O 2 （1）II R 0

8．4．3 火災防護設備の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用軽水型原子炉施設の火災防護に関する審査指針」 による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」，「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈並びに「実用発電用原子炉及びその附属施設の火災防護に係る審査基準」（平成 25 年 6 月 19 日原子力規制委員会）による。
第1章 共通項目	第1章 共通項目 火災防護設備の共通項目である「1．地盤等，2．自然現象（2．2 津波による損傷の防止を除く。），5．設備に対する要求（5．6 逆止め弁， 5.8 電気設備の設計条件を除く。），6．その他」の基本設計方針につい ては，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。
第2章 個別項目 1．火災防護設備の基本方針 火災により原子炉の安全性が損なわれないように，「原子力発電所の火災防護指針」（日本電気協会 J E A G 4 6 0 7 ）に準じ，火災の発生防止対策，火災の検知及び消火対策並びに火災の影響軽減対策を組み合わせ て対応する。	第2章 個別項目 1．火災防護設備の基本設計方針 設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわな いよう，火災防護上重要な機器等を設置する火災区域及び火災区画に対し て，火災防護対策を講じる。 発電用原子炉施設は，火災によりその安全性を損なわないように，適切 な火災防護対策を講じる設計とする。火災防護対策を講じる対象として「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」の クラス 1 ，クラス 2 及び安全評価上その機能を期待するクラス 3 に属する

変更前	変更後
2．火災の発生防止対策 2.1 発火性，引火性材料の予防措置	設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減のそれぞれを考慮した火災防護対策を講じる設計とする。 なお，発電用原子炉施設のうち，火災防護上重要な機器等又は重大事故等対処施設に含まれない構築物，系統及び機器は，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講じる設計とする。 発電用原子炉施設の火災防護上重要な機器等は，火災の発生防止，火災 の早期感知及び消火並びに火災の影響軽減の 3 つの深層防護の概念に基 づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定め て管理する。 重大事故等対処施設は，火災の発生防止，火災の早期感知及び消火の必要な運用管理を含む火災防護対策を講じることを保安規定に定めて管理 する。 重大事故等対処施設のうち，可搬型重大事故等対処設備に対する火災防護対策についても保安規定に定めて管理する。 その他の発電用原子炉施設については，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講 じることを保安規定に定めて管理する。 外部火災については，安全施設及び重大事故等対処施設を外部火災から防護するための運用等について保安規定に定めて管理する。 1．1 火災発生防止 1．1．1 火災の発生防止対策

	変更前	変更後
$\begin{aligned} & \infty \\ & 1 \\ & \stackrel{1}{\omega} \\ & 0 \\ & \vdots \end{aligned}$	（b）蓄電池室は，充電中に内部から水素が放出されることから，空調設備で換気する。 （3）換気設備の対策	水素ボンベは，ボンベ使用時のみ建屋内に持ち込みを行う運用と することで，火災区域内に水素の貯蔵機器は設置しない設計とす る。 火災の発生防止における水素漏えい検出は，蓄電池室の上部に水素濃度検出器を設置し，水素の燃焼限界濃度である $4 \mathrm{vol} \%$ の $1 / 4$以下の濃度にて中央制御室に警報を発する設計とする。 気体廃棄物処理系設備内の水素濃度については，水素濃度計によ り中央制御室で常時監視ができる設計とし，水素濃度が上昇した場合には中央制御室に警報を発する設計とする。 発電機水素ガス供給設備は，水素消費量を管理するとともに，発電機内の水素純度，水素圧力を中央制御室で常時監視ができる設計 とし，発電機内の水素純度や水素圧力が低下した場合には中央制御室に警報を発する設計とする。 水素ボンベを作業時のみ持ち込みを行う火災区域又は火災区画 は，ボンベ使用時のみ建屋内に持ち込みを行う運用とし，機械換気 により水素濃度を燃焼限界濃度以下とするように設計することか ら，水素濃度検出器は設置しない設計とする。 蓄電池室の換気設備が停止した場合には，中央制御室に警報を発 する設計とする。また，蓄電池室には，直流開閉装置やインバータ を設置しない。 放射性廃棄物処理設備及び放射性廃棄物貯蔵設備において，崩壊熱が発生し，火災事象に至るような放射性廃棄物を貯蔵しない設計 とする。 また，放射性物質を含んだ使用済イオン交換樹脂，チャコールフ

変更前	変更後
換気設備で使用するチャコールフィルタは，固体廃棄物として処理するまでの間，鋼製容器内に収納し保管する。	イルタ及び HEPAフィルタは，固体廃棄物として処理を行うまでの間，金属容器や不燃シートに包んで保管する設計とする。 放射性廃棄物処理設備及び放射性廃棄物貯蔵設備を設置する火災区域の換気設備は，火災時に他の火災区域や環境への放射性物質 の放出を防ぐために，換気設備の停止及び風量調整ダンパの閉止に より，隔離ができる設計とする。 火災の発生防止のため，火災区域において有機溶剤を使用する場合は必要量以上持ち込まない運用とし，可燃性の蒸気が滞留するお それがある場合は，使用する作業場所において，換気，通風，拡散 の措置を行うとともに，建屋の送風機及び排風機による機械換気に より滞留を防止する設計とする。 火災区域又は火災区画において，発火性又は引火性物質を内包す る設備は，溶接構造の採用及び機械換気等により，「電気設備に関 する技術基準を定める省令」及び「工場電気設備防爆指針」で要求 される爆発性雰囲気とならないため，当該の設備を設ける火災区域又は火災区画に設置する電気•計装品を防爆型とせず，防爆を目的 とした電気設備の接地も必要としない設計とする。 火災の発生防止のため，可燃性の微粉を発生する設備及び静電気 が溜まるおそれがある設備を火災区域に設置しないことによって，可燃性の微粉及び静電気による火災の発生を防止する設計とする。火災の発生防止のため，発火源への対策として，設備を金属製の筐体内に収納する等，火花が設備外部に出ない設備を設置するとと もに，高温部分を保温材で覆うことによって，可燃性物質との接触防止や潤滑油等可燃物の過熱防止を行ら設計とする。

変更前	変更後
2.2 電気設備の過電流による過熱防止対策 電気系統は，地絡及び短絡に起因する過電流による過熱防止のため，過負荷継電器又は過電流継電器等の保護継電装置と遮断器の組合せに より故障機器系統の早期遮断を行い，過熱及び焼損の未然防止を図る。 2.3 不燃性材料，難燃性材料の使用 安全機能を有する構築物，系統及び機器は，以下のとおり不燃性又は難燃性材料を使用する。 （1）構築物は，不燃性である鉄筋コンクリート及び鋼材により構成す る。 （2）機器，配管，ダクト，トレイ，電線管及びこれらの支持構造物は，主要な構造材に不燃性である金属を使用する。 （3）安全機能を有するケーブルは，実用上可能な限り「IEEE Standard for Type of Class 1E Electric Cables，Field Splices，and Connections for Nuclear Power Generating Stations」（I E E E St d $383-1974$ ）又は電気学会技術報告 II 部第 139 号	火災の発生防止のため，発電用原子炉施設内の電気系統は，保護継電器及び遮断器によって故障回路を早期に遮断し，過電流による過熱及び焼損を防止する設計とする。 電気品室は，電源供給のみに使用する設計とする。 火災の発生防止のため，放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策として，社団法人火力原子力発電技術協会「BWR 配管における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10 月）」等に基づき，原子炉の安全性を損なうおそれがある場合には水素の蓄積を防止 する設計とする。 重大事故等時の原子炉格納容器内及び建屋内の水素については，重大事故等対処施設にて，蓄積防止対策を行う設計とする。 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能 を有するもの（以下「代替材料」という。）を使用する設計，若し くは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用が技術上困難な場合は，当該構築物，系統及び機器に おける火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止するための措置を講じる設計とする。 火災防護上重要な機器等及び重大事故等対処施設のうち，機器，

変更前	変更後
（昭和 57 年 11 月）の垂直トレイ燃焼試験に合格した難燃性ケー ブルを使用する。また，必要に応じ延焼防止塗料を使用する。 （4）建屋内における変圧器は乾式とし，遮断器は実用上可能な限りオ イルレスとする。 （5）安全機能を有する動力盤及び制御盤は，不燃性である鋼製の筐体，塩化ビニル等難燃性の配線ダクト及びテフロン等実用上可能な限り難燃性の電線を使用する。 （6）換気設備のフィルタは，チャコールフィルタを除き難燃性のガラ ス繊維を使用する。 （7）保温材は，不燃性の金属保温並びに難燃性のロックウール，グラ スウール等を使用する。 （8）建屋内装材は，実用上可能な限り不燃性材料及び難燃性材料を使用する。	配管，ダクト，トレイ，電線管，盤の筐体及びこれらの支持構造物 の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を確保するために必要な代替材料の使用が技術上困難であるため，金属で覆われた狭㿽部に設置し直接火炎に晒されることのない設計とする。 金属に覆われたポンプ及び弁等の駆動部の潤滑油並びに金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他 の火災防護上重要な機器等及び重大事故等対処施設に延焼しない ことから，不燃性材料又は難燃性材料でない材料を使用する設計と する。 火災防護上重要な機器等及び重大事故等対処施設に使用する保温材は，原則，「平成 12 年建設省告示第 1400 号」に定められたも の又は「建築基準法」で不燃性材料として認められたものを使用す る設計とする。 火災防護上重要な機器等及び重大事故等対処施設を設置する建屋の内装材は，「建築基準法」で不燃性材料として認められたもの を使用する設計とする。 ただし，管理区域の床に塗布されている耐放射線性のコーティン グ剤は，不燃性材料であるコンクリート表面に塗布すること，難燃性が確認された塗料であること，加熱源を除去した場合はその燃焼部が広がらないこと，原子炉格納容器内を含む建屋内に設置する火災防護上重要な機器等及び重大事故等対処施設は，不燃性又は難燃性の材料を使用し，その周辺には可燃物がないことから，難燃性材

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{1}{\uparrow} \\ & \stackrel{1}{\omega} \\ & \stackrel{1}{0} \end{aligned}$	2.4 落雷，地震等の自然現象による火災発生防止策	料を使用する設計とする。 また，中央制御室の床面は，防炎性能を有するカーペットを使用 する設計とする。 火災防護上重要な機器等及び重大事故等対処施設に使用するケ ーブルは，実証試験により自己消火性（UL 垂直燃焼試験）及び耐延焼性（I E E E 3 8 3（光ファイバケーブルの場合は I E E E 1 2 0 2 ）垂直トレイ燃焼試験）を確認した難燃ケーブルを使用する設計とする。 ただし，実証試験により耐延焼性を確認できない核計装ケーブル及び放射線モニタケーブルは，難燃ケーブルと同等以上の性能を有 する設計とするか，代替材料の使用が技術上困難な場合は，当該ケ ーブルの火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止するための措置 を講じる設計とする。 火災防護上重要な機器等及び重大事故等対処施設のうち，換気空調設備のフィルタはチャコールフィルタを除き，「JIS L 1 0 91（繊維製品の燃焼性試験方法）」又は「J A C A No． 11 A－ 2003 （空気清浄装置用ろ材燃焼性試験方法指針（公益社団法人日本空気清浄協会））」を満足する難燃性材料を使用する設計とする。 火災防護上重要な機器等及び重大事故等対処施設のうち，屋内の変圧器及び遮断器は，可燃性物質である絶縁油を内包していないも のを使用する設計とする。 1．1．3 自然現象による火災の発生防止

2．4．2 耐震設計

安全機能を有する構築物，系統及び機器は，「発電用原子炉施設 に関する耐震設計審査指針」の耐震設計上の重要度分類に従った耐震設計を行い，破損又は倒壊を防ぐことにより火災発生を防止す る。

