 後 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名称 | 検出器の種類 | 計測範囲 | 警報動作範囲 | 個数 | 取付箇所 | 名称 | 検出器の種類 | 計測範囲 | 警報動作範囲 | 個数 | 取付箇所 |
| － |  |  |  |  |  | $\begin{aligned} & \text { 電離箱サーベイ } \\ & \text { メータ } \end{aligned}$ | 電離箱 | $\begin{gathered} 0.001 \sim 1000 \\ \mathrm{mSv} / \mathrm{h} \end{gathered}$ | － | $\begin{gathered} 2 \\ (\text { 予備 } 1 \text { ) } \end{gathered}$ | 保管場所： <br> －緊急時対策建屋 O．P．約 57 m <br> 取付箇所： $\left[\begin{array}{cc} 2 \text { 個 } & \\ & -* \end{array}\right]$ |

時的に設置する可搬型のものを除く。）
6．2．1 中央制御室換気空調系
（3）主配管（常設）


| 変 更 前＊1 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \end{aligned}$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*2 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 名 | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \quad \begin{array}{l} \text { 力 } \\ \hline \mathrm{kPa})^{2} \end{array} \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*2 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 料 |
|  | 中央制御室送風機中央制御室 | 2.94 | 40 | $857 \times 1190$ | 3.2 | SS400 | 中鈚制禦換気空調系 | 変更なし |  |  |  |  |  |  |
|  |  |  |  | $\begin{gathered} 857 \times 1190 \\ / / \\ 2006.4 \times 1006.4 \end{gathered}$ | $\begin{gathered} 3.2 \\ \vdots \\ 3.2 \end{gathered}$ | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | $2006.4 \times 1006.4$ | 3.2 | SS400 |  |  |  |  |  |  |  |  |
|  |  | 1.08 | 40 | $2004.6 \times 1004.6$ | 2． 3 | SS400 |  |  |  |  |  |  |  |  |
|  | 中央制御室再循環フィルタ装置入ロダクト分岐点 <br> 中央制御室送風機入口ダクト合流点 | 1． 08 | 40 | $1404.6 \times 1404.6$ | 2． 3 | SS400 |  |  |  |  |  |  |  |  |
|  | 給気口 <br> 中央制御室再循環フィルタ装置入口ダクト合流点 | 1.08 | 40 | $504.6 \times 504.6$ | 2． 3 | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | $904.6 \times 904.6$ | 2.3 | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | 254.6 | 2． 3 | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | $\stackrel{256.4}{/ 206.4 \times 206.4}$ | $\begin{aligned} & 3.2 \\ & \text { 3.2 } \\ & 3.2 \end{aligned}$ | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 中央制御室 <br> 中央制御室排風機 | 1． 08 | 40 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| 変 更 前＊1 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{kPa}) \end{array} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 名 | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \quad \begin{array}{l} \text { 力 } \\ (\mathrm{kPa}) \end{array} \end{aligned}$ |  | $\begin{gathered} \text { 外 } \text { 径*2 }^{* 2} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 料 |
| $\begin{aligned} & \text { 中 } \\ & \text { 英 } \\ & \text { 製 } \\ & \text { 箜 } \\ & \text { 換 } \\ & \text { 䆟 } \\ & \text { 調 } \end{aligned}$ | 中央制御室排風機 <br> 排気口 | 2 | 40 | $\begin{gathered} 434 \times 349 \\ / \\ 456.4 \times 506.4 \end{gathered}$ | $\begin{aligned} & 3.2 \\ & \text { / } \\ & 3.2 \end{aligned}$ | SS400 | $\begin{aligned} & \text { 中 } \\ & \text { 央 } \\ & \text { 制 } \\ & \text { 卸 } \\ & \text { 換 } \\ & \text { 空 } \\ & \text { 調 } \end{aligned}$ | 変更なし |  |  |  |  |  |  |
|  |  |  |  | $\begin{gathered} 433 \times 344 \\ / \\ 456.4 \times 506.4 \end{gathered}$ | $\begin{gathered} 3.2 \\ 3.2 \\ 3.2 \end{gathered}$ | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | $454.6 \times 504.6$ | 2.3 | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | $\begin{gathered} 456.4 \times 506.4 \\ 556.4 \end{gathered}$ | $\begin{gathered} 3.2 \\ \prime \\ 3.2 \end{gathered}$ | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | 554.6 | 2.3 | SS400 |  |  |  |  |  |  |  |  |
|  |  |  |  | $\begin{gathered} 456.4 \times 506.4 \\ 456.4 \times 506.4 \\ / \\ 456.4 \times 506.4 \end{gathered}$ | $\begin{gathered} 3.2 \\ \text { / } \\ 3.2 \\ \text { / } \\ 3.2 \end{gathered}$ | SS400 |  |  |  |  |  |  |  |  |

＊2 ：公称値を示す。
（4）送風機（常設）

|  |  |  |  |  | 変 更 前 |  | 変 更 後 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 | 称 |  |  |  | 中央制御室送風機 |  | 変更なし |  |
| 送 | 種 |  | 類 | － | 遠心式 |  | 変更なし |  |
|  | 容 量 |  |  | $\mathrm{m}^{3} / \mathrm{h} /$ 個 |  | $\begin{aligned} & \text { 以上*1 } \\ & { }^{* * 2} \end{aligned}$ |  |  |
|  | $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 吸 |  | mm | $1121 * 1, * 2$ |  |  |  |
|  |  | 吐 | 径 | mm | $1178 \times 848 * 1, * 2$ |  |  |  |
|  |  | た | て | mm | $2090 * 1, * 2$ |  |  |  |
|  |  |  |  | mm | $3160 * 1, * 2$ |  |  |  |
|  |  | 高 | さ | mm | $2040 * 1, * 2$ |  |  |  |
|  | 個 数 |  |  | － | 2 |  |  |  |
| 風 <br> 機 | $\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 㯺 } \\ & \text { 保 } \end{aligned}$ | $\begin{gathered} \text { 系 統 名 } \\ (\text { ラ イン名 }) \end{gathered}$ |  | － | 中央制御室送風機（A）中央制御室換気空調系 | $\begin{aligned} & { }^{* 1} \\ & \text { 中央制御室 } \\ & \text { 送風機 (B) } \\ & \text { 中央制御室 } \\ & \text { 換気空調系 } \end{aligned}$ |  |  |
|  |  | 設 置 床 |  | － | 制御建屋$0 . \mathrm{P} .1 .50 \mathrm{~m}$ |  |  |  |
|  |  | $\begin{aligned} & \text { 溢 水 } \\ & \text { 区 } \end{aligned}$ |  | － | － |  | C－B2F－1 | C－B2F－2 |
|  |  | 溢 水配慮 |  | － |  |  | 床上 <br> 0.00 m <br> 以上 | 床上 <br> 0． 00 m <br> 以上 |
| $\begin{aligned} & \text { 原 } \\ & \text { 動 } \\ & \text { 機 } \end{aligned}$ | 種 類 |  |  | － | 誘導電動機＊1 |  | 変更なし |  |
|  | 出 |  | 力 | kW／個 |  | ＊1，＊2 |  |  |
|  | 個 |  | 数 | － |  |  |  |  |
|  | 取 | 付 |  | － | 送風機 | 同じ＊1 | 送風機 | と同じ |
| 設計上の空気の流入率 |  |  |  | 回／h |  |  |  | なし |

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。


注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
（5）排風機（常設）


注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
（6）フィルター（常設）


注記＊1 ：記載の適正化を行う。既工事計画書には「中央制御室再循環フィルタ」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。 ＊3 ：公称値を示す。

6．2．2 緊急時対策所換気空調系
（3）主配管（常設）


| 変更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{kPa}) \end{array}, ~ \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ \text { ( }{ }^{\circ} \mathrm{C} \text { 度 } \end{array}$ | $$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 | 名 称 |  |  | $\substack{\text { 最高使用 } \\ \text { 温 } \\ \text {（ }{ }^{\circ} \mathrm{C} \text { ）} \\ \text { 度 } \\ \hline}$ | $\text { 外 }_{\substack{\text { 径* }}}^{\text {(mm) }}$ |  |  | 料 |
|  |  |  |  |  |  |  |  |  | 資機材保管エリア階段室（南側）（北側） |  | 0． 60 | 40 | 151．6×151．6 | 0.8 2.0 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $351.6 \times 351.6^{* 3}$ | 0．8＊3 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $354.0 \times 354.0$ | 2.0 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 351.6 \times 351.6 \\ / \\ / \\ 351.6 \times 351.6 \end{gathered}$ | $\begin{gathered} 0.8 \\ \vdots \\ - \\ \hline 0.8 \end{gathered}$ |  | $\square$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $351.6 \times 351.6$ | 0.8 |  |  |
|  |  |  |  |  |  |  |  |  |  | 資機材保管エリア | 0.60 | 40 | $\begin{array}{\|c\|} \hline 351.6 \times 351.6 \\ \hline \\ 351.6 \times 351.6 \\ 201.6 \times 201.6 \end{array}$ | $\begin{aligned} & 0.8 \\ & \vdots \\ & 0.8 \\ & \hline / 8 \\ & 0.8 \end{aligned}$ |  |  |
|  |  |  |  |  |  |  |  |  | 換 | 出入管理室及び空気ボンべ室 |  |  | $201.6 \times 201.6^{* 3}$ | 0． $8^{* 3}$ |  |  |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 㗊 } \\ & \text { 識 } \end{aligned}$ |  |  |  | $\begin{gathered} 201.6 \times 201.6 \\ / \\ 401.6 \times 201.6 \end{gathered}$ | $\begin{gathered} 0.8 \\ \vdots \\ 0.8 \end{gathered}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $401.6 \times 201.6$ | 0.8 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 351.6 \times 351.6 \\ 301.6 \times 301.6 \end{gathered}$ | $\begin{aligned} & 0.8 \\ & { }_{0}^{\prime} .8 \end{aligned}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $301.6 \times 301.6{ }^{* 3}$ | 0． $8^{* 3}$ |  |  |
|  |  |  |  |  |  |  |  |  |  | 出入管理室 チェンジングェリア | 0.60 | 40 | $351.6 \times 351.6$ | 0.8 |  |  |


| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{kPa}) \end{array} \\ & \hline \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最 高 使 用 } \\ \text { 温 } \\ \\ \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |  | 名 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径 }{ }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |
| 緊 急 時 対 策 換 空 調 系 |  |  |  | － |  |  |  |  | 緊 急 時 対 策 換 空 調 系 | $\begin{aligned} & \text { チェンジングエリア } \\ & \text { 廊下 (1F) } \end{aligned}$ | 0 （微正圧） | 40 | 355.6 $355.6 * 3$ | $(11.1)$ $(11.1)^{* 3}$ | STS410 STS410＊3 |

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3 ：エルボを示す
＊4 ：伸縮継手部の外径及び厚さ。
＊5：本設備は，換気設備（緊急時対策所加圧空気供給系）であり，換気設備（緊急時対策所換気空調系）として本工事計画で兼用とする。
（4）送風機（常設）


注記＊1 ：重大事故等時における使用時の値を示す。
＊2 ：公称値を示す。
＊3：緊急時対策所内は，正圧維持できるように加圧するため，空気流入はない。
（6）フィルター（常設）


注記＊：公称値を示す。

6．2．3 中央制御室待避所加圧空気供給系
（1）容器（可搬型）

|  |  |  |  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 称 |  |  |  |  |  | － | 中央制御室待避所加圧設備 （空気ボンベ） |
| 種 |  |  |  | 類 | － |  | 継目無し高圧ガス容器 |
| 容 |  |  |  | 量 | L／個 |  | 46.7 以上（ $46.7^{* 1}$ ） |
| 最 | 使 | 用 | 圧 | 力＊2 | MPa |  | 19.6 |
| 最 | 使 | 用 | 温 | 度＊2 | ${ }^{\circ} \mathrm{C}$ |  | 40 |
| 主 | 外 |  |  | 径 | mm |  | $232 * 1$ |
| 要 | 高 |  |  | さ | mm |  | $1370 * 1$ |
| 寸 | 胴 | 部 | 厚 | さ | mm |  |  |
| 法 | 底 | 部 | 厚 | さ | mm |  |  |
| 材 |  |  |  | 料 | － |  | クロムモリブデン鋼 |
| 個 |  |  |  | 数 | － |  | 40 （予備 40） |
| 取 | 付 |  | 箇 | 所 | － |  | 保管場所： <br> 制御建屋 0．P． 1.50 m， 0. P． 15.00 m取付箇所： $\left(\begin{array}{lll} 40 \text { 本 } & \\ \text { 制御建屋 } 0 . \text { P. } 1.50 \mathrm{~m}, & 0 . \text { P. } 15.00 \mathrm{~m} \end{array}\right)$ |

注記＊1：公称値を示す。
＊2：重大事故等時における使用時の値を示す。
（3）主配管（常設）


|  |  |  |  | 変 更 前 |  |  |  |  |  |  |  | 変 更 後 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 称 | $\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \underbrace{}_{\text {(MPa) }} \text { 力 } \\ \hline \end{array}$ | $\begin{gathered} \begin{array}{c} \text { 最高使用 } \\ \text { 温 } \\ \\ \hline \end{array}{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{gathered}$ | $\text { 外 }_{\substack{\text { 径*1 }}}^{\text {(mm) }}$ | $\begin{gathered} \text { 厚 }{ }_{(\mathrm{mm})}^{\mathrm{t}^{* 2}} \\ \hline \end{gathered}$ | 材 | 料 |  | 称 | $\begin{aligned} & \begin{array}{l} \text { 最高使用 } \\ \text { 圧 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array}$ | $\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ \hline \text { 径*1 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 } \underbrace{\text { さ }}_{(\mathrm{mm})}{ }^{2} \\ \hline \end{gathered}$ | 材 料 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 34.0 | （3．4） | SUS304TP |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 34.5^{* 4} \\ / \\ 34.5^{* 4} \\ / \\ - \end{gathered}$ | $\begin{gathered} \left(5.0^{0 * 5}\right) \\ \left(5.0^{(5 * 5)}\right. \\ \vdots \end{gathered}$ | SUSF304 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $34.5{ }^{* 4, * 6}$ | （ 5.0 \％${ }^{0, * 6}$ ） | SUSF304＊6 |
| $\%$ | 中 雃 御 堆 |  |  |  |  |  |  |  |  | （前頁からの続き） |  |  | $\begin{gathered} 34.5^{* 4} \\ 34.5^{* 4} \\ / \\ 34.5^{* 4} \end{gathered}$ | $\overbrace{\left(5.0^{*+5}\right)}^{\left(5.0^{* * 5}\right)}$ | SUSF304 |
| $\Theta$ | 妿 |  |  |  |  |  |  |  | 妿 | 配管取合点 |  |  | $34.5 * 4, * 7$ | （ $5.0 * 5, * 7)$ | SUSF304＊7 |
| $\bigcirc$ | $\begin{aligned} & \text { 巽 } \\ & \text { 繰 } \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { 供 } \\ & \text { 緥 } \end{aligned}$ |  |  |  | $\overbrace{34.5^{* 4}}^{61.1^{* 4}}$ |  | SUSF304 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | 60.5 | （3．9） | SUS304TP |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 61.1^{* 4} \\ 61.1^{* 4} \\ 61.1^{* 4} \end{gathered}$ | $\overbrace{\left(6.1^{* 5}\right)}^{\left(6.1^{* 5}\right)}$ | SUSF304 |
|  |  |  |  |  |  |  |  |  |  |  |  |  | $61.1^{* 4, * 6}$ | （6．1＊5，＊6） | SUSF304＊6 |



注記 $~ 1 ~ 1 ~: ~$ 外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値。
＊4 ：差込継手の差込部内径を示す。
＊5 ：差込継手の最小厚さを示す。
＊6 ：エルボを示す。
＊7 ：フルカップリングを示す。
（3）主配管（可搬型）


注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
$* 3$ ：重大事故等時における使用時の値。

## 6．2．4 緊急時対策所加圧空気供給系

（1）容器（可搬型）

|  |  |  |  |  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  | 称 |  |  |  | － | 緊急時対策所加圧設備（空気ボンベ） |
| 種 |  |  |  |  | 類 | － |  | 一般継目なし鋼製容器 |
| 容 |  |  |  |  | 量 | L／個 |  | 46.7 以上（46．7＊1） |
| 最 | 高 | 使 | 用 | 圧 | 力＊2 | MPa |  | 19.6 |
|  | 高 | 使 | 用 | 温 | 度＊2 | ${ }^{\circ} \mathrm{C}$ |  | 40 |
| 主 | 外 |  |  |  | 径 | mm |  | $232 * 1$ |
| 要 | 高 |  |  |  | $\pm$ | mm |  | 1370＊1 |
| 寸 | 胴 | 部 | 部 | 厚 | さ | mm |  |  |
| 法 | 底 |  | 部 | 厚 | さ | mm |  |  |
| 材 |  |  |  |  | 料 | － |  | クロムモリブデン鋼 |
| 個 |  |  |  |  | 数 | － |  | 415（予備 125） |
| 取 |  | 付 |  | 箇 | 所 | － |  | 保管場所： <br> 緊急時対策建屋 O．P． 57.30 m取付箇所： $\binom{415 \text { 本 }}{\text { 緊急時対策建屋 O.P. } 57.30 \mathrm{~m}}$ |

注記＊1：公称値を示す。
＊2：重大事故等時における使用時の値を示す。
（3）主配管（常設）

| 変更 前 |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 称 |  | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 } \\ & \text { ( }{ }^{\circ} \mathrm{C} \text { 度 } \end{aligned}$ | $\begin{gathered} \text { 外 } \\ (\mathrm{km}) \\ \left(\begin{array}{l} \text { 径*1 } \end{array}\right. \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |  | 名 称 |  | $\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ \left.{ }_{(0}{ }^{\circ} \mathrm{CO}\right) \end{array}$ | $\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 }{ }^{\text {さ*2 }} \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |
|  | － |  |  |  |  |  |  |  |  |  |  | 34.0 | （6．4） | SUS304TP |
|  |  |  |  |  |  |  |  |  |  |  |  | $34.5 * 3, * 4$ | （7．0）＊3，＊4 | SUS304＊4 |
|  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 䵖 } \\ & \text { 䋽 } \end{aligned}$ | フレキシブル配管／恒設配管 |  |  | $\begin{gathered} 34.5^{* 3} \\ / \\ 34.5^{* 3} \\ / \\ 34.5^{* 3} \end{gathered}$ |  | SUS304 |
|  |  |  |  |  |  |  |  | 第 | 取合点 |  |  | 34．5＊3，＊5 | （7．0）＊3，＊5 | SUS304＊5 |
|  |  |  |  |  |  |  |  | 加 | 緊刍対策室及びSPDS室 | 22 | 66 | $34.5 * 3, * 6$ | （7．0）${ }^{(7.0, ~ * 6}$ | SUS304＊6 |
|  |  |  |  |  |  |  |  |  | （次頁へ続く） |  |  | $\begin{gathered} 34.5^{* 3} \\ / \\ 34.5^{* 3} \\ / \end{gathered}$ | $\begin{gathered} (7.0)^{* 3} \\ (7.0)^{* 3} \\ \vdots \end{gathered}$ | SUS304 |
|  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 61.1^{* 3} \\ & { }_{34}^{\prime *} 5^{* 3} \end{aligned}$ | $\begin{aligned} & (9.6)^{* 3} \\ & (7.0)^{* 3} \end{aligned}$ | SUS304 |
|  |  |  |  |  |  |  |  |  |  |  |  | 60.5 | （8．7） | SUS304TP |




注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：差巡継手の差込部内径及び最小厚さ。
＊4：エルボを示す。
＊5 ：キャップを示す
＊6：フルカップリングを示す。
（3）主配管（可搬型）


注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値。
6.3 生体遮蔽装置


注記＊1 ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による
＊3：主要寸法欄は（ ）内に公称値を示す

|  |  |  | 称 | 変 更 前 |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { 名 } \\ & \text { 種 } \end{aligned}$ |  |  |  | 主 要 （最小厚 $さ \mathrm{~mm} * 1, ~ * 2, ~ * 3$ ）法 | 冷 却 方 法 | 材 | 料 |  |  | $\begin{aligned} & \text { 要 } \\ & \text { 小 } \end{aligned}$ | 厚 | $\begin{aligned} & \text { 寸 } \\ & \text { さ } \end{aligned}$ | mm |  |  | 冷 却 | 方 法 | 材 | 料 |
| $\begin{gathered} \text { 補助 } \\ \text { しゃへい } \end{gathered}$ | $\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 建 } \\ & \text { 屋 } \end{aligned}$ | $\begin{gathered} \text { 地上1階 } \\ 0 . \text { P. } 15000 \end{gathered}$ |  |  | 自然冷却 | 普通コンクリート <br> （密度 $2.15 \mathrm{~g} / \mathrm{cm}^{3}$ 以上＊2） |  | 変更なし |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 地上中2階 0．P． 18300 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} \text { 地上2階 } \\ \text { 0.P. } 22500 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{aligned} & \text { 地上中3階 } \\ & 0 . \text { P. } 28500 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} \text { 地上3階 } \\ \text { 0.P. } 33200 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$\begin{aligned} \text { 注記 } * 1 & \text { ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。 } \\ * 2 & \text { ：既工事計画書に記載かないため記載の適正化を行う。記載内容は設計図書による。 }\end{aligned}$
＊3 ：主要寸法欄は（ ）内に公称値を示す。

＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
$* 3$ ：主要寸法欄は（ ）内に公称値を示す。


注記 $* 1$ ：記載の適正化を行ら。既工事計画書の「m」を「mm」と記載する。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊3：主要寸法欄は（ ）内に公称値を示す。

|  |  |  | 称 <br> 類 | 変 更 前 |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 名 } \\ & \text { 種 } \end{aligned}$ |  |  |  | $\begin{array}{\|l} \hline \text { 主 要 } \\ \text { (最小厚 } \\ \hline \end{array}$ | 冷 | 却 方 法 | 材 | 料 |  | $\begin{array}{cc}  & \text { 要 } \\ \text { 最 } & \text { 小 } \\ \hline \end{array}$ |  | $\begin{array}{lll}  & & \text { 法 } \\ & * & 3 \\ & ) \\ \hline \end{array}$ |  | 冷 却 | 方 | 法 | 材 | 料 |  |
| 中央制御室 しやへい壁 | 制御 <br> 建屋 | $\begin{gathered} \text { 地上3階 } \\ \text { 0.P. } 23500 \end{gathered}$ |  |  | 自然冷却 |  | $\begin{gathered} \text { 普通コンクリート } \\ \text { (密度2.15g/cm³ 以上*2) } \end{gathered}$ |  | 変更なし |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 自然冷却 |  | $\begin{gathered} \text { 鋼板 } \\ (\mathrm{SS} 400) \end{gathered}$ |  |
|  |  | $\begin{gathered} \text { 屋上階 } \\ \text { 0. P. } 29150 \end{gathered}$ |  |  | 自然冷却 |  |  |  |  | 普通コンクリート <br> （密度 $2.15 \mathrm{~g} / \mathrm{cm}^{3}$ 以上＊2） | 変更なし |  |  |  |  |  |  |  |  |  |  |

注記＊1 ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊3：主要寸法欄は（ ）内に公称値を示す。


注記＊：主要寸法欄は（ ）内に公称値を示す。

$\begin{aligned} & \text { 注記 } * 1 \text { ：記載の適正化を行ら。既工事計画書の「m」を「mm」と記載する。 } \\ & * 2 \text { 既工事計画書に記載がないため記載の適正化を行う。記載内容は設図書による }\end{aligned}$
＊3－主要寸法欄は（ ）内に公称値を示す
＊ 4 －鉄を含む厚さ


注記 $*$ ：主要寸法欄は（ ）内に公称值を示す。
6.4 放射線管理施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

| 変更前 | 変更後 |
| :---: | :---: |
| 用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関す る規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 | 用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 |
| 第1章 共通項目 <br> 放射線管理施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．5 安全弁等，4．7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他」の基本設計方針につい ては，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。 | 第1章 共通項目 <br> 放射線管理施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．5 安全弁等，5．7 内燃機関及びガスタービンの設計条件，5． 8 電気設備の設計条件を除く。），6．そ の他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。 |
| 第2章 個別項目 <br> 1．放射線管理施設 <br> 1.1 放射線管理用計測装置 <br> 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタ リング設備及び放射線サーベイ機器（第 1 号機設備，第 $1,2,3$ 号機共用）を設ける。 <br> 出入管理関係設備（第 1 号機設備，第 1,2 号機共用）として，放射線 | 第2章 個別項目 <br> 1．放射線管理施設 <br> 1.1 放射線管理用計測装置 <br> 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタ リング設備及び放射線サーベイ機器（第 1 号機設備，第 1，2， 3 号機共用）を設ける。 <br> 出入管理関係設備（第 1 号機設備，第 1 ， 2 号機共用）として，放射線 |


| 変更前 | 変更後 |
| :---: | :---: |
| 業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける。 <br> 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行らため，化学分析室（第 1 号機設備，第 1,2号機共用），放射能測定室（第 1 号機設備，第 1 ， 2 号機共用（以下同 じ。））に測定機器を設ける。 <br> 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセスモニタリング設備，固定式周辺モニ タリング設備及び移動式周辺モニタリング設備を設ける。また，風向，風速その他の気象条件を測定するため，環境測定装置を設ける。 <br> プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺 モニタリング設備については，設計基準事故時における迅速な対応のた めに必要な情報を中央制御室に表示できる設計とする。 <br> 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値を超えた場合，主蒸気管又は復水器の蒸気式空気抽出器排ガス中の放射能レベルが設定値を超えた場合等）に，これらを確実に検出して自動的に警報（原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置 を設ける。 <br> 排気筒の出口又はこれに近接する箇所における排気中の放射性物質 の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する | 業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける。 <br> 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第1号機設備，第1， 2号機共用），放射能測定室（第 1 号機設備，第 1 ， 2 号機共用（以下同 じ。））に測定機器を設ける。 <br> 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセスモニタリング設備，固定式周辺モニ タリング設備及び移動式周辺モニタリング設備を設ける。また，風向，風速その他の気象条件を測定するため，環境測定装置を設ける。 <br> プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺 モニタリング設備については，設計基準事故時における迅速な対応のた めに必要な情報を中央制御室及び緊急時対策所に表示できる設計とす る。 <br> 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値を超えた場合，主蒸気管又は復水器の蒸気式空気抽出器排ガス中の放射能レベルが設定値を超えた場合等）に，これらを確実に検出して自動的に警報（原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置 を設ける。 <br> 排気筒の出口又はこれに近接する箇所における排気中の放射性物質 の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する |


| 変更前 | 変更後 |
| :---: | :---: |
| 放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が著しく上昇 した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高） を発信する装置を設ける。 <br> 上記の警報を発信する装置は，表示ランプの点灯及びブザー鳴動等に より運転員に通報できる設計とする。 | 放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が著しく上昇 した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高） を発信する装置を設ける。 <br> 上記の警報を発信する装置は，表示ランプの点灯及びブザー鳴動等に より運転員に通報できる設計とする。 <br> 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域 を含む。）において，発電用原子炉施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するため に，移動式周辺モニタリング設備を保管する設計とする。 <br> 重大事故等が発生した場合に発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録するために，環境測定装置を保管 する設計とする。 <br> 重大事故等が発生し，当該重大事故等に対処するために監視すること が必要なパラメータとして，原子炉格納容器内の放射線量率，最終ヒー トシンクの確保及び使用済燃料プールの監視に必要なパラメータを計測する装置を設ける設計とする。 <br> 重大事故等が発生し，計測機器（非常用のものを含む。）の故障によ り，当該重大事故等に対処するために監視することが必要なパラメータ を計測することが困難となった場合において，当該パラメータを推定す るために必要なパラメータを計測する設備を設置する設計とする。 <br> 重大事故等に対処するために監視することが必要なパラメータは，炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要 |