変更前	変更後
	屋外に設置する火災感知設備は，$-14.6^{\circ} \mathrm{C}$ まで気温が低下しても使用可能な火災感知設備を設置する設計とする。 屋外の火災感知設備は，火災感知器の予備を保有し，万一，風水害の影響を受けた場合にも，早期に取替えを行うことにより機能及 び性能を復旧する設計とする。
3.2 消火設備	1．2．2
消火設備は，消火栓設備，二酸化炭素消火設備及び消火器で構成する。	火災防護上重要な機器等及び重大事故等対処施設を設置する火
3.2 .1 消火設備設置対象区域	災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起き
（1）火災防護上，以下の区域に消火設備を設置する。	た場合においても，原子炉を安全に停止させるための機能又は重大
a．原子炉建屋，タービン建屋及び制御建屋等には，すべての区域	事故等に対処するために必要な機能を有する電気及び機械設備に
の消火活動に対処できるように屋内消火栓を設置する。	影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響
b．火災の影響軽減対策として，火災荷重の大きいディーゼル発電	により消火活動が困難となるところは，自動消火設備又は手動操作
機室及びケーブル処理室には，二酸化炭素消火設備を設置する。	による固定式消火設備であるハロンガス消火設備及びケーブルト
c．中央制御室には消火器を設置する。	レイ消火設備を設置して消火を行ら設計とする。
3.2 .2 消火設備の設置要領	火災発生時の煙の充満又は放射線の影響により消火活動が困難
消火設備は，「消防法施行令」に準じて設置する。	とならないところは，消火器，移動式消火設備又は消火栓により消
なお，汚染の可能性のある消火排水が建屋外へ流出するおそれが	火を行う設計とする。
ある場合には，建屋外に通じる出入口部に堰又はトレンチあるいは	なお，消火設備の破損，誤作動又は誤操作に伴う溢水による安全
床面スロープを設置し，消火排水を床ドレンより液体廃棄物処理設	機能及び重大事故等に対処する機能への影響については，浸水防護
備に導く。	設備の基本設計方針にて確認する。
3．2．3 消火用水供給設備	原子炉格納容器は，運転中は窒素に置換され火災は発生せず，内
消火栓への消火用水供給設備は，消火水槽（第1，2号機共用（以	部に設置された火災防護上重要な機器等が火災により機能を損な
下同じ。）），消火ポンプ（第 1，2 号機共用（以下同じ。））及び消火	うおそれはないことから，原子炉起動中並びに低温停止中の状態に

変更前	変更後
系配管等で構成する。消火用水は，消火ポンプで建屋内外に布設さ れた消火系配管に導かれ，必要箇所に送水される。また，消火ポン プ故障時には，中央制御室に警報を発信する。 3.3 消火設備の破損，誤作動又は誤操作対策 消火設備は，以下のとおり破損，誤作動又は誤操作によって安全機能 を有する構築物，系統及び機器の安全機能を喪失しないようにする。 （1）消火設備は，安全機能を有する構築物，系統及び機器に対し，地震に伴ら波及的影響を及ぼさないようにする。 （2）ディーゼル発電機は，二酸化炭素消火設備の誤動作又は誤操作に より，ディーゼル機関内の燃焼が阻害されることがないよう，ディ ーゼル機関に外気を直接吸気し，室外へ排気する。	対して措置を講じる設計とし，消火については，消火器又は消火栓 を用いた消火ができる設計とする。火災の早期消火を図るために原子炉格納容器内の消火活動の手順を定めて，自衛消防隊の訓練を実施する。 なお，原子炉格納容器内において火災が発生した場合，原子炉格納容器の空間体積（約 $7650 \mathrm{~m}^{3}$ ）に対してパージ用排風機の容量が約 $24000 \mathrm{~m}^{3} / \mathrm{h}$ であることから，煙が充満しないため，消火活動が可能 であることから，消火器又は消火栓を用いた消火ができる設計とす る。 中央制御室は，消火器で消火を行う設計とし，中央制御室制御盤内の火災については，電気機器への影響がない二酸化炭素消火器で消火を行う設計とする。また，中央制御室床下ケーブルピットにつ いては，自動消火設備であるハロンガス消火設備を設置する設計と する。 トーラス室において火災が発生した場合，トーラス室の空間体積 （約 $11000 \mathrm{~m}^{3}$ ）に対して換気風量の容量が約 $21600 \mathrm{~m}^{3} / \mathrm{h}$ であることか ら，煙が充満しないため，消火活動が可能であることから，消火器 を用いた消火ができる設計とする。 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，以下の設計を行う。 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{1}{\stackrel{1}{4}} \\ & \stackrel{1}{\omega} \end{aligned}$		機器等及び重大事故等対処施設に悪影響を及ぼさない設計とす る。 b．管理区域からの放出消火剤の流出防止 管理区域内で放出した消火剤は，放射性物質を含むおそれがあ ることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に堰等を設置するとともに，各フロアの建屋内排水系により液体廃妻物処理設備に回収し，処理する設計とする。 c．消火栓の配置 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外の消火栓は，「消防法施行令」に準拠し，全ての火災区域又は火災区画の消火活動に対処できるように配置する設計とする。 （5）消火設備の警報 a．消火設備の故障警報 電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケ ーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発 する設計とする。 b．ハロンガス消火設備の職員退避警報 固定式消火設備であるハロンガス消火設備は，作動前に職員等 の退出ができるように警報又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置したケーブルトレ イ内に留まり，外部に有意な影響を及ぼさないため，消火設備作

変更前	変更後
3.4 自然現象に対する火災報知設備及び消火設備の性能維持 火災報知設備及び消火設備の耐震重要度分類は C クラスとする。ま た，屋外消火栓は凍結防止構造とする。さらに，消火設備を内蔵する建屋，構築物等は，台風に対し消火設備の性能が著しく阻害されないよう建築基準法施行令等に基づき設計する。	動前に退避警報を発しない設計とする。 （6）消火設備に対する自然現象の考慮 a．凍結防止対策 屋外消火設備の配管は，保温材により配管内部の水が凍結しな い設計とする。 屋外消火栓は，凍結を防止するため，自動排水機構により消火栓内部に水が溜まらないような構造とする設計とする。 b．風水害対策 消火用水供給系の消火設備を構成する電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，風水害に対してその性能が著しく阻害されることのないよう，建屋内に設置する設計とする。 c．地盤変位対策 地震時における地盤変位対策として，水消火配管のレイアウ ト，配管支持長さからフレキシビリティを考慮した配置とするこ とで，地盤変位による変形を配管系統全体で吸収する設計とす る。 さらに，屋外消火配管が破断した場合でも移動式消火設備を用 いて屋内消火栓へ消火用水の供給ができるよう，建屋に給水接続口を設置する設計とする。 （7）その他 a．移動式消火設備 移動式消火設備は，恒設の消火設備の代替として消火ホース等

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\omega} \\ & \stackrel{1}{0} \\ & \stackrel{N}{u} \end{aligned}$		の資機材を備え付けている化学消防自動車を 2 台配備する設計 とする。 b．消火用の照明器具 建屋内の消火栓，消火設備現場盤の設置場所及び設置場所まで の経路には，移動及び消火設備の操作を行うため，消防法で要求 される消火継続時間 20 分に現場への移動等の時間も考慮し，8時間以上の容量の蓄電池を内蔵する照明器具を設置する設計と する。 c．ポンプ室の煙の排気対策 火災発生時の煙の充満により消火活動が困難となるポンプ室 には，消火活動によらなくとも迅速に消火できるように固定式消火設備を設置し，鎮火の確認のために自衛消防隊がポンプ室に入 る場合については，再発火するおそれがあることから，十分に泠却時間を確保した上で扉の開放，換気空調系及び可搬型排煙装置 により換気が可能な設計とする。 d．使用済燃料貯蔵設備及び新燃料貯蔵設備 使用斎燃料貯蔵設備は，水中に設置されたラックに燃料を貯蔵 することで未臨界性が碓保される設計とする。 新燃料貯蔵設備については，消火活動により消火水が噴霧さ れ，水分雾囲気に満たされた最適減速状態となっても未臨界性が確保される設計とする。 e．ケーブル処理室 ケーブル処理室は，消火活動のため 2 箇所の入口を設置する設計とする。

変更前	変更後
4．火災の影響軽減対策 原子炉の施設内のいかなる場所の想定火災に対しても，その火災により原子炉に外乱が及び，かつ，原子炉保護設備又は工学的安全施設作動設備 の作動を要求される場合に，動的機器の単一故障を想定しでも，原子炉を高温停止できるように，また，低温停止に必要な系統及び機器は，その安全機能を失わず，低温停止できるように，以下に示す火災の影響軽減対策 を実施する。 4．1 耐火壁による軽減対策 （1）原子炉の安全確保に必要な設備を設置している原子炉建屋及び制御建屋に隣接するタービン建屋で火災が発生しても，原子炉建屋及び制御建屋に影響を及ぼさないように，原子炉建屋及び制御建屋 とタービン建屋の境界の壁は，2 時間の耐火能力を有する耐火壁	区分IIIケーブル処理室は，消火活動のための入口は 1 箇所で あるが，部屋の大きさが狭く，室内の可燃物は少量のケーブルト レイのみであるため，火災が発生した場合においても，入口から消火要員による当該室全域の消火活動を行うことが可能な設計 とする。 1．3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な火災防護対象機器及び火災防護対象ケーブ ルを火災防護対象機器等とする。 火災が発生しても原子炉の高温停止及び低温停止を達成し，維持 するためには，プロセスを監視しながら原子炉を停止し，冷却を行 うことが必要であり，このためには，手動操作に期待してでも原子炉の高温停止及び低温停止を達成し，維持するために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要がある。 このため，火災防護対象機器等に対して，以下に示す火災の影響軽減対策を講じる設計とする。 （1）火災防護対象機器等の系統分離による影響軽減対策 中央制御室及び原子炉格納容器を除く火災防護対象機器等は，以下に示すいずれかの系統分離によって，火災の影響を軽減するため の対策を講じる。 a． 3 時間以上の耐火能力を有する隔壁等

変更前
（以下「耐火壁」という。）とする。 （2）燃料油の漏えい油火災を想定する補機を設置するディーゼル発電機室（ディーゼル制御盤室も含む）は，それぞれトレン別に二つ の区域に分け，互いの区域及び周囲の区域に火災の影響を及ぼさな いようにそれぞれを耐火壁で囲む。 （3）耐火壁の貫通口は耐火シールを施工し，換気設備のダクトには防火ダンパ，出入口には防火戸を設置し，耐火壁効果を減少させない ようにする。 4．2 固定式消火設備による軽減対策 火災荷重の大きいディーゼル発電機室には，二酸化炭素消火設備を設置する。

変更後
互いに相違する系列の火災防護対象機器等は，火災耐久試験に より 3 時間以上の耐火能力を確認した隔壁等で分離する設計と する。
b． 6 m 以上離隔，火災感知設備及び自動消火設備
互いに相違する系列の火災防護対象機器等は，仮置きするもの を含めて可燃性物質のない水平距離 6 m 以上の離隔距離を確保す る設計とする。
火災感知設備は，自動消火設備を作動させるために設置し，自動消火設備の誤作動防止を考慮した火災感知器の作動信号によ

り自動消火設備を作動させる設計とする。
c． 1 時間耐火隔壁等，火災感知設備及び自動消火設備
互いに相違する系列の火災防護対象機器等は，火災耐久試験に
より 1 時間以上の耐火能力を確認した隔壁等で分離する設計と する。

また，火災感知設備及び消火設備は，上記 b．と同様の設計と する。
（2）中央制御室の火災の影響軽減対策
a．中央制御室制御盤内の火災の影響軽減
中央制御室制御盤内の火災防護対象機器等は，以下に示すとお り，実証試験結果に基づく離隔距離等による分離対策，高感度煙検出設備の設置による早期の火災感知及び常駐する運転員によ る早期の消火活動に加え，火災により中央制御室制御盤の1 つ の区画の安全機能が全て喪失しても，他の区画の制御盤は機能が維持されることを確認することにより，原子炉の高温停止及び低

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{4} \\ & \stackrel{1}{0} \\ & \vdots \end{aligned}$		は水平距離を 6 m 以上確保することが困難である。このため，中央制御室床下ケーブルピットについては，下記に示す分離対策等 を行ら設計とする。 （a）分離板等による分離 中央制御室床下ケーブルピットに敷設する互いに相違する系列の火災防護対象ケーブルについては， 1 時間以上の耐火能力を有する分離板又は障壁で分離する設計とする。 （b）火災感知設備 中央制御室床下ケーブルピットには，固有の信号を発する異 なる 2 種類の火災感知器として，煙感知器と熱感知器を組み合わせて設置する設計とする。これらの火災感知設備は，アナ ログ機能を有するものとする。 また，火災感知設備は，外部電源霛失時においても火災の感知が可能となるように，非常用電源から受電するとともに，火災受信機盤は中央制御室に設置し常時監視できる設計とする。火災受信機盤は，作動した火災感知器を 1 つずつ特定できる機能を有する設計とする。 （c）消火設備 中央制御室床下ケーブルピットには，系統分離の観点から自動消火設備であるハロンガス消火設備を設置する設計とする。 この消火設備は，故障警報及び作動前の警報を中央制御室に発するとともに，時間遅れをもってハロンガスを放出する設計 とする。また，外部電源喪失時においても消火が可能となるよ らに，非常用電源から受電する。

| 変更前 | 変更後 |
| :---: | ---: | ---: |

変更前	変更後
6．主要対象設備 火災防護設備の対象となる主要な設備について，「表 1 火災防護施設 の主要設備リスト」に示す。	2．主要対象設備 火災防護設備の対象となる主要な設備について，「表1 火災防護設備 の主要設備リスト」に示す。