1．1．1 プロセスモニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続す る放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要と する場所の線量当量率を計測するためのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。
泠却材の放射性物質及び不純物の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度及び排水口又は これに近接する箇所における排水中の放射性物質の濃度は，試料採

## 変更後

われないとともに帳票が出力できる設計とする。また，記録は必要な容量を保存できる設計とする。
炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータを計測す る装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等 により計器電源が喪失した場合において，計装設備への代替電源設備と して常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とする。

1．1．1 プロセスモニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続す る放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要と する場所の線量当量率を計測するためのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録し，及び保存できる設計とする。

冷却材の放射性物質及び不純物の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度及び排水口又は これに近接する箇所における排水中の放射性物質の濃度は，試料採

| 変更前 | 変更後 |
| :---: | :---: |
| 取設備により断続的に試料を採取し分析を行い，測定結果を記録で きる設計とする。 <br> 放射性物質により汚染するおそれがある管理区域内に開口部が ある排水路を施設しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測するための設備を設けない設計とす る。 <br> プロセスモニタリング設備のうち，原子炉格納容器内の線量当量率を計測する格納容器内雰囲気放射線モニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は，それぞれ多重性，独立性を確保 した設計とする。 | 取設備により断続的に試料を採取し分析を行い，測定結果を記録 し，保存できる設計とする。 <br> 放射性物質により污染するおそれがある管理区域内に開口部が ある排水路を施設しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測するための設備を設けない設計とす る。 <br> プロセスモニタリング設備のらち，原子炉格納容器内の線量当量率を計測する格納容器内雰囲気放射線モニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は，それぞれ多重性，独立性を確保 した設計とする。 <br> プロセスモニタリング設備のらち，燃料取替エリア放射線モニタ は，外部電源が使用できない場合においても非常用所内電源系から の電源供給により，線量当量率を計測することができる設計とす る。 <br> 原子炉格納容器フィルタベント系の排出経路における放射線量率を測定し，放射性物質濃度を推定できるよう，フィルタ装置出口配管にフィルタ装置出口放射線モニタを設ける設計とする。 <br> フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 |
| 1．1．2 エリアモニタリング設備 <br> 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所その他放射線管理を特 | 1．1．2 エリアモニタリング設備 <br> 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所その他放射線管理を特 |




| 変更前 | 変更後 |
| :---: | :---: |
| 性よう素の濃度を測定するサンプラと測定器を備えた放射能観測車（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））を設け，測定結果を表示し，記録できる設計とする。ただし，放射能観測車に よる断続的な試料の分析は，従事者が計測結果を記録し，その記録 を確認することをもって，これに代えるものとする。 | 性よう素の濃度を測定するサンプラと測定器を備えた放射能観測車（第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））を設け，測定結果を表示し，記録し，及び保存できる設計とする。ただし，放射能観測車による断続的な試料の分析は，従事者が計測結果を記録 し，及びこれを保存し，その記録を確認することをもって，これに代えるものとする。 <br> 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域を含む。）において，発電用原子炉施設から放出される放射性物質の濃度（空気中，水中，土壌中）及び放射線量を監視するため の移動式周辺モニタリング設備として，$\gamma$ 線サーベイメータ，$\beta$ 線 サーベイメータ，$\alpha$ 線サーベイメータ及び電離箱サーベイメータを設け，測定結果を記録し，保存できるように測定値を表示できる設計とし，可搬型ダスト・よう素サンプラ（個数 2 （予備 1）），小型船舶（個数1（予備 1））を保管する設計とする。 <br> 放射能観測車のダスト・よう素サンプラ，放射性よう素測定装置又は放射性ダスト測定装置が機能喪失した場合にその機能を代替 する重大事故等対処設備として，可搬型ダスト・よう素サンプラ， $\gamma$ 線サーベイメータ及び $\beta$ 線サーベイメータを設け，重大事故等が発生した場合に，発電所及びその周辺において，発電用原子炉施設 から放出される放射性物質の濃度（空気中）を監視し，及び測定し，並びにその結果を記録し，保存できるように測定値を表示できる設計とし，放射能観測車を代替し得る十分な個数を保管する設計とす る。 <br> モニタリングポストが機能喪失した場合にその機能を代替する |


| 変更前 | 変更後 |
| :---: | :---: |
| 1．1．5 環境測定装置 <br> 放射性気体廃棄物の放出管理，発電所周辺の一般公衆の線量評価，一般気象データ収集及び発電用原子炉施設の外部の状況を把握 | 移動式周辺モニタリング設備として，可搬型モニタリングポストを設け，重大事故等が発生した場合に，発電所敷地境界付近において，発電用原子炉施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録できる設計とする。 <br> 可搬型モニタリングポストで測定した放射線量は，電磁的に記録，保存し，電源喪失により保存した記録が失われず，必要な容量 を保存できる設計とする。 <br> 可搬型モニタリングポストは，モニタリングポストを代替し得る十分な個数を保管する設計とする。また，指示値は，衛星系回線に より伝送し，緊急時対策所で可搬型モニタリングポストデータ処理装置にて監視できる設計とする。 <br> 可搬型モニタリングポストは，重大事故等が発生した場合に，発電所海側及び緊急時対策建屋屋上において，発電用原子炉施設から放出される放射線量を監視し，及び測定し，並びにその結果を記録 できる設計とするとともに，緊急時対策所内への希ガス等の放射性物質の侵入を低減又は防止するための確実な判断に用いる設計と する。 <br> これらの設備は，炬心の著しい損傷及び原子炉格納容器の破損が発生した場合に放出されると想定される放射性物質の濃度及び放射線量を測定できる設計とする。 <br> 1．1．5 環境測定装置 <br> 放射性気体廃棄物の放出管理，発電所周辺の一般公衆の線量評価，一般気象データ収集及び発電用原子炉施設の外部の状況を把握 |


| 変更前 | 変更後 |
| :---: | :---: |
| するための気象観測設備（第 1 号機設備，第 1，2， 3 号機共用（以下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。 また，発電所敷地内における風向及び風速の計測結果を記録できる設計とする。 <br> 1．1．6 設備の共用 <br> 放射能測定室は，第1号機と共用するが，試料の分析等を行うた めに必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。 <br> 焼却炉建屋排気ロダストモニタ（第 1 号機設備，第 $1, ~ 2$ ， 3 号機共用），サイトバンカ建屋排気口放射線モニタ（第 1 号機設備，第 | するための気象観測設備（第 1 号機設備，第 1，2， 3 号機共用（以下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。 また，発電所敷地内における風向及び風速の計測結果を記録し，及 び保存できる設計とする。 <br> 重大事故等が発生した場合に発電所において風向，風速その他の気象条件を測定し，及びその結果を記録するための設備として，代替気象観測設備（個数 1（予備 1））を保管する設計とする。 <br> 気象観測設備が機能喪失した場合にその機能を代替する重大事故等対処設備として，代替気象観測設備は，重大事故等が発生した場合に，発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録できる設計とする。 <br> 代替気象観測設備の指示値は，衛星系回線により伝送し，緊急時対策所で代替気象観測設備データ処理装置にて監視できる設計と する。 <br> 代替気象観測設備で測定した風向，風速その他の気象条件は，電磁的に記録，保存し，電源喪失により保存した記録が失われず，必要な容量を保存できる設計とする。 <br> 1．1．6 設備の共用 <br> 放射能測定室は，第1号機と共用するが，試料の分析等を行うた めに必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。 <br> 焼却炉建屋排気ロダストモニタ（第 1 号機設備，第 $1, ~ 2, ~ 3$ 号機共用），サイトバンカ建屋排気口放射線モニタ（第 1 号機設備，第 |


| 変更前 | 変更後 |
| :---: | :---: |
| 1， 2,3 号機共用），液体廃棄物処理系排水放射線モニタ（第 1， 2号機共用），焼却炉建屋放射線モニタ（第 1 号機設備，第 $1, ~ 2, ~ 3$号機共用）及びサイトバンカ建屋放射線モニタ（第 1 号機設備，第 1，2，3号機共用）は，女川原子力発電所共用エリア又は設備にお ける放射線量率等を測定するために必要な仕様を満足する設計と することで，共用により安全性を損なわない設計とする。 <br> モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とするこ とで，共用により安全性を損なわない設計とする。 | 1，2， 3 号機共用），液体廃棄物処理系排水放射線モニタ（第 1，2号機共用），焼却炉建屋放射線モニタ（第 1 号機設備，第 $1, ~ 2$ ， 3号機共用）及びサイトバンカ建屋放射線モニタ（第 1 号機設備，第 1，2， 3 号機共用）は，女川原子力発電所共用エリア又は設備にお ける放射線量率等を測定するために必要な仕様を満足する設計と することで，共用により安全性を損なわない設計とする。 <br> モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とするこ とで，共用により安全性を損なわない設計とする。 |
| 2．換気設備，生体遮蔽装置等 <br> 2.1 中央制御室の居住性を確保するための防護措置 <br> 中央制御室は，冷却材喪失等の設計基準事故時に，中央制御室内にと どまり，必要な操作及び措置を行ら運転員が過度の被ばくを受けないよ う施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室しやへい壁を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しやへい壁，2 次しゃへい壁及び補助しゃへいの機能とあいまっ て，「原子力発電所中央制御室の居住性に係る被ばく評価手法について （内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示 される 100 mSv を下回る設計とする。 | 2．換気設備，生体遮蔽装置等 <br> 2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置中央制御室は，冷却材喪失等の設計基準事故時に，中央制御室内にと どまり，必要な操作及び措置を行う運転員が過度の被ばくを受けないよ ら施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室しやへい壁を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しやへい壁， 2 次しやへい壁及び補助しやへいの機能とあいまっ て，「原子力発電所中央制御室の居住性に係る被ばく評価手法について （内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示 される 100 mSv を下回る設計とする。 |


| 変更前 | 変更後 |
| :---: | :---: |
| また，運転員その他の従事者が中央制御室にとどまるため，気体状の放射性物質及び中央制御室外の火災等により発生する燃焼がス及び有毒ガスに対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。 | また，運転員その他の従事者が中央制御室にとどまるため，気体状の放射性物質及び中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。 <br> 運転員の被ばくの観点から結果が最も厳しくなる重大事故等時にお いても中央制御室に運転員がとどまるために必要な設備を施設し，中央制御室しやへい壁を透過する放射線による線量，中央制御室に取り込ま れた外気による線量及び入退域時の線量が，全面マスク等の着用及び運転員の交替要員体制を考慮し，その実施のための体制を整備すること で，中央制御室の気密性並びに中央制御室換気空調系及び中央制御室待避所加圧設備（空気ボンベ）並びに中央制御室しやへい壁，中央制御室待避所遮蔽，2次しゃへい壁及び補助しやへいの機能とあいまって，運転員の実効線量が 7 日間で 100 mSv を超えない設計とする。炉心の著し い損傷が発生した場合における居住性に係る被ばく評価では，設計基準事故時の手法を参考にするとともに，炉心の著しい損傷が発生した場合 に放出される放射性物質の種類，全交流動力電源喪失時の中央制御室換気空調系の起動遅れ等，炉心の著しい損傷が発生した場合の評価条件を適切に考慮する。 <br> 設計基準事故時及び炉心の著しい損傷が発生した場合において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握できるよう，計測制御系統施設の酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）を使用し，中央制御室内及び中央制御室待避所内の居住性を確保できる設計とする。 |




変更前

## 2.2 換気設備

通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，放射線障害を防止するため，発電所従業員に新鮮な空気を送るとと もに，空気中の放射性物質の除去•低減が可能な換気設備を設ける。換気設備は，放射性物質による汚染の可能性からみて区域を分け，そ れぞれ別系統とし，清浄区域に新鮮な空気を供給して，汚染の可能性の ある区域に向って流れるようにし，排気は適切なフィルタを通して行 う。また，各換気系統は，その容量が区域及び部屋の必要な換気並びに除熱を十分行える設計とする。

放射性物質を内包する換気ダクトは，溶接構造とし，耐圧試験に合格 したものを使用することで，漏えいし難い構造とする。また，ファン，逆流防止用ダンパ等を設置し，逆流し難い構造とする。
排出する空気を浄化するため，気体状の放射性よう素を除去するチャ コールエアフィルタ及び放射性微粒子を除去する高性能エアフィルタ を設置する。

これらのフィルタを内包するフィルタユニットは，フィルタの取替え が容易となるよう取替えに必要な空間を有するとともに，必要に応じて

## 変更後

物質により汚染したような状況下において，対策要員が緊急時対策所内 に放射性物質による汚染を持込むことを防止するため，身体サーベイ及 び作業服の着替え等を行うための区画を設置する設計とする。身体サー ベイの結果，対策要員の汚染が確認された場合は，対策要員の除染を行 うことができる区画を，身体サーベイを行ら区画に隣接して設置するこ とができるよう考慮する。

## 2.2 換気設備

通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，放射線障害を防止するため，発電所従業員に新鮮な空気を送るとと もに，空気中の放射性物質の除去•低減が可能な換気設備を設ける。

換気設備は，放射性物質による汚染の可能性からみて区域を分け，そ れぞれ別系統とし，清浄区域に新鮮な空気を供給して，汚染の可能性の ある区域に向って流れるようにし，排気は適切なフィルタを通して行 う。また，各換気系統は，その容量が区域及び部屋の必要な換気並びに除熱を十分行える設計とする。

放射性物質を内包する換気ダクトは，溶接構造とし，耐圧試験に合格 したものを使用することで，漏えいし難い構造とする。また，ファン，逆流防止用ダンパ等を設置し，逆流し難い構造とする。
排出する空気を浄化するため，気体状の放射性よう素を除去するチャ コールエアフィルタ及び放射性微粒子を除去する高性能エアフィルタ を設置する。

これらのフィルタを内包するフィルタユニットは，フィルタの取替え が容易となるよう取替えに必要な空間を有するとともに，必要に応じて

| 変更前 | 変更後 |
| :---: | :---: |
| 梯子等を設置し，取替えが容易な構造とする。 <br> 吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒， サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。 <br> 2．2．1 中央制御室換気空調系 <br> 中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。 <br> 中央制御室外の火災等により発生する燃焼ガス及び有毒ガスに対し，中央制御室換気空調系の外気との連絡口を遮断し，事故時運転モードに切替えることが可能な設計とする。 <br> 中央制御室換気空調系は，通常のラインの他，高性能エアフィル タ及びチャコールエアフィルタを内蔵した中央制御室再循環フィ ルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時には外気との連絡口を遮断し，中央制御室再循環フィルタ装置を通る事故時運転モードとし，運転員を被ばくか ら防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。 | 梯子等を設置し，取替えが容易な構造とする。 <br> 吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒， サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。 <br> 2．2．1 中央制御室換気空調系 <br> 中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。 <br> 中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガ ス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モードに切替えることが可能な設計とす る。 <br> 中央制御室換気空調系は，通常のラインの他，高性能エアフィル タ及びチャコールエアフィルタを内蔵した中央制御室再循環フィ ルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の外気取入ダンパ，少量外気取入ダンパ及び排風機出ロダンパを閉とすることにより外気との連絡口を遮断し，中央制御室再循環フ イルタ装置を通る事故時運転モードとし，放射性物質を含む外気が中央制御室に直接流入することを防ぐことができ，運転員を被ばく から防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィルタ装置 で浄化しながら取り入れることも可能な設計とする。 |




## 変更前

## 2．2．2 原子炉建屋原子炉棟換気空調系

原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。污染の可能性 のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保つ。供給された空気は，フィルタを通した後，排気筒から放出する。
給気及び排気ダクトには，それぞれ 2 個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなった場合等に自動閉鎖 し，本換気空調系から非常用ガス処理系に切り換わることで放射性 ガスの放出を防ぐ設計とする。

2．2．3 タービン建屋換気空調系
タービン建屋換気空調系はタービン建屋送風機，タービン建屋排風機等から構成され，建屋内の空気の流れを適正に保ち，清浄区域 の汚染を防止する。

建屋内に供給された空気は，フィルタを通した後，排気筒から放出する設計とする。

2．2．4 原子炉建屋廃棄物処理区域換気空調系
原子炉建屋廃棄物処理区域換気空調系は，廃棄物処理区域送風

変更後
空気供給系は，基準地震動 S s による地震力に対し，機能を喪失し ないようにするとともに，緊急時対策所の気密性とあいまって緊急時対策所の居住性に係る判断基準を満足する設計とする。

2．2．3 原子炉建屋原子炉棟換気空調系
原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。汚染の可能性 のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保つ。供給された空気は，フィルタを通した後，排気筒から放出する。

給気及び排気ダクトには，それぞれ 2 個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなった場合等に自動閉鎖 し，本換気空調系から非常用ガス処理系に切り換わることで放射性 ガスの放出を防ぐ設計とする。

2．2．4 タービン建屋換気空調系
タービン建屋換気空調系はタービン建屋送風機，タービン建屋排風機等から構成され，建屋内の空気の流れを適正に保ち，清浄区域 の汚染を防止する。

建屋内に供給された空気は，フィルタを通した後，排気筒から放出する設計とする。

2．2．5 原子炉建屋廃棄物処理区域換気空調系
原子炉建屋廃棄物処理区域換気空調系は，廃棄物処理区域送風

変更前
機，廃棄物処理区域排風機等で構成され，建屋内の空気の流れを適正に保ち，清浄区域の汚染を防止する。
廃棄物処理区域内に供給された空気は，フィルタを通した後，排気筒から大気に放出する設計とする。

## 2．2．5 制御建屋換気系

制御建屋換気系は，C／B 汚染区域送風機（第 1 号機設備，第 1 ， 2 号機共用），C／B 污染区域排風機（第 1 号機設備，第 1,2 号機共用）等で構成する。

制御建屋内に供給された空気は，フィルタを通した後，排気筒か ら大気に放出する設計とする。

2．2．6 焼却炉建屋換気空調系焼却炉建屋換気空調系は，焼却炉建屋給気ファン（第 1 号機設備，第 $1,2,3$ 号機共用），焼却炉建屋排気ファン（第 1 号機設備，第 $1, ~ 2$ ， 3 号機共用）等で構成する。

焼却炉建屋内に供給された空気は，フィルタを通した後，焼却炉建屋排気口から大気に放出する設計とする。

2．2．7 サイトバンカ建屋換気空調系
サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第1号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排風機（第 1 号機設備，第1，2， 3 号機共用）等で構成する。 サイトバンカ建屋内に供給された空気は，フィルタを通した後，

変更後
機，廃棄物処理区域排風機等で構成され，建屋内の空気の流れを適正に保ち，清浄区域の汚染を防止する。

廃棄物処理区域内に供給された空気は，フィルタを通した後，排気筒から大気に放出する設計とする。

## 2．2．6 制御建屋換気系

制御建屋換気系は，C／B 汚染区域送風機（第 1 号機設備，第 1 ， 2 号機共用），C／B 汚染区域排風機（第 1 号機設備，第 1， 2 号機共

用）等で構成する。
制御建屋内に供給された空気は，フィルタを通した後，排気筒か ら大気に放出する設計とする。

2．2．7 焼却炉建屋換気空調系
焼却炉建屋換気空調系は，焼却炉建屋給気ファン（第 1 号機設備，第1，2，3号機共用），焼却炉建屋排気ファン（第 1 号機設備，第 1 ， 2 ， 3 号機共用）等で構成する。

焼却炉建屋内に供給された空気は，フィルタを通した後，焼却炉建屋排気口から大気に放出する設計とする。

2．2．8 サイトバンカ建屋換気空調系
サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排風機（第 1 号機設備，第1， 2 ， 3 号機共用）等で構成する。

サイトバンカ建屋内に供給された空気は，フィルタを通した後，

| 変更前 |  |
| :---: | :---: |
|  | サイトバンカ建屋排気口から大気に放出する設計とする |
|  | 生体遮蔽装置等 |
|  | 設計基準対象施設は，通常運転時において発電用原子炉施設からの直 |
|  | 接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業 |
|  | 務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に |
|  | 設置すること及び発電用原子炉施設と周辺監視区域境界までの距離と |
|  | あいまって，発電所周辺の空間線量率を合理的に達成できる限り低減 |
|  | し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマ |
|  | で年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。 |
|  | 発電所内における外部放射線による放射線障害を防止する必要があ |
|  | る場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作 |
|  | 業管理とあいまって，「核原料物質又は核燃料物質の製錬の事業に関す |
|  | る規則等の規定に基づく線量限度等を定める告示」を満足できる遮蔽設 |
|  | 計とする。 |
|  | 生体遮蔽は，主に原子炉しやへい壁，1 次しやへい壁（ドライウェル |
|  | 外側壁）， 2 次しゃへい壁（原子炉建屋原子炉棟外壁），補助しやへい及 |
|  | び中央制御室しやへい壁から構成し，想定する通常運転時，運転時の異 |
|  | 常な過渡変化時，設計基準事故時に対し，地震時及び地震後においても， |
|  | 発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害 |
|  | 防止のために，遮蔽性を維持する設計とする。 |
|  | 生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必 |
|  | 要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自 |

サイトバンカ建屋排気口から大気に放出する設計とする。
2.3 生体遮蔽装置等

設計基準対象施設は，通常運転時において発電用原子炉施設からの直接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に設置すること及び発電用原子炉施設と周辺監視区域境界までの距離と あいまって，発電所周辺の空間線量率を合理的に達成できる限り低減 し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマ で年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。
発電所内における外部放射線による放射線障害を防止する必要があ る場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作業管理とあいまって，「核原料物質又は核燃料物質の製錬の事業に関す る規則等の規定に基づく線量限度等を定める告示」を満足できる遮蔽設計とする。
生体遮蔽は，主に原子炉しやへい壁， 1 次しやへい壁（ドライウェル外側壁）， 2 次しやへい壁（原子炉建屋原子炉棟外壁），補助しやへい，中央制御室しやへい壁，中央制御室待避所遮蔽及び緊急時対策所遮蔽か ら構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時及び重大事故等時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止の ために，遮蔽性を維持する設計とする。

生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自

| 変更前 | 変更後 |
| :---: | :---: |
| 重，附加荷重及び熱応力に耐える設計とする。 <br> －開口部を設ける場合，人が容易に接近できないような場所（通路の行 き止まり部，高所等）への開口部設置 <br> －貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充て ん等） <br> －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視で きない措置 <br> 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたうえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5 ）」の通常運転時の遮蔽設計に基づく設計とす る。 <br> 中央制御室しやへい壁， 2 次しやへい壁及び補助しやへいは，「2．1中央制御室の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。 | 重，附加荷重及び熱応力に耐える設計とする。 <br> －開口部を設ける場合，人が容易に接近できないような場所（通路の行 き止まり部，高所等）への開口部設置 <br> －貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充て乙等） <br> －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視で きない措置 <br> 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたうえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5）」の通常運転時の遮蔽設計に基づく設計とす る。 <br> 原子炉格納容器フィルタベント系使用時の排出経路に設置される隔離弁に設ける遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内と し，必要に応じて遮蔽材を設置することで，放射線防護を考慮した設計 とする。 <br> 原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉建屋原子炉棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線から作業員を防護す る設計とする。 <br> 中央制御室しゃへい壁，中央制御室待避所遮蔽，緊急時対策所遮蔽， 2 次しゃへい壁及び補助しゃへいは，「2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。 |


| 変更前 | 変更後 |
| :---: | :---: |
|  | 中央制御室しゃへい壁は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 |
| 3．主要対象設備 <br> 放射線管理施設の対象となる主要な設備について，「表1放射線管理施設の主要設備リスト」に示す。 | 3．主要対象設備 <br> 放射線管理施設の対象となる主要な設備について，「表 1 放射線管理施設の主要設備リスト」に示す。 |

表1放射線管理施設の主要設備少スト（ $1 / 4$ ）


表1放射線管理施設の主要設備リスト（2／4）


表1放射線管理施設の主要設備リスト（3／4）

| $\begin{aligned} & \text { 篗 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 秝 } \\ & \text { 梦 } \\ & \text { 梸 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }_{\text {比 }}$（1） |  | 重大事故等対処設備（e＋1） |  | 名称 | 設計基漼対象施設（1＊1） |  | 重大事故等対処設供 ${ }^{(121)}$ |  |
|  |  |  |  | $\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 管書 | － |  | 中央制御室排風機 $\sim$ 排気口 | S | Non | － |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 中央制御室送風機 | S | － | － |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | － |
|  |  | 機 |  | 中央制御室再循澴送風機 | s | － | － |  | 変更なし |  |  | 常設耐震／防止常設／緩和 | － |
|  |  | 機排 | － | 中央制御室排風機 | s | － | － |  | 変更なし |  |  | 常設耐震／防止常設（綵和 | － |
|  |  | 多兄 | － | 中央制御室再循澴フィルタ装置 | s | － | － |  | 変更なし |  |  | 常設而震／防止常設／緩和 | － |
|  |  | $\begin{aligned} & \text { 竞 } \\ & \text { 诺 } \end{aligned}$ | － | － |  |  |  |  | 給気口～緊急時対策所非常用送風機 |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 緊急時対策所非常用送風機～緊急時対策所非常用フィルタ装置 |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 緊急時対策所非常用フィルタ装置～緊急対策室及び資機材保管エリア |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 緊急対策室～資機材保管エリア |  | － | 常設／緩和 | SAクラス2 |
|  |  |  |  |  | － |  |  |  | 資機材保管エリア～階段室（北側）（南側） |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  |  | － |  |  |  | $\begin{aligned} & \text { 資機材保管エリア~出入管理室及び空 } \\ & \text { 枟至 } \end{aligned}$ |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  |  | － |  |  |  | 出入管理室～チェンジングエリア |  | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  |  | － |  |  |  | チェンジングエリア～廊下（1F） |  | － | 常設／緩和 | SAクラス2 |
|  |  | 機送 | － |  | － |  |  |  | 緊急時対策所非常用送風機 |  | － | 常設／緩和 | － |
|  |  | 多足 | － |  | － |  |  |  | 緊急時対策所非常用フィルタ装置 |  | － | 常設／緩和 | SAクラス 2 |

表1放射線管理施設の主要設備リスト（4／4）


[^6]6.5 放射線管理施設に係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: |
| 放射線管理施設に係る工事の方法は，「原子炉本体」における「9 原子炉本体に係 |  |
| る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料 | 変更なし |
| 体に係る検査」及び「3．2 燃料体の加工に係る工事上の留意事項」を除く。）に従う。 |  |

## 7．原子炉格納施設

7.1 原子炉格納容器
（1）原子炉格納容器本体

（次頁へ続く）

枠囲みの内容は商業機密の観点から公開できません。
（前頁からの続き）


注：記載の適正化を行う。既工事計画書の主要寸法及び個数並びに材料のらち「ベント管」，「ベン ト管ベローズ」，「機器搬出入用ハッチ」，「逃がし安全弁搬出入口」，「所員用エアロック」，「制御棒駆動機構搬出入口」及び「サプレッションチェンバ出入口」の記載を削除。
注記 $~ 1 ~$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系，原子炉格納容器フィルタ ベント系，耐圧強化ベント系）及び非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，代替循環冷却系，残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，代替循環冷却系，残留熱除去系（格納容器スプレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））及び放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（可搬型窒素ガ ス供給系，原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器 フィルタベント系）と兼用。
＊ 3 ：S I 単位に換算したものである。
＊ 4 ：重大事故等時の使用時の値。
＊5 ：記載の適正化を行う。既工事計画書には「 \％／day」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊ 7 ：公称値を示す。
＊ 8 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェ ルの基本板厚計算書」による。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－5 ドライウェ ル主フランジの強度計算書」による。
＊10：記載の適正化を行う。既工事計画書には「全高」と記載。
＊11：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊12：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－4 ドライウェ ルの強度計算書」による。
＊13：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊14：記載の適正化を行う。既工事計画書には「断面径」と記載。
＊15：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊16：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－2 サプレッシ ョンチェンバの基本板厚計算書」による。

枠囲みの内容は商業機密の観点から公開できません。
＊ 17 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 2 年 5 月 24 日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－1－15 ボックスサ ポートの強度計算書」による。
（2）機器搬出入口


注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8 ：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－7 機器搬出入用 ハッチの強度計算書」による。


注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－8 逃がし安全弁搬出入口の強度計算書」による。


注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8 ：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－9 制御棒駆動機構搬出入口の強度計算書」による。


注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（サプレッションチェンバ）を示す。
＊4 ：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 2 年 5 月 24 日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－2 サプレッショ ンチェンバスリーブの基本板厚計算書」による。
＊8：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（3）エアロック


注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8：記載の適正化を行う。既工事計画書には「とびら板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－6 所員用エアロ ックの強度計算書」による。
（4）原子炉格納容器配管貫通部及び電気配線貫通部 a．配管貫通部

| 変 更 前 |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 種 類 | 個 数 | $\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 圧 力 } \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通 部番 号 | 種 類 | 個数 | $\begin{array}{llll} \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & & \text { 力 } \end{array}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | 構 成 | 主要寸法（mm） |  |  | 材 | 料 | 貫 通 部番 号 |
|  |  |  |  |  | 外径＊${ }^{\text {c }}$ | 厚さ＊2，＊3 | 長さ＊1 |  |  |  |  |  |  |  | 外径 | 厚さ | 長さ |  |  |  |
| $1050 \mathrm{~A}$ <br> 貫通部 | 4 | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 1066.8 |  | $3188 * 7$ | SGV49 | $\begin{aligned} & \mathrm{X}-10 \mathrm{~A} \\ & \mathrm{X}-10 \mathrm{D} \end{aligned}$ | 変更なし |  |  変更なし <br> 変更なし <br> $854(\mathrm{kPa}) * 8$ $200 * 8$ |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 短管 | 1066.8 |  | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ベローズ | 1195.0 |  | － | SUS316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 1066.8 |  | － | SFVC2B |  |  |  |  | $\begin{gathered} \text { 変更なし } \\ 315^{* 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | $8.62(\mathrm{MPa})^{* 4}$ | 302 | 管 | 609.6 |  | － | SFVC2B |  |  |  | $\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | 427 （kPa）${ }^{* 4}$ | 171 | スリーブ | 1066.8 |  | 2669＊7 | SGV49 | $\begin{aligned} & X-10 B \\ & X-10 C \end{aligned}$ |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | 変更なし | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 短管 | 1066.8 |  | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ベローズ | 1195.0 |  | － | SUS316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 1066.8 |  | － | SFVC2B |  |  |  | $\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $8.62(\mathrm{MPa})^{* 4}$ | 302 | 管 | 609.6 |  | － | SFVC2B |  |  |  | $\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
| 900A貫通部 | 2 | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 914.4 |  | $2850 * 7$ | SGV49 | X－12A | 変更なし |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa})^{* 8} \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200 * 8 \end{gathered}$ | 変更なし |  |  |  |  |  | X－12A |
|  |  |  |  | 短管 | 914.4 |  | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ベローズ | 1045.0 |  | － | SUS316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 914.4 |  | － | SFVC2B |  |  |  | $\begin{aligned} & \hline \text { 変更なし } \\ & 315 * 8, * 9 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $8.62(\mathrm{MPa})^{* 4}$ | 302 | 管 | 457.2 | $\square^{* 6}$ | － | SFVC2B |  |  |  | $\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8, * 9 \end{gathered}$ | $\begin{aligned} & \text { 変更なし } \\ & 315 * 8, * 9 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 914.4 |  | 2850 ＊ 7 | SGV49 | X－12B |  |  |  変更なし <br> 変更なし  <br> $854(\mathrm{kPa}) * 8$ $200 * 8$ |  | 変更なし |  |  |  |  |  | X-12B |  |
|  |  |  |  | 短管 | 914.4 |  | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | ベローズ | 1045.0 |  | － | SUS316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 914.4 |  | － | SFVC2B |  |  |  |  | $\begin{aligned} & \text { 変更なし } \\ & 315 * 8, * 11 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 8． $62(\mathrm{MPa})^{* 4}$ | 302 | 管 | 457.2 |  | － | SFVC2B |  |  |  | $\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8, * 11 \end{gathered}$ | $\begin{aligned} & \text { 変更なし } \\ & 315 * 8, * 11 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |





注記 $* 1$ ：公称値を示す。
＊2 ：記載の適正化を行う。既工事計画書には「呼び厚さ」と記載。
＊3：（ ）内は公称値を示す。
＊ 4 ：S I 単位に換算したものである
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。
＊6：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－3 配管貫通部アッセンブリの基本板厚計算書」による
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊8 ：重大事故等時の使用時の値。
＊9 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）に使用する場合の記載事項。
＊ 10 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊11：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（原子炉隔離時冷却系）に使用する場合の記載事項。
＊ 12 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。
＊ 13 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）に使用する場合の記載事項。
＊14：原子炬冷却系統施設のらち残留熱除去設備（残留熱除去系）と兼用。
水系）に使用する場合の記載事項。
水系）と兼用。
場合の記載事項。
＊ 18 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，低圧代替注水系）と兼用。
＊ 19 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）に使用する場合の記載事項。
＊20：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）と兼用。
＊21：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプレイ系）に使用する場合の記載事項。
＊ 22 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプレイ系）と兼用。
＊23：原子炉冷却系統施設のうち非常用炉心泠却設備その他原子炉注水設備（高圧炉心スプレイ系，低圧代替注水系）に使用する場合の記載事項。
＊ 24 ：原子炉冷却系統施設のうち非常用炉心泠却設備その他原子炉注水設備（高圧炉心スプレイ系，低圧代替注水系）と兼用。
事項。
＊ 26 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
（b）ベローズなし貫通部




注記＊1 ：公称値を示す。
＊2 ：記載の適正化を行う。既工事計画書には「呼び厚さ」と記載。
＊3：（ ）内は公称値を示す。
＊4：S I 単位に換算したものである
＊ 5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。
 る。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊8：重大事故等時の使用時の値。
供給系，原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
備（原子炉格納容器フィルタベント系），圧力逃がし装置（原子炬格納容器フィルタベント系）と兼用。
納容器下部注水系，代替循環冷却系，残留熱除去系（格納容器スプレイ泠却モード），残留熱除去系（サプレッションプール水泠却モード））と兼用。
 プレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））と兼用。
＊13：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）と兼用。
＊ 14 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプレイ系）と兼用。
＊ 15 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプレイ系）と兼用。
＊ 16 ：当該貫通部については，二重管型とするため直結型から削除。
＊17：原子炉冷却系統施設のらち残留熱除圭設備（残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（サプレッションプール水冷却モード））と兼用。
＊18：原子炬冷却系統施設の弓ち非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
 ：却モード））と兼用。
用。
＊21：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ冷却モード））と兼用。
＊ 22 ：端板を撤去する
＊ 23 ：計測制御系統施設のらち制御材駆動装置の制御棒駆動水圧設備（制御棒駆動水圧系）と兼用。
＊24：当該貫通部については，計装用であったものを直結型とするものである
供給系，原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
［2］二重管型

| 変 更 前 |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 種 類 | 個 数 | 最高使用 <br> 圧 力 | 最高使用温 度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通 部番 号 | 種 類 | $\begin{aligned} & \text { 個 } \\ & \text { 数 } \end{aligned}$ | $\begin{array}{lll} \text { 最 高 使 } & \text { 用 } \\ \text { 圧 } & \text { 力 } \end{array}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通 部番 号 |
|  |  |  |  |  | 外径＊${ }^{\text {c }}$ | 厚さ＊2，＊3 | 長さ＊1 |  |  |  |  |  |  |  | 外径＊${ }^{1}$ | 厚さ＊3 | 長さ＊1 |  |  |
| 450A <br> 貫通部 | 2 | $427(\mathrm{kPa})$ | 171 | スリーブ | 457.2 |  | $2793 * 7$ | STS42 | X－63 | 変更なし |  | 変更 | 変更な | 変更なし |  |  |  |  |  |
|  |  |  |  | 端板 | 457.2 | $]^{* 6}$ | － | SFVC2B |  |  |  | $854(\mathrm{kPa}) * 8$ | 200＊8 |  |  |  |  |  |  |  |  |
|  |  | $1.27(\mathrm{MPa})$ | 171 | 管 | 216.3 | $\square^{* 6}$ | － | STS42 |  |  |  | 変更なし | 変更なし 200＊8 |  |  |  |  |  |  |  |  |
|  |  | $427(\mathrm{kPa})$ | 171 | スリーブ | 457.2 |  | 2688＊7 | STS42 | X－64 |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | 変更なし 200＊8 | 変更なし |  |  |  |  |  |
|  |  |  |  | 端板 | 457.2 | ＊6 | － | SFVC2B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\text { 1. } 27(\mathrm{MPa})$ | 171 | 管 | 216.3 | ${ }^{*}{ }^{* 6}$ | － | STS42 |  |  |  | 変更なし | 変更なし $200 * 8$ |  |  |  |  |  |  |  |  |
| 400A <br> 貫通部 | 1 | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 406.4 |  | 2882＊${ }^{\text {7 }}$ | STS42 | X－91＊9 | 変更なし |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200 * 8 \end{gathered}$ | 変更なし |  |  | 2807＊7 | 変更なし | ${ }^{*}{ }^{* 10}$ |
|  |  |  |  | 端板 | 407.0 |  | － | SGV49 |  |  |  | 変更なし |  | $\underbrace{* 7}{ }^{* 7}$ | － | SGV480＊7 |  |  |
|  |  | － |  |  |  |  |  |  |  |  |  | $\begin{gathered} 427(\mathrm{kPa}) \\ 2.06(\mathrm{MPa}) * 8 \end{gathered}$ | $\begin{gathered} 171 \\ 200 * 8 \end{gathered}$ | 管＊${ }^{\text {7 }}$ | $60.5 * 7$ | ${ }^{* 7}$＊ | － | SUS304LTP＊7 |  |
| 300A <br> 貫通部 | 3 | $427(\mathrm{kPa})$ | 171 | スリーブ | 318.5 |  | $2876 * 7$ | STS42 | X－92＊9 | 変更なし |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | 変更なし$200 * 8$ | 変更なし |  |  | 2801＊7 | 変更なし | －${ }^{* 11}$ |
|  |  |  |  | 端板 | 319.0 |  | － | SGV49 |  |  |  | 変更なし |  |  | 318． $5^{* 7}$ | ${ }^{* 7}{ }^{* 7}$ | － | SFVC2B＊7 |  |  |
|  |  |  |  |  | － |  |  |  |  |  |  | $\begin{gathered} 427(\mathrm{kPa}) \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | $\begin{gathered} 171 \\ 200^{* 8} \\ \hline \end{gathered}$ | 管＊7 | 114.3 ＊7 | ${ }^{* 7}{ }^{* 7}$ | － | STS410＊7 |  |  |
|  |  | $427(\mathrm{kPa})$ | 171 | スリーブ | 318.5 |  | $2876 * 7$ | STS42 | X－93＊9 |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200^{* 88} \end{gathered}$ | 変更なし |  |  | 2801＊7 | 変更なし | 変更なし |  |
|  |  |  |  | 端板 | 319.0 |  | － | SGV49 |  |  |  | 変更なし |  | 318． $5^{* 7}$ | $]^{* 7}{ }^{* 7}$ | － | SUSF304L＊7 |  |  |  |
|  |  | － |  |  |  |  |  |  |  |  |  | $\begin{gathered} 427(\mathrm{kPa}) \\ 2.00(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$ | $\begin{gathered} 171 \\ 200^{* 8} \\ \hline \end{gathered}$ | 管＊7 | 76． $3^{* 7}$ | ${ }^{* 7}{ }^{* 7}$ | － | SUS304LTP＊7 |  |  |
|  |  |  |  | スリーブ | 318．5＊5 |  | $2917 * 7$ | STS42 | X－106B ${ }^{* 12}$ |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | 変更なし 200＊8 | 変更なし |  |  | $2842 * 7$ | 変更なし |  |  |
|  |  | 427 （kPa） | 171 | 端板 | 318．5＊7 | $\boldsymbol{D}^{* 5}$ | － | SGV49 |  |  |  | 変更なし |  | 319． $0^{* 7}$ | $\underbrace{* 7}$＊7 | － | SGV480＊7 |  |  |  |
|  |  | － |  |  |  |  |  |  |  |  |  | $\begin{gathered} 427(\mathrm{kPa}) \\ 2.06(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$ | $\begin{gathered} 171 \\ 200 * 8 \\ \hline \end{gathered}$ | 管＊7 | $60.5 * 7$ | ${ }^{* 7}{ }^{* 7}$ | － | SUS304LTP＊7 |  |  |
| $\begin{gathered} \text { 200A } \\ \text { 貫通部 } \end{gathered}$ | 1 | $427(\mathrm{kPa})$ | 171 | スリーブ | 216.3 |  | 2549＊7 | STS42 | X－14 | 変更なし |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | 変更なし 200＊8 | 変更なし |  |  |  |  |  |
|  |  |  | 302 | 端板 | 216.3 | ${ }^{* 6}$ | － | SUSF316L |  |  |  | 変更なし $315 * 8$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\text { 10. } 4(\mathrm{MPa})$ | 302 | 管 | 27.2 | $\square$ | － | SUS316LTP |  |  |  | 変更なし | $\begin{gathered} \text { 変更なし } \\ 315^{* 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |


| 変 更 前 |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 種 類 | 個 数 | 最高使用圧 力 | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通部番 号 | 種 類 | 個 | $\begin{array}{llll} \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & & \text { 力 } \end{array}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  |  | 料 | $\begin{aligned} & \text { 貫 通部 } \\ & \text { 番 号 } \end{aligned}$ |
|  |  |  |  |  | 外径＊${ }^{\text {1 }}$ | 厚さ＊2，＊3 | 長さ＊1 |  |  |  | 数 |  |  |  | 外径＊${ }^{1}$ | 厚さ＊3 | 長さ＊1 |  |  |  |
| 150A貫通部 | 8 | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 165.2 |  | 3018＊7 | STS42 | $\begin{aligned} & X-13 A \\ & X-13 B \end{aligned}$ | 変更なし |  | 変更なし $854(\mathrm{kPa})$＊8 | $\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$ | 変更なし |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 165.2 |  | － | SUSF316L |  |  |  | 変更なし <br> 315＊8 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{array}{r} * 4 \\ 8.62(\mathrm{MPa}) \\ \hline \end{array}$ | 302 | 管 | 27.2 |  | － | SUS316LTP |  |  |  | $\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 165.2 |  | $2617 * 7$ | STS42 | X－22 |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$ | 変更なし |  |  |  |  |  | X－22 |
|  |  |  | 302 | 端板 | 165.2 |  | － | SUSF316L |  |  |  | $\begin{gathered} \text { 変更なし } \\ 315^{* 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{array}{r} * 4 \\ 8.62(\mathrm{MPa}) \\ \hline \end{array}$ | 302 | 管 | 48.6 |  | － | SUS316LTP |  |  |  | $\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8, * 13 \\ \hline \end{gathered}$ | $\begin{aligned} & \text { 変更なし } \\ & 315 * 8, * 13 \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |
|  |  | $427(\mathrm{kPa})$ | 171 | スリーブ | 165.2 |  | $2955 * 7$ | STS42 | X－52 | 変更なし |  |  | 変更なし | 変更なし 200 ＊ | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 端板 | 165.2 |  | － | SUSF316L |  |  |  | $854(\mathrm{kPa})$＊8 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} { }^{* 4} \\ 981(\mathrm{kPa}) \\ \hline \end{gathered}$ | 171 | 管 | 76.3 |  | － | SUS316LTP |  |  |  | 変更なし | $\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $427(\mathrm{kPa})$ | 171 | スリーブ | 165.2 |  | $2617 * 7$ | STS42 | X－71 |  |  | 変更なし | 変更なし 200＊8 | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 端板 | 165.2 |  | － | SUSF316L |  |  |  | $854(\mathrm{kPa})$＊8 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $863(\mathrm{kPa}){ }^{* 4}$ | 171 | 管 | 60.5 |  | － | SUS316LTP |  |  |  | 変更なし | $\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $427(\mathrm{kPa})$ | 171 | スリーブ | 165.2 |  | $2617 * 7$ | STS42 | $\begin{aligned} & \mathrm{X}-72 \mathrm{~A} \\ & \mathrm{X}-72 \mathrm{~B} \end{aligned}$ |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa})^{*} 8 \end{gathered}$ | 変更なし 200＊8 | 変更なし |  |  |  |  |  | $\begin{array}{r} \quad * 15 \\ \text { X-72A } \\ \text { X-72B } \end{array}$ |
|  |  |  |  | 端板 | 165.2 |  | － | SUSF316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{array}{r} { }^{* 4} \\ 1.77(\mathrm{MPa}) \\ \hline \end{array}$ | 171 | 管 | 60.5 | $\square$ | － | SUS316LTP |  |  |  | 変更なし | $\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $427(\mathrm{kPa}){ }^{* 4}$ | 171 | スリーブ | 165.2 |  | $2617 * 7$ | STS42 | X－73 |  |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200 * 8 \end{gathered}$ | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 端板 | 165.2 |  | － | SUSF316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{array}{r} { }^{* 4} \\ 1.77(\mathrm{MPa}) \end{array}$ | 171 | 管 | 60.5 |  | － | SUS316LTP |  |  |  | 変更なし | $\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## 注記 $* 1$ ：公称値を示す。

＊2：記載の適正化を行う。既工事計画書には「呼び厚さ」と記載。
＊3：（ ）内は公称値を示す。
＊4 ：S I 単位に換算したものである
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書・による。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－3 配管貫通部アッセンブリの基本板厚計算書」による。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
$* 8$ ：重大事故等時の使用時の値。
＊9：当該貫通部については，直結型であったものを二重管型とするものである。
＊ 10 ：計測制御系統施設のうち制御用空気設備（代替高圧窒素ガス供給系）と兼用。
＊ 11 ：圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊ 12 ：当該貫通部については，電気配線貫通部であったものを二重管型とするものである。
 （ほう酸水注入系）に使用する場合の記載事項。
 （ほう酸水注人系）と兼用。
＊ 15 ：計測制御系統施設のらち制御用空気設備（高圧窒素ガス供給系）と兼用。
［3］計装用

| 変 更 前 |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 種 類 | 個 <br> 数 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \end{aligned}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通 部番 号 | 種 類 | 個 <br> 数 | $\begin{array}{llll} \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & & \text { 力 } \end{array}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 構 | 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通部番 号 |
|  |  |  |  |  | 外径＊${ }^{1}$ | 厚さ＊2，＊3 | 長さ＊1 |  |  |  |  |  |  |  |  | 外径 | 厚さ | 長さ |  |  |
| 400A <br> 貫通部 | 23 | $427(\mathrm{kPa}) * 4$ | 171 | スリーブ | 406.4 |  | 2634＊6 | STS42 | X－130A <br> X－130B <br> X－130C <br> X－130D <br> X－135A <br> X－135B <br> X－135C <br> X－135D <br> X－139A <br> X－139B <br> X－140A <br> X－140B | 変更なし |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$ | 変更なし |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 407.0 |  | － | SUS316L |  |  |  | 変更なし 315＊7 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 171 | スリーブ | 406.4 |  | 2687＊6 | STS42 | $\begin{aligned} & \hline \mathrm{X}-136 \mathrm{~A} \\ & \mathrm{X}-136 \mathrm{~B} \\ & \mathrm{X}-137 \mathrm{~B} \\ & \mathrm{X}-137 \mathrm{D} \\ & \hline \end{aligned}$ |  |  | $\begin{gathered} \text { 変更なし } \\ 200 * 7 \end{gathered}$ | 変更なし |  |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 407.0 |  | － | SUS316L |  |  |  | $\begin{gathered} \text { 変更なし } \\ 315 * 7 \\ \hline \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 171 | スリーブ | 406． 4 |  | 2597＊6 | STS42 | $\begin{gathered} \text { X-137A } \\ \text { X-137C } \\ \text { X-138 } \end{gathered}$ |  |  | $\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$ | 変更なし |  |  |  |  |  |  |  |
|  |  |  | 302 | 端板 | 407.0 |  | － | SUS316L |  |  |  | $\begin{gathered} \hline \text { 変更なし } \\ 315 * 7 \\ \hline \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 171 | スリーブ | 406.4 |  | 2877＊6 | STS42 | X－190A |  |  | 変更なし 200 ＊7 | 変更なし |  |  |  |  |  |  |  |
|  |  |  |  | 端板 | 407.0 |  | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | スリーブ | 406.4 |  | 2842＊6 | STS42 | X－190B |  |  | 変更なし |  |  |  |  |  |  |  |  |
|  |  |  |  | 端板 | 407.0 |  | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | スリーブ | 406.4 |  | $2784 * 6$ | STS42 | $\begin{aligned} & X-191 \mathrm{~A} \\ & \mathrm{X}-191 \mathrm{~B} \end{aligned}$ |  |  | 変更なし |  |  |  |  |  |  |  |  |
|  |  |  |  | 端板 | 407.0 |  | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 300A <br> 貫通部 |  | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 318.5 |  | $3130 * 6$ | STS42 | $\begin{aligned} & \mathrm{X}-150 \\ & \mathrm{X}-153 \end{aligned}$ | 変更なし |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$ | 変更なし 200＊7 | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 端板 | 319.0 |  | － | SUS316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { (次頁 } \\ & \text { ~続 } \\ & \text { () } \end{aligned}$ |  |  |  | スリーブ | 318.5 |  | $3200 * 6$ | STS42 | $\begin{aligned} & X-152 A \\ & X-152 C \\ & X-152 D \end{aligned}$ | 変更なし |  |  |  | 変更なし |  |  |  |  |  |  |
|  |  |  |  | 端板 | 319.0 |  | － | SUS316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| 変 更 前 |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 種 類 | 個 | 最高使用 <br> 圧 力 | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通 部番 号 | 種 類 | $\begin{aligned} & \text { 個 } \\ & \text { 数 } \end{aligned}$ | $\begin{array}{llll} \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 王 } & & & \text { 力 } \end{array}$ | $\begin{aligned} & \hline \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | $\begin{aligned} & \text { 貫 通 部 } \\ & \text { 番 } \end{aligned}$ |
|  | 数 |  |  |  | 外径＊${ }^{\text {1 }}$ | 厚さ＊2，＊3 | 長さ＊1 |  |  |  |  |  |  |  | 外径 | 厚さ | 長さ |  |  |
| 40A <br> 貫通部 | 5 | $427(\mathrm{kPa})^{* 4}$ | 171 | スリーブ | 48.6 |  | $2941 * 6$ | STS42 | $\begin{gathered} \hline X-160 \mathrm{~A} \\ \mathrm{X}-160 \mathrm{~B} \\ \mathrm{X}-160 \mathrm{C} \\ \mathrm{X}-160 \mathrm{D} \\ \mathrm{X}-161 \\ \hline \end{gathered}$ | 変更なし |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200 \text { *7 } \end{gathered}$ | 変更なし |  |  |  |  |  |
| 25A <br> 貫通部 | 5 | $427(\mathrm{kPa})^{* 4}$ | 104 | スリーブ | 34.0 |  | $319 * 6$ | SUS316LTP | $\begin{aligned} & \mathrm{X}-272 \mathrm{~A} \\ & \mathrm{X}-272 \mathrm{C} \\ & \mathrm{X}-272 \mathrm{E} \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$ | 4 | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$ | 変更なし 200＊7 | 変更なし |  |  |  |  |  |
|  |  | 427 （kPa） | 104 | スリーブ | 34.0 |  | 319＊6 | SUS316LTP | X－280 |  |  |  |  | 変更なし |  |  |  |  |  |
|  |  | $427(\mathrm{kPa})^{* 4}$ | 104 | スリーブ | 34.0 |  | $344 * 6$ | SUS316LTP | X－281 |  |  | －＊10 |  |  |  |  |  |  |  |
|  |  |  |  | 端板 | 34.0 |  | － | SUSF316L |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20A <br> 貫通部 | 18 | $427(\mathrm{kPa}) * 4$ | 104 | スリーブ | 27.2 |  | $319 * 6$ | SUS316LTP | $\begin{array}{\|c\|} \hline \text { X-260A } \\ \text { X-260B } \\ \text { X-261A } \\ \text { X-261B } \\ \text { X-271A } \\ \text { X-271B } \\ \text { X-272B } \\ \text { X-272D } \\ \text { X-272F } \\ \hline \end{array}$ | 変更なし |  | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$ | 変更なし |  |  |  |  |  |
|  |  |  |  | スリーブ | 27.2 |  | $326^{* 6}$ | SUS316LTP | $\begin{gathered} \hline X-262 \mathrm{~A} \\ \mathrm{X}-262 \mathrm{~B} \\ \mathrm{X}-263 \end{gathered}$ |  |  | 変更なし |  |  |  |  |
|  |  | $863(\mathrm{kPa})^{* 4}$ | 104 | スリーブ | 27.2 |  | $321 * 6$ | SUS316LTP | $\begin{aligned} & \hline X-270 \mathrm{~A} \\ & \mathrm{X}-270 \mathrm{~B} \\ & \mathrm{X}-270 \mathrm{C} \\ & \mathrm{X}-270 \mathrm{D} \\ & \mathrm{X}-270 \mathrm{E} \\ & \mathrm{X}-270 \mathrm{~F} \\ & \hline \end{aligned}$ |  |  | 変更なし | $\begin{gathered} \text { 変更なし } \\ 200 * 7 \end{gathered}$ | 変更なし |  |  |  |  |  |