O 2 （1）II R 0

表1 火災防謢設備の主要設備リスト $(1 / 66)$

表1 火災防識設備の主要設備リスト $(2 / 66)$

		$\begin{aligned} & \text { 緂 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称					名称	設計基漼対象施設（e1）		重大事故等対処設備	
$\begin{aligned} & \text { 傩 } \\ & \text { 分 } \end{aligned}$					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{array}{\|l\|} \hline \text { 重大事故 } \\ \text { 機筑クラ } \end{array}$
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$		ポンプ	－					電動機駆動消火ポンプ（第 1 ， 2 号機共用）	c	Non	－	－
			容器	－					消火水タンク	c	クラス3	－	－
			館噦橧	－					消火水槽（第 1,2 号機共用）	c	クラス3	－	－
				－					消火水槽～電動機駆動消火ポンプ（A） （第1，2号機共用）	c	クラス3	－	－
				－					消火水タンク～電動機駆動消火ポンプ （A）入口配管合流点 （第 1,2 号機共用）	c	クラス 3	－	－
				－					消火水槽～電動機駆動消火ポンプ（B） （第 1,2 号機共用）	c	クラス 3	－	－
				－					消火水タンク～電動機駆動消火ポンプ （B）人口配管合流点	c	クラス 3	－	－
			主配管	－					電動機駆動消火ポンプ（A）～消火水ヘッ ダ分岐点 （第 1，2号機共用）	c	クラス 3	－	－
				－					電動機駆動消火水ポンプ（B）～電動機駆動消火ポンプ（A）出口配管合流点 （第 1，2号機共用）	c	クラス 3	－	－
				－					消火水ヘッダ分岐点～制御建屋供給配管分岐点 （第 1，2 号機共用）	c	クラス3	－	－
				－					制御建屋供給配管分岐点～タービン建屋供給配管分岐点	c	クラス 3	－	－
				－					タービン建屋供給配管分岐点～原子炉建屋供給配管分岐点	c	クラス 3	－	－
		$\begin{aligned} & \text { 㘶 } \\ & \text { 沝 } \\ & \text { 肖 } \\ & \text { 奚 } \end{aligned}$	ポンプ	－					屋外消火系電動機駆動消火ポンプ	c	Non	－	－
				－					屋外消火系ディーゼル駆動消火ポンプ	c		－	－
			容器	－					屋外消火系消火水タンク	c	クラス3	－	－
			主配管	－					No．1 屋外消火系消火水タンク～屋外消火系電動機駆動消火ポンプ	c	クラス 3	－	－

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト $(3 / 66)$

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト $(4 / 66)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$		$\begin{aligned} & \text { 奚 } \\ & \text { 緩 } \\ & \text { } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基淮対象施設 ${ }^{\text {（\＃1）}}$ ）		重大事故等対処設備 ${ }^{\left(3{ }^{(2)} \text { 1）}\right.}$		名称	設計基漼対象施設 ${ }^{(3 \ldots 1)}$		重大事故等対処設備 （注1）	
					耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	$\begin{array}{\|c\|} \hline \text { 重大事故 } \\ \text { 等 } \\ \text { 機器クラ } \\ \text { ス } \\ \hline \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 㕣 } \\ & \text { 勏 } \\ & \text { 采 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$		容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－
				－					ハロン 1301 貯蔵容器～LPCS ポンプ室， LPCS 計装ラック室	C－2	クラス 3	－	－
				－					HPCS ポンプ室，HPCS 計装ラック室分岐点～HPCS ポンプ室，HPCS 計装ラック室	C－2	クラス 3	－	－
			容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－
			主配管	－					ハロン 1301 貯蔵容器～HPCW 熱交換器• ポンプ室	C－2	クラス 3	－	－
				－					B2F ハッチ室分岐点～B2F ハッチ室	C－2	クラス 3	－	－
				－					R／B NSD サンプ室分岐点～R／BNSD サン プ室	C－2	クラス 3	－	－
				－					RCW 熱交換器（B）（D）室，RCW ポンプ （B）（D）室分岐点～RCW 熱交換器（B）（D）室，RCW ポンプ（B）（D）室	C－2	クラス 3	－	－

O 2 （1）II R 0

表1 火災防謢設備の主要設備リスト（5／66）

O 2 （1）II R O

表1 火災防謢設備の主要設備リスト（6／66）

$\begin{aligned} & \infty \\ & 1 \\ & \stackrel{1}{1} \\ & \omega \\ & \omega \\ & \omega \end{aligned}$	$\begin{aligned} & \text { 番 } \\ & \text { 禁 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称			重大事故等対处設備（\＃き）		名称	設計甚淮対象施設 ${ }^{(3)}$（1）		重大事故等対处処設備			
			$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	$\begin{array}{\|l\|} \hline \text { 重大事故 } \\ \text { 機筑クラ } \end{array}$			
				容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－
					－				ハロン 1301 貯蔵容器～IA•SA 空気圧縮機（A）（B）室	C－2	クラス3	－	－	
					－				B2F 東側通路分吱点 \sim B2F 東側通路	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 끚 } \\ & \text { ポ } \end{aligned}$	容器		－				ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
		$\begin{aligned} & \text { 埰 } \\ & \text { 炎 } \end{aligned}$	主配管		－				ヘロン 1301 貯蔵器器～CRD ポンプ室	C－2	クラス3	－	－	
		亳	容器		－				ハロン 1301 貯蔵容器 ${ }^{(0 \text {（e）}}$	－	－	－	－	
			主配管		－				ハロン 1301 貯蔵容器～MUWC ポンプ室 5）	－	－	－	－	

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト $(7 / 66)$

$\begin{aligned} & \text { 䧼 } \\ & \text { 卤 } \end{aligned}$			機器区分	変更前					変更後				
				名称			重大事故等対处設備（e\＃1）		名称	設計基淮対象施設（ ${ }_{\text {（121）}}$		重大事故等対处設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重安供 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 重分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 重故 } \\ \text { 機等グ啚ク } \end{array}$
			容器	－					ハロン 1301 貯蔵容器	c－2	クラス3	－	－
				－					ハロン 1301 眝蔵容器～排風機室	C－2	クラス3	－	－
					－				B1F 西側通路分岐点 \sim B1F 西側通路	c－2	クラス3	－	－
					－				B2F 西側通路分吱点 \sim B2F 西側通路	C－2	クラス3	－	－
					－				1 F 西側通路分岐点 $1 \sim 1 \mathrm{~F}$ 西側通路	C－2	クラス3	－	－
					－				1F 西側通路分岐点 $2 \sim 1 \mathrm{~F}$ 西側通路	c－2	クラス3	－	－
					－				1F 西側通路分岐点 $3 \sim 1 \mathrm{~F}$ 西側通路	C－2	クラス3	－	－
					－				1F 西側通路分岐点 $4 \sim 1 \mathrm{~F}$ 西側通路	C－2	クラス3	－	－
					－				1F 西側通路分岐点 $5 \sim 1 \mathrm{~F}$ 西側通路	C－2	クラス3	－	－
			容器		－				ハロン 1301 貯蔵容器	C－2	クラス 3	－	－

O 2 （1）II R 0

表1 火災防識設備の主要設備少スト $(8 / 66)$

O 2 （1）II R 0

表1 火災防謢設備の主要設備リスト（9／66）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基淮対象施設（3＊1）		重大事故等対処設備 ${ }^{(31)}$		名称	設計基漼対象施設 ${ }^{\left(3{ }^{(1)} \text { 1）}\right.}$		重大事故等対処設備 （洋1）			
			耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	$\begin{gathered} \text { 重大事故 } \\ \text { 等 } \\ \text { 機器クラ } \\ \text { ス } \\ \hline \end{gathered}$			
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 㕣 } \\ & \text { 齐 } \\ & \text { 学 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$			容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－
			主配管	－					ハロン 1301 貯蔵容器～区分 I 非常用電気品室	C－2	クラス 3	－	－	
		$\stackrel{\rightharpoonup}{\square}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		©	主配管	－					ハロン 1301 貯蔵容器～D／G 補機（B）室	C－2	クラス 3	－	－	
		$\begin{array}{r}\text { a } \\ \text { 補 } \\ \text { 機 } \\ \\ \hline\end{array}$		－					ディーゼル発電機 (B) 室分岐点～ディー ゼル発電機（B）室	C－2	クラス 3	－	－	
		室		－					ディーゼル発電機（A）室分岐点～ディー ゼル発電機（A）室	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 炎 } \\ & \text { 采 } \end{aligned}$		－					D / G 補機 (A) 室分岐点 $\sim D / G$ 補機 (A) 室	C－2	クラス 3	－	－	
		$\frac{0}{7}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 系 } \end{aligned}$	主配管	－					ハロン 1301 貯蔵容器～B1F ハッチ室	C－2	クラス 3	－	－	
		区 分 III 消 I	容器	－					ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	
		系電 気 咥	主配管	－					ハロン 1301 貯蔵容器～区分IIIHPCS 電気品室	C－2	クラス 3	－	－	

表1 火災防護設備の主要設備リスト（ $10 / 66$ ）

	$\begin{aligned} & \text { 簃 } \\ & \text { 森 } \end{aligned}$		機器区分	変更前					変更後					
			名称			重大事故等対処設備（e＋1）		名称	設計基漼対象施設（\＃\＃）		重大事故等対处設備			
			$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設借分類	重大事故等機器クラス	$\begin{gathered} \text { 侕震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$		機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機簭クラ } \end{aligned}$			
	㕣齐爻消設備			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－
			主配管	－					ヘロン 1301 貯蔵容器～区分II非常用 MCC 室	C－2	クラス 3	－	－	
			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管	－					ハロン 1301 貯蔵容器～導電率計ラック室	C－2	クラス 3	－	－	
			容器	－					ハロン 1301 貯蔵容器（ ${ }^{\text {（i5）}}$ ）	－	－	－	－	
			主配管	－					ハロン 1301 貯蔵容器～FPC ポンプ （A）（B）室 ${ }^{(3) 5}$	－	－	－	－	
		$\begin{aligned} & \text { 术妾 } \\ & \text { 亏熱 } \end{aligned}$	容器	－					ハロン 1301 的蔵容器	C－2	クラス3	－	－	
		$\begin{aligned} & \text { 羨㪱 } \\ & \text { 炎 } \\ & \text { 筑 } \end{aligned}$	主配管	－					ハロン 1301 貯蔵容器～HWH 熱交換器・ポ ンプ室	C－2	クラス 3	－	－	
			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管	－					ハロン 1301 貯蔵容器～緊急用電気品室 （2）	C－2	クラス 3	－	－	
				－					緊急用電気品室（1）分岐点～緊急用電気品室（1）	C－2	クラス 3	－	－	
			容器	－					ヘロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管	－					ハロン 1301 貯蔵容器～区分 I 非常用 D／G 制御盤室	C－2	クラス3	－	－	

表1 火災防護設備の主要設備リスト（11／66）

表1 火災防護設備の主要設備リスト（12／66）

表1 火災防護設備の主要設備リスト（13／66）

表1 火災防護設備の主要設備リスト（ $14 / 66$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 稀 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称			重大事故等対处炀備 ${ }^{(021)}$		名称	設計基淮詨象施設（ ${ }_{\text {（11）}}$		重大事故等対処設備			
			$\begin{aligned} & \text { 而震 } \\ & \text { 重安供 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機器 } \end{aligned}$			
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 吕 } \\ & \text { 染 } \\ & \text { 準 } \\ & \text { 炎 } \\ & \text { 戳 } \end{aligned}$			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－
			主配管	－					ハロン 1301 貯蔵容器～計測制御電源 （A）室	C－2	クラス 3	－	－	
		$\hat{\omega} \dot{\rightharpoonup}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管	－					ハロン 1301 貯蔵容器～T．S（計測制御電源（B）室北）	C－2	クラス3	－	－	
		$\stackrel{\rightharpoonup}{\dot{s}}$	容器		－				ハロン1301貯蔵容器	C－2	クラス3	－	－	
		系鲻	主配管		－				ハロン 1301 眝蔵容器 $~ \sim T . S($ 更衣室北）	C－2	クラス3	－	－	
		消它	容器		－				ハロン 1301 虰蔵容器	C－2	クラス3	－	－	
		$\begin{gathered} \text { 縈 票 } \end{gathered}$	主配管		－				ヘロン 1301 貯蔵容器～T．S（更衣室西）	C－2	クラス3	－	－	
			容器		－				ハロン1301貯蔵容器	C－2	クラス3	－	－	
		$\frac{\text { II }}{}$			－				ハロン 1301 貯蔵容器～常用系ケーブル処理室	C－2	クラス3	－	－	
		$\begin{aligned} & \text { 用 } \\ & \text { 彩 } \end{aligned}$			－				区分 I ケーブル処理室分岐点 1～区分 I ケーブル処理室	C－2	クラス3	－	－	
		$\begin{aligned} & \text { 旭 } \\ & \text { 処 } \\ & \text { 理 } \end{aligned}$			－				区分 I ケーブル処理室分岐点 2～区分 I ケーブル処理室	C－2	クラス3	－	－	
		$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 系 } \end{aligned}$			－				区分IIケーブル処理室分岐点～区分II ケーブル処理室	C－2	クラス3	－	－	