## 注記＊1 ：公称値を示す。

＊2：記載の適正化を行う。既工事計画書には「呼び厚さ」と記載。
＊3：（ ）内は公称値を示す。
＊ 4 ：S I 単位に換算したものである
$* 5$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
$* 7$ ：重大事故等時の使用時の値。
＊ 8 ：外圧を示す。
 る。
＊10：当該貫通部については，直結型とするため計装用から削除。
b．電気配線貫通部



| 変 更 前 |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 種 類 | 個 数 | 最高使用圧 力 | 最高使用温 度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通 部番 号 | 種 類 | 個 数 | $\begin{array}{lll} \text { 最 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & \text { 力 } \end{array}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫通部番 号 |
|  |  |  |  |  | 外径＊1 | 厚さ＊2 | 長さ＊1 |  |  |  |  |  |  |  | 外径 | 厚さ | 長さ |  |  |
| $\begin{aligned} & \text { (前頁 } \\ & \text { からの } \\ & \text { 続き) } \end{aligned}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$ | $\begin{aligned} & \text { (前頁 } \\ & \text { からの } \\ & \text { 続き) } \end{aligned}$ | $\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 6 \end{gathered}$ | $\begin{gathered} \text { 変更なし } \\ 200^{* 6} \end{gathered}$ | 変更なし |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 300A <br> 貫通部 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 変更なし |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 変更なし |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 変更なし |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 変更なし |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { (次頁 } \\ & \text { に続 } \\ & \text { () } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| 変 更 前 |  |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 種 類 | 個 数 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫 通 部番 号 | 種 類 | 個 数 | $\begin{array}{lll} \text { 最 高 } & \text { 使 用 } \\ \text { 圧 } & & \text { 力 } \end{array}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | 構 成 | 主要寸法（mm） |  |  | 材 料 | 貫通部番 号 |
|  |  |  |  |  | 外径＊1 | 厚さ＊2 | 長さ＊1 |  |  |  |  |  |  |  | 外径 | 厚さ | 長さ |  |  |
| $\begin{array}{\|l\|} \hline \text { (前頁 } \\ \text { からの } \\ \text { 続き) } \end{array}$ | $\begin{array}{\|l} \text { (前頁 } \\ \text { からの } \\ \text { 続き) } \end{array}$ | $427(\mathrm{kPa})$ | 171 | スリーブ | 318．5＊4 | $\boldsymbol{\square}^{* 4}$ | 2939＊5 | STS42 | X－106A | $\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$ | $\begin{aligned} & \text { (前頁 } \\ & \text { からの } \\ & \text { 続き) } \end{aligned}$ | 変更なし | 変更なし | 変更なし |  |  |  |  |  |
|  |  |  |  | 端板 | 318．5＊5 | ${ }^{* 4}$ | － | SGV49 |  |  |  | $854(\mathrm{kPa}) * 6$ | $200 * 6$ |  |  |  |  |  |  |  |  |
|  |  |  |  | スリーブ | 318．5＊4 | $\boldsymbol{\square}^{* 4}$ | 2917＊5 | STS42 | X－106B |  |  | －＊8 |  |  |  |  |  |  |  |
| 300A <br> 貫通部 |  |  |  | 端板 | $318.5^{* 5}$ | $\boldsymbol{q}^{* 4}$ | － | SGV49 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | スリーブ | $318.5^{* 9}$ | $\square^{* 9}$ | $946 * 5$ | STS42 | $\begin{aligned} & X-250 \mathrm{~A} \\ & \mathrm{X}-250 \mathrm{~B} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 104 | アダプタ | 318．5＊5 | $\underbrace{* 5}$＊ | 155．6＊5 | STS42 |  |  |  | 変更なし | 変更なし |  |  |  |  |  |  |
|  |  |  | 104 | ヘッダ | 381＊5 | $\underbrace{* 5}$ ） | － | SUS304 |  |  |  | $854(\mathrm{kPa})$＊ 6 | 200＊6 |  |  |  |  |  |  |
|  |  |  |  | $\begin{gathered} \text { モジュール } \\ \text { (ボディノプラグ) } \end{gathered}$ | － | － | － | SUS304 |  |  |  |  |  |  |  |  |  |  |  |

注記＊1 ：公称値を示す。
＊3：S I 単位に換算したものである。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊6．重大事故等時の使用時の値
＊ 7 ：記載の適正化を行う。既工事計画書には「20」「2」「2」と記載。
＊ 8 ：当該貫通部については，二重管型とするため電気配線貫通部から削除。
 る。

## 7.2 原子炉建屋

（1）原子炉建屋原子炉棟

|  |  |  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  |  | 称 | 原子炉建屋原子炉棟 （二次格納施設） | 原子炉建屋原子炉棟 （二次格納施設）＊1 |
| 種 |  |  | 類 | － | 鉄筋コンクリート造 （一部鉄骨鉄筋コンクリート造及 び鉄骨造） |  |
|  | 計 | 気 | 度 | \％／d＊2 | 50 以下 <br> （6． 4 mm Aq の負圧における原子炉建屋原子炉棟容積に対する空気漏えい率） |  |
| 主 | た | て | 横 | m | $66.0 \times 53.0^{* 3}$ （地下 3 階面，壁外面寸法） |  |
|  | 高 |  | さ | m | 地上 35.7 ，地下 28.9 | 変更なし |
| 要 | 壁 | 東 | 壁 | mm | $250 \sim 1800 * 3, * 4$ |  |
| 寸 |  | 西 | 壁 | mm | $250 \sim 1800 * 3, * 4$ |  |
|  |  | 南 | 壁 | mm | $250 \sim 1800 * 3, * 4$ |  |
| 法 | さ | 北 | 壁 | mm | $250 \sim 1800 * 3, * 4$ |  |
| 材 |  |  | 料 | － | 鉄筋コンクリート及び鋼材 |  |
| 個 |  |  | 数 | － | 1 |  |

注：記載の適正化を行う。既工事計画書の「主要寸法（基礎版厚さ）」の記載を削除。
注記 $* 1$ ：原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系，原子炉建屋水素濃度抑制系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「 \％／day」と記載。
＊3 ：公称値を示す。
＊4 ：既工事計画書には記載がないため記載の適正化を行う。
（2）機器搬出入口

|  |  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 |  | 原子炉建屋大物搬入口＊1 | 原子炉建屋大物搬入口 ${ }^{* 2, * 3}$ |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | たて×横 |  | mm | $5400 \times 5500^{* 4, * 5}$ | 変更なし |
|  | 扉$\underset{* 6}{\text { 体 }}$ | たて | mm | － | $6300 * 5$ |
|  |  | 横 | mm | － | 7290＊5 |
| 個 |  | 数 | － | 1 | 変更なし |
| 種 |  | 類＊6 | － | － | 片開き扉 |
| 材 <br> 料 ＊6 | 扉 板 |  | － | － | SUS304 |
|  | 芯 材 |  | － | － | SM490 |
| 取 | $\begin{gathered} \text { 系 統 } \\ \text { (ライン名) } \end{gathered}$ |  | － | － | － |
| 付 | 設 置 床 |  | m | － | 原子炉建屋 $\text { 0. P. 15. } 00$ |
| 箇 <br> 所 <br> ＊6 | 溢 水 防 護上の区画番号 |  | － | － | － |
|  | 溢 水 防 護 上の配慮が必要な高さ |  | － | － | － |

注記 $~ 1 ~$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2：原子炉格納施設のらち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系，原子炉建屋水素濃度抑制系）と兼用。
＊3：浸水防護施設のらち内郭浸水防護設備と兼用する。
＊4 ：躯体開口寸法を示す。
＊5 ：公称値を示す。
＊6：浸水防護施設のうち内郭浸水防護設備に使用する場合の事項を記載。
（3）エアロック

|  |  |  | 変 更 前 <br> 原子炉建屋エアロック＊1 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称 |  |  | 原子炉建屋エアロック＊2 |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$ | たて×横 | mm | $\begin{gathered} 2000 \times 1000 \\ (\text { 外側 }) \\ 2000 \times 1000 \end{gathered}$ <br> （内側） | 変更なし |
| 個 | 数 | － | 2 |  |

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及 び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系，原子炉建屋水素濃度抑制系）と兼用。
＊3 ：躯体開口寸法を示す。
＊ 4 ：公称値を示す。
（4）原子炉建屋基礎スラブ

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | 原子炉建屋基礎版＊1 | 変更なし |
| 種 | 類 | － | 鉄筋コンクリート造＊2 |  |
| 主 | た て $\times$ 横 | m | $77.0 \times 84.0 * 2, * 4$ |  |
| 要 | 高 さ＊3 | m | 6． $0^{* 4}$ |  |
| 法 | 底面の標高 | m | 0．P．$-14.1 * 2, * 4$ |  |
| 材 | 料 | － | 鉄筋コンクリート＊2 |  |

注記＊1 ：既工事計画書には記載がないため記載の適正化を行う。既工事計画書では原子炉建屋原子炉棟（二次格納施設）に記載。
＊2 ：既工事計画書には記載がないため記載の適正化を行う。記載内容は設計図書による。 ＊3：記載の適正化を行う。既工事計画書には「基礎版厚さ」と記載。
＊ 4 ：公称值を示す。

## 7．3 圧力低減設備その他の安全設備

（1）真空破壊装置

|  |  |  | 変 更 前 | 変更後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称＊1 | 真空破壊弁 | 変更なし |
| 種 | 類 | － | 逆止め弁 |  |
| 寸主 | 呼び径 | －＊2 |  |  |
| 法 要 | 厚 さ | mm | $\square * 4(\square * 4, * 5)$ |  |
| 材 | 料 | － | SGV49 |  |
| 駆 | 動 方 法 | － | 空気作動（窒素作動） |  |
| 個 | 数 | － | 6 |  |
| 取 |  | － | － |  |
| 付 | 設 置 床 | － | 原子炉格納容器内 0．P．-8.10 m |  |
| 箇 | $\begin{array}{lcccc} \text { 溢 } & \text { 水 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$ | － | － |  |
| 所 | 溢水防護上の配慮 が必要な高さ | － | － |  |

注記＊1 ：記載の適正化を行ら。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「呼び径（A）」と記載。
＊3：記載の適正化を行う。既工事計画書には「 $\square$ 」と記載。記載内容は，設計図書による。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5 ：公称値を示す。
（3）ダウンカマ

|  |  |  |  |  |  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  |  |  |  |  | 称 | ダウンカマ |  |
| 種 |  |  |  |  |  | 類 | － | 管形 |  |
|  | 高 使 | 用 | 圧 |  | 内 |  | kPa | $427 * 1$ | $\begin{gathered} \text { 変更なし } \\ 854^{* 2} \\ \hline \end{gathered}$ |
|  |  |  |  |  | 外 | 圧 | kPa | 13． $7^{* 1, * 3}$ | 変更なし |
| 最 | 高 | 使 | 用 |  | 温 | 度 | ${ }^{\circ} \mathrm{C}$ | 171 | $\begin{gathered} \text { 変更なし } \\ 200^{* 2} \end{gathered}$ |
| 主 | 外 |  |  |  |  | 径 | mm |  |  |
| $\begin{aligned} & \text { 条 } \\ & \text { 法 } \end{aligned}$ | 厚 |  |  |  |  | さ＊5 | mm | $\square * 3 \square * 4$ | 変更なし |
| 材 |  |  |  |  |  | 料 | － | SGV49 |  |
| 個 |  |  |  |  |  | 数 | － | 64 |  |

注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－3－1 ベントヘッダ及びダウンカマの基本板厚計算書」による。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
（4）ベント管

|  |  |  |  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  |  |  | 称 | ベント管 |  |
| 種 |  |  |  | 類 | － | 圧力抑制形 |  |
|  | 高 使 | 用 圧 力 |  | 圧 | kPa | 427＊1 | $\begin{gathered} \text { 変更なし } \\ 854^{* 2} \end{gathered}$ |
|  |  |  |  | 圧 | kPa | 13．7＊1 | 変更なし |
| 最 | 高 | 使 用 | 温 | 度 | ${ }^{\circ} \mathrm{C}$ | $171 * 3$ | $\begin{gathered} \text { 変更なし } \\ 200^{* 2} \end{gathered}$ |
| ＊ 4 | 内 |  |  | 径 | mm |  |  |
| $\begin{aligned} & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$ | 厚 |  |  | さ＊6 | mm |  | 変更なし |
| 材 |  |  |  | 料 | － | SGV49 |  |
| 個 |  |  |  | 数 | － | 8 |  |

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊ 1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－3 ベント管の基本板厚計算書」による。


注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（サプレッションチェンバ）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－11 ベント管ベ ローズの強度計算書」による。
（5）ベントヘッダ


注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－3－1 ベントヘッダ及びダウンカマの基本板厚計算書」による。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
（6）原子炉格納容器安全設備
a 原子炉格納容器スプレイ泠却系

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最 高 使 用 } \\ \text { 温 } \quad{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ \hline \end{array} \end{aligned}$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2,*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 名 称 | $\begin{aligned} & \hline \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \end{aligned}$ | $\begin{aligned} & \hline \begin{array}{l} \text { 最高使 用 } \\ \text { 温. } \\ \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 容 } \end{aligned}$ | ドライウェルスプレイ管 | $3.73 * 4$ | 171 | 267．4 ${ }^{267.4 * 5}$ |  | STS42 STS42＊5 | $\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 䌋 } \end{aligned}$ | ドライウェルスプレイ管 ${ }^{* 6}$ | 変更なし | $\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$ |  | 変更なし |  |  |
| $\begin{aligned} & \text { 주 } \\ & \text { 吅 } \\ & \text { 伶 } \\ & \text { 却 } \\ & \text { 采 } \end{aligned}$ | $\begin{aligned} & \text { サプレッションチェンバスプ } \\ & \text { レイ管 } \end{aligned}$ | 3． $73 * 4$ | 104 | 114.3 $114.3 * 9$ | $1$ | STS42 STS42＊9 | $\begin{aligned} & \text { तo } \\ & \text { フo } \\ & \text { L } \\ & \text { 冷 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$ | サプレッションチェンバスプ レイ管 | 変更なし | $\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$ |  | 変更なし |  |  |

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊4：S I 単位に換算したものである
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－3－2 ドライウェルスプレイ管の基本板厚計算書」による
 イ泠却モード））と兼用。
＊7 ：重大事故等時の使用時の値。

よる。事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け云資庁第14466号にて認可された丁事計画の添付書類「IV－3－1－2－2 サプレッションチェンバスリーブの基本板厚計算書・によ る。
＊ 10 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び圧力低減設備その他の安全施設の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ泠却モード））と兼用。
b．原子炉格納容器下部注水系 ハ ポンプ（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 復水移送ポンプ＊ |
| 3．原子炉冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．2 補給水系 <br> （1）ポンプ <br> に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 代替循環冷却ポンプ＊ |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他の <br> （6）原子炉格納容器安全 <br> d．代替循環冷却系 <br> ハポンプ（常設） <br> に記載する。 | 備 |  |

注記 $⿻ 丷 木 斤$ ：本設備は，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

ハポンプ（可搬型）

|  | 変更前 | 変更後 |
| :--- | :---: | :---: |
| 名 称 | － | 大容量送水ポンプ（タイプ I ） | ＊

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

ホ 容器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 復水貯蔵タンク＊ |
| 3．原子炉冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．2 補給水系 <br> （2）容器 <br> に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のらち原子炉泠却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

ト 万過装置（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系ストレーナ（A）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （5）万過装置（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

チ 安全弁及び逃がし弁（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | E11－F048A＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （6）安全弁及び逃が に記載する。 | 常設） |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | E11－F084＊ |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他 <br> （6）原子炉格納容器安 <br> d．代替循環冷却系 チ安全弁及び逃が <br> に記載する。 | 備 <br> 常設） |  |

注記 $⿻ 丷 木 斤$ ：本設備は，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | E11－F085＊ |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他 <br> （6）原子炉格納容器安 <br> d．代替循環冷却系 チ安全弁及び逃が <br> に記載する。 | 備 <br> 常設） |  |

注記 $⿻ 丷 木 斤$ ：本設備は，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

ヌ 主配管（常設）






注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
$* 3$ ：重大事故等時の使用時の値。

 して本工事計画で兼用とする。
計画で兼用とする
＊7 ：エルボを示す。
＊8：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

＊ 10 ：本設備は，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循噮冷却系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炬格納容器下部注水系）として本工事計画で兼用 とする。
＊ 11 ：圧力低減設備その他の安全設備の原子炬格納容器安全設備（代替循環冷却系）と兼用。

又 主配管（可搬型）


注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
 して本工事計画で兼用とする。
c．原子炉格納容器代替スプレイ冷却系 ハ ポンプ（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 復水移送ポンプ＊ |
| 3．原子炉冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．2 補給水系 <br> （1）ポンプ <br> に記載する。 |  |  |

注記 $*: ~$ 本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）として本工事計画で兼用とする。

ハポンプ（可搬型）

|  | 変更前 | 変更後 |
| :--- | :---: | :---: |
| 名 称 | － | 大容量送水ポンプ（タイプ I ） | ＊

注記 $\boldsymbol{*}$ ：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）として本工事計画で兼用とする。

木 容器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 復水貯蔵タンク＊ |
| 3．原子炉冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．2 補給水系 <br> （2）容器 <br> に記載する。 |  |  |

注記 $~$ ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ系）として本工事計画で兼用とする。

又 主配管（常設）



|  | 変更 前 |  |  |  |  |  |  |  | 変更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 | 最高使用圧 <br> （MPa） | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { ) } \end{aligned}$ | $\begin{array}{\|c\|c\|l\|} \text { 外 } \\ \text { 径*1 } \\ (\mathrm{mm}) \end{array}$ | 厚 さ*2 | 材 | 料 |  |  | 名 称 | 最高使用圧 力＊3 （MPa） | 最高使用温 度＊${ }^{*}$ （ ${ }^{\circ} \mathrm{C}$ ） | 外 径＊${ }^{*}$ <br> （mm） | $\underbrace{\text { 厚 }}_{(\mathrm{mm})}$ | 材 | 料 |
|  |  |  |  |  |  |  |  |  |  |  | ドライウエルスプレイ管 | 7．原子炉格 <br> 7.3 圧力低 <br> （6）原子 <br> a 原 <br> に記載する。 | 納施設 <br> 氏減設備その他 <br> 一炉格納容器安 <br> 子炉格納容器ス <br> 主配管（常設 | の安全設備全設備 スプレイ椧却 |  |  |  |
| $\begin{aligned} & 0 \\ & \approx \\ & = \\ & \Theta \end{aligned}$ |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|l} \hline \text { 低 } \\ \text { 压 } \\ \text { 替 } \\ \text { 漼 } \\ \text { 奚 } \end{array}$ |  | 3．原子炉冷 <br> 3.6 非常用 <br> 3． 6.5 低 <br> （7）主 <br> に記載する。 | 却系統施設月炉心洽却設備圧代替注水采配管（常設） | その他原子炉 | 水設備 |  |  |
| $\begin{gathered} \text { N } \\ 0 \end{gathered}$ | $\begin{aligned} & \text { 替 } \\ & \text { 只 } \\ & \text { r } \\ & \text { } \\ & \text { 椧 } \\ & \text { 䇣 } \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { 賛 } \\ & \text { c } \\ & \text { 人 } \\ & \text { 洽 } \\ & \text { 那 } \end{aligned}$ |  | ドライウェルスプレイ注入配管B系分岐点 <br> 低圧代替注水采B系注入配管合流点 ドライウェルスプレイ注入配管B系分吱点 <br> 原子炻格納容器代替スプレイ椧却系 B系注入配管合流点 <br> 原子炉格納容器代替スプレイ泠却系 B系注入配管合流点 <br> 原子炬格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ） | 3．原子炉冷 <br> 3.5 残留熱 <br> 3． 5.1 残 <br> （8）主 <br> に記載する。 | 却系統施設热除去設備残留熱除去系主配管（常設） |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 柜格納容器配管貫通部（ X -30 B ）＊8 | 7．原子炉格 <br> 7.1 原子炉 <br> （4）原子 <br> に記載する。 | 納施設 <br> 戸格納容器 <br> 子炉格納容器酛 | 貫通部及び | 雨気配線貫通 |  |  |



注記＊1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊3：重大事故等時における使用時の値
 とする。
却系）として本工事計画で兼用とする
 て本工事計画で兼用とする。
 する。
＊ 8 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ泠却系）として本工事計画で兼用とする
却系）として本工事計画で兼用とする
＊10：エルボを示す

## 又 主配管（可搬型）



注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
泠却系）として本工事計画で兼用とする。
d．代替循環冷却系
口 熱交換器（常設）

|  | 変更前 | 変更後 |
| :--- | :---: | :---: |
| 名 称 | - |  |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3． 5.1 残留熱除去系 <br> （2）熱交換器（常設） <br> に記載する。熱除去系熱交換器 $(\mathrm{A}) *$ |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。


注記 $* 1$ ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊2 ：重大事故等時における使用時の値。
＊3 ：公称値を示す。

卜 万過装置（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系ストレーナ（A）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1 残留熱除去系 <br> （5）万過装置（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 |  | E11－F084＊1 |
| 種 | 類 | － |  | 平衡型 |
| 吹 | 出 圧 力 | MPa |  | 3.73 |
|  | 出 量 | kg／h／個 |  | 30740 ＊2 |
|  | 呼び径 | － |  | 25A |
| 要 | のど部の径 | mm |  | ＊2 |
| 寸 | 弁 座口 の径 | mm |  | $20 * 2$ |
|  | リフフ | mm |  |  |
| 材 料 | 升 箱 | － | － | SCPH2 |
| 駆 | 動 方 法 | － |  | － |
| 個 | 数 | － |  | 1 |
| 取付算所 |  | － |  | E11-F084代替循環冷却系 |
|  | 設 置 床 | － |  | 原子炉建屋 $\text { 0. Р. }-8.10 \mathrm{~m}$ |
|  | 溢 水 防 護 上の区 画 番 号 | － |  | － |
|  | 溢 水 防 護 上の配慮が必要な高さ | － |  |  |

注記 $* 1$ ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊2 ：公称値を示す。

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称 |  | － | E11－F085＊1 |
| 種 | 類 | － |  | 平衡型 |
|  | 出 圧 力 | MPa |  | 1． 37 |
| 吹 | 出 量 | kg／h／個 |  | 18410＊2 |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 守 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | － |  | 25 A |
|  | のど部 の径 | mm |  | ＊2 |
|  | 弁 座 口 の径 | mm |  | $20^{* 2}$ |
|  | リフフ | mm |  |  |
| 材料 | 弁 箱 | － |  | SCPH2 |
| 駆 | 動 方 法 | － |  | － |
| 個 | 数 | － |  | 1 |
| $\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 保 } \end{aligned}$ | $\begin{aligned} & \text { 系 } \\ & \text { (統 } \end{aligned} \text { 名 }$ | － |  | E11－F085代替循環冷却系 |
|  | 設 置 床 | － |  | $\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. -8. 10m } \end{aligned}$ |
|  | 溢 水 防 護 上の区 画 番 号 | － |  | － |
|  | 溢 水 防 護 上の配慮が必要な高さ | － |  |  |

注記＊1 ：原子灲冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊2 ：公称値を示す。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | E11－F048A，B＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1 残留熱除去系 <br> （6）安全弁及び逃がし弁 に記載する。 |  |  |

注記 $~: ~$ 本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。

又 主配管（常設）




| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\underset{(\mathrm{mm})}{\text { 厚 }}$ | 材 | 料 | 名 称 |  |  | $\begin{gathered} \text { 最 高 使 用 } \\ \text { 圧 力莨 } \\ \text { (MPa) } \\ \hline \end{gathered}$ | 最高使用温 度＊3 $\left({ }^{\circ} \mathrm{C}\right)$ | $\underbrace{\text { 外 }}_{(\mathrm{mm})}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| 代替循環㑢系 |  |  |  |  |  |  |  |  | 代替循環却系 | 残 <br> 留 <br> 熱 <br> 除 <br> 去 <br> 系 |  | 3．原子炉冷却系統施設 3.5 残留熱除去設備 <br> 3．5． 1 残留熱除去系 <br> （8）主配管（常設） に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 戸格納容器配管貫通部 A） | 7．原子炉格 <br> 7． 1 原子炻 <br> （4）原 <br> に記載する。 | 納施設 <br> 格納容器 <br> 炉格納容器 | 管貫通部及び | 配線貫通部 |  |  |
|  |  |  |  |  |  |  |  |  | 残 留 熱 除 去 系 | 原子炉格納容器配管貫通部（X－31A） <br> 原子炉圧力容器 | 3．原子炉 3.5 残留 3．5． 1 （8） <br> に記載する | 却系統施設除去設備留熱除去系 ：配管（常設） |  |  |  |  |

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3 ：重大事故等時における使用時の値。
＊4：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする
＊5：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。
＊6：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊ 7 ：エルボを示す
計画で兼用とする。
 とする。
 で兼用とする。
e．高圧代替注水系
ハポンプ（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 高圧代替注水系タービンポンプ＊ |
| 3．原子炉冷却系統施設 <br> 3.6 非常用炉心冷却設備そ <br> 3．6．3 高圧代替注水系 <br> （1）ポンプ（常設） <br> に記載する。 | 原子注水 |  |

注記 $*: ~$ 本設備は，原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備
（高圧代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。

ホ 容器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 復水貯蔵タンク＊ |
| 3．原子炉冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．2 補給水系 <br> （2）容器 <br> に記載する。 |  |  |

注記 $~$ ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。

又 主配管（常設）

| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最 高 使 用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 | 名 称 |  |  | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \end{array} \text { (MPa) } \end{aligned}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | ${ }^{\text {外 }} \underset{(\mathrm{mm})}{\text { 径*1 }}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { 高 } \\ & \text { 垈 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 主 } \\ & \text { 裓 } \\ & \text { 藥 } \end{aligned}$ | 原子炉圧力容器 <br> 原子炉隔離時冷却系蒸気配管分岐点 | 3．原子炉冷却系統施設 <br> 3.4 原子炉冷却材の循環設備 <br> 3．4．1 主蒸気系 <br> （8）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 原 } \\ & \text { 俍 } \\ & \text { 炉 } \\ & \text { 離 } \\ & \text { 時 } \\ & \text { 却 } \\ & \text { 采 } \end{aligned}$ | 原子炉隔離時冷却系蒸気配管分岐点 <br> 原子炉格納容器配管貫通部（X－36） | 3．原子炉冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．1 原子炉隔離時冷却系 <br> （5）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部(X-36) |  | 7．原子炉格納施設 <br> 7.1 原子炉格納容器 <br> （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。 |  |  |  |  |  |
|  |  |  |  | － |  |  |  |  |  | $\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 隔 } \\ & \text { 離 } \\ & \text { 泠 } \\ & \text { 却 } \end{aligned}$ |  | 3．原子炉冷却系統施設 <br> 3．7原子炉冷却材補給設備 <br> 3．7．1 原子炉隔離時冷却系 <br> （5）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 高 } \\ & \text { 庄 } \\ & \text { 代 } \\ & \text { 準 } \\ & \text { 水 } \end{aligned}$ | 高圧代替注水系蒸気入口配管分岐点 <br> 高圧代替注水系ター ビンポンプ <br> 高圧代替注水系ター ビンポンプ <br> 原子炉隔離時冷却系 タービン排気配管合流点 | 3．原子炉冷 3.6 非常 <br> 3．6． 3 <br> （7） <br> に記載する。 | 却系統施設炉心冷却設侑圧代替注水采配管（常設） | の他原子炉注 | 設備 |  |  |


| 変更 前 |  |  |  |  |  |  |  | 変更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \\ & \text { (MPa) } \text { 力 } \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { 最高使用 } \\ \text { 温 } \end{array}{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 洤*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 | 料 | 名 称 |  |  | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { 最高使用 } \\ \text { 压 } \\ \text { ( } \mathrm{MPa}) \end{array} \\ \hline \end{array}$ | 最高使用温度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | $$ | $\underset{(\mathrm{mm})}{\text { 厚 }}$ | 材 | 料 |
| $\begin{aligned} & \text { 膏 } \\ & \text { 帒 } \\ & \text { 替 } \\ & \hline \text { 沓 } \\ & \text { 采 } \end{aligned}$ | － |  |  |  |  |  |  | $\begin{aligned} & \text { 高 } \\ & \text { 䍂 } \\ & \text { 溻 } \\ & \text { 沓 } \\ & \text { 采 } \end{aligned}$ |  | 原子炬隔離時冷却系夕 ービン排気配管合流点原子炉格納容器配管貫通部（X－222） | 3．原子炬泠却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7． 1 原子炬隔離時冷却系 <br> （5）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-222$ ） | 7．原子炉格納施設 <br> 7.1 原子炉格納容器 <br> （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部（X－222） <br> 原子炬隔離時冷却系ス パージャ | 3．原子炬冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．1 原子炉隔離時冷却系 <br> （5）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 補 | 復水貯蔵タンク $\quad * 7$ E22－F014 E2 | 3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 <br> 3．7．2 補給水系 <br> （5）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | 3．原子炬冷却系統施設 <br> 3.6 非常用炉心椧却設備その他原子炉注水設備 <br> 3．6．1 高圧炬心スプレイ系 <br> （7）主配管（常設） <br> に記載する。 |  |  |  |  |  |


| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \end{aligned}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 | 名 称 |  |  | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \end{array} \\ & (\mathrm{MPa}) \end{aligned}$ | 最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$ | $\underbrace{}_{(\mathrm{mm})}{ }^{\text {外 }}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| 高庄代替注沝系 | － |  |  |  |  |  |  |  | $\begin{aligned} & \text { 高 } \\ & \text { 庄 } \\ & \text { 僣 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$ | 高 压 先 年 フo L 系 | 復水貯蔵タンク出口配管分岐点 <br> 低圧代替注水系吸込配管分岐点 <br> 低圧代替注水系吸込配管分岐点 <br> 高圧代替注水系吸込配管分岐点 | 3．原子炉冷却系統施設 <br> 3.6 非常用炉心冷却設備その他原子炉注水設備 <br> 3．6．1 高圧炉心スプレイ系 <br> （7）主配管（常設） <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$ | 高圧代替注水系吸込配管分岐点 <br> 高圧代替注水系タービ ンポンプ <br> 高圧代替注水系タービ ンポンプ <br> 高圧代替注水系注入配管合流点 | 3．原子炉冷却系統施設 <br> 3.6 非常用炉心冷却設備その他原子炉注水設備 <br> 3．6． 3 高圧代替注水系 <br> （7）主配管（常設） <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 原 年 炬 浍 却 材 浄 华 系 | 高圧代替注水系注入配管合流点 <br> 原子炉冷却材浄化系A系注入配管合流点 | 3．原子炉冷却系統施設 <br> 3.9 原子炉冷却材浄化設備 <br> 3．9．1 原子炉冷却材浄化系 <br> （6）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 復 水 給 水 系 | $\square$ <br> 原子炉冷却材浄化系A系注入配管合流点 <br> 原子炉格納容器配管貫通部（X－12A） | 3．原子炉泠却系統施設 <br> 3.4 原子炉冷却材の循環設備 <br> 3．4．2 復水給水系 <br> （8）主配管 <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部$(\mathrm{X}-12 \mathrm{~A})$ | 7．原子炉格納施設 <br> 7.1 原子炉格納容器 <br> （4）原子炬格納容器配管貫通部及び電気配線貫通部 に記載する。 |  |  |  |  |  |


| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{l} \text { 力 } \\ (\mathrm{MPa}) \end{array} \end{aligned}$ | 最高使用温 <br> 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 | 名 称 |  |  | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$ | 材 | 料 |
| 高 圧 㐼 替 注 水 系 |  | － |  |  |  |  |  |  | 高 庄 代 替 注 水 系 | $\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$ | 原子炉格納容器配管貫通部（X－12A） <br> 原子炉圧力容器 | 3．原子炉冷却系統施設 <br> 3.4 原子炉冷却材の循環設備 <br> 3．4． 2 復水給水系 <br> （8）主配管 <br> に記載する。 |  |  |  |  |  |

注記 $~ 1 ~ 1 ~: ~$ 外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3 ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材の循環設備（主蒸気系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
 ＊5 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
 とする。
＊7：本設備は，既存の原子炉冷却系統施設のらち原子炉冷却材補給設備（補給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
計画で兼用とする。
 ＊ 10 ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材の循環設備（復水給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。


ハポンプ（可搬型）

|  | 変更前 | 変更後 |
| :--- | :---: | :---: |
| 名 称 | － | 大容量送水ポンプ（タイプ I ） | ＊

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。

木 容器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 復水貯蔵タンク＊ |
| 3．原子炉冷却系統施設 <br> 3.7 原子炉冷却材補給設備 <br> 3．7．2 補給水系 <br> （2）容器 <br> に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のらち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。

ヌ 主配管（常設）




注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
$* 3$ ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。
計画で兼用とする。
 とする。
＊6 ：本設備は，既存の原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。
$* 7$ ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。

ヌ 主配管（可搬型）


注記 $~ * 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | ほう酸水注入系ポンプ＊ |
| 4．計測制御系統施設 <br> 4． 4 ほう酸水注入設備 <br> 4．4．1 ほう酸水注入系 <br> （1）ポンプ（常設） <br> に記載する。 |  |  |

注記 $*: ~$ 本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

ホ 容器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | ほう酸水注入系貯蔵タンク＊ |
| 4．計測制御系統施設 <br> 4．4ほう酸水注入設備 <br> 4．4．1 ほう酸水注入系 <br> （2）容器（常設） <br> に記載する。 |  |  |

注記 $*$ ：本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

于 安全弁及び逃がし弁（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | C41－F003A，B＊ |
| 4．計測制御系統施設 <br> 4．4ほら酸水注入設備 <br> 4．4．1 ほう酸水注入系 <br> （3）安全弁及び逃がし弁（常設） <br> に記載する。 |  |  |

注記 $*$ ：本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | C41－F022＊ |
| 4．計測制御系統施設 <br> 4． 4 ほら酸水注入設備 <br> 4．4．1 ほう酸水注入系 <br> （3）安全弁及び逃がし弁（常設） に記載する。 |  |  |

注記 $*$ ：本設備は，既存の計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

又 主配管（常設）

| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最 高 使 用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 | 名 称 |  | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$ | 最 高 使 用温度 $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
| $\begin{aligned} & \text { ほ } \\ & \text { 酸 } \\ & \text { 醁 } \\ & \text { 乼 } \\ & \text { 系 } \end{aligned}$ |  | － |  |  |  |  |  |  | ほ方酸水注入系 |  | 4．計測制御系統施設 <br> 4.4 ほう酸水注入設備 <br> 4．4．1 ほう酸水注入系 <br> （5）主配管（常設） に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部 （X－22） | 7．原子炉格納施設 <br> 7.1 原子炉格納容器 <br> （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部 （X－22） <br> 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまで の外管） | 4．計測制御系統施設 <br> 4.4 ほう酸水注入設備 <br> 4．4．1 ほう酸水注入系 <br> （5）主配管（常設） に記載する。 |  |  |  |  |  |

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊3 ：本設備は，既存の計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。 ＊ 4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。
h．残留熱除去系（格納容器スプレイ冷却モード）
口 熱交換器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系熱交換器（A），（B）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1 残留熱除去系 <br> （2）熱交換器（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

ハポンプ（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系ポンプ（A），（B）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （3）ポンプ（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

卜 万過装置（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系ストレーナ（A），（B）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （5）万過装置（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

チ 安全弁及び逃がし弁（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | E11－F048A，B＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （6）安全弁及び逃がし に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

又 主配管（常設）





|  | 変更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 称 | 最高使用 <br> （MPa） | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }_{\left({ }^{\circ} \mathrm{C}\right)} \text { ) } \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 }{ }^{\text {さ*2 }} \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |  | 名 称 | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { 最高使 用 } \\ \text { 圧 } \\ (\mathrm{MPa}) \end{array} \\ \hline \end{array}$ | 最高使用温度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ |  | $\underset{(\mathrm{mm})}{\text { 厚 }}$ |  | 料 |
| $\begin{aligned} & 0 \\ & \approx \\ & = \\ & \Theta \\ & \sim \\ & 0 \end{aligned}$ |  | （．1．a）（C）（m） |  |  |  |  |  |  |  |  |  | 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1 残留熱除去系 <br> （8）主配管（常設） <br> に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 原子炉格納容器配管貫通部 } \\ & (\mathrm{X}-30 \mathrm{a} \end{aligned}$ | $\begin{aligned} & \text { 7. 原子炉格䊽 } \\ & \text { 7. } 1 \text { 原子炉 } \\ & \text { (4) 原子 } \\ & \text { に記載する。 } \end{aligned}$ | 内施設格納容器炬格納容器配 | 貫通部及 | 己線貫通部 |  |  |


| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最 高 使 用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |  | 名 称 | $\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最高使用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
|  |  | － |  |  |  |  |  |  |  |  | 3．原子炉冷却系統施設 3.5 残留熱除去設備 <br> 3．5．1 残留熱除去系 <br> （8）主配管（常設） に記載する。 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部 （ X －213B） | 7．原子炉格納施設 <br> 7.1 原子炉格納容器 <br> （4）原子炬格納容器配管貫通部及び電気配線貫通部 に記載する。 |  |  |  |  |  |

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
 で兼用とする。
＊ 4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ泠却モード）として本工事計画で兼用とする。
 イ泠却モード））として本工事計画で兼用とする。
i．残留熱除去系（サプレッションプール水冷却モード）
口 熱交換器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系熱交換器（A），（B）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1 残留熱除去系 <br> （2）熱交換器（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

ハポンプ（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系ポンプ（A），（B）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （3）ポンプ（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

卜 万過装置（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 残留熱除去系ストレーナ（A），（B）＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （5）万過装置（常設） に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

チ 安全弁及び逃がし弁（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | E11－F048A，B＊ |
| 3．原子炉冷却系統施設 <br> 3.5 残留熱除去設備 <br> 3．5．1残留熱除去系 <br> （6）安全弁及び逃が に記載する。 |  |  |

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

又 主配管（常設）


| 変 更 前 |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \\ & (\mathrm{MPa}) \end{aligned}$ | 最 高 使 用温 度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ |  | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 名 | 称 | 最高使用 最高使用 <br> 圧力 <br> （MPa） 温（ ${ }^{\circ} \mathrm{C}$ ） 度 | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\underset{(\mathrm{mm})}{\text { 厚 }}$ | 材 | 料 |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 残 } \\ & \text { 勎 } \\ & \text { 蒢 } \\ & \text { 爫 } \end{aligned}$ | 残留熱除去系熱交換器 <br> （A）バイパス配管分岐点 <br> 残留熱除去系熱交換器 <br> （A） <br> 残留熱除去系熱交換器 <br> （A） <br> 残留熱除去系熱交換器代替循環冷却系出口配管分岐点 <br> 残留熱除去系熱交換器代替循環冷却系出口配管分岐点 <br> 残留熱除去系熱交換器 <br> （A）バイパス配管合流点 <br> 残留熱除去系熱交換器 （A）バイパス配管合流点 <br> 原子炉停止時冷却モー <br> ドA系注入配管分岐点 <br> 原子炉停止時冷却モー ドA系注入配管分岐点 <br> サプレッションプール <br> 水泠却モードA系戻り <br> 配管分岐点 <br> サプレッションプール水冷却モードA系戻り配管分岐点 <br> 原子炉格納容器配管貫通部（X－215A） | 3．原子炉泠却系統施設 3.5 残留熱除去設備 <br> 3．5．1 残留熱除去系 <br> （8）主配管（常設） に記載する。 |  |  |  |  |




| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最 高 使 用温度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\underset{(\mathrm{mm})}{\text { 厚 }}$ | 材 | 料 |  | 名 | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
|  |  |  |  | － |  |  |  |  |  | $\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 藥 } \end{aligned}$ | 原子炉格納容器配管貫通部（X－215B） サプレッションプール冷却配管B系開放端 | 3．原子炉冷 3.5 残留熱 3．5．1 残 （8）主 に記載する。 | 却系統施設除去設備留熱除去系配管（常設） |  |  |  |  |

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
事計画で兼用とする。
＊ 4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（サプレッションプール水泠却モード））として本工事計画で兼用とする。
（7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環系
a 非常用ガス処理系


注記 $* 1$ ：記載の適正化を行う。既工事計画書では主配管に記載。
$* 2$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊3：公称値を示す。
＊4：S I 単位に換算したものである。

ヌ 主要弁（常設）

|  |  |  | 変 更 前＊1 |  |  | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | T46－F001A，B |  |  | 変更なし |
| 種 | 類 | － | 止め弁 |  |  |  |
|  | 高 使 用 圧 力 | kPa | －23．5～13．7 |  |  |  |
|  | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | 100 |  |  |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼び 径 | － | 300A |  |  |  |
|  | 弁 箱 厚 さ | mm |  |  |  |  |
|  | 弁ふた厚さ | mm |  |  |  |  |
| 材 | 弁 箱 | － |  |  |  |  |
| 料 | 弁 ふ た | － |  |  |  |  |
| 駆 | 動 方 法 | － |  |  |  |  |
| 個 | 数 | － |  |  |  |  |
| 取 <br> 付 <br> 箇 <br> 所 | $\begin{array}{llll} \text { 系 } & & \text { 統 } & \text { 名 } \\ \left(\begin{array}{l} \text { ラ } \end{array}\right. \\ \hline \end{array}$ | － | $\begin{gathered} \text { T46-F001A } \\ \text { 非常用ガス処理系A系 } \end{gathered}$ | $\begin{gathered} \text { T46-F001B } \\ \text { 非常用ガス処理系B系 } \end{gathered}$ |  |  |
|  | 設 置 床 | － | $\begin{aligned} & \hline \text { 原子炉建屋 } \\ & 0 . P .33 .20 \mathrm{~m} \end{aligned}$ | 原子炉建屋 0．P． 33.20 m |  |  |
|  | $\begin{array}{lcccc} \text { 溢 } & \text { 水 } & \text { 防 櫵 } & \text { 上 } & \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ | － | － |  |  |  |
|  | 泬水防護上の配慮 が必要な高さ | － |  |  |  |  |

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

杵囲みの内容は商業機密の観点から公開できません


注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

ル 主配管（常設）


| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \\ & \hline \end{aligned}$ | 最 高 使 用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \end{aligned}$ | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |
| $\begin{aligned} & \text { 䧳 } \\ & \text { 苚 } \\ & \text { 分 } \\ & \text { 処 } \\ & \text { 理 } \\ & \text { 采 } \end{aligned}$ | 非常用ガス処理系フィルタ装置 <br> 非常用ガス処理系フィルタ装置出口配管合流点 | $23.5 * 4$ | 140 | 318.5 | （10．3） | STS410＊5 | $\begin{aligned} & \text { 幚 } \\ & \text { 勇 } \\ & \text { 不 } \\ & \text { 処 } \\ & \text { 釉 } \end{aligned}$ | 変更なし | 変更なし |  |  |  |  |
|  |  | － |  |  |  |  |  |  | 23.5 ＊6 | $140 * 6$ |  | $\begin{aligned} & (10.3) \\ & / \quad \begin{array}{l} * 6, * 7 \\ (10.3) \\ / \\ (10.3) \end{array} \end{aligned}$ | $\text { *6, * } 7$ <br> STS410 |
|  | 非常用ガス処理系フィルタ装置出口配管合流点 <br> 排気筒 | － |  |  |  |  |  | 非常用ガス処理系フィルタ装置出口配管合流点 <br> 排気筒 | 変更なし <br> $854 * 6, * 14$ | 変更なし$171 * 6, * 14$ |  | $\begin{aligned} & { }_{(10.3)}^{* 6, * 7} \\ & \vdots \\ & (10.3) \\ & \vdots \\ & (10.3) \end{aligned}$ | STS410 |
|  |  | $23.5 * 4$ | 140 | 318.5 | （10．3） | STS410＊5 |  |  |  |  |  | 変更なし |  |
|  |  | － |  |  |  |  |  |  |  |  | $\begin{aligned} & * 6, * 7, * 8 \\ & 318.5 \end{aligned}$ | $\begin{aligned} & * 6, * 7, * 8 \\ & (10.3) \end{aligned}$ | $\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$ |
|  | 非常用ガス処理系空気乾燥装置 | $13.7 * 4$ | 140 | 318.5 <br> 角形 <br> $1300 \mathrm{~W} \times 1700 \mathrm{H}$ |  | $\begin{aligned} & \text { SUS304 } \\ & \text { SUS304 } \end{aligned}$ |  | －＊16 |  |  |  |  |  |
|  | 非常用ガス処理系フィルタ装置 | $23.5 * 4$ | 140 | 318.5 <br> 角形 <br> $1600 \mathrm{~W} \times 1800 \mathrm{H}$ |  | SUS304 SUS304 |  | －＊16 |  |  |  |  |  |

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「原子炉格納容器調気系から非常用ガス処理系空気乾燥装置まで（空気乾燥装置入口配管）」と記載。
＊4：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「STS42」と記載
＊6：重大事故等クラス2配管に使用する場合の記載事項。
＊ 7 ：本設備は既存の設備である。
＊ 8 ：エルボを示す。
＊9：伸縮継手部の外径及び厚さ。
＊ 10 ：記載内容は設計図書による。
＊ 11 ：記載の適正化を行う。既工事計画書には「原子炉建屋内から空気乾燥装置入口配管まで」と記載。
＊12：記載の適正化を行う。既工事計画書には「非常用ガス処理系フィルタ装置から排気筒まで」と記載。
＊ 13 ：原子炉冷却系統施設のらち残留熱除去設備（耐圧強化ベント系）と兼用。
＊14：重大事故等時の使用時の値。
＊15：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類「IV－3－5－1－1 管の強度計算書」による。
＊16：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。

ヨ 排風機（常設）


注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。

|  |  |  |  | 変 更 前 |  | 変更後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  | 称 | 非常用ガス処理系フィルタ装置＊1 |  | 変更なし |
| 種 |  | 類 | － | 高性能エアフィルタ | $\begin{aligned} & \text { チャコール } \\ & \text { エアフィルタ } \end{aligned}$ |  |
|  | 単 | 体 | \％ | $\begin{gathered} 99.97 \text { 以上 } \\ (0.3 \mu \mathrm{~m} \text { 粒子に対 } \\ \text { して) } \end{gathered}$ | $\square$以上 <br> （相対湿度 $70 \%$ 以下，温度 $66^{\circ} \mathrm{C}$ 以下 において） |  |
| 率 |  | 合 | \％ | $\begin{gathered} 99.9 \text { 以上 } \\ (0.5 \mu \mathrm{~m} \text { 粒子に対 } \\ \text { して) } \end{gathered}$ | 90 以上 <br> （相対湿度 70\％以下，温度 $66^{\circ} \mathrm{C}$ 以下 において） |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ |  | 込 口 径 | mm | 304. | $3, * 4$ |  |
|  |  | 出口 径 | mm | 304. | $3, * 4$ |  |
|  | た | て | mm | 1600 | ＊ $4, * 5$ |  |
|  |  | 横 | mm | 994 | ，＊4 |  |
|  | 高 | さ | mm | 1800 | ＊4，＊5 |  |
|  | 厚 | 吸 込 | mm | 6． $0^{* 3}$ | ＊4，＊5） |  |
|  |  | 吐 出 | mm | 6． $0^{* 3}$ | ＊ $4, * 5$ ） |  |
|  |  | ケーシング | mm | 6． $0^{* 3}($ | ＊ $4, * 5$ ） |  |
| 個 | 数 |  |  |  |  |  |
| $\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 䈭 } \end{aligned}$ | $\begin{gathered} \text { 系 統 名 } \\ (\text { ラ イン 名 }) \end{gathered}$ |  | － | 非常用ガス処理非常用が | フィルタ装置処理系 |  |
|  |  | 置 床 | － | $\begin{aligned} & \text { 原子 } \\ & 0 . \mathrm{P} . \end{aligned}$ | 建屋 ${ }^{* 3}$ |  |
|  | $\begin{aligned} & \text { 溢 } \\ & \text { 区 } \end{aligned}$ | 防護上の画 番 号 | － |  |  | $\mathrm{R}-2 \mathrm{~F}-1-1$ |
|  | 溢 <br> 配慮 | 防護上の が必要な高さ | － |  |  | 0.13 m 以上 |

注：記載の適正化を行う。既工事計画書には「放射線管理設備のうち換気設備」に記載。

＊2 ：記載の適正化を行う。既工事計画書には「能力」と記載。
＊ 3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書では主配管に記載。
b．可燃性ガス濃度制御系

|  |  |  |  |  |  | 変 更 前 |  | 変 更 後 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  |  | 称 |  | 可燃性ガス濃度制御系再結合装置加熱器 |  |  |  |  |  |
| 種 |  |  |  | 類 | － | 電気式 |  |  |  |  |  |
| 容 |  |  |  | 量＊1 | kW／個 | 以上 | $\square^{* 3}$ |  |  |  |  |
| 最 | 高 | 使 | 用 | 圧 力 | kPa | 427 | 4，＊5 |  |  |  |  |
| 最 | 高 | 使 | 用 | 温 度 | ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| 主 | 加 | 外 |  | 径 | mm | 89.1 | ＊3，＊4 |  |  |  |  |
| 法 | 管 | 厚 |  | さ | mm | （5． 5 | 3，＊4） |  |  | 更なし |  |
| 材 |  |  |  | 料 | － | SUS30 | TP＊4 |  |  |  |  |
| 個 |  |  |  | 数＊6 | － |  |  |  |  |  |  |
| $\begin{aligned} & \text { 取 } \\ & \text { 贷 } \\ & \text { 䇖 } \end{aligned}$ | ）${ }_{\text {系 }}$ | ラ | ${ }^{\text {統 }}$ | 名 ） | － | 可燃性ガス濃度制御系再結合装置加熱器（A）可燃性ガス濃度制御系A系 | 可燃性ガス濃度制御系再結合装置加熱器（B）可燃性ガス濃度制御系B系 |  |  |  |  |
|  | 設 |  | 置 | 床 | － | $\square$ | $\square$ |  |  |  |  |
|  | 溢水防護上の区画番号 |  |  |  | － | － |  | R－2F－2－2 |  |  | R－2F－2－3 |
|  | 溢 が | $\begin{array}{cc} \text { 水 防 } & \text { 誩信必 } \\ \text { 要 } \end{array}$ | $\begin{array}{ll} \text { 蒦 上 } \\ \text { I } \end{array}$ | $\begin{array}{cc} \hline \text { の配 } & \text { 慮 } \\ \text { 高 } & \text { さ } \end{array}$ | － |  |  | 床上 0.07 m 以上 |  |  | 床上 0.07 m 以上 |

注記＊1 ：記載の適正化を行う。既工事計画書には「能力／容量」と記載。
$* 2$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書では主配管に記載。
＊5 ：S I 単位に換算したものである。
＊6 ：記載の適正化を行う。既工事計画書には「能力／個数」と記載。

| リ＜全升及び逃がし升（常設 |  |  | 変 更 前＊1 | 変更後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称 |  | T49－F007A，B | 変更なし |
| 種 | 類 | － | 平衡型 |  |
| 吹 | 出 圧 力 | kPa | 196 |  |
| 吹 | 出 量 | kg／h／個 | $4223 * 2$ |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | － | 25A |  |
|  | のど部の径 | mm | ＊2 |  |
|  | 弁 座口の径 | mm | $24 * 2$ |  |
|  | リフフト | mm |  |  |
| 材 料 | 弁 箱 | － | SCPH2 |  |
| 駆 | 動 方 法 | － | － |  |
| 個 | 数 | － | 2 |  |
| 取付䈯所 |  | － | T49-F007A, B <br> 可燃性ガス濃度制御系 |  |
|  | 設 置 床 | － | 原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$ |  |
|  | $\begin{aligned} & \text { 溢 } \end{aligned} \text { 水 防 護 上 } \begin{array}{ll} \text { の } \\ \text { 区 } & \text { 画 } \\ \text { 番 } & \text { 号 } \end{array}$ | － |  |  |
|  | 溢 水 防 護 上の配慮が必要な高さ | － | － |  |

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。

又 主要弁（常設）


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行ら。既工事計画書には「F001A，B」と記載。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊ 4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003A，B」と記載。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「150」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

ル 主配管（常設）


注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「ドライウェルから可燃性ガス濃度制御系再結合装置ブロワまで（再結合装置ブロワ入口配管）」と記載。
＊4：S I 単位に換算したものである
＊5 ：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊6：記載の適正化を行う。既工事計画書には「再結合装置冷却器からサプレッションチェンバまで（再結合装置冷却器出口配管）」と記載。

ヲ ブロワ（常設）


注記 $* 1$ ：記載の適正化を行う。既工事計画書には「能力／容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊ 4 ：記載の適正化を行う。既工事計画書には「能力／個数」と記載。

7 再結合装置（常設）

（次頁へ続く）
（前頁からの続き）

| 変 更 前 |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 名 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \end{aligned}$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*8 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |  | 称 | $\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \\ & \hline \end{aligned}$ | 最 高 使 用温度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \quad \text { 径*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*8 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |
|  | 可燃性ガス濃度制御系再結合装置入口配管 <br> 可燃性ガス濃度制御系再結合装置ブロワ | $427 * 5$ | 171 | 114.3 89.1 | $(6.0)$ $(5.5)$ | SUS304TP SUS304TP |  | 変更なし |  |  |  |  |  |  |
|  | $\square$ <br> 可燃性ガス濃度制御系再結合装置ブロワ <br> 可燃性ガス濃度制御系再結合装置冷却器 | 427＊5 | 777 | 89.1 89.1 406.4 114.3 | （5．5） $]^{* 11}(6.5)$ $]^{* 11}(8.0)$ $(6.0)$ | SUS304TP <br> SUS304TP <br> SUSF304 <br> SUS304TP |  | 変更なし |  |  |  |  |  |  |
| $\begin{aligned} & \text { 制 } \\ & \text { 蓹 } \\ & \text { 乎 } \end{aligned}$ | 可燃性ガス濃度制御系再結合装置冷却器 | 427＊5 | 777 | 165.2 | （7．1） | SUS304TP |  | 変更なし |  |  |  |  |  |  |
| 結 合 装 蹎 配 管 | 可燃性ガス濃度制御系再結合装置冷却器 <br> 可燃性ガス濃度制御系再結合装置出口配管 | 427＊5 | 171 | 165.2 165.2 | $\square^{* 11}(7.1)$ | SUSF304 SUS304TP |  | 変更なし |  |  |  |  |  |  |
|  | 可燃性ガス濃度制御系再結合装置入口配管合流点 <br> 可燃性ガス濃度制御系再結合装置出口配管分岐点 | 427＊5 | 171 | 89． 1 | （5．5） | SUS304TP |  | 変更なし |  |  |  |  |  |  |