表1 火災防護設備の主要設備リスト $(15 / 66)$

$\begin{aligned} & \text { 謡 } \\ & \text { 炃 } \end{aligned}$	$\begin{aligned} & \text { 緵 } \\ & \text { 䅛 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計甚淮対象施設（e\＃1）		重大事故等対处設備 ${ }^{(\text {e＊1）}}$		名称	設計基潍対象施設 ${ }^{\text {（3）}}$（1）		重大事故等対处設備			
			$\begin{aligned} & \text { 耐震 } \\ & \text { 重忩類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{array}{\|l\|l} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array}$		機器クラス	設備分類	重大事故機器クラ ス			
消 炎 設 備		$\begin{aligned} & \text { 処区 } \\ & \text { 畕盆 } \\ & \text { 覀 } \\ & \text { 労ブ } \\ & \text { ブ } \end{aligned}$		容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－
			主配管	－					ハロン 1301 貯蔵容器～区分IIIケーブル処理室	C－2	クラス3	－	－	
		镸	容器	－					ハロン 1301 貯蔵容器（ ${ }^{(3)}$	C－2	クラス3	－	－	
		$\begin{gathered} \text { 炎替 } \\ \text { 䇣 } \\ \stackrel{y}{7} \end{gathered}$	主配管	－					$\begin{array}{\|l\|} \text { ハロン } 1301 \text { 貯蔵容器~DC125V 代替バッ } \\ \text { テリ室 } \end{array}$	C－2	クラス3	－	－	
		沱	容器	－					ハロン1301 貯蔵容器	C－2	クラス3	－	－	
		$\begin{gathered} \text { 系靠而 } \\ \text { ブ } \end{gathered}$	主配管	－					ハロン 1301 貯蔵容器～T．S（区分IIケー ブル処理室北）	C－2	クラス3	－	－	
		$\begin{array}{r} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}} \\ \text { 消区 } \end{array}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管	－					ハロン 1301 貯蔵容器～PCPS 区分 I エリ ァ	C－2	クラス3	－	－	
		$\begin{array}{r} \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{6}} \\ \text { 消区 } \\ \hline \end{array}$	容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
		$\begin{gathered} \text { 系 II } \\ \frac{I}{J} \\ \hline J \end{gathered}$	主配管	－					ハロン 1301 貯蔵容器～PCPS 区分 IIエリ ア	C－2	クラス3	－	－	
			容器	－					ハロン 1301 貯蔵容器	C－2	クラス3	－	－	
			主配管	－					ハロン 1301 貯蔵容器～PCPS 区分IIIエリ ァ	C－2	クラス3	－	－	

表1 火災防護設備の主要設備リスト（16／66）

$\begin{aligned} & \text { 設 } \\ & \text { 粸 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 䋭 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
				設計甚漼対象施設 ${ }^{\text {（al1）}}$		重大事故等対处設備（et1）		名称	設計基漼対象施設（ ${ }_{\text {（ex }}$（1）		重大事故等対処設備			
			名称	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|} \hline \text { 重大事故 } \\ \text { 機䈏クラ } \end{array}$		
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 䐘 } \end{aligned}$				容器	－					ハロン1301貯蔵容器	C－2	クラス3	－	－
				主配管	－					ハロン 1301 貯蔵容器～PCPS 区分 NON エ リア	C－2	クラス 3	－	－
			容器	－						－	－	－	－	
			主配管	－					ハロンン 1301 貯蔵容器～非常用フィルタ	－	－	－	－	
				－					通信機械室分岐点 \sim 通信機械室（0＊5）	－	－	－	－	
				－					予備品保管室分吱点～予備品保管室 ${ }^{(185)}$	－	－	－	－	
				－					緊急対策室分皮点～緊急対策室 ${ }^{\text {（12）}}$	－	－	－	－	
				－					緊急対策エリア用空調機械室分岐点～緊急対策エリア用空調機杫室 ${ }^{(125)}$	－	－	－	－	
				－					SPDS 室分岥点～SPDS 室 ${ }^{(12)}$	－	－	－	－	
				－					電気品 (A) 室分岥点～電気品 (A) 室 ${ }^{(125)}$	－	－	－	－	
				－					電気品（B）室分皮点～電気品（ ${ }^{\text {（ }}$ 室 ${ }^{(125)}$	－	－	－	－	

表1 火災防護設備の主要設備リスト（ $17 / 66$ ）

表1 火災防誩設備の主要設備リスト（18／66）

表1 火災防護設備の主要設備リスト（ $19 / 66$ ）

表1 火災防護設備の主要設備リスト（20／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 籧 } \\ & \text { a称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（eil）		重大事故等対处設備（ ${ }^{(121)}$		名称	設計甚淮詨象施設（ ${ }_{\text {（121）}}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設借分類	重大事故等機器クラス		$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設借分類	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 重故 } \\ \text { 機器クラ } \end{array}$
消 炎 窚			容器	－					FK－5－1－12 貯蔵容器（P800 用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器 （P401，P404，P801，P803 用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P802 用）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（S1002 2 用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C400®）用）	C－2	クラス3	－	－
				－					FK－5－1－12 販蔵容器（P400 用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S100（1）用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C400（1）${ }^{\text {成）}}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S605 用）	c－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（C608 用）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（21／66）

$\begin{array}{\|l\|l\|} \hline \text { 䈒 } \\ \text { 供 } \end{array}$		$\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（et1）		名称	設計基淮対象施設 ${ }^{(21)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
			容器	－					FK－5－1－12 貯蔵容器（P607 用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C3002）用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（S3002）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S3003）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C3003）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P4038，P1016用）	c－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（C4038），C1008用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S1014）${ }^{\text {成）}}$	C－2	クラス3	－	－
					－				FK－5－1－12 拧蔵容器（S1013）用）	C－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（C403］，C100（7）用）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（22／66）

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 綌 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称					名称	設計基漼詨象施設 ${ }_{\text {（11）}}$		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機等ク嫘クラ } \end{aligned}$
消 炎 設 備			容器	－					FK－5－1－12 貯蔵容器（P403（7），P101（5）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P101（7），C403 （9，C1009）用）	C－2	クラス3	－	－
				－						C－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（S101（5）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C403®，C100＠用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（P403（6），P101（4）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（S1012）用）	C－2	クラス3	－	－
				－					FK－5－1－12 販蔵容器（C100（5）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C403（5）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P1013）用）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（23／66）

表1 火災防護設備の主要設備リスト $(24 / 66)$

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（1＊1）		名称	設計基漼詨象施設 ${ }_{\text {（11）}}$		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \\ \text { 耐震 } \\ \text { 分類 } \end{array}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機䈏クラ } \\ & \text { K } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 談 } \\ & \text { 輪 } \end{aligned}$			容器	－					FK－5－1－12 貯蔵容器（P502（1），P503 （2，C501（2）用）	C－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（S30047用）	C－2	クラス3	－	－
					－				FK－5－1－12 眝蔵容器（C300（4）用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯藏容器（P202（1） 用）$^{\text {a }}$	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（C202（1） 用）$^{\text {a }}$	c－2	クラス3	－	－
					－				FK－5－1－12 拧蔵容器（P5022）用）	C－2	クラス3	－	－
					－				FK－5－1－12 貯藏容器（P5033）用）	C－2	クラス3	－	－
					－				FK－5－1－12 販蔵容器（C5013）用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（S2022）用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（P502 © ），P503 （5），P202（3）用）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（25／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 綵 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（3i1）		重大事故等対处設備（e＊1）		名称	設計基淮效象施設（e．1）		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設借分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array}$	機器クラス	設借分類	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 重故 } \\ \text { 機器クラ } \end{array}$
消 炎 窚			容器	－					FK－5－1－12 貯蔵容器（C5014（4），C202②用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P502 © ），P503 （7，P202（3）用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（P502 ©（4），P503 （6）P202（4）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯藏容器（C501® ${ }^{\text {c }}$ ，C202（4）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S202（4）用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S202（5）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（C5017），C202用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P502 © ，P503 （8，P202（6）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P769 用）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（C 501－1 用）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（26／66）

$\begin{aligned} & \text { 㬭 } \\ & \text { 畕 } \end{aligned}$		$\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（1＊1）		名称	設計基淮対象施設 ${ }^{(014)}$		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \\ \text { 耐震 } \\ \text { 分類 } \end{array}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機等ク嫘クラ } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			容器	－					FK－5－1－12 貯蔵容器（S703 用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C736 用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C729用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S704 用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S2023）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C501（5），C2023用）	C－2	クラス3	－	－
				－					FK－5－1－12 䝪蔵容器（P503（4），P202②用）	C－2	クラス3	－	－
				－					FK－5－1－12 販蔵容器（C30011用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S30011用）	c－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（S101（12）${ }^{\text {a }}$ ）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（ $27 / 66$ ）

表1 火災防護設備の主要設備リスト（28／66）

表1 火災防護設備の主要設備リスト（29／66）

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称					名称	設計基漼詨象施設 ${ }_{\text {（11）}}$		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \\ \text { 耐震 } \\ \text { 分類 } \end{array}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機等ク嫘クラ } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 䛒 } \\ & \text { 䐘 } \end{aligned}$			容器	－					FK－5－1－12 貯蔵容器（C5018）， 202 （6）${ }^{\text {成）}}$	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S2026用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（P503（11）${ }^{\text {咸）}}$	c－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（P503（1），P2028用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C5019，${ }^{\text {a }}$（202（®）用）	c－2	クラス3	－	－
				－					FK－5－1－12 拧蔵容器（S202（7）用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（C50111，C202®用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（P503（1），P202（11）${ }^{\text {成）}}$	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S2028）用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P202 ©（9），C501 （11，C2028）用）	C－2	クラス3	－	－

表 1 火災防護設備の主要設備リスト（30／66）

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（1＊1）		名称	設計基漼詨象施設 ${ }_{\text {（11）}}$		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \\ \text { 耐震 } \\ \text { 分類 } \end{array}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機䈏クラ } \\ & \text { K } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 談 } \\ & \text { 輪 } \end{aligned}$			容器	－					FK－5－1－12 貯蔵容器（P202（11），C501 （12），C202（11） 1 ）	C－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（S709（1） 成）$^{\text {a }}$	C－2	クラス3	－	－
					－				FK－5－1－12 的蔵容器（S708 用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（C403（2），，C809 用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（P101 © ，C403 （23，C100（22）用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（P101（10），C403 （2， C 100 （2） 1 ）$)$	c－2	クラス3	－	－
					－				FK－5－1－12 販蔵容器（S101®，${ }^{\text {a }}$（709（2） ）$)$	C－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（P2011，，C201 用）	c－2	クラス3	－	－
					－				FK－5－1－12 眝蔵容器（P701 ©（9），P700 （9，P610（6） ）	C－2	クラス3	－	－
					－					C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（31／66）

表 1 火災防護設備の主要設備リスト $(32 / 66)$

表1 火災防護設備の主要設備リスト（33／66）

 		$\begin{aligned} & \text { 綌 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（1＊1）		名称	設計基漼詨象施設 ${ }_{\text {（11）}}$		重大事故等対処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機䈏りラ } \end{aligned}$
		$\begin{aligned} & \text { 尔 } \\ & \text { ブ } \\ & \text { 华 } \\ & \text { 久 } \\ & \text { 消 } \\ & \text { 采 } \end{aligned}$	容器	－					FK－5－1－12 貯蔵容器（P700（1），P500 （1），P501（1） ）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（K702（2），K706 （2，P701（2）用）	C－2	クラス3	－	－
					－					c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（C60611用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（K702（3），K706 （3）P701（3）用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（P700（3），P500 （3），P501（3）用）	c－2	クラス3	－	－
					－				FK－5－1－12 貯藏容器（S602（1）用）	c－2	クラス3	－	－
					－				FK－5－1－12 販蔵容器（C60211）${ }^{\text {a }}$ ）	c－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（C6032）用）	c－2	クラス3	－	－
					－				FK－5－1－12 眝蔵容器（S600（1）${ }^{\text {a }}$ ）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（34／66）