注記＊1 ：記載の適正化を行ら。既工事計画書には「能力／容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す
＊4：記載の適正化を行う。既工事計画書では主配管に記載。
＊5：S I 単位に換算したものである。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「第4－1－2図 可燃性ガス濃度制御系再結合装置構造図」による。
＊7：記載の適正化を行う。既工事計画書には「能力／個数」と記載。
＊8：（ ）内は公称値を示す。
＊9：記載の適正化を行う。既工事計画書には「ドライウェルから可燃性ガス濃度制御系再結合装置ブロワまで（再結合装置ブロワ入口配管）」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「可燃性ガス濃度制御系再結合装置ブロワから可燃性ガス濃度制御系再結合装置冷却器まで」と記載。
＊11：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－2－1－1－1 管の基本板厚計算書」による。
＊ 12 ：記載の適正化を行う。既工事計画書には「再結合装置冷却器からサプレッションチェンバまで（再結合装置冷却器出口配管）」と記載。
＊13：記載の適正化を行う。既工事計画書には「再結合装置泠却器出口配管から再結合装置ブロワ入口配管まで」と記載。
c．原子炉建屋水素濃度抑制系
ワ 再結合装置（常設）


注記 $* 1$ ：重大事故等時における使用時の値。
＊2 ：水素処理容量を示す。メーカ型式PAR－88の性能評価式の代表点での値にスケールファ クタを乗じた値。
＊3 ：公称値を示す。
d．放射性物質拡散抑制系
ハ ポンプ（可搬型）

|  |  |  |  |  |  | 変更前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  |  |  |  | 称 |  | 大容量送水ポンプ（タイプII）＊ 1 |
|  | 種 |  |  | 類 | － |  | うず巻型 |
|  | 容 |  |  | 量＊2 | $\mathrm{m}^{3} / \mathrm{h} /$ 個 |  | $\begin{gathered} 600 \text { 以上*3 } \\ 613 \text { 以上 } * 4 \\ 1200 \text { 以上 }{ }^{* 5} \\ \left(1800^{* 6}\right) \end{gathered}$ |
|  | 揚 |  |  | 程＊${ }^{\text {2 }}$ | m |  | $\begin{gathered} 117.0 \text { 以上*3 } \\ 79.4 \text { 以上*4 } \\ 119.5 \text { 以上*5 } \\ \left(122^{* 6}\right) \end{gathered}$ |
|  |  | 高 使 | 用 | 力＊2 | MPa |  | 1.2 |
|  |  | 高 使 | 用温 | 度＊2 | ${ }^{\circ} \mathrm{C}$ |  | 50 |
|  |  | 吸 込 | 口 | 径 | mm |  | 350 ＊ 6 |
|  |  | 吐 出 | 口 | 径 | mm |  | 300＊6 |
|  |  | た |  |  | mm |  | $1125 * 6$ |
| ポ | 主 |  | 横 |  | mm |  | 1340＊6 |
| ， | 法 | 高 |  | さ | mm |  | 585＊6 |
| プ |  | 車 閑 | 全 | 長 | mm |  | 12750＊6 |
|  |  | 車 兩 | 全 | 幅 | mm | － | 2495＊6 |
|  |  | 車 閑 | 高 | さ | mm |  | 3570 ＊6 |
|  | 材 | ケ ー | シ | グ | － |  | ダクタイル鋳鉄 |
|  | 個 |  |  | 数 | － |  | 2 （予備 1） |
|  | 取 | 付 | 箇 |  | － |  | 保管場所： <br> 第1保管エリア 屋外 0．P．約 62 m <br> 第 2 保管エリア 屋外 O．P．約 62 m <br> 第 4 保管エリア 屋外 O．P．約 62 m <br> 上記 3 箇所に 1 個ずつ保管する。 <br> 取付箇所： <br> －屋外 O．P．約 14．8m 海水ポンプ室付近 <br> －屋外 0．P．約 3.5 m 取水口付近 |
|  | 種 |  |  | 類 | － |  | ディーゼルエンジン |
| 原 | 出 |  |  | 力 | kW／個 |  | 1193 |
| 動 | 個 |  |  | 数 | － |  |  |
| 機 | 取 | 付 | 箇 | 所 | － |  | フブと |

注記＊1 ：核燃料物質の取扱施設及び貯蔵施設のらち使用済燃料貯蔵槽冷却浄化設備（放射性物質拡散抑制系），原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（代替水源移送系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））と兼用。
＊2 ：重大事故等時における使用時の値。
＊3：本系統及び核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備 （放射性物質拡散抑制系）で使用する場合の値を示す。
＊ 4 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（代替水源移送系）で使用する場合の値を示す。
＊5 ：放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））で使用する場合の値を示す。
＊6 ：公称値を示す。

ル 主配管（可搬型）


注記＊1 ：外径は公称値を示す。
 に格納容器再循環設備（放射性物質拡散抑制系）として本工事計画で兼用とする。
機燃料火災への泡消火））と兼用する。
＊5 ：放水砲寸法（公称値）：たて 4680.5 mm ，横 1920 mm ，高さ 2185 mm
＊6：重大事故等時における使用時の値。
e．放射性物質拡散抑制系（航空機燃料火災への泡消火）
ハ ポンプ（可搬型）

|  |  | 変更前 | 変更後 |
| :---: | :---: | :---: | :---: |
| 名 | 称 | － | 大容量送水ポンプ（タイプII） |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他の安全設備 <br> （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 <br> d．放射性物質拡散抑制系 ハポンプ（可搬型） <br> に記載する。 |  |  |  |

注記 $*: ~$ 本設備は，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性 ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））として本工事計画で兼用とする。

ル 主配管（可搬型）


注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
 に格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））として本工事計画で兼用とする。
御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））として本工事計画で兼用とする。
f．可搬型窒素ガス供給系
二 圧縮機（可搬型）


注記 $⿻ 丷 木 斤 1$ ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系），並びに圧力低減設備その他の安全設備のうち放射性物質濃度制御設備及 び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィ ルタベント系），及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊2：重大事故等時における使用時の値。
＊ 3 ：公称値を示す。

ル 主配管（常設）



注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3 ：重大事故等時における使用時の値。
容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊5 ：エルボを示す。
＊6 ：差込継手の差込部内径及び最小厚さ。
計画で兼用とする。
器再循環設備（可搬型窒素ガス供給系）として本工事計画で兼用とする。

ル 主配管（可搬型）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{変 更 前} \& \multicolumn{9}{|c|}{変 更 後} \\
\hline 名称 \& \[
\begin{array}{|c|}
\hline \text { 最高使用 } \\
\text { 圧力 } \\
(\mathrm{kPa}) \\
\hline
\end{array}
\] \& 最高使用温度 \(\left({ }^{\circ} \mathrm{C}\right)\) \& \[
\begin{gathered}
\text { 外径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
厚さ＊2 \\
（mm）
\end{tabular} \& 材料 \& 個数 \& \begin{tabular}{l}
取付 \\
箇所
\end{tabular} \& \& 称 \& \[
\begin{gathered}
\text { 最 高 使 用 } \\
\text { 圧 力 } \\
(\mathrm{kPa}) \\
\hline
\end{gathered}
\] \& 最 高 使 用温 度 （ \(\left.{ }^{\circ} \mathrm{C}\right)\) \& \[
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& \begin{tabular}{l}
厚 さ＊2 \\
（mm）
\end{tabular} \& 材 料 \& 個 数 \& 取 付 箇 所 \\
\hline \multirow{3}{*}{\begin{tabular}{l}
可 \\
搬 \\
型 \\
窒 \\
素 \\
ガ \\
ス \\
供 \\
給 \\
系
\end{tabular}} \& \multicolumn{7}{|l|}{\multirow[t]{3}{*}{（1）}} \& \multirow{3}{*}{可
搬
型
窒
素
が
ス
供
給
系} \& \[
\begin{array}{|l|} 
\\
\text { 窒素供給用ホース } \\
\\
(50 \mathrm{~A}: 5 \mathrm{~m})
\end{array}
\] \& 854 \& 50 \& \(61.5 * 4\) \&  \& SUS304 \& \[
\begin{gathered}
18 * 5 \\
\left(\begin{array}{c}
\text { 予備1) }
\end{array}\right.
\end{gathered}
\] \& \begin{tabular}{l}
保管場所： \\
- 第1保管エリア 屋外 O．P．約62m \\
- 第 4 保管エリア 屋外 O．P．約62m \\
上記 2 箇所に，合計 19 本保管する。 \\
取付場所： \\

\end{tabular} \\
\hline \& \& \& \& \& \& \& \& \& 窒素供給用ヘッダ \({ }^{* 3}\) \& 854 \& 50 \& 60.5
114.3 \& （5．5）

（6． 0$)$ \& STPG370 \& \[
$$
\begin{gathered}
1 \\
\left(\begin{array}{c}
\text { 予備1) }
\end{array}\right.
\end{gathered}
$$

\] \& | 保管場所： |
| :--- |
| - 第 1 保管エリア 屋外 O．P．約 62 m |
| - 第4保管エリア 屋外 O．P．約62m |
| 上記 2 箇所に， 1 個ずつ保管する。 |
| 取付場所： |
| －屋外 0．P．約14．8m原子炉建屋付近 | <br>

\hline \& \& \& \& \& \& \& \& \& 可搬型窒素ガス供給装置接続管 \& 854 \& 50 \& 60.5 \& （5．5） \& STPG370 \& \[
$$
\begin{gathered}
1 \\
\left(\begin{array}{c}
\text { 予備1) }
\end{array}\right.
\end{gathered}
$$

\] \& | 保管場所： |
| :--- |
| - 第 1 保管エリア 屋外 0．P．約 62 m |
| - 第 4 保管エリア 屋外 O．P．約 62 m |
| 上記 2 箇所に， 1 個ずつ保管する。 |
| 取付場所： $\left[\begin{array}{c} \text { •可搬型窒素ガス供給装置接続口 } \\ \text { (屋外) 又は可搬型室素ガス供給 } \\ \text { 装置接続口 (屋内) } \end{array}\right]$ | <br>

\hline
\end{tabular}

注記 $* 1$ ：外径は公称値を示す。
納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊4 ：伸縮継手部の外径及び厚さ
＊5 ：必要本数 18 本（ $5 \mathrm{~m}: 18$ 本）を 1 セットに予備 1 本の数量を示す。
g．原子炉格納容器フィルタベント系 ハポンプ（可搬型）

| － | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | 大容量送水ポンプ（タイプI）＊ |

2．核燃料物質の取扱施設及び貯蔵施設
2.4 使用済燃料貯蔵槽冷却浄化設備

2．4．2 燃料プール代替注水系
（2）ポンプ（可搬型）
に記載する。
注記 $~$ ：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

二 圧縮機（可搬型）

|  |  | 変更前 | 変更後 |
| :---: | :---: | :---: | :---: |
| 名 | 名 称 | － | 可搬型窒素ガス供給装置 |
| 7．原子炉格納施設 <br> 7． 3 圧力低減設備その他の安全設備 <br> （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 <br> f．可搬型窒素ガス供給系二圧縮機（可搬型） <br> に記載する。 |  |  |  |

注記＊：本設備は，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性 ガス濃度制御設備並びに格納容器再循環設備（可搬型窒素ガス供給系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

へ 容器（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | フィルタ装置＊ |
| 7．原子炉格納施設 <br> 7．3 圧力低減設備その他の安全設備 <br> （9）圧力逃がし装置 <br> a．原子炉格納容器フィルタベント系 イ 容器（常設） <br> に記載する。 |  |  |

注記 $⿻ 丷 木 斤$ ：本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。

|  |  |  | 変更前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 |  | T63－F006＊1 |
| 種 | 類 | － |  | 平衡型 |
| 吹 | 出 圧 力 | MPa |  | 0.78 |
|  | 出 量 | kg／h／個 |  | 4073＊2 |
|  | 呼び径 | － |  | 50A |
| 要 | のど部の径 | mm |  | $\square{ }^{* 2}$ |
| $\begin{aligned} & \text { 寺 } \\ & \text { 洼 } \end{aligned}$ | 开座口の径 | mm |  | 40．0＊2 |
|  | リフフト | mm |  |  |
| $\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$ | 弁 箱 | － | － | SCPH2 |
| 駆 | 動 方 法 | － |  | － |
| 個 | 数 | － |  | 1 |
|  | $\begin{array}{\|llll\|} \hline \text { 系 } & & \text { 統 } & \\ \hline \end{array} \text { 名 } 1 \text { ( }$ | － |  | T63-F006 <br> 原子炉格納容器フィルタベント系 |
| 取 | 設 置 床 | － |  | $\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 22.50 \mathrm{~m} \end{aligned}$ |
| 箁 | $\begin{array}{\|l\|lll} \hline \text { 溢 } & \text { 水防 櫵 } & \text { 上 } & \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ | － |  | － |
|  | 溢水防護上の配慮が必要な高さ | － |  | － |
| 注記＊1 ：原子炉冷却系統施設のらち残留熱除去設備用。 |  |  |  | 子炬格納容器フィルタベント系） |

＊2 ：公称値を示す。

ヌ 主要弁（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | T48－F019＊ |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他の <br> （8）原子炉格納容器調気 <br> a．原子炉格納容器調二主要弁 <br> に記載する。 | 備 |  |

注記 $~$ ：本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | T48－F022＊ |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他の <br> （8）原子炉格納容器調気 <br> a．原子炉格納容器調二主要弁 <br> に記載する。 | 備 |  |

注記 $~$ ：本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | T63－F001＊ |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他の安全設備 <br> （9）圧力逃がし装置 <br> a．原子炉格納容器フィルタベント系口 主要弁（常設） <br> に記載する。 |  |  |

注記 $~$ ：本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | T63－F002＊ |
| 7．原子炉格納施設 <br> 7.3 圧力低減設備その他の安全設備 <br> （9）圧力逃がし装置 <br> a．原子炉格納容器フィルタベント系口 主要弁（常設） <br> に記載する。 |  |  |

注記 $~: ~$ 本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。

ル 主配管（常設）




注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
 して本工事計画で兼用とする。
器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする
循環設備（原子炬格納容器フィルタベント系）として本工事計画で兼用とする。
御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

ル 主配管（可搬型）


注記＊1 ：外径は公称値を示す。
御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント御謡）として本工事計画で兼用とする。
 に格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

タ フィルター（常設）

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | フィルタ装置＊ |
| 7．原子炉格納施設 <br> 7．3 圧力低減設備その他の安全設備 <br> （9）圧力逃がし装置 <br> a．原子炉格納容器フィルタベント系 へフィルター（常設） <br> に記載する。 |  |  |

注記 $⿻ 丷 木 斤$ ：本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。
（8）原子炉格納容器調気設備
a．原子炉格納容器調気系


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F001」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称＊1 |  | T48－F002＊2 | 変更なし |
| 種 | 類 | － | 止め弁 |  |
|  | 高 使 用 圧 力 | kPa | 427＊3 |  |
| 最 | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | $171 * 3$ |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | —＊4 | $600 A^{* 5}$ |  |
|  | 弁 箱 厚 d | mm |  |  |
|  | 弁ふた厚さ | mm | － |  |
| 材 | 弁 箱 | － | SCPH2 |  |
| 料 | 弁 ふ た | － | － |  |
| 駆 | 動 方 法 | － | 空気作動 |  |
| 個 | 数 | － | 1 |  |
| 取 <br> 付 <br> 箇 <br> 所 | 系 $($ ラ イ 統 （ | － | T48－F002 原子炉格納容器調気系 |  |
|  | 設 置 床 | － | 原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$ |  |
|  | $\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & & \text { 号 } \\ \hline \end{array}$ | － | － |  |
|  | 溢水防護上の配慮 が必要な高さ | － | － |  |

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F002」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F010」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「50」と記載。記載内容は，設計図書による。 ＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F011」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「50」と記載。記載内容は，設計図書による。 ＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称＊1 |  | T48－F012＊2 | 変更なし |
| 種 | 類 | － | 止め弁 |  |
|  | 高 使 用 圧 力 | kPa | 427＊3 |  |
|  | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | $171 * 3$ |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼 び径 | —＊4 | $50 A^{* 5}$ |  |
|  | 弁 箱 厚 さ | mm | ＊3 |  |
|  | 弁 ふ た 厚 さ | mm |  |  |
| $\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$ | 弁 箱 | － | S25C |  |
|  | 弁 ふ た | － | S25C |  |
| 駆 | 動 方 法 | － | 空気作動 |  |
| 個 | 数 | － | 1 |  |
| 取付箇所 |  | － | T48－F012 原子炉格納容器調気系 |  |
|  | 設 置 床 | － | 原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$ |  |
|  | $\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & & \text { 号 } \end{array}$ | － | － |  |
|  | 溢水防護上の配慮 が必要な高さ | － | － |  |

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F012」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「50」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記＊1：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F016」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「450」と記載。記載内容は，設計図書による。 ＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称＊1 |  | T48－F019＊2 | T48－F019＊3 |
| 種 | 類 | － | 止め弁 | 変更なし |
|  | 高 使 用 圧 力 | kPa | $427 * 4$ | $\begin{gathered} \text { 変更なし } \\ 854^{* 55} \end{gathered}$ |
|  | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | $171 * 4$ | 変更なし $200 * 5$ |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | —＊6 | $600 A^{* 7}$ | 変更なし |
|  | 弁 箱 厚 さ | mm | $\boldsymbol{~}^{* 4}$ |  |
|  | 弁 ふ た 厚 さ | mm | － |  |
| $\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$ | 弁 箱 | － | SCPH2 | 変更前に同じ |
|  | 弁 ふ た | － | － |  |
| 駆 | 動 方 法 | － | 空気作動 | 電気作動／遠隔手動 |
| 個 | 数 | － | 1 | 変更なし |
| 取 <br> 付 <br> 箇 <br> 所 | 系 $($ ラ イ | － | T48－F019 <br> 原子炉格納容器調気系 |  |
|  | 設 置 床 | － | 原子炉建屋 <br> 0．P．15．00m |  |
|  | $\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 防 } & \text { 護 } & \text { の } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$ | － | － | $\mathrm{R}-1 \mathrm{~F}-8$ |
|  | 溢水防護上の配慮 が必要な高さ | － |  | 床上 0.63 m 以上 |

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F019」と記載。記載内容は，設計図書による。
＊3 ：原子炉冷却材系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系，耐圧強化ベント系）並びに圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5 ：重大事故等時における使用時の値。
＊6 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊7 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊ 8 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F020」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「300」と記載。記載内容は，設計図書による。 ＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。


注記＊1：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F021」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。 ＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

|  |  |  | 変 更 前 | 変 更 後 |
| :---: | :---: | :---: | :---: | :---: |
| 名 | 称＊1 |  | T48－F022＊2 | T48－F022＊3 |
| 種 | 類 | － | 止め弁 | 変更なし |
|  | 高 使 用 圧 力 | kPa | 427＊4 | $\begin{gathered} \text { 変更なし } \\ 854^{* 5} \end{gathered}$ |
| 最 | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | 171＊4 | 変更なし $200 * 5$ |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | －＊6 | $600 A^{* 7}$ | 変更なし |
|  | 弁 箱 厚 さ | mm | $7 *$ |  |
|  | 弁 ふ た 厚 さ | mm | － |  |
| $\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$ | 弁 箱 | － | SCPH2 | 変更前に同じ |
|  | 弁 ふ た | － | － |  |
| 駆 | 動 方 法 | － | 空気作動 | 電気作動／遠隔手動 |
| 個 | 数 | － | 1 | 変更なし |
| 取 <br> 付 <br> 箇 <br> 所 |  | － | T48-F022 <br> 原子炉格納容器調気系 |  |
|  | 設 置 床 | － | 原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$ |  |
|  | $\begin{array}{cccccc} \text { 溢 } & \text { 水 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$ | － | － | R－B3F－10 |
|  | 溢水防護上の配慮 が必要な高さ | － |  | 床上 0.34 m 以上 |

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F022」と記載。記載内容は，設計図書による。
＊3 ：原子炉冷却材系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系，耐圧強化ベント系）並びに圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5 ：重大事故等時における使用時の値。
＊6 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊7 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊ 8 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

|  |  |  | 変 更 前 | 変 更 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称＊1 | T48－F004A，B＊2 | —＊7 |  |
| 種 | 類 | － | 逆止め弁 |  |  |
|  | 高 使 用 圧 力 | kPa | $427 * 3$ |  |  |
|  | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | $104 * 3$ |  |  |
| 主 | 呼び径 | －＊4 | $600 A^{* 5}$ |  |  |
| 要 | 弁 箱 厚 d | mm | ＊3 |  |  |
| 法 | 弁ふた厚さ | mm | ${ }^{* 3}$ |  |  |
| 材 | 弁 箱 | － | SCPH2 |  |  |
| 料 | 弁 ふ た | － | SCPH2 |  |  |
| 駆 | 動 方 法 | － | 空気作動 |  |  |
| 個 | 数 | － | 2 |  |  |
| 取 | 系 $($ ラ イ | － | T48－F004A，B 原子炉格納容器調気系 |  |  |
| 付 | 設 置 床 | － | 原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$ |  |  |
| 所 | $\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ | － | － |  |  |
|  | 溢水防護上の配慮 が必要な高さ | － |  |  |  |

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F004A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

|  |  |  | 変 更 前 | 変 更 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称＊1 | T48－F005A，B＊2 | —＊7 |  |
| 種 | 類 | － | 止め弁 |  |  |
|  | 高 使 用 圧 力 | kPa | 427＊3 |  |  |
|  | 高 使 用 温 度 | ${ }^{\circ} \mathrm{C}$ | $104 * 3$ |  |  |
| $\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$ | 呼び径 | －＊4 | $600 A^{* 5}$ |  |  |
|  | 弁 箱 厚 さ | mm | *3 |  |  |
|  | 弁 ふ た 厚 さ | mm | － |  |  |
| 材 | 弁 箱 | － | SCPH2 |  |  |
| 料 | 弁 ふ た | － | － |  |  |
| 駆 | 動 方 法 | － | 空気作動 |  |  |
| 個 | 数 | － | 2 |  |  |
| 取 <br> 付 <br> 箇 <br> 所 |  | － | T48－F005A，B 原子炉格納容器調気系 |  |  |
|  | 設 置 床 | － | 原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$ |  |  |
|  | $\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$ | － |  |  |  |
|  | 溢水防護上の配慮 が必要な高さ | － | － |  |  |

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F005A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

ホ 主配管





注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「原子炉建屋原子炉棟換気空調系からドライウェルまで（ドライウェル入口配管）」と記載。
＊ 4 ：S I 単位に換算したものである。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－2－2－2－1 管の基本板厚計算書」による。
＊6：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
＊ 7 ：差込継手の差込部内径及び最小厚さ。
素ガス供給系，原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊9 ：重大事故等時の使用時の値。
＊10：記載の適正化を行う。既工事計画書には「ドライウェル入口配管からサプレッションチェンバまで（サプレッションチェンバ入口配管）」と記載。
＊11：記載の適正化を行う。既工事計画書には「原子炉建屋内からサプレッションチェンバ入口配管まで（原子炉建屋内吸入配管）」と記載。
＊12：記載の適正化を行う。既工事計画書には「パージ用液体窒素蒸発器からドライウェル入口配管まで」と記載。
＊13：記載の適正化を行う。既工事計画書には「SM41C」と記載
＊14：記載の適正化を行う。既工事計画書には「常時補給用液体窒素蒸発器からドライウェル入口配管まで（ドライウェル補給用窒素配管）」と記載。
＊ 15 ：エルボを示す
＊ 16 ：記載の適正化を行う。既工事計画書には「ドライウェル補給用窒素配管から原子炬建屋内吸入配管まで」と記載。
＊17：記載の適正化を行う。既工事計画書には「ドライウェルから原子炉建屋原子炉棟換気空調系まで（ドライウェル出口配管）」と記載。
循環設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊19：記載の適正化を行う。既工事計画書には「サプレッションチェンバからドライウェル出口配管まで（サプレッションチェンバ出口配管）」と記載。
$* 20$ ：記載の適正化を行う。記載内容は設計図書による。
＊21：記載の適正化を行う。既工事計画書には「サプレッションチェンバ出口配管から非常用ガス処理系まで」と記載。
＊22：記載の適正化を行う。既工事計画書には1STS42」と記載
$* 23$ ：本設備は記載の適正化を行うものであり，手続き対象外である
＊24：記載の適正化を行う。既工事計画書には「STPT38」と記載
＊25：記載の適正化を行う。既工事計画書には「液体窒素貯槽出口配管から常時補給用液体窒素蒸発器（送ガス用）まで1 と記載。
＊26：記載の適正化を行う。既工事計画書には「STPL39」と記載
＊27：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
（9）圧力逃がし装置
a．原子炉格納容器フィルタベント系

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御

設備並びに格納容器再循環設備（原子炬格納容器フィルタベント系）と兼用。 ＊2 ：本設備は，フィルターとして使用するフィルタ装置と同一機器である。 ＊ 3 ：スクラバ溶液の容量を示す。
＊4 ：重大事故等時における使用時の値。
＊5 ：公称値を示す。

＊2 ：原子炉冷却材系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。
＊3：重大事故等時における使用時の値。


注記＊1 ：記載内容は，設計図書による。
＊2 ：原子炉冷却材系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。
＊3：重大事故等時における使用時の値。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | T48－F019＊ |
| 7．原子炉格納施設 <br> 7． 3 圧力低減設備その他の安 <br> （8）原子炉格納容器調気設 <br> a．原子炉格納容器調気二主要弁 <br> に記載する。 |  |  |

注記 $*: ~$ 本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器 フィルタベント系）として本工事計画で兼用とする。

|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| 名 称 | － | T48－F022＊ |
| 7．原子炉格納施設 <br> 7．3 圧力低減設備その他の安全設備 <br> （8）原子炉格納容器調気設備 <br> a．原子炉格納容器調気系二主要弁 <br> に記載する。 |  |  |

注記＊：本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器 フィルタベント系）として本工事計画で兼用とする。

八 圧力開放板


注記＊1 ：原子炉冷却材系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。

二主配管（常設）

| 変 更 前 |  |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 名 |  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{kPa}) \end{array} \end{aligned}$ | $\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 | 名 称 |  |  | $\begin{gathered} \text { 最 高 使 用 } \\ \text { 圧 力莨 } \\ (\mathrm{kPa}) \\ \hline \end{gathered}$ | 最高使用 <br> 温 度＊3 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 料 |
|  |  |  |  |  |  |  |  |  | 原子炉格納容器配管貫通部(X-230) |  |  | 7．原子炉格納施設 <br> 7.1 原子炉格納容器 <br> （4）原子炬格納容器配管貫通部及び電気配線貫通部 に記載する。 |  |  |  |  |
|  | - |  |  |  |  |  |  |  |  | 原 炉 格 蒳 容 器 烱 系 | 原子炉格納容器配管貫通部（X－230） <br> ドライウェル出口配管分岐点 | 7．原子炉格納施設 <br> 7．3 圧力低減設備その他の安全設備 <br> （8）原子炉格納容器調気設備 <br> a．原子炉格納容器調気系木 主配管 <br> に記載する。 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 原 } \\ & \text { 㥫 } \end{aligned}$ | 原子炉格納容器配管貫通部(X-81) |  | 7．原子炉格納施設 <br> 7． 1 原子炉格納容器 <br> （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 格 } \\ & \text { 䌋 } \\ & \text { 器 } \\ & \text { ィ } \\ & \text { ル } \\ & \text { タ } \\ & \text { シ } \\ & \text { ト } \end{aligned}$ | $\begin{aligned} & \text { 原 } \\ & \text { 饰 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 谽 } \\ & \text { 調 } \\ & \text { 気 } \\ & \text { 采 } \end{aligned}$ | 原子炉格納容器配管貫通部（X－81） <br> ドライウェル出口配管分岐点 | 7．原子炉格納施設 <br> 7．3 圧力低減設備その他の安全設備 <br> （8）原子炉格納容器調気設備 <br> a．原子炉格納容器調気系 ホ 主配管 <br> に記載する。 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { サプレッションチェンバ出口 } \\ & \text { 配管分岐点3 } \\ & \text { ~ } \\ & \text { フィルタ装置 } \\ & \text { (次頁へ続く) } \end{aligned}$ |  | 854 | 200 | 406.4 | （12．7） | STS410 |
|  |  |  |  |  |  |  |  |  |  |  |  | 406.4 ＊7 |  | （12．7）＊7 | STS410＊7 |
|  |  |  |  |  |  |  |  |  |  |  |  | 406.4 |  | $\square$ | SF490A |
|  |  |  |  |  |  |  |  |  |  |  |  | $\stackrel{406.4}{\substack{4 \\ 406.4 \\ \text { 406. } 4}}$ |  | $\begin{gathered} (12.7) \\ / \\ (12.7) \\ / \\ (12.7) \end{gathered}$ | STS410 |
|  |  |  |  |  |  |  |  |  |  |  |  | 61.1 ＊8 |  | （6．1）＊8 | S25C |
|  |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 406.4 \\ / \\ 406.4 \\ / \\ 216.3 \end{gathered}$ |  | $\begin{gathered} (12.7) \\ \prime \\ (12.7) \\ \vdots \\ (8.2) \end{gathered}$ | STS410 |



| 変 更 前 |  |  |  |  |  |  |  | 変 更 後 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 称 | $\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{kPa}) \end{array} \\ & \hline \end{aligned}$ | 最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度 | $\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | 材 | 料 |  | 名 称 | $\begin{gathered} \text { 最高使用 } \\ \text { 圧 力事 } \\ (\mathrm{kPa}) \\ \hline \end{gathered}$ | 最高使用 <br> 温 度＊3 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外 } \text { 径* }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$ | 厚 さ＊2 <br> （mm） | 材 料 |
|  | （kPa） |  |  |  |  |  |  |  | フィルタ装置出口側ラプチャ ディスク <br> 排気管 | 854 | 200 | 508.0 | $\square$ | SUS316L |
|  |  |  |  |  |  |  |  | 508.0 ＊7 |  |  |  | （15．1）＊7 | SUS316LTP＊7 |
|  |  |  |  |  |  |  |  | $\begin{gathered} 508.0 \\ \text { 508. } 0 \\ / \\ \hline \end{gathered}$ |  |  |  | $\begin{gathered} (15.1) \\ / \\ (15.1) \\ / \\ - \end{gathered}$ | SUS316LTP |
|  |  |  |  |  |  |  |  | 508.0 |  |  |  | （26．2） | SUSF316L |
|  |  |  |  |  |  |  |  | ＊6 |  |  | 61.1 ＊8，＊9 | （6．1）＊8，＊9 | SUS316L＊9 |
|  |  |  |  |  |  |  |  | フィルタ装置（A） |  |  | 60.5 | （5．5） | SUS316LTP |
|  |  |  |  |  |  |  |  | フィルタ装置（B） | 854 | 200 | $61.1 * 7, * 8$ | （6．1）＊7，＊8 | SUS316L＊${ }^{\text {7 }}$ |
|  |  |  |  |  |  |  |  | ＊6 |  |  | 61．1＊8，＊9 | （6．1）＊8，＊9 | SUS316L＊9 |
|  |  |  |  |  |  |  |  | フィルタ装置（B） | 854 | 200 | 60.5 | （5．5） | SUS316LTP |
|  |  |  |  |  |  |  |  | フィルタ装置（C） |  |  | $61.1 * 7, * 8$ | （6．1）＊7，＊8 | SUS316L＊7 |
|  |  |  |  |  |  |  |  |  |  |  | 60.5 | （5．5） | SUS316LTP |
|  |  |  |  |  |  |  |  |  | 854 | 200 | 60.5 ＊ 7 | （5．5）＊7 | SUS316LTP＊7 |
|  |  |  |  |  |  |  |  |  |  |  | 60.5 | （5．5） | SUS316LTP |
|  |  |  |  |  |  |  |  | フィルタ装置連結管 ${ }^{* 6}$ |  |  | $$ | $\begin{gathered} (5.5) \\ \prime \\ (5.5) \\ \prime \\ (5.5) \end{gathered}$ | SUS316LTP |
|  |  |  |  |  |  |  |  |  | 1.2 （MPa） | 200 | $60.5 * 7$ | （5．5）＊7 | SUS316LTP＊7 |
|  |  |  |  |  |  |  |  |  |  |  | $60.5$ | (5. 5) | SUS316LTP |
|  |  |  |  |  |  |  |  |  |  |  | $60.5$ | $(5.5)$ |  |





注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3 ：重大事故等時における使用時の値。
＊ 4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）として本工事計画書で兼用とする。
事計画書で兼用とする。
容器フィルタベント系）と兼用。
＊7 ：エルボを示す。
＊8 ：差込継手の差込部内径及び最小厚さ
＊9：フルカップリングを示す。
 し装置（原子炉格納容器フィルタベント系）として本工事計画書で兼用とする。


注記 $* 1$ ：外径は公称値を示す。
 （原子炬格納容器フィルタベント系）として本工事計画で兼用とする。
 て本工事計画で兼用とする。
格納容器フィルタベント系）と兼用する。
＊6 ：重大事故等時の使用時の値。
＊7 ：メーカにて規定する呼び径を示す。
 できるものを使用する。


注記＊1 ：原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。
＊2 ：本設備は，容器として使用するフィルタ装置と同一機器である。
＊ 3 ：重大事故等時における使用時の値。
＊ 4 ：公称値を示す。

枠囲みの内容は商業機密の観点から公開できません。

7．4 原子炉格納施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

| 変更前 | 変更後 |
| :---: | :---: |
| 用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 | 用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。 |
| 第1章 共通項目 <br> 原子炉格納施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。 | 第1章 共通項目 <br> 原子炉格納施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービ ンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。 |
| 第2章 個別項目 <br> 1．原子炉格納容器 <br> 1． 1 原子炉格納容器本体等 <br> 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆 に放射線障害を及ぼすおそれがない設計とする。 <br> 原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からなるドライウェル泠却系（個数 4（予備 2））を設ける設計とする。 <br> 原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）と | 第2章 個別項目 <br> 1．原子炉格納容器 <br> 1．1 原子炉格納容器本体等 <br> 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆 に放射線障害を及ぼすおそれがない設計とする。 <br> 原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からなるドライウェル泠却系（個数 4（予備2））を設ける設計とする。 <br> 原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）と |


| 変更前 | 変更後 |
| :---: | :---: |
| あいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定 し，これにより放出される冷却材のエネルギによる冷却材喪失時の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器に生じる動荷重に耐える設計とする。 <br> 原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃 がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つ設計とする。 <br> 通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生 じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊 じん性試験を行い，規定値を満足した材料を使用する設計とする。 <br> 原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量そ の他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 <br> （J E A C 4 2 0 3 ）に定める漏えい試験のうち B 種試験ができる設計とする。 <br> サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置する。 | あいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定 し，これにより放出される冷却材のエネルギによる泠却材喪失時の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器に生じる動荷重に耐える設計とする。 <br> 原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃 がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つ設計とする。 <br> 通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生 じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊 じん性試験を行い，規定値を満足した材料を使用する設計とする。 <br> 原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量そ の他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （JEAC4203）に定める漏えい試験のうち B 種試験ができる設計とする。 <br> サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置する。 <br> 原子炉格納容器は，想定される重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える可能性があるが，設計基準対象施設としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度 |

## 変更前

1．2 原子炉格納容器隔離弁
原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロ ックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに連絡するか，又は原子炉格納容器内に開口し，原子炉格納容器を貫通している各配管は，冷却材喪失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が，冷却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炬格納容器の外側又は内側に少なくとも 1個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炬格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。
で閉じ込め機能を損なわない設計とする。

1．2 原子炉格納容器隔離弁
原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロ ックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに連絡するか，又は原子炉格納容器内に開口し，原子炉格納容器を貫通している各配管は，冷却材喪失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が，冷却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。

| 変更前 |  |
| :---: | :---: |
| 貫通箇所の内側又は外側に設置する隔離升は，一方の側の設置箇所に |  | おける管であって，湿気や水滴等により駆動機構等の機能が著しく低下 するおそれがある箇所，配管が狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著しく低下するよ うな箇所には，貫通箇所の外側であって近接した箇所に 2 個の隔離弁 を設ける設計とする。

設計基準事故の収束に必要な非常用炉心冷却系及び残留熱除去系（格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設けることにより安全性を損ならおそれがあり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われない場合は，自動隔離弁を設けない設計とする。

ただし，原則遠隔操作が可能であり，設計基準事故時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したのと同等の隔離機能を有する設計とする。

原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通す る計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。
隔離弁は，閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機能が喪失しない設計とする。また，隔離弁のうち，隔離信号で自動閉止するものは，隔離信号が除去されても自動開とはならな

## 変更後

貫通箇所の内側又は外側に設置する隔離弁は，一方の側の設置箇所に おける管であって，湿気や水滴等により駆動機構等の機能が著しく低下 するおそれがある箇所，配管が狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著しく低下するよ うな箇所には，貫通箇所の外側であって近接した箇所に 2 個の隔離弁 を設ける設計とする。

原子炉格納容器を貫通する配管には，圧力開放板を設けない設計とす る。

設計基準事故及び重大事故等の収束に必要な非常用炉心冷却系及び残留熱除去系（格納容器スプレイ冷却モード）で原子炉格納容器を貫通 する配管，その他隔離弁を設けることにより安全性を損なうおそれがあ り，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われな い場合は，自動隔離弁を設けない設計とする。

ただし，原則遠隔操作が可能であり，設計基準事故時及び重大事故等時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したのと同等の隔離機能を有する設計とする。

原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通す る計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。

隔離弁は，閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機能が喪失しない設計とする。また，隔離弁のうち，隔離信号で自動閉止するものは，隔離信号が除去されても自動開とはならな

| 変更前 | 変更後 |
| :---: | :---: |
| い設計とする。 <br> 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏え い試験のらちC 種試験ができる設計とする。また，隔離弁は動作試験が できる設計とする。 | い設計とする。 <br> 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏え い試験のうち C 種試験ができる設計とする。また，隔離弁は動作試験が できる設計とする。 |
| 2．原子炉建屋 <br> 2.1 原子炉建屋原子炉棟等 <br> 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子灲施設の安全評価に関する審査指針 （平成2年8月30日原子力安全委員会）」に規定する線量を超えない よう，当該放射性物質の濃度を低減する設備として原子炉建屋原子炉棟 を設置する。 <br> 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止 する設計とする。 <br> 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。 <br> 新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそ れがある場合において，放射性物質による敷地外への影響を低減するた | 2．原子炉建屋 <br> 2.1 原子炉建屋原子炉棟等 <br> 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針 （平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えない よう，当該放射性物質の濃度を低減する設備として原子炉建屋原子炉棟 を設置する。 <br> 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止 する設計とする。 <br> 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。 <br> 新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそ れがある場合において，放射性物質による敷地外への影響を低減するた |


| 変更前 | 変更後 |
| :---: | :---: |
| め，原子炉建屋原子炉棟内に設置する設計とする。 | め，原子炉建屋原子炉棟内に設置する設計とする。 <br> 原子炉建屋原子炉棟は，重大事故等時においても，非常用ガス処理系 により，内部の負圧を確保することができる設計とする。原子炉建屋原子炉棟の気密バウンダリの一部として原子炉建屋原子炉棟に設置する原子炉建屋ブローアウトパネルは，閉状態の維持又は開放時に容易かつ確実に原子炉建屋ブローアウトパネル閉止装置により開口部を閉止可能な設計とする。 |
| 3．圧力低減設備その他の安全設備 <br> 3.1 真空破壊装置 <br> 泠却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置 された6個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 <br> なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしてい ることなどから，原子炉格納容器外面に受ける圧力が設計を超えること はない。 | 3．圧力低減設備その他の安全設備 <br> 3.1 真空破壊装置 <br> 冷却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置 された 6 個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 <br> なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしてい ることなどから，原子炉格納容器外面に受ける圧力が設計を超えること はない。 <br> 想定される重大事故等時において，ドライウェル圧力がサプレッショ ンチェンバ圧力より低下した場合に，ドライウェルとサプレッションチ ェンバ間に設置された 6 個の真空破壊弁が，圧力差により自動的に働 き，サプレッションチェンバのプール水のドライウェルへの逆流及びド ライウェルの破損を防止できる設計とする。 |


| 変更前 |  |  |  |
| :---: | :---: | :---: | :---: |
| 3.2 原子炉格納容器安全設備 <br> 3．2．1 原子炉格納容器スプレイ冷却系 <br> 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。 |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

3.2 原子炉格納容器安全設備

3．2．1 原子炉格納容器スプレイ冷却系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。

重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたつて機能が要求される静的機器の うち，単一設計とする残留熱除去系（格納容器スプレイ冷却モード） のドライウェルスプレイ管及びサプレッションチェンバスプレイ管については，想定される最も過酷な単一故障の条件として，配管 1 箇所の全周破断を想定した場合においても，原子炉格納容器の冷却機能を達成できる設計とする。

ここで，単一故障時には，残留熱除去系 1 系統による格納容器ス プレイ冷却モードは，スプレイ効果に期待できない状態となり，ス プレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所か ら落下してサプレッションチェンバのプール水に移行することを想定する。このような場合においても，他の残留熱除去系1系統を サプレッションプール水冷却モードで運転することで原子炉格納容器の泠却機能を代替できる設計とする。

3．2．2 原子炉格納容器下部注水系






|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{\rightharpoonup}{I} \\ & \stackrel{i}{\omega} \end{aligned}$ |  | 遠隔操作に対して多様性を有する設計とし，原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の電動弁（交流）は，ハンド ルを設けて手動操作を可能とすることで，常設代替交流電源設備か らの給電による遠隔操作に対して多様性を有する設計とする。ま た，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の電動弁 （交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。また，原子炬格納容器下部注水系（常設）（復水移送ポンプ）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 <br> また，原子炉格納容器下部注水系（可搬型）は代替淡水源を水源 とすることで，復水貯蔵タンクを水源とする原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ泠却系（常設）並びにサプレッションチェンバを水源とする原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環泠却系に対して，異なる水源を有する設計とする。 <br> 復水移送ポンプは，原子炉建屋原子炉棟内，代替循環冷却ポンプ は原子炉建屋付属棟内に設置し，大容量送水ポンプ（タイプ I ）は原子炉建屋から離れた屋外に分散して保管することで，共通要因に よって同時に機能を損なわないよう位置的分散を図る設計とする。原子炉格納容器下部注水系（可搬型）の電動弁は，ハンドルを設 |

























3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
3．3．1 非常用ガス処理系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。
非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガ ス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタ を含む非常用ガス処理系フィルタ装置等から構成される。放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖 し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱

変更後
として使用できる設計とする。
（2）多様性，位置的分散等
残留熱除去系（サプレッションプール水冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用する ため，重大事故等対処設備としての基本方針に示す設計方針を適用 する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備ではないことから，重大事故等対処設備 の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。
3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
3．3．1 非常用ガス処理系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。

非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガ ス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタ を含む非常用ガス処理系フィルタ装置等から構成される。放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖 し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱

約 6 mm の負圧に保ちながら原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して排気筒から放出 する設計とする。

非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出され る核分裂生成物の濃度を減少させる設計とする。
非常用ガス処理系のうち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可 を受けた設計基準事故の評価の条件を満足する設計とする。
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及 ぼすおそれがある場合において，放射性物質による敷地外への影響 を低減するため，非常用ガス処理系により放射性物質の放出を低減 できる設計とする。

## 変更後

約 6 mm の負圧に保ちながら原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して排気筒から放出 する設計とする。

非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出され る核分裂生成物の濃度を減少させる設計とする。
非常用ガス処理系のらち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可 を受けた設計基準事故の評価の条件を満足する設計とする。

新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及 ぼすおそれがある場合において，放射性物質による敷地外への影響 を低減するため，非常用ガス処理系により放射性物質の放出を低減 できる設計とする。

重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたつて機能が要求される静的機器の らち，単一設計とする非常用ガス処理系の配管の一部及び非常用ガ ス処理系フィルタ装置については，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雰囲気中の放射性物質の濃度低減機能が喪失する単一故障のうち，想定される最も過酷な条件として，配管の全周破断及び非常用ガス処理系フィルタ装置の閉塞を想定しても，単一故障による放射性物質の放出に伴ら被ばくの影響を最小限に抑えるよう，安全上支障の ない期間に単一故障を確実に除去又は修復できる設計とし，その単


|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{t}{4} \end{aligned}$ |  | また，原子炉建屋ブローアウトパネル閉止装置は，常設代替交流電源設備からの給電が可能な設計とする。 <br> 非常用ガス処理系の流路として，非常用ガス処理系空気乾燥装置，非常用ガス処理系フィルタ装置，非常用ガス処理系の配管及び弁並びに排気筒を重大事故等対処設備として使用できる設計とす る。 <br> その他，設計基準対象施設である原子炉建屋原子炉棟を重大事故等対処設備として使用できる設計とする。 |
|  | 3．3．2 可燃性ガス濃度制御系 <br> 泠却材喪失事故時に原子炉格納容器内で発生する水素及び酸素 の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあい まって，可燃限界に達しないための制限値である水素濃度 4vol\％未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。 | 3．3．2 可燃性ガス濃度制御系 <br> 泠却材喪失事故時に原子炉格納容器内で発生する水素及び酸素 の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあい まって，可燃限界に達しないための制限値である水素濃度 4vo1\％未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。 |
|  |  | 3．3．3 原子炉建屋水素濃度抑制系 <br> 炉心の著しい損傷が発生した場合において原子炬建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。 <br> 水素濃度制御設備である静的触媒式水素再結合装置は，運転員の起動操作を必要とせずに，原子炉格納容器から原子炉建屋原子炉棟 |








|  | 変更前 | 変更後 |
| :---: | :---: | :---: |
| $\stackrel{\stackrel{1}{+}}{\stackrel{+}{1}} \stackrel{+}{\infty}$ | あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。 | あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。 <br> 炉心の著しい損傷が発生した場合において原子炉格納容器内に おける水素爆発による破損を防止できるように，発電用原子炉の運転中は，原子炉格納容器内を原子炉格納容器調気系により常時不活性化する設計とする。 <br> 3.5 圧力逃がし装置 <br> 3．5．1 原子炉格納容器フィルタベント系 <br> 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のうち，原子炉格納容器内の圧力を大気中に逃がすための設備として，原子炉格納容器フィルタベント系を設ける設計とする。 <br> （1）系統構成 <br> 原子炉格納容器フィルタベント系は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ）， フィルタ装置出口側ラプチャディスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$ （ 1 Pd において））することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内の圧力及び温度を低下できる設計とする。 <br> フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状 |








| 変更前 | 変更後 |
| :---: | :---: |
| 3.5 設備の共用 <br> 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作すること により隔離できる設計とすることで，共用により安全性を損なわない設計とする。 | きる設計とする。 <br> 3.7 設備の共用 <br> 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作すること により隔離できる設計とすることで，共用により安全性を損なわない設計とする。 |
| 4．主要対象設備 <br> 原子炉格納施設の対象となる主要な設備について，「表1 原子炉格納施設の主要設備リスト」に示す。 | 4．主要対象設備 <br> 原子炉格納施設の対象となる主要な設備について，「表1原子炉格納施設の主要設備リスト」に示す。 <br> 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表2 原子炉格納施設の兼用設備リスト」に示す。 |

O 2 （1）II R 0

表1原子炉格納施設の主要設備リスト（1／42）


表1原子炉格納施設の主要設備リスト（2／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設（31） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  | 名称 | 設計基準対象施設 ${ }^{\text {（i＊1）}}$ |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 躙 } \end{aligned}$ | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炉格納容器配管貫通部（ $\mathrm{X}-13 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-13 \mathrm{~B}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ X －14） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－20） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－21） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－22） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~B}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{C}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-32 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-32 \mathrm{~B}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-33 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －33B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ X －34） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |

表1原子炉格納施設の主要設備リスト（3／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設（31） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  | 名称 | 設計基準対象施設 ${ }^{\text {（i＊1）}}$ |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 躙 } \end{aligned}$ | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炬格納容器配管貫通部（ X －35） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－36） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－37） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－50） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－51） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－52） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－60） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-61 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-61 \mathrm{~B}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-62 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-62 \mathrm{~B}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－63） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－64） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－70） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－71） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －72A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |

表1原子炉格納施設の主要設備リスト（4／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設（31） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  | 名称 | 設計基準対象施設 ${ }^{\text {（i＊1）}}$ |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & \text { 原 } \\ & \text { 僱 } \\ & \text { 烙 } \\ & \text { 蓉 } \\ & \text { 器 } \end{aligned}$ | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炉格納容器配管貫通部（X－72B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－73） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－80） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－81） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~B}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－90） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－91） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－92） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－93） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－106B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-130 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－130B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ X －130C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－130D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-131$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |

表1原子炉格納施設の主要設備リスト（5／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設（31） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  | 名称 | 設計基準対象施設 ${ }^{\text {（i＊1）}}$ |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & \text { 原 } \\ & \text { 烸 } \\ & \text { 格 } \\ & \text { 䌞 } \\ & \text { 器 } \end{aligned}$ | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炬格納容器配管貫通部（X－132A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－132B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－132C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－132D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－133A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－133B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －133C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－133D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ X －134A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－134B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－134C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－134D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ X －135A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－135B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－135C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－135D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |

表1原子炉格納施設の主要設備リスト（6／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設 ${ }^{(311)}$ |  | 重大事故等対処設備 ${ }^{(3+1)}$ |  | 名称 | 設計基準対象施設 ${ }^{(311)}$ |  | 重大事故等対処設備 ${ }^{(3 \times 1}$ 1） |  |
|  |  |  |  | 名称 | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\stackrel{1}{1}$ $\stackrel{1}{\infty}$ $\stackrel{\square}{\square}$ <br> 原 炉 格 蒳 容 器 | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炬格納容器配管貫通部（X－136A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－136B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－137A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －137B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－137C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－137D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－138） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－139A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－139B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ $\mathrm{X}-140 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－140B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－150） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ $\mathrm{X}-151 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ X －151B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－152A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－152B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |

表1原子炉格納施設の主要設備リスト（7／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設 ${ }^{(311)}$ |  | 重大事故等対処設備 ${ }^{(1)^{(1)}}$ |  | 名称 | 設計基準対象施設 ${ }^{(311)}$ |  | 重大事故等対処設備 ${ }^{(3 \times 1}$ 1） |  |
|  |  |  |  | 名称 | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炬格納容器配管貫通部（X－152C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－152D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－153） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－154） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－155） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－160A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－160B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－160C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－160D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－161） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－190A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－190B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －191A ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－191B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－205A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－205B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |

O 2 （1）II R 0

表1原子炉格納施設の主要設備リスト（8／42）


表1原子炉格納施設の主要設備リスト（9／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設（31） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  | 名称 | 設計基準対象施設 ${ }^{\text {（i＊1）}}$ |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| $\begin{aligned} & \text { 原 } \\ & \text { 僱 } \\ & \text { 烙 } \\ & \text { 蓉 } \\ & \text { 器 } \end{aligned}$ | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炉格納容器配管貫通部（X－230） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －231） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－232A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－232B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －233） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ $\mathrm{X}-240$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －241） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －242） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －243） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－260A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－260B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ $\mathrm{X}-261 \mathrm{~A}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－261B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－262A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－262B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －263） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |

表1原子炉格納施設の主要設備リスト（10／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 重大事故等対処設備 ${ }^{(\ldots \text { ¹）}}$ |  | 名称 | 設計基準対象施設 ${ }^{(31)}$ |  | 重大事故等対処設備 ${ }^{(3)}$＋1） |  |
|  |  |  |  | 名称 | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  | － | 原子炉格納容器配管貫通部及び電気配線貫通部 | 配管貫通部 | 原子炬格納容器配管貫通部（X－270A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－270B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－270C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－270D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－270E） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－270F） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（X－271A） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－271B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ X －272A ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－272B） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－272C） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－272D） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（X－272E） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炬格納容器配管貫通部（ $\mathrm{X}-272 \mathrm{~F}$ ） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SA クラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －280） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉格納容器配管貫通部（ X －281） | S | 格納容器 |  | － | 変更なし |  |  | 常設耐震／防止常設／緩和 | SAクラス 2 |

表1原子炉格納施設の主要設備リスト（11／42）


表1原子炉格納施設の主要設備リスト（12／42）


表1原子炉格納施設の主要設備リスト（13／42）


表1原子炉格納施設の主要設備少スト（14／42）

| $\begin{aligned} & \text { 簤 } \\ & \text { 爻 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 覓 } \\ & \text { 森 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }_{\text {e }}(\ldots)$ |  | 重大事故等対処設備 ${ }^{(21)}$ |  | 名称 | 設計基潐対象施設 ${ }^{\text {（ati）}}$ ） |  | 重大事故等対処設供 ${ }^{(121 \text {（ }}$ |  |
|  |  |  |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | $\underset{\text { 原子灺格納容器 }}{\text { 全 }}$ | 安全弁及び逃 がし弁 |  | － |  |  |  |  | E11－F048A | － | － | 常設／緩和 | － |
|  |  |  |  | － |  |  |  |  | E11－F084 | － | － | 常設緩和 | － |
|  |  |  |  | － |  |  |  |  | E11－F085 | － | － | 常設緩和 | － |
|  |  |  | 主配管 | － |  |  |  |  | 復水貯蔵タンク～E22－F014 | － | － | 常設緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | E22－F014～補給水よりの第一アン <br> 力 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 補給水よりの第一アンカ～復水貯蔵タンク出口配管分岐点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 低圧代替注水系吸込配管分岐点～ P13－F072 | － | － | 常設，緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | P13－F072～補給水系配管合流点 | － | － | 常設）綏和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 補給水系配管合流点～復水移送ポ ンプ | － | － | 常設，緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 復水移送ポンプ～低圧代替注水系注入配管分岐点 | － | － | 常設，緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2 | － | － | 常設緩和 | SAクラス 2 |

表1原子炉格納施設の主要設備リスト（15／42）

| $\begin{aligned} & \text { 備 } \\ & \text { 畕 } \end{aligned}$ | $\begin{aligned} & \text { 稚 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設（1＊1） |  | 重大事故等対処設供 ${ }^{(2+1)}$ |  | 名称 | 設計基淮対象施設 ${ }^{\text {（it }}$（1）${ }^{\text {a }}$ |  | 重大事故等対处設備 ${ }^{(121)}$ |  |
|  |  |  |  | $\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 原子炉格納容器安全設備 | 主配管 |  | － |  |  |  |  | 低圧代替注水系注入配管合流点 2～原子炉格納容器下部注水系注入配管分吱点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器下部注水系注入配管分岐点～原子炬格納容器配管貫通部 （X－92） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－92） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－92） ～原子炉格納容器下部注水配管開放端 | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系ストレーナ $(A)$～原子炉格納容器配管貫通部（X－214A） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 214A） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  |  | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | サプレッションチェンバ出口配管A <br> 系合流点～代替循環洽却系吸込配管分岥点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 代替循環冷却系吸込配管分岐点～代替循環冷却ポンブ | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 代替循環泠却ポンプ～代替循環泠却系注入配管合流点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 代替循澴洽却系注入配管合流点～残留黳除去系熱交換器（A）バイパス配管分岐点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  |  | － | － | 常設，緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熟除去系熱交換器代替循澴洽却系出口配管分吱点 $\sim$ 残留熱除去系熱交換器（A）バイパス配管合流点 | － | － | 常設，緩和 | SAクラス 2 |