$\begin{aligned} & \text { 㬭 } \\ & \text { 畕 } \end{aligned}$		$\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更捘				
				名称					名称	設計基漼対象施設（\＃1）		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \\ \text { 耐震 } \\ \text { 分類 } \end{array}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機等ク嫘クラ } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			容器	－					FK－5－1－12 貯蔵容器（C601（1）${ }^{\text {咸）}}$	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C6022）用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（S600¢（4）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（S6003）用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S6013）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（S6002）用）	C－2	クラス3	－	－
				－					FK－5－1－12 䝪蔵容器（P30001，C300（5）用）	C－2	クラス3	－	－
				－					FK－5－1－12 販蔵容器（S300（5）用）	c－2	クラス3	－	－
				－					FK－5－1－12 販蔵容器（P30003），C300（7）用）	c－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（S300＠${ }^{\text {a }}$ ）$)$	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（35／66）

表1 火災防護設備の主要設備リスト（36／66）

$\begin{aligned} & \text { 䚺 } \\ & \text { 供 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 統 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基淮対象施設 ${ }^{(21)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$			容器	－					FK－5－1－12 眝蔵容器（K201（2），P5028）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P2013），C200®用）	c－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（P20144，C20033用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K2013），P502（9）用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S2002）用）	C－2	クラス3	－	－
					－				FK－5－1－12 貯蔵容器（C200¢（4）用）	C－2	クラス3	－	－
					－				FK－5－1－12 貯藏容器（P201（5）用）	C－2	クラス3	－	－
					－				FK－5－1－12 貯藏容器（S100（5）用）	C－2	クラス3	－	－
					－				FK－5－1－12 拧蔵容器（P1022），C10026）用）	C－2	クラス3	－	－
					－				FK－5－1－12 眝蔵容器（K1002），P402（2）用）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（37／66）

$\begin{aligned} & \text { 䚺 } \\ & \text { 供 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 統 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（ ${ }^{(121 \text {（1）}}$		重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基淮対象施設 ${ }^{(21)}$		重大事故等対处設備	
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重忩類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$			容器	－					FK－5－1－12 販蔵容器（P10221，C100（2）${ }^{\text {齎）}}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K100＠1，P402®用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（S200（1）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S601（1）${ }^{\text {咸）}}$	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（K6021）P603，C603 （1）用）	c－2	クラス3	－	－
				－					FK－5－1－12 販蔵容器（P2012），C200（1）用）	c－2	クラス3	－	－
				－					FK－5－1－12 販藏容器（K2011（1）P502（7）${ }^{\text {成）}}$	C－2	クラス3	－	－
				－					FK－5－1－12 鵙蔵容器（P102（4），C100®6用）	C－2	クラス3	－	－
				－						C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（S100（7）用）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（38／66）

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 䍃 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称					名称	設計基淮対象施設 ${ }^{(014)}$		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機等ク嫘クラ } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 䛒 } \\ & \text { 䐘 } \end{aligned}$			容器	－					FK－5－1－12 貯蔵容器（P102 3），C100②用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（K100＠4，P402（4）用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（S1006用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K1008，P4028用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P1028，C100＠用）	C－2	クラス3	－	－
				－					FK－5－1－12 拧蔵容器（S1009）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（S1008）用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（P1029），C100＠1）用）	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（K1009），P4029（）用）	C－2	クラス3	－	－
					－				FK－5－1－12 眝蔵容器（P502（10）${ }^{\text {a }}$ ）	C－2	クラス3	－	－

表 1 火災防護設備の主要設備リスト（39／66）

$\begin{aligned} & \text { 䚺 } \\ & \text { 供 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（ ${ }^{(121 \text {（1）}}$		重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基淮対象施設 ${ }^{(21)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$			容器	－					FK－5－1－12 販蔵容器（K2014）${ }^{\text {咸）}}$	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S3007）用）	c－2	クラス3	－	－
				－					FK－5－1－12 貯藏容器（C300＠）用）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K610（3），K611 （3），K612（3）用）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（K610（2），K611 （2），K612（2）用）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（K610（1），K611 （1），K612（1）用）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（K00311）${ }^{\text {a }}$ ）	－	－	－	－
				－					FK－5－1－12 貯藏容器（K0032）用）	－	－	－	－
				－					FK－5－1－12 眝蔵容器（K003（3）用）	－	－	－	－
				－					FK－5－1－12 眝蔵容器（S003（3）用）	－	－	－	－

表1 火災防護設備の主要設備リスト（40／66）

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 綌 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称					名称	設計基淮対象施設年（1）		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機䈏りラ } \end{aligned}$
消炎憊			容器	－					FK－5－1－12 貯蔵容器（C008（3）用）	－	－	－	－
				－					FK－5－1－12 販藏容器（S0032）用）	－	－	－	－
				－					FK－5－1－12 販蔵容器（C008（2）用）	－	－	－	－
				－					FK－5－1－12 販蔵容器（S003（1）${ }^{\text {咸）}}$	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C008（1）用）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C004用）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C001（2）用）	－	－	－	－
				－					FK－5－1－12 販藏容器（S0012）用）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（K002 用）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C001（1）${ }^{\text {a }}$ ）	－	－	－	－

表1 火災防護設備の主要設備リスト（41／66）

表1 火災防護設備の主要設備リスト（42／66）

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（43／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ ØL－ $\mathcal{E}-ワ-8$		$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基淮対象施設 ${ }^{(3 \text {（2）}}$ ）		重大事故等対処設備 ${ }^{(31)}$		名称	設計基準対象施設 ${ }^{(3 \times 1)}$			
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	$\begin{gathered} \begin{array}{c} \text { 重大事故 } \\ \text { 等 } \\ \text { 機器クラ } \\ \text { ス } \end{array} \\ \hline \end{gathered}$
					－				FK－5－1－12 貯蔵容器（S752（1）用）	－	－	－	－
			容器		－				FK－5－1－12 貯蔵容器（S752（2）用）	－	－	－	－
					－				FK－5－1－12 貯蔵容器（S753 用）	－	－	－	－
					－				FK－5－1－12 貯蔵容器（P800用）～ケーブル トレイ	C－2	クラス 3	－	－
	$\begin{aligned} & \text { I } \\ & \text { ブ } \\ & \text { ル } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & 1 \\ & \text { ブ } \\ & \text { ル } \end{aligned}$			－				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 } \\ & \text { (P401, P404, 用)~ケーブルト } \\ & \text { レイ (P401, P404, P801, P803) } \end{aligned}$	C－2	クラス 3	－	－
	消 設 颜	$\begin{aligned} & \text { イ } \\ & \text { 消 } \\ & \text { 竼 } \end{aligned}$			－				FK－5－1－12 貯蔵容器（P802 用）～ケーブル トレイ（P802）	C－2	クラス 3	－	－
			主配管		－				FK－5－1－12 貯蔵容器（S100（2）用）～ケーブ ルトレイ（S100（2）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（C400（2）用）～ケーブ ルトレイ（C400②）	C－2	クラス 3	－	－
					－				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P400用)~ケーブル } \\ & \text { トレイ } \end{aligned}$	C－2	クラス 3	－	－
					－				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S100@1用)~ケーブ } \\ & \text { ルトレイ } \mathrm{S} \text { (S100①) } \end{aligned}$	C－2	クラス 3	－	－

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（44／66）

$\begin{array}{\|l\|l\|} \hline \text { 䈒 } \\ \text { 供 } \end{array}$		$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（ ${ }^{(121 \text {（1）}}$		重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基淮対象施設 ${ }^{(21)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重忩類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
			主配管	－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C400(1)用)~ケーブ } \\ & \text { ルトレイ }(\text { C400@) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 賏蔵容器 (S605 用)~ケーブル } \\ & \text { トレイ (S00) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{array}{\|l\|} \text { FK-5-1-12 眝蔵容器(C608用)~ケーブル } \\ \text { トレイ (C608) } \end{array}$	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P607用）～ケーブル トレイ（P607）	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C300(2)用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	c－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S300(2)用)~ケーブ } \\ & \text { ルトレイ } \left.{ }^{(S 300(2)}\right) \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S300(3)用)~ケーブ } \\ & \text { ルトレイ } \mathrm{S} 300 \text { (3) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C300（3）用）～ケーブ ルトレイ（C300（3）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P4038，P1016）用） ～ケーブルトレイ（P4038），P101⑥）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C4038 8，C1008）${ }^{\text {用）}}$ ～ケーブルトレイ（C4038），C1008）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（45／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ ∞ 1 \bullet 1 1 \cdots		$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基淮対象施設 ${ }^{(3 \text {（1）}}$ ）		重大事故等対処設備 ${ }^{(3+1)}$		名称	設計基漼対象施設 ${ }^{\text {（ }}$（1）		重大事故等対処設備 （注1）	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	重大事故 等 機器クラ ス
					－				FK－5－1－12 貯蔵容器（S1014） ）～ケーブ ルトレイ（S1014）	C－2	クラス 3	－	－
					－				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S1013)用)~ケーブ } \\ & \text { ルトレイ(S1013) } \end{aligned}$	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（C403（7），C100（7）用） ～ケーブルトレイ（C403（7），C100 7 ）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（P403（7），P101⑤）用） ～ケーブルトレイ（P403（7），P101（5）	C－2	クラス 3	－	－
	$\begin{aligned} & 5 \\ & 1 \\ & \text { ブ } \\ & \text { ル } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \end{aligned}$			－				FK－5－1－12 貯蔵容器（P101（7），C403 （9），C100⑨）用）～ケーブルトレイ（P101 （7），C403（9，C100＠）	C－2	クラス 3	－	－
	$\begin{aligned} & \text { Y } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$			－				FK－5－1－12 貯蔵容器（P101 8），C403 （10），C100（11）用）～ケーブルトレイ（P101 （8，C403（11），C100（10）	C－2	クラス 3	－	－
					－				FK-5-1-12 貯蔵容器(S101(5)用)~ケーブ\| ルトレイ (S101(5)	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（C403⑥，C100⑥用） ～ケーブルトレイ（C403⑥），C100⑥）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（P40366，P101（4）用） ～ケーブルトレイ（P403（6），P1014）	C－2	クラス 3	－	－
					－				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S101②用)~ケーブ } \\ & \text { ルトレイ(S1012) } \end{aligned}$	C－2	クラス 3	－	－

表1 火災防護設備の主要設備リスト（46／66）

		$\begin{aligned} & \text { 奚 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（ ${ }^{\text {（2）}}$ ）		名称	設計基漼対象施喭 ${ }^{\text {（1at1）}}$		重大事故等対処設備	
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	
$\begin{aligned} & \text { 消 } \\ & \text { 隼 } \\ & \text { 備 } \end{aligned}$			主配管	－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C100(5)用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C403（5）用）～ケーブ ルトレイ	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P101（3）用）～ケーブ ルトレイ（P101（3）	C－2	クラス 3	－	－
				－					FK－5－1－12 貥蔵容器（P403（5）用）～ケーブ ルトレイ（P403（5）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S101（1）用）～ケーブ ルトレ	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P403（4），C403 （4），C100（4）用）～ケーブルトレイ（P403 （4），C403（4），C100（4））	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P403（3），C403 （3）C100（3）用）～ケーブルトレイ（P403 （3），C4033，C100（3）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C403（2），C100（2）用） ～ケーブルトレイ（C4032，C100（2）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P403（2），P101 （2），C749 用）～ケーブルトレイ（P403 （2），P101（2，C749）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P403（1），P101（1）用） ～ケーブルトレイ（P403①，P101①）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（47／66）

$\begin{array}{\|l\|l\|} \hline \text { 啋 } \\ \text { 供 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 雀 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（ ${ }^{(121)}$		名称	設計基㴶対象施設（\＃1）		${ }^{\text {重大事故等対处処設備 }}$	
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重忩類 } \end{aligned}$	機器クラス	設借分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 重分類 } \end{array}$	機器クラス	設借分類	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 重故 } \\ \text { 機等グ啚ク } \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 㼳 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（C403（1），C100（1）用） ～ケーブルトレイ（C40311，C100（1）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P503（1），C501（1）用） ～ケーブルトレイ（P503（1），C501（1）	C－2	クラス3	－	－
				－					FK－5－1－12 販蔵容器（S202（1） 1 ）～ケーブ ルトレイ（S202（1）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P502（1），P503 （2），C501（2）用）～ケーブルトレイ（P502 （1），P503（2），C501（2）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S300（4）用）～ケーブ ルトレイ（S300（4）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（C300（4）用）～ケーブ ルトレイ（C300（4）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P20211）$)$～ケーブ ルトレイ（P202D）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C202（1）用）～ケーブ ルトレイ（C202（1））	C－2	クラス 3	－	－
				－					FK－5－1－12 貯歳容器（P502（2）用）～ケーブ ルトレイ（P502②）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P503（3）用）～ケーブ ルトレイ（P503（3）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（48／66）

$\begin{array}{\|l\|} \hline \text { 箬 } \\ \hline \end{array}$		$\begin{aligned} & \text { 穊 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基漼詨象施設（11）		重大事故等対处設犕（121）		名称			重大事故等対处処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機筘 } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（C501（3）用）～ケーブ ルトレイ（C501（3）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S202（2）用）～ケーブ ルトレイ	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P502（3），P503 （5）P202（3）用）～ケーブルトレイ（P502 （3，P503（6），P202（3）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C501（4），C202（2）用） ～ケーブルトレイ（C501 4 （4），C202②）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P502（5），P503 （7），P202（5）用）～ケーブルトレイ（P502 （5，P503（7），P202（3）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P502（4），P503 （6），P202（4）用）～ケーブルトレイ（P502 （4），P503（6，P202（4）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C5016 6，C202（4）用） ～ケーブルトレイ（C501（6）C202（4））	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 曏蔵容器(S202(4)用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S202(5)用)~ケーブ } \\ & \text { ルトレイ(} \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C501（7），C202（5）用） ～ケーブルトレイ（C5017，C202⑤）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（49／66）

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 綌 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称					名称	設計基淮対象施設（\＃1）		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機䈏クラ } \\ & \text { K } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 談 } \\ & \text { 輪 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（P502 ©（6）P503 （8，P202（6）用）～ケーブルトレイ（P502 （6），P503（8），P202（6）	C－2	クラス3	－	－
				－					FK－5－1－12貯藏容器（P769用）～ケーブル トレイ（P769）	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C501-1 用)~ケーブ } \\ & \text { ルトレイ (C501-1) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S703 用)~ケーブル } \\ & \text { トレイ (S03) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C736用)~ケーブル } \\ & \text { トレイ (C366) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C729 用)~ケーブル } \\ & \text { トレイ (C29) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S704用）～ケーブル トレイ（S704）	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S2023)用)~ケーブ } \\ & \text { ルトレイ } \mathrm{S} 202 \text { (3) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C501（5），C202（3）用） ～ケーブルトレイ（C501⑤），C202③）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P503（4），P202（2）用） ～ケーブルトレイ（P50344，P202②）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（ $50 / 66$ ）

表1 火災防護設備の主要設備リスト（51／66）

表1 火災防護設備の主要設備リスト（52／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 雞 } \\ & \text { a } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（3i1）		重大事故等対处設備（e＊1）		名称	設計基鹤対象施設（\＃1）		重大事故等対处処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設借分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array}$	機器クラス	設借分類	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 重故 } \\ \text { 機器クラ } \end{array}$
消 炎 窚			主酩管	－					FK－5－1－12 貯蔵容器（S101（6）用）～ケーブ ルトレイ（S1016）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P403（10），C403 （12），C100（12）用）～ケーブルトレイ（P403 （11），C403（12， C 100 （12）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P503（9），P202（7）用） ～ケーブルトレイ（P503⑨，P202 7 ）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C5018 8，C202 6（6） 用） ～ケーブルトレイ（C5018，C202⑥）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（S2026）用）～ケーブ ルトレイ（S202⑥）	C－2	クラス3	－	－
				－					FK－5－1－12 盯蔵容器（P503（1）用）～ケーブ ルトレイ（P503（11）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P503（10，P202（8）用） ～ケーブルトレイ（P503（1），P2028）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C5019，C202（7）用） ～ケーブルトレイ（C5019），C2027）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S202（7）用）～ケーブ ルトレイ（S202（7）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（C501（11），C2029）${ }^{\text {用）}}$ ～ケーブルトレイ（C50111，C202＠）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（53／66）

$\begin{array}{\|l\|l\|} \hline \text { 䜗 } \\ \text { 分 } \end{array}$		$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基漼対象施設 ${ }^{(\# 1)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 窚 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（P503⑫，P202（11）用） ～ケーブルトレイ（P503（12），P202（1D）	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S2028)用)~ケーブ } \\ & \text { ルトレイ } \mathrm{S} 202 \text { (8) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P202 © ），C501 （110，C202（8）用）～ケーブルトレイ（P202 （9），C501（11），C202（8）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P202（11），C501 （112），C202（11）用）～ケーブルトレイ（P202 （11），C501（12），C202（11）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S709（1）用）～ケーブ ルトレイ	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S708 用)~ケーブル } \\ & \text { トレイ (S08) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（C40324），C809 用）～ ケーブルトレイ（C403（24），C809）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P101 © ），C403 （22，C100027）～ケーブルトレイ（P101 （9，C403（2），C100（2））	C－2	クラス3	－	－
				－					FK－5－1－12 貯墄容器（P101（10），C403 （22，C100（21）用）～ケーブルトレイ（P101 （10，C403（2），C100（21）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S101（13），S709（2）用） ～ケーブルトレイ（S101①，S709②）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（54／66）

表1 火災防護設備の主要設備リスト（55／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$ $8-4-3-86$		$\begin{aligned} & \text { 奚 } \\ & \text { 絽 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基淮対象施設 ${ }^{(3 \text {（2）}}$		重大事故等対処設備 ${ }^{(3)}$		名称	設計基集対象施設（3 1 1）		$\substack{\text { 重大事故等対処設備 } \\ \text {（i）}}$	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	$\begin{gathered} \text { 重大事故 } \\ \text { 等 } \\ \text { 機クラ } \\ \text { ス } \\ \hline \end{gathered}$
					－				FK－5－1－12 貯蔵容器（P602⑤）用）～ケーブ ～トイ （P6025） ルトレイ（P602（5））	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K702（6），K706 （6），P701（6）用）～ケーブルトレイ（K702 （6，K706（6），P701⑥）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（P700 ©（6），P610 （3），P602（3）用）～ケーブルトレイ（P700 （6），P610（3），P602（3）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（C606（2）用）～ケーブ ルトレイ（C606②）	C－2	クラス 3	－	－
	$\begin{aligned} & 1 \\ & \text { ブ } \\ & \text { ル } \end{aligned}$	ブ			－				FK－5－1－12 貯蔵容器（S602（2）用）～ケーブ ルトレイ（S602②）	C－2	クラス 3	－	－
	$\begin{aligned} & \text { Y } \\ & \text { 消 } \\ & \text { 火 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { イ } \\ & \text { 消 } \\ & \text { 炎 } \end{aligned}$			－				FK－5－1－12 貯蔵容器（K702（5），K706 （5），P701（5）用）～ケーブルトレイ（K702 （5），K706（5），P701（5））	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（P700（5），P610 （2），P602（2）用）～ケーブルトレイ（P700 （5），P610（2），P602（2）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K601，P600，P601 用） ～ケーブルトレイ（K601，P600，P601）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（S601（2）用）～ケーブ ルトレイ（S601（2））	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K702（4），K706 （4），P701（4）用）～ケーブルトレイ（K702	C－2	クラス 3	－	－

表1 火災防護設備の主要設備リスト（56／66）

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（57／66）

$\begin{array}{\|l\|l\|} \hline \text { 䜗 } \\ \text { 分 } \end{array}$		$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（ ${ }^{(121 \text {（1）}}$		重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基漼対象施設 ${ }^{(\# 1)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
			主配管	－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C60211用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C603(2)用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S600(1)用)~ケーブ } \\ & \text { ルトレイ }(\text { S600(1) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C601(1)用)~ケーブ } \\ & \text { ルトレ (66011) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C602②用)~ケーブ } \\ & \text { ルトレイ(C602(2)) } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S600(4)用)~ケーブ } \\ & \text { ルトレ } \end{aligned}$	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S600(3)用)~ケーブ } \\ & \text { ルトレイ } \mathrm{S} 600 \text { (3) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S601（3）用）～ケーブ ルトレイ（S601③）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S600（2）用）～ケーブ ルトレイ（S600（2）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P300①，C300（5）用） ～ケーブルトレイ（P300①，C300⑤）	C－2	クラス3	－	－

O 2 （1）II R 0

表 1 火災防護設備の主要設備リスト（58／66）

$\begin{array}{\|l\|l\|} \hline \text { 䜗 } \\ \text { 分 } \end{array}$		$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（ ${ }^{(121 \text {（1）}}$		重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基漼対象施設 ${ }^{(\# 1)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
			主配管	－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S300(5)用)~ケーブ } \\ & \text { ルトレイ } \left.{ }^{(S 300(5)}\right) \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P300 3 3，C300（7）用） ～ケーブルトレイ（P300（3），C300（7）	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S300@用)~ケーブ } \\ & \text { ルトレ (S3006) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P300②），C300 6（6） ） ～ケーブルトレイ（ P 300 （2），C300⑥）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P300（4），C300（8）用） ～ケーブルトレイ（ $\mathrm{P} 300(4)$ ，C300（8）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K100（3），P402（3）用） ～ケーブルトレイ（K100（3），P402③）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P102（5），C100（27）用） ～ケーブルトレイ（P102（5），C100（27）	C－2	クラス3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S100(3)用)~ケーブ } \\ & \text { ルトレイ }{ }^{(S 100(3)} \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K100⑥，P402 6（6） ） ～ケーブルトレイ（K100⑥），P402⑥）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P102 6 ，C100（28）用） ～ケーブルトレイ（P102⑥，C100（8）	C－2	クラス3	－	－

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（59／66）

$\begin{array}{\|l\|l\|} \hline \text { 䜗 } \\ \text { 分 } \end{array}$		$\begin{aligned} & \text { 統 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設け十基漼対象施設（ ${ }^{\text {（i1）}}$（		重大事故等対处設備（\＃）${ }^{(2)}$		名称	設計基漼対象施設 ${ }^{(\# 1)}$		重大事故等対边託備	
					$\begin{aligned} & \text { 震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|c} \\ \begin{array}{c} \text { 耐震 } \\ \text { 䙲類 } \end{array} \\ \hline \end{array}$	機器クラス	設備分類	重大事故機器クラ機器ス
$\begin{aligned} & \text { 消 } \\ & \text { 麙 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（S100（4）用）～ケーブ ルトレイ $(\mathrm{S} 1004)$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K100（7），P402（7）用） ～ケーブルトレイ（K100（7），P4027）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P102（7），C100 29） 用） ～ケーブルトレイ（P1027，C100（29）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（K201（2），P502（8）用） ～ケーブルトレイ（K201（2），P5028）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P201（3），C200②）用） ～ケーブルトレイ（P201（3），C200②）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P20144，C200（3）用） ～ケーブルトレイ（P20144，C200③）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K201③，P502③用） ～ケーブルトレイ（K201（3）P502⑨）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（S200（2）用）～ケーブ ルトレイ	C－2	クラス 3	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C200(4)用)~ケーブ } \\ & \text { ルトレイ }(\text { C200(4) } \end{aligned}$	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P2015）用）～ケーブ ルトレイ（P201（5））	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（ $60 / 66$ ）

$\begin{array}{\|l\|l\|} \hline \text { 啋 } \\ \text { 供 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 雀 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（ ${ }^{(121)}$		名称	設計基淮対勨施設（\＃1）		${ }^{\text {重大事故等対处処設備 }}$	
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重忩類 } \end{aligned}$	機器クラス	設借分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 重分類 } \end{array}$	機器クラス	設借分類	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 重故 } \\ \text { 機等グ啚ク } \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 誀 } \\ & \text { 絠 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（S100（5）用）～ケーブ ルトレイ（S100（5）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（P102（2），C100（24）用） ～ケーブルトレイ（P1022，C100（24））	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K100（2），P402（2）用） ～ケーブルトレイ（K100（2），P402（2）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P102（1），C100（23）用） ～ケーブルトレイ（P10211，C100（3）	c－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K100①），P402（1）用） ～ケーブルトレイ（K100（1），P402（1）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S200（1）用）～ケーブ ルトレイ（S200（1）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（S601（1）用）～ケーブ ルトレイ（S601（1））	C－2	クラス3	－	－
				－					FK－5－1－12 眝蔵容器（K6021），P603，C603 （1）用）～ケーブルトレイ（K602 （1），P603，C603（1）	C－2	クラス 3	－	－
				－					FK－5－1－12 貯蔵容器（P201②，C200（1）用） ～ケーブルトレイ（P201②，C20011）	C－2	クラス3	－	－
				－					FK－5－1－12 貯蔵容器（K201（1），P502（7）用） ～ケーブルトレイ（K201 1 1 ，P502（7）	C－2	クラス3	－	－