表1原子炉格納施設の主要設借リスト（ $16 / 42$ ）


表1原子炉格納施設の主要設備少スト（ $17 / 42$ ）


表1原子炉格納施設の主要設備リスト（18／42）

| $\begin{aligned} & \text { 霍 } \\ & \text { 斧 } \end{aligned}$ | $\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計甚漼対象施設 ${ }^{(011)}$ |  | 重大事故等対処設備 ${ }^{(0 \text {（et）}}$ |  | 名称 | 設計基準対象施設 ${ }^{(121)}$ |  | 重大事故等対処設備 ${ }^{(121)}$ |  |
|  |  |  |  | $\begin{gathered} \text { 震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | $\begin{aligned} & \text { 原子炉格納容器 } \\ & \text { 安全設備 } \end{aligned}$ | 主配管 |  | － |  |  |  |  | ドライウェルスプレイ注入配管 A系分岐点～原子炉格納容器代替ス プレイ椧却系A系注入配管合流点 | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器代替スプレイ泠却系 A 系注入配管合流点～原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~A}$ ） | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炋格納容器配管貫通部（X－ 30A） | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | ドライウェルスプレイ管 | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 低圧代替注水系注入配管 B 系分岐点～E11－F026B | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | E11－F026B～低圧代替注水系 B 系注入配管合流点 | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | $\begin{aligned} & \text { ドライウエルスプレイ注入配管 B 系 } \\ & \text { 分岐点~低圧代替注水系 } \mathrm{B} \text { 系注入配 } \end{aligned}$ 管合流点 | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | ドライウェルスプレイ注入配管B系分岐点～原子炉格納容器代替ス プレイ洽却系 $B$ 系注入配管合流点 | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炬格納容器代替スプレイ浍却系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－30B） | － | － | 常設耐震／防止常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子涙格納容器配管貫通部（X－ 30B） | － | － | 常設耐震／防止 常設／緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 格納容器スプレイ接続口（北）～原子炉格納容器代替スプレイ泠却系 A 系注入配管合流点 | － | － | 常設耐震／防止常設／緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 格納容器スプレイ接続口（東）～原子炉格納容器代替スプレイ泠却系 B 系注入配管合流点 | － | － | 常設耐震／防止常設／緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 取水用ホース（250A ：5m，10m，20m） | － | － | 可搬／防止 <br> 可搬／緩和 | SAクラス3 |
|  |  |  |  | － |  |  |  |  | $\begin{aligned} & \text { 送水用ホース }(300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 2 \\ & 0 \mathrm{~m}, 50 \mathrm{~m}) \end{aligned}$ | － | － | 可搬／防止可搬／緩和 | SAクラス 3 |

表1原子炉格納施設の主要設備少スト（19／42）

| $\begin{aligned} & \text { 供 } \\ & \text { 爻 } \end{aligned}$ | $\begin{aligned} & \text { 漞 } \\ & \text { 森 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基淮対象施設（＊＊） |  | 重大事故等対処設備 ${ }^{(0141)}$ |  | 名称 | 設計基漼対象施設 ${ }^{\text {（it1）}}$ |  | 重大事故等対処設備 ${ }^{(121 \text { ）}}$ |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 原子炬格納容器安全設備 | 主配管 |  | － |  |  |  |  | 注水用ヘッダ | － | － | 可搬／防止可搬／緩和 | SAクラス3 |
|  |  |  |  | － |  |  |  |  | 送水用ホース（150A： 1m，2m，5m，10m，20m） | － | － | 可搬／防止可搬／緩和 | SAクラス3 |
|  |  | 原子炋格納容器安全設備 | 熱交撸器 | － |  |  |  |  | 残留熱除去系熱交換器（ $A$ ） | － | － | 常設緩和 | SAクラス2 |
|  |  |  | ポンプ | － |  |  |  |  | 代替循睘洽却ポンプ | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  | 万過装置 | － |  |  |  |  | 残留熱除去系ストレーナ（A） | － | － | 常設縷和 | SAクラス2 |
|  |  |  | 安全弁及び逃 <br> がし弁 | － |  |  |  |  | E11－F084 | － | － | 常設／緩和 | － |
|  |  |  |  | － |  |  |  |  | E11－F085 | － | － | 常設／緩和 | － |
|  |  |  |  | － |  |  |  |  | E11－F048A | － | － | 常設／緩和 | － |
|  |  |  |  | － |  |  |  |  | E11－F048B | － | － | 常設／緩和 | － |
|  |  |  | 主配管 | － |  |  |  |  | 残留熱除去系ストレーナ $(A)$～原子炉格納容器配管貫通部（X－214A） | － | － | 常設／緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（ X － 214A） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 214A）～サプレッションチェンバ出口配管 A 系合流点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | サプレッションチェンバ出口配管A <br> 系合流点～代替循環洽却系吸込配管分岥点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 代替循環冷却系吸込配管分岐点～代替循環冷却ポンプ | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 代替循環冷却ポンプ～代替循環冷却系注入配管合流点 | － | － | 常設／縷和 | SAクラス2 |

表1原子炉格納施設の主要設借リスト（20／42）


表1原子炉格納施設の主要設備少スト（21／42）

| $\begin{aligned} & \text { 簤 } \\ & \text { 爻 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }_{\text {a }}$（1） |  | 重大事故等対処設備 ${ }^{(21)}$ |  | 名称 | 設計基漼対象施設 ${ }^{(4) 1 \text { ）}}$ |  | 重大事故等対処設備 ${ }^{(31)}$ |  |
|  |  |  |  |  | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | $\begin{array}{\|l\|l\|} \text { 重大事故等 } \\ \text { 機器クラス } \end{array}$ |
|  |  | 原子炉格納容器安全設備 | 主配管 |  | － |  |  |  |  | E11－F026B～低圧代替注水系 B 系注入配管合流点 | － | － | 常設．緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部 （X－31B） | － | － | 常設緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炬格納容器配管貫通部（X－ 31B） | － | － | 常設緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 31B）～原子炉圧力容器 | － | － | 常設緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | ドライウェルスプレイ注入配管A系分岐点～低圧代替注水系A系注入配管合流点 | － | － | 常設緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管費通部 （ X －31A） | － | － | 常設緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 31A） | － | － | 常設／緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  |  | － | － | 常設／緩和 | SAクラス2 |
|  | $\begin{aligned} & \text { 高 } \\ & \text { 萑 } \\ & \text { 㿥 } \\ & \text { 泉 } \end{aligned}$ | 原子炉格納容器安全設備 | ポンプ | － |  |  |  |  | 高圧代替注水系タービンポンプ | － | － | 常設／緩和 | SAクラス2 |
|  |  |  | 容器 | － |  |  |  |  | 復水貯蔵タンク | － | － | 常設緩和 | SAクラス2 |
|  |  |  | 主配管 | － |  |  |  |  | 原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点 | － | － | 常設緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炬隔離時冷却系蒸気配管分岐点～原子炬格納容器配管貫通部 （X－36） | － | － | 常設緩和 | SAクラス2 |

表1原子炉格納施設の主要設備リスト（22／42）


O 2 （1）II R 0

表1原子炉格納施設の主要設備リスト（23／42）


表1原子炉格納施設の主要設備リスト（24／42）


O 2 （1）II R 0

表1原子炉格納施設の主要設借リスト（25／42）


表1原子炉格納施設の主要設備少スト（26／42）


表1原子炉格納施設の主要設備リスト（27／42）


表1原子炉格納施設の主要設借リスト（28／42）

| $\begin{aligned} & \text { 筬 } \\ & \text { 爻 } \end{aligned}$ | $\begin{aligned} & \text { 啋 } \\ & \text { 森 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基鹪対象施設 ${ }^{(011)}$ |  | 重大事故等対処設備 ${ }^{(21)}$ |  | 名称 | 設計基漼対象施設 ${ }^{\text {（®．1）}}$ |  | 重大事故等対処設供 ${ }^{(311)}$ |  |
|  |  |  |  | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 原子炉格納容器安全設備 | 主配管 |  | － |  |  |  |  | ドライウェルスプレイ管 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  |  | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  |  | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | サプレッションチェンバスプレイ <br> 注入配管 A 系分岐点～原子炬格納容器配管貫通部（X－213A） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 213A） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 華プレッションチェンバスプレイ | － | － | 常設／防止 （DB 拡張） | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B） | － | － | 常設／防止 （DB 拡張） | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 214 B | － | － | 常設／防止 （DB 拡張） | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炬格納容器配管費通部（X－ 214B）～サプレッションチェンバ出口配管B系合流点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | サプレッションチェンバ出口配管 B 系合流点～残留熱除去系ポンプ （B） | － | － | 常設／防止 （DB 拡張） | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（B）バイパ ス配管分岐点～残垶除去系熱交換器（B） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |

表1原子炉格納施設の主要設備少スト（29／42）


表1原子炉格納施設の主要設備少スト（ $30 / 42$ ）

| $\begin{aligned} & \text { 雀 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 漞 } \\ & \text { 森 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }^{(011)}$ |  | 重大事故等対処設備 ${ }^{(121)}$ |  | 名称 | 設計基淮対象施設（※1）${ }^{\text {（e）}}$ |  |  |  |
|  |  |  |  | $\begin{aligned} & \text { 震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | 耐震 <br> 重要度 <br> 分類 |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 原子炉格納容器安全設備 | 安全弁及び逃 <br> がし弁 |  | － |  |  |  |  | E11－F048A | － | － | $\begin{aligned} & \text { 常設/防止 } \\ & \text { (DB 拡張) } \end{aligned}$ | － |
|  |  |  |  | － |  |  |  |  | E11－F048B | － | － | 常設／防止 （DB 拡張） | － |
|  |  |  | 主配管 | － |  |  |  |  | 残留熱除去系ストレーナ $(A)$～原子炉格納容器配管貫通部（X－214A） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ $214 \mathrm{~A})$ | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炬格納容器配管貫通部（X－ 214A）～サプレッションチェンバ出口配管A系合流点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | サプレッションチェンバ出口配管A系合流点～代替循嬹洽却系吸这配管分岐点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 代替循澴佮却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分吱点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（A）バイパ入配管分岐点 $\sim$ 残留熱除去系熱交換器（A） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器 $(A) \sim$ 残留熱除去系熱交換器代替循褱冷却系出口配管分岐点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器代替循睘洽却系出口配管分岐点 $\sim$ 残留熱除去系熱交換器（A）バイパス配管合流点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（ $A$ ）バイパ入配管合流点～原子炬停止時冷却 モードA系注入配管分岐点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炬停止時冷却モードA系注入配管分吱点～サプレッションプー ル水冾却モードA系戻り配管分岐点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |

表1原子炉格納施設の主要設借リスト（31／42）

|  | $\begin{aligned} & \text { 漞 } \\ & \text { 森 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }^{(4) 1 \text { ）}}$ |  | 重大事故等対処設備 ${ }^{(121)}$ |  | 名称 | 設計基淮対象施設迷 ${ }^{(4)}$ |  | 重大事故等対処設供 ${ }^{(121 \text { ）}}$ |  |
|  |  |  |  | $\begin{aligned} & \text { 震 } \\ & \text { 重要分 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 原子炉格納容器安全設備 | 主配管 |  | － |  |  |  |  | サプレッションプール水冾却モー ドA系戻り配管分岐点～原子炉格納容器配管貫通部（ $\mathrm{X}-215 \mathrm{~A}$ ） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ <br> 215A） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炬格納容器配管貫通部（X－ 215A）～サプレッションプール水泠却配管A系開放端 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系ストレーナ $(\mathrm{B}) ~$～原子炉格納容器配管貫通部（X－214B） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ <br> 214B） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子师格納容器配管賴通部（X－ 214B）～サプレッションチェンパ出口配管B系合流点 | － | － | 常設／防止 （DB 拡張） | SAクラス2 |
|  |  |  |  | － |  |  |  |  | サプレッションチェンバ出口配管 B 系合流点～残留熱除去系ポンプ （B） | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（B）バイパ ス配管分岐点～残留熱除去系熱交 換器（B） | － | － | 常設／防止 （DB 拡張） | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 残留熱除去系熱交換器（B）バイパ入配管合流点～原子炉停止時冷却 モードB系注入配管分吱点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炬停止時冷却モードB́an注入配管分皮点～サプレッションプー ル水冷却モードB系戻り配管分岐点 | － | － | 常設／防止 （DB 拡張） | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | サプレッションプール水冷却モー ドB B 系戻り配管分岐点～原子炉格納容器配管费通部（ $\mathrm{X}-215 \mathrm{~B}$ ） | － | － | 常設／防止 （DB 拡張） | SAクラス2 |

表1原子炉格納施設の主要設備リスト（32／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基淮対象施設（31） |  | 重大事故等対処設備 ${ }^{(3}$（ 1） |  | 名称 | 設計基準対象施設（i）1） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震 <br> 重要度 <br> 分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 原子炉格納容器安全設備 | 主配管 | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 215B） | － | － | 常設／防止 （DB 拡張） | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－215B） ～サプレッションプール泠却配管B系開放端 | － | － | 常設／防止 （DB 拡張） | SA クラス 2 |
| 厓方減設備خ他他○安全備 |  | 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 | 加熱器 | 非常用ガス処理系空気乾燥装置 | S | － |  | － | 変更なし |  |  | － |  |
|  |  |  | 主要弁 | T46－F001A，B | S | クラス 4 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T46－F003A，B | S | クラス 4 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | T48－F045～非常用ガス処理系空気乾燥装置入口配管合流点 | S | クラス 4 |  | － | 変更なし |  |  |  |  |
|  |  |  |  | 非常用ガス処理系空気乾燥装置入口配管合流点～非常用ガス処理系排風機 | S | クラス 4 |  | － | 変更なし |  |  | 常設／緩和 | SAクラス 2 |
|  |  |  |  | 原子炉建屋内～非常用ガス処理系排風機入口配管合流点 | S | クラス 4 |  | － | 変更なし |  |  | 常設／緩和 | SAクラス 2 |
|  |  |  |  | 非常用ガス処理系排風機～非常用ガス処理系フィルタ装置 | S | クラス 4 |  | － | 変更なし |  |  | 常設／緩和 | SAクラス 2 |
|  |  |  | 主配管 | 非常用ガス処理系フィルタ装置～非常用ガス処理系フィルタ装置出口配管合流点 | S | クラス 4 |  | － | 変更なし |  |  | 常設／緩和 | SA クラス 2 |
|  |  |  |  | 非常用ガス処理系フィルタ装置出口配管合流点～排気筒 | S | クラス 4 |  | － | 変更なし |  |  | 常設／緩和 | SAクラス 2 |
|  |  |  |  | 非常用ガス処理系空気乾燥装置 | － |  |  | － | －（ ${ }^{\text {® } 3)}$ |  |  |  |  |
|  |  |  |  | 非常用ガス処理系フィルタ装置 | － |  |  | － | －（3＊） |  |  |  |  |

表1原子炉格納施設の主要設備リスト（33／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基準対象施設 ${ }^{(3)}$ |  | 重大事故等対処設備 ${ }^{(3)}{ }^{\text {a }}$ ） |  | 名称 | 設計基準対象施設（i＊1） |  | 重大事故等対処設備 ${ }^{(3)}$＋1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 放射性物質濃度制御設備及び可燃性ガス莀度制御設備並びに格納容器再循環設備 | 排風機 | 非常用ガス処理系排風機 | S | － |  | － | 変更なし |  |  | 常設／緩和 | － |
|  |  |  | フィルタ－ | 非常用ガス処理系フィルタ装置 | S | － |  | － | 変更なし |  |  | － |  |
|  |  | 放射性物質濃度制御設備及び可燃性ガス莀度制御設備並びに格納容器再循環設備 | 加熱器 | 可燃性ガス濃度制御系再結合装置加熱器 | S | $\begin{gathered} -\quad \\ \text { クラス } 3^{(\text {(\#) }} \end{gathered}$ |  | － | 変更なし |  |  | － |  |
|  |  |  | 安全弁及び逃 がし弁 | T49－F007A，B | S | － |  | － | 変更なし |  |  | － |  |
|  |  |  | 主要弁 | T49－F001A，B | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T49－F003A，B | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  | 主配管 | ドライウェル～可燃性ガス濃度制御系再結合装置 | S | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | 可燃性ガス濃度制御系再結合装置～ T49－F003A，B | S | クラス 3 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T49－F003A，B～サプレッションチェンバ | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  | ブロワ | 可燃性ガス濃度制御系再結合装置ブロ $ワ$ | S | － |  | － | 変更なし |  |  | － |  |
|  |  |  | 再結合装置 | 可燃性ガス濃度制御系再結合装置 | S | $\text { クラス }{ }^{-}(\text {(i4) }$ |  | － | 変更なし |  |  | － |  |
|  |  | 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 | 再結合装置 | － |  |  |  |  | 静的触媒式水素再結合装置 | － | － | 常設／緩和 | － |
|  | 放抑甡制物製質桩散 | 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 | ポンプ | － |  |  |  |  | 大容量送水ポンプ（タイプII） | － | － | 可搬／緩和 | SAクラス 3 |
|  |  |  | 主配管 | － |  |  |  |  | 取水用ホース（250A ：5m，10m，20m） | － | － | 可搬／緩和 | SA クラス 3 |

表1原子炉格納施設の主要設備リスト（34／42）

| $\begin{aligned} & \text { 譟 } \\ & \text { 爻 } \end{aligned}$ | $\begin{aligned} & \text { 漞 } \\ & \text { 森 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }^{(011)}$ |  | 重大事故等対処設備 ${ }^{(121)}$ |  | 名称 | 設計基鹪対象施設 ${ }^{(0141)}$ |  |  |  |
|  |  |  |  | $\begin{aligned} & \text { 震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | 耐震 <br> 重要度 <br> 分類 |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 放射性物啠濃度 <br> 制御設備及び可 <br> 燃性がス濃度制 <br> 御設備並びに格 <br> 納容再循噮設 <br> 備 | 主配管 |  | － |  |  |  |  | 送水用ホース（ $300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 2$ 0m，50m） | － | － | 可搬／綵和 | SAクラス 3 |
|  |  |  |  | － |  |  |  |  | 放水砲 | － | － | 可搬／綵和 | SAクラス3 |
|  | $\begin{aligned} & \text { 機放 } \end{aligned}$ | 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 | ポンプ | － |  |  |  |  | 大容量送水ポンプ（タイプII） | － | － | 可般／綵和 | SAクラス 3 |
|  |  |  | 主配管 | － |  |  |  |  | 取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ） | － | － | 可搬／綵和 | SAクラス 3 |
|  | $\begin{aligned} & \text { 敬 } \\ & \text { 讶制 } \\ & \text { 製 } \end{aligned}$ |  |  | － |  |  |  |  | $\begin{aligned} & \text { 送水用ホース }(300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 2 \\ & 0 \mathrm{~m}, 50 \mathrm{~m}) \end{aligned}$ | － | － | 可搬／緩和 | SAクラス3 |
|  | 昆䨌 |  |  | － |  |  |  |  | 放水砲 | － | － | 可搬／綵和 | SAクラス 3 |
|  |  | 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 | 压縮機 | － |  |  |  |  | 可搬型窒素がス供給装置 | － | － | 可搬／綵和 | － |
|  |  |  | 主配管 | － |  |  |  |  | 可搬型室素がス供給装置接続口 （屋外）～T48－F011 入口側合流点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 可搬型窒素ガス供給装置接続口 （屋内）～ドライウェル窒素供給配管合流点 | － | － | 常設／緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | ドライウェル窒素供給配管分岐点 2～原子炉格納容器配管貫通部（X－ 281） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 281） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | T48－F011 入口側合流点～T48－F002出口側合流点 | － | － | 常設／緩和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | T48－F002 出口側合流点～原子炬格納容器配管貫通部（X－80） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－80） | － | － | 常設／緩和 | SAクラス 2 |

O 2 （1）II R 0

表1原子炉格納施設の主要設備リスト（35／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 設計基淮対象施設（\＃1） |  | 重大事故等対処設備 ${ }^{(3 \times 1)}$ |  | 名称 | 設計基準対象施設（i＊1） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 名称 | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス |
| 圧偊減設備$¿$他他安全備 | $\begin{gathered} \text { 可 } \\ \text { 搬 } \\ \text { 型 } \\ \text { 系塐 } \\ \text { 否 } \\ \text { 給 } \end{gathered}$ | 放射性物質浱度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 | 主配管 | － |  |  |  |  | 窒素供給用ホース（50A：5m） | － | － | 可搬／緩和 | SA クラス 3 |
|  |  |  |  | － |  |  |  |  | 窒素供給用ヘッダ | － | － | 可搬／緩和 | SA クラス 3 |
|  |  |  |  | － |  |  |  |  | 可搬型窒素がス供給装置接続管 | － | － | 可搬／緩和 | SAクラス 3 |
|  |  | 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 | ポンプ | － |  |  |  |  | 大容量送水ポンプ（タイプ I） | － | － | 可搬／緩和 | SA クラス 3 |
|  |  |  | 圧縮機 | － |  |  |  |  | 可搬型穻素ガス供給装置 | － | － | 可搬／緩和 | － |
|  |  |  | 容器 | － |  |  |  |  | フィルタ装置 ${ }^{(3 \text { a }}$ 5） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  | 安全弁及び逃 がし弁 | － |  |  |  |  | T63－F006 | － | － | 常設／緩和 | － |
|  |  |  | 主要弁 | － |  |  |  |  | T48－F019 | － | － | 常設／緩和 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | T48－F022 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | T63－F001 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | T63－F002 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  | 主配管 | － |  |  |  |  | 原子炬格納容器配管貫通部（X－ 230） | － | － | 常設／緩和 | SA クラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－ 230）～ドライウェル出口配管分岐点 | － | － | 常設／緩和 | SA クラス 2 |

表1原子炉格納施設の主要設備リスト（36／42）

| $\begin{aligned} & \text { 簤 } \\ & \text { 爻 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 穫 } \\ & \text { 森 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基漼対象施設 ${ }_{\text {a }}$（1） |  | 重大事故等対処設備 ${ }^{(21)}$ |  | 名称 | 設計基淮対象施設迷 ${ }^{(1)}$ |  | 重大事故等対処設備 ${ }^{(31)}$ |  |
|  |  |  |  | $\begin{aligned} & \text { 胹震 } \\ & \text { 重要 } \end{aligned}$ | 機器クラス | 設備分類 | 重大事故等機器クラス | $\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$ |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 放射性物質濃度制御設備及び可燃性ガス裖度制御設備並びに格納容器再循環設備 | 主配管 |  | － |  |  |  |  | 原子炉格納容器配管貫通部（ X －81） | － | － | 常設縷和 | SAクラス2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－81） ～ドライウェル出口配管分岐点 | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | サプレッションチェンバ出口配管分岐点3～フィルタ装置 | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | フィルタ装置~フィルタ装置出口 側ラプチャディスク | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | フィルタ装置出口側ラプチャディ スク～排管 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | フィルタ装置（A）～フィルタ装置 <br> （B） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | フィルタ装置（B）～フィルタ装置 （C） | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | フィルタ装置連結管 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 可搬型窒素ガス供給装置接続口 （屋外）～T48－F011 入口側合流点 | － | － | 常設）緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 可搬型窒素ガス供給装置接続口 （屋内）～ドライウェル窒素供給配管合流点 | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | T48－F011 入口側合流点～T48－F002出口側合流点 | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80） | － | － | 常設／緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炉格納容器配管貫通部（X－80） | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | ドライウェル室素供給配管分岐点 2～原子炬格納容器配管貫通部（X－ 281） | － | － | 常設緩和 | SAクラス 2 |
|  |  |  |  | － |  |  |  |  | 原子炻格納容器配管貫通部（X－ 281） | － | － | 常設緩和 | SAクラス 2 |

O 2 （1）II R 0

表1原子炉格納施設の主要設備リスト（37／42）


表1原子炉格納施設の主要設備リスト（38／42）

| $\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ | $\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$ | 機器区分 |  | 変更前 |  |  |  |  | 変更後 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 名称 | 設計基準対象施設 ${ }^{(3)}{ }^{\text {（1）}}$ |  | 重大事故等対処設備 ${ }^{(\ldots \text { ¹）}}$ ） |  | 名称 | 設計基淮対象施設（\＃1） |  | 重大事故等対処設備 ${ }^{(3 \text { a }}$ 1） |  |
|  |  |  |  | 耐震重要度分類 | 機器クラス | 設備分類 | 重大事故等機器クラス | 耐震重要度分類 |  | 機器クラス | 設備分類 | 重大事故等機器クラス |
|  |  | 原子炉格納容器調気設備 | 主要弁 |  | T48－F001 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F002 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F003 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F010 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F011 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F012 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F016 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F019 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F020 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F021 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F022 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  |  | T48－F004A，B | S | クラス 2 |  | － |  |  |  |  |  |
|  |  |  |  | T48－F005A，B | S | クラス 2 |  | － |  | － |  |  |  |
|  |  |  |  | T48－F001～T48－F002 出口側合流点 | S | クラス 2 |  | － | 変更なし |  |  | － |  |
|  |  |  | 王配耍 | T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80） | S | クラス 2 |  | － | 変更なし |  |  | － |  |

表1原子炉格納施設の主要設備リスト（39／42）


表1原子炉格納施設の主要設備リスト（40／42）


表1原子炉格納施設の主要設備リスト（41／42）


O 2 （1）II R 0

表1原子炉格納施設の主要設備リスト（42／42）

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
（注 2）本設備は記載の適正化のみ行らものであり，手続き対象外である。
（注3）当該配管は，主配管に該当しないため記載の適正化を行う
（注 4）装置内配管がクラス3，それ以外はクラスなし。
（注5）本設備は，フィルターとして使用するフィルタ装置と同一機器である。
（注6）当該并は，主要弁に該当しないため記載の適正化を行う。
（注 7）本設備は，容器として使用するフィルタ装置と同一機器である。

表2原子炉格納施設の兼用設備リスト（ $1 / 5$ ）


表2原子炉格納施設の兼用設備リスト（2／5）


表2原子炉格納施設の兼用設備リスト（3／5）


表2原子炉格納施設の兼用設備リスト（4／5）


表2原子炉格納施設の兼用設備リスト（5／5）


## 7.5 原子炉格納施設に係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: |
| 原子炉格納施設に係る工事の方法は，「原子炉本体」における「9 原子炉本体に係 |  |
| る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料 | 変更なし |
| 体に係る検査」及び「3．2 燃料体の加工に係る工事上の留意事項」を除く。）に従う。 |  |


[^0]:    枠囲みの内容は商業機密の観点から公開できません。

[^1]:    枠囲みの内容は商業機密の観点から公開できません。

[^2]:    枠囲みの内容は商業機密の観点から公開できません。

[^3]:    枠囲みの内容は商業機密の観点から公開できません。

[^4]:    枠囲みの内容は商業機密の観点から公開できません。

[^5]:    枠囲みの内容は商業機密の観点から公開できません。

[^6]:    （注 2）本設備は記載の適正化のみ行うものであり，手続き対象外である