表1 火災防護設備の主要設備リスト（61／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$ 8－4－3－92		$\begin{aligned} & \text { 縕 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基淮対象施設 ${ }^{(3 \text {（2）}}$ ）		重大事故等対処設備 ${ }^{(31)}$		名称	設計基淮対象施設（31）			
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	$\begin{gathered} \begin{array}{c} \text { 重大事故 } \\ \text { 等 } \\ \text { 機器クラ } \\ \text { ス } \end{array} \\ \hline \end{gathered}$
					－				FK－5－1－12 貯蔵容器（P1024），C100（26）用） ～ケーブルトレイ（P102（4），C100 26）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K100（5），P402（5）用） ～ケーブルトレイ（K100（5），P4025）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（S100（7） 用）～ケーブ ルトレイ（S1007）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（P102（3），C100（2）用） ～ケーブルトレイ（P102（3），C100（25）	C－2	クラス 3	－	－
	$\begin{aligned} & \text { I } \\ & \text { ル } \end{aligned}$	ブ			－				FK－5－1－12 貯蔵容器（K100（4），P402（4）用） ～ケーブルトレイ（K100 4 4，P4024）	C－2	クラス 3	－	－
	消 設 設	$\begin{aligned} & \text { 亿 } \\ & \text { 消 } \end{aligned}$			－				FK－5－1－12 貯蔵容器（S100（6）用）～ケーブ ルトレイ（S100（6）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K10088，P402（8）用） ～ケーブルトレイ（K10088，P4028）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（P102 8），C100（3）${ }^{\text {（1）}}$ ） ～ケーブルトレイ（P10288，C100®0）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（S1009）用）～ケーブ ルトレイ（S100（9）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（S1008）用）～ケーブ ルトレイ（S1008）	C－2	クラス 3	－	－

表1 火災防護設備の主要設備リスト（62／66）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$ $8-4-3-93$		$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基淮対象施設（3 ${ }^{(1)}$		重大事故等対処設備 ${ }^{(2 \text {（1）})}$		名称	設計基準対象施設（3 1）			
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重度分 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	$\begin{gathered} \begin{array}{c} \text { 重大事故 } \\ \text { 等 } \\ \text { 機器クラ } \\ \text { ス } \end{array} \\ \hline \end{gathered}$
					－				FK－5－1－12 貯蔵容器（P102（9），C100 311） 用） ～ケーブルトレイ（P102（9），C100（13）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K100（9），P402（9） 用） ～ケーブルトレイ（K10099，P402⑨）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（P502（11）用）～ケーブ ルトレイ（P502（10）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K20144）用）～ケーブ ルトレイ	C－2	クラス 3	－	－
	$\begin{aligned} & \text { I } \\ & \text { ル } \end{aligned}$	ブ			－				FK－5－1－12 貯蔵容器（S300（7）用）～ケーブ ルトレイ（S300（7）	C－2	クラス 3	－	－
	消 炎 設 chen	$\begin{aligned} & \text { 消 } \\ & \text { 消 } \end{aligned}$			－				FK－5－1－12 貯蔵容器（C3009）用）～ケーブ ルトレイ（C3009）	C－2	クラス 3	－	－
					－				FK－5－1－12 貯蔵容器（K610（3），K611 （3），K612（3）用）～ケーブルトレイ（K610 （3），K611（3），K612（3）	－	－	－	－
					－				FK－5－1－12 貯蔵容器（K610（2），K611 （2），K612（2）用）～ケーブルトレイ（K610 （2），K611（2），K612（2）	－	－	－	－
					－				FK－5－1－12 貯蔵容器（K610（1），K611 （1），K612（1）用）～ケーブルトレイ（K610 （1），K611（1），K612（1）	－	－	－	－
					－				FK－5－1－12 貯蔵容器（K003（1）用）～ケーブ ルトレイ（K003（1）	－	－	－	－

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（63／66）

$\begin{array}{\|l\|l\|} \hline \text { 啋 } \\ \text { 供 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 雀 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称			重大事故等対处設備（ ${ }^{(121)}$		名称	設計基㴶対象施設（\＃1）		${ }^{\text {重大事故等対处処設備 }}$	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重安供 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 重分類 } \end{array}$	機器クラス	設借分類	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { 重故 } \\ \text { 機等グ啚ク } \end{array}$
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 䐘 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（K003（2）用）～ケーブ ルトレイ（K003（2））	－	－	－	－
				－					FK－5－1－12 貯蔵容器（K003（3）用）～ケーブ ルトレイ（K003（3）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S003（3）用）～ケーブ ルトレイ（S003（3）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C008（3）用）～ケーブ ルトレイ（C008（3）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S003（2）用）～ケーブ ルトレイ（S003（2））	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C008（2）用）～ケーブ ルトレイ（C008（2）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S003（1）用）～ケーブ ルトレイ（S003（1）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C008（1）用）～ケーブ ルトレイ（C008（1））	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C004 用）～ケーブル トレイ（C004）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C001（2）用）～ケーブ ルトレイ（C001（2））	－	－	－	－

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（64／66）

$\begin{array}{\|l\|l\|} \hline \text { 䜗 } \\ \text { 分 } \end{array}$		$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計甚漼対象施設（ ${ }^{(121 \text {（1）}}$		重大事故等対处毃備 ${ }^{(0+1)}$		名称	設計基淮対象施設 ${ }^{(21)}$		重大事故等対処設備	
					$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設儲分類	重大事故等機器クラス		$\begin{array}{\|l\|l\|} \hline \text { 耐震 } \\ \text { 要分類 } \end{array}$	機器クラス	設備分類	$\begin{array}{\|l\|l\|} \hline \text { 重大事故 } \\ \text { 機等 } \end{array}$
			主配管	－					FK－5－1－12 貯蔵容器（S001（2）用）～ケーブ ルトレイ $(S 001$（2）	－	－	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(K002 用)~ケーブル } \\ & \text { トレイ (K002) } \end{aligned}$	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C001（1）用）～ケーブ ルトレイ（C001（1）	－	－	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S001(1)用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S751（1）用）～ケー ブルトレイ（S751（1）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S750（1）用）～ケー ブルトレイ（S750（1）	－	－	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S750(2)用)~ケーブ } \\ & \text { ルトレイ }{ }^{(S 750(2)} \text {) } \end{aligned}$	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S751（2）用）～ケー ブルトレイ（S751②）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S750（3）用）～ケー ブルトレイ（S750（3））	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S751（3）用）～ケーブ ルトレイ（S751（3））	－	－	－	－

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（65／66）

$\begin{array}{\|l\|l\|} \hline \text { 設 } \\ \text { 備 } \\ \hline \text { 分 } \end{array}$		$\begin{aligned} & \text { 綌 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称					名称	設計基淮対象施設 ${ }^{(014)}$		重大事故等対处処設備	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{array}{\|l\|l} \\ \text { 耐震 } \\ \text { 分類 } \end{array}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故 } \\ & \text { 機䈏りラ } \end{aligned}$
$\begin{aligned} & \text { 消 } \\ & \text { 談 } \\ & \text { 輪 } \end{aligned}$			主配管	－					FK－5－1－12 貯蔵容器（S750（4）用）～ケー ブルトレイ（S750（4）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S7514）用）～ケー ブルトレイ（S7514）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S750（5）用）～ケーブ ルトレイ（S750（5）	－	－	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C002(2)用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	－	－	－	－
				－					$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C003 用) ~ケーブ } \\ & \text { ルトレ (C003) } \end{aligned}$	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S002 用）～ケーブ ルトレイ（S002）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S750（6）用）～ケー ブルトレイ（S750⑥）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（C002①）用）～ケー ブルトレイ（C002（1）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S750（7）用）～ケーブ ルトレイ（S750（7）	－	－	－	－
				－					FK－5－1－12 貯蔵容器（S7516）用）～ケー ブルトレイ（S7516）	－	－	－	－

O 2 （1）II R 0

表1 火災防護設備の主要設備リスト（66／66）

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
（注 2）重大事故等対処設備を防護する火災区域構造物及び火災区画構造物である。
（注 3）
（注 4）
（注4）消火設備における消火系ポンプのらち，原動機を示す
（注 5）常設耐震重要重大事故防止設備•常設重大事故緩和設備を防護する消火設備である

8．4．4 火災防護設備に係る工事の方法

変更前	変更後
火災防護設備に係る工事の方法は，「原子炉本体」における「9 原子炉本体に係る	
工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料体	変更なし
に係る検査」及び「3．2 燃料体の加工に係る工事上の留意事項」を除く。）に従う。	

8.5 浸水防護施設

8．5．1 外郭浸水防護設備

注記＊1：構造境界部に止水ジョイントを設置する。
＊2：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：公称値を示す。
＊2：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：構造境界部に止水ジョイントを設置する。
＊2：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：構造境界部に止水ジョイントを設置する。
＊2：公称値を示す。
＊ 3 ：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：構造境界部に止水ジョイントを設置する。
＊2：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：構造境界部に止水ジョイントを設置する。
＊2：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

				変 更	変 更 後
名 称				－	防潮壁 （第3号機海水熱交換器建屋）
種		顥	－		防潮壁
主	天 端 高		m		0．P．20． $0^{* 1, * 2}$
寸 法	鋼製遮水壁 （鋼板）	厚 さ	mm		上段： 9.0 以上（ $9.0^{* 1}$ ） 中段： 12.0 以上 $\left(12.0^{* 1}\right)$ 下段：16．0以上 $\left(16.0^{* 1}\right)$
材	鋼製遮水壁（鋼板）		－		SM490

注記＊1：公称値を示す。
＊2：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

						変 更 前	変 更 後
名					称		取放水路流路縮小工 （第 1 号機放水路）
種				類	－		流路縮小工
	外			径	m		
＋					m		5． 0^{*}
	貫	通	部	径	m		
材				料	－		コンクリート

注記＊：公称値を示す。

注記 $* 1$ ：非常用取水設備であり，浸水防護施設の外郭浸水防護設備として兼用する。
＊2：公称値を示す。
＊3：引き波時に非常用海水ポンプの継続運転に必要な水量であり，貯留堰，取水口，取水路及び海水ポンプ室で確保する水量の合計値を示す。
＊ 4 ：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した施設高さを記載する。

枠囲みの内容は防護上の観点から公開できません。

注記＊：公称値を示す。

O 2 （1）II R 0

注記＊：公称値を示す。
O 2 （1）II R 0

				変 更 前	変 更 後
名		称		－	水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）
種		類	－		片開き扉
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \end{aligned}$	た	て	mm		2055＊
法	横		mm		900＊
材 料	扉	板	－		SS400
	芯	材	－		SS400

注記＊：公称値を示す。

				変 更 前	変 更 後
名		称		－	水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）
種		類	－		片開き扉
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	た	て	mm		2055＊
	横		mm		900＊
材料	扉	板	－		SS400
	芯	材	－		SS400

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

			変 更 前	変 更 後
名		称		制御建屋浸水防止水密扉 （No．1）＊1
種	類	－		片開き扉
主 要	た て	mm		$2080 * 2$
法	横	mm		$1175^{* 2}$
材料	扉 板	－	－	SS400
	芯材	－		SS400
$* 3$取付箇所	$)^{\text {系 }}$（ ラ イ ${ }^{\text {統 }}$ ン 名 ${ }^{\text {a }}$	－		－
	設 置 床	m		$\begin{gathered} \text { 制御建屋 } \\ \text { 0. P. 19. } 50 \end{gathered}$
		－		
	溢 水 防 護 上 の 配 慮が必要な高さ	－		

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

			変 更 前	変 更 後
名		称		制御建屋浸水防止水密扉 （No．2）＊1
種	類	－		片開き扉
主 要	た て	mm		$1955^{* 2}$
法	横	mm		$1000 * 2$
材料	扉 板	－	－	SS400
	芯材	－		SS400
$* 3$取付箇所	$)^{\text {系 }}$（ ラ イ ${ }^{\text {統 }}$ ン 名 ${ }^{\text {a }}$	－		－
	設 置 床	m		$\begin{gathered} \text { 制御建屋 } \\ \text { 0.P. 15. } 00 \end{gathered}$
		－		
	溢 水 防 護 上 の 配 慮が必要な高さ	－		

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記 $* 1$ ：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記 $* 1$ ：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記 $* 1$ ：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記＊1：内郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記 $* 1:$ 内郭浸水防護設備と兼用。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記 $* 1:$ 内郭浸水防護設備と兼用。
＊2：公称値を示す。
＊3：内郭浸水防護設備に使用する場合の記載事項。

注記 $* 1$ ：内郭浸水防護設備と兼用。
＊ 2 ：公称値を示す。
$* 3$ ：内郭浸水防護設備に使用する場合の記載事項。

									変 更 後
名				称					第 2 号機海水ポンプ室浸水防止壁
種				類	－				浸水防止壁
主 要 寸 法	天	端	高	さ	m				0．P．＋14． $4^{* 1, * 2}$
材 料	浸	水	止	壁	－				SS400

注記＊1 ：公称値を示す。
＊2：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約1mの地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

8．5．2 内郭浸水防護設備

（1）防水区画構造物

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

				変 更 前	変 更 後
名 称				－	計測制御電源室（A）－常用および 共通 $M / C \cdot P / C$ 室 浸水防止水密扉
種		類	－		片開き扉
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	$\begin{aligned} & \text { 扉 } \\ & \text { 体 } \end{aligned}$	た て	mm		2750＊
		横	mm		2480＊
	$\begin{aligned} & \text { 小 } \\ & \text { 扉 } \end{aligned}$	た て	mm		2100＊
		横	mm		1310＊
材料	扉	板	－		SS400
	芯	材	－		SS400
取付䈯所	系	ラ イ 統 ${ }^{\text {a }}$（ 名 ${ }^{\text {a }}$	－		－
		置 床	m		$\begin{aligned} & \text { 制御建屋 } \\ & \text { 0.P. } 8.00 \end{aligned}$
		$\begin{array}{cccc}\text { 水 } \\ \text { 防 } & \text { 櫵 } & \text { 上 } & \text { の } \\ \text { 番 }\end{array}$	－		
	$\begin{aligned} & \text { 溢 } \\ & \text { 配 } \end{aligned}$	$\begin{array}{lll} \text { 水防 護 上 } & \text { の } \\ \text { 意が必要な 高 さ } \end{array}$	－		

注記＊：公称値を示す。

			変 更 前	変 更 後
名 称			－	制御建屋空調機械（A）室－制御建屋空調機械（B）室浸水防止水密扉（No．2）
種	類	－		片開き扉
主 要 寸 法	た て	mm		2360＊
	横	mm		1360＊
	扉 板	－		SS400
	芯材	－		SS400
取付箇所		－		－
	設 置 床	m		$\begin{aligned} & \text { 制御建屋 } \\ & \text { 0. P. 1. } 50 \end{aligned}$
	$\begin{array}{cccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 讙 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & & \text { 号 } \end{array}$	－		
	溢 水 防 護 上 上 配 慮 が必要な 高 さ	－		

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

			変 更 前	変 更 後
	名			HPSW ポンプ室浸水防止水密扉
種	類	－		片開き扉
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \end{aligned}$	た て	mm		2060＊
寸 法	横	mm		1060＊
	扉 板	－		SS400
	芯材	－		SS400
取 付 箇 所		－		－
	設 置 床	m		海水ポンプ室 0．P．3． 00
	$\begin{array}{lllll}\text { 溢 } & \text { 水 } \\ \text { 区 } & \text { 防 } & \text { 護 } \\ \text { 画 } & \text { 番 }\end{array}$	－		－
	溢 水 防 護 上 の配 慮が必要な高さ	m		－

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

			変 更 前	変 更 後
名 称			－	主排気ダクト連絡トレンチ （2T－5）管理区域外伝播防止水密扉
種	類	－		片開き扉
主 要	た て	mm		2500＊
寸 法	横	mm		1345＊
	扉 板	－		SUS304
科	芯材	－		SS400
	$\begin{array}{ccccc} \text { 系 } & & \text { 統 } & & \text { 名 } \\ \left(\begin{array}{ll} \text { ラ } \end{array}\right. & \text { 亿名 } \end{array}$	－		－
取	設 置 床	m		原子炉建屋 $\text { 0. P. 15. } 00$
$\begin{aligned} & \text { 箇 } \\ & \text { 所 } \end{aligned}$	$\begin{array}{cccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & & \text { 号 } \end{array}$	－		
	$\begin{aligned} & \text { 溢 水 防 護 上 の } \\ & \text { 配 慮 が必要な高 さ } \end{aligned}$	－		

注記＊：公称値を示す。

注記＊ $1: 0$. P．22．50mからの高さ。

注記＊ $1: 0$. P．22．50mからの高さ。

			変 更 前	変 更 後
名	称		－	中央制御室再循環フィルタ装置浸水防止堰
種	類	－		堰
主 要 寸 法	高 さ	mm		700＊1 以上
材 料	堰	－		SS400
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 䉯 } \\ & \text { } \end{aligned}$	系 ${ }^{\text {統 }}$ 名 （ライン	－		－
	設 置 床	－		$\begin{gathered} \text { 制御建屋 } \\ 0 . \text { P. } 1.50 \text { m } \end{gathered}$
		－		
	溢 水 防 護 上の配慮が必要な高さ	－		

以下の設備は，原子炉格納施設原子炉建屋機器搬出入口であり，内郭浸水防護設備として本工事計画で兼用とする。

原子炉建屋大物搬入口

以下の設備は，外郭浸水防護設備であり，内郭浸水防護設備として本工事計画で兼用とする。

原子炉建屋浸水防止水密扉（No．1）
原子炉建屋浸水防止水密扉（No．2）
制御建屋浸水防止水密扉（No．1）
制御建屋浸水防止水密扉（ N .2 ．2）
制御建屋浸水防止水密扉（No．3）
制御建屋浸水防止水密扉（No．4）
制御建屋浸水防止水密扉（№．5）
計測制御電源室（B）浸水防止水密扉（No．3）
制御建屋空調機械（A）室浸水防止水密扉
制御建屋空調機械（B）室浸水防止水密扉
第 2 号機 MCR 浸水防止水密扉
地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1）
地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．2）
地下軽油タンク機器搬出入用浸水防止蓋

以下の設備は，既存の放射性廃棄物の廃棄施設のらち堰その他の設備であり，内郭浸水防護設備 として本工事計画で兼用とする。

原子炉建屋地上 1 階の施設外との境界壁面及び施設外への出入口床面原子炉建屋地上 1 階屋外への出入口

原子炉建屋地上 1 階タービン建屋を結ぶ連絡通路
原子炉建屋地上 1 階通路部出入口
原子炉建屋地上 1 階廃棄物処理系制御室出入口

タービン建屋地下 2 階及び制御建屋地下 2 階配管エリアの施設外との境界壁面及びこれに囲ま れた床面

タービン建屋地下 2 階 TCW 熱交換器室出入口

O 2 （1）II R 0

8．5． 3 浸水防護施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

	変更前	変更後
	－	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。
$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \vdots \\ & \stackrel{1}{\bullet} \end{aligned}$	－	第1章 共通項目 浸水防護施設の共通項目である「1．地盤等， 2 ．自然現象（2．2 津波による損傷の防止を除く。），3．火災，5．設備に対する要求（5．3 使用中の亀裂等による破壊の防止，5．4耐圧試験等，5．5安全弁等，5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染の防止を除 く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。
	－	第2章 個別項目 1．津波による損傷の防止 1.1 耐津波設計の基本方針 設計基準対象施設及び重大事故等対処施設が設置（変更）許可を受け た基準津波によりその安全性又は重大事故等に対処するために必要な機能が損なわれるおそれがないよう，遡上への影響要因及び浸水経路等 を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとと もに津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とする。

	変更前	変更後
$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	（	なお，「1．津波による損傷の防止」の耐津波設計においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地㪍変動に伴 い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した敷地高さや施設高さ等を記載する。 1．1．1 津波防護対象設備 設計基準対象施設が，基準津波により，その安全性が損なわれる おそれがないよう，津波から防護すべき施設は，設計基準対象施設 のらち「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されているクラス 1 及びクラス 2 に該当する構築物，系統及び機器（以下「津波防護対象設備」という。）とする。 津波防護対象設備の防護設計においては，津波により津波防護対象設備に波及的影響を及ぼすおそれのある津波防護対象設備以外 の施設についても考慮する。 また，重大事故等対処施設及び可搬型重大事故等対処設備につい ても，設計基準対象施設と同時に必要な機能が損なわれるおそれが ないよう，津波防護対象設備に含める。 更に，津波が地震の随伴事象であることを踏まえ，耐震S クラス の施設（津波防護施設，浸水防止設備及び津波監視設備を除く。） を含めて津波防護対象設備とする。 1.2 入力津波の設定 各施設•設備の設計又は評価に用いる入力津波として，敷地への遡上 に伴ら津波（以下「遡上波」という。）による入力津波と取水路，放水路等の経路からの流入に伴ら津波（以下「経路からの津波」という。）

	変更前	変更後
$\begin{aligned} & \infty \\ & \omega \\ & \omega \\ & \omega \\ & 0 \\ & 0 \end{aligned}$	－	及び潮位のばらつきを踏まえた水位の合計との差を参照する裕度 として，設計上の裕度の判断の際に考慮する。 評価の結果，遡上波が地上部から到達し流入するため，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画（緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管エリア，第 2 保管エリア，第 4 保管エリア，緊急時対策建屋及び ガスタービン発電設備タンクピットを除く。）の設置された敷地に，遡上波の流入を防止するための津波防護施設として，防潮堤を設置 する設計とする。 また，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画のらち，緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管エリア，第 2 保管エリア，第 4 保管エリ ア，緊急時対策建屋及びガスタービン発電設備タンクピットは，津波による遡上波が地上部から到達，流入しない十分高い場所に設置 する設計とする。 （2）取水路，放水路等の経路からの津波の流入防止 津波の流入の可能性のある経路につながる循環水系，海水系及び屋外排水路の標高に基づき，許容される津波高さと経路からの津波高さを比較することにより，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地への津波の流入 の可能性の有無を評価する。流入の可能性に対する裕度評価におい て，高潮ハザードの再現期間 100 年に対する期待值と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえた水位の合計との差を参照する裕度とし，設計上の裕度の判断の際に考慮す

	変更前	変更後
$\begin{aligned} & \infty \\ & \omega \\ & \omega \\ & \vdots \\ & \vdots \end{aligned}$	－	る。 評価の結果，流入する可能性のある経路が特定されたことから，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地並びに建屋及び区画への流入を防止するた め，津波防護施設として，第 2 号機海水ポンプ室スクリーンエリ ア，第 3 号機海水ポンプ室スクリーンエリア，第 2 号機放水立坑，第 3 号機放水立坑及び第 3 号機海水熱交換器建屋取水立坑の開口部に防潮壁を設置，第 1 号機取水路及び第 1 号機放水路に取放水路流路縮小工を設置する設計とする。また，浸水防止設備として，第 2 号機補機冷却海水系放水路の防潮壁横断部及び屋外排水路の防潮堤横断部に逆流防止設備，第 3 号機海水熱交換器建屋補機ポ ンプエリアから海水熱交換器建屋取水立坑へのアクセス用入口に水密扉，第 3 号機海水熱交換器建屋補機ポンプエリアの床開口部，第 2 号機海水ポンプ室スクリーンエリアから補機冷却系トレンチ へのアクセス用入口，第 2 号機海水ポンプ室防潮壁及び第 3 号機海水ポンプ室防潮壁区画内の揚水井戸，第 3 号機補機冷却海水系放水ピットの開口部に浸水防止蓋，第 2 号機海水ポンプ室補機ポ ンプエリア及び第 3 号機海水熱交換器建屋補機ポンプエリアの床開口部に逆止弁付ファンネルを設置し，第 2 号機海水ポンプ室ス クリーンエリア及び第 2 号機放水立坑エリアの防潮壁下部貫通部，第 3 号機海水ポンプ室スクリーンエリア及び第 3 号機放水立坑エ リアの防澣壁下部貫通部，防潮堤下部貫通部に止水処置を実施する設計とする。 防潮壁鋼製扉，水密扉及び浸水防止蓋については，原則閉止する

	変更前	変更後
$\begin{aligned} & \infty \\ & 0 \\ & \vdots \\ & \omega \\ & \vdots \\ & \stackrel{1}{0} \end{aligned}$	（	浸水口が特定されたことから，地震による設備の損傷箇所からの津波の流入を防止するための浸水防止設備として，浸水防止壁，水密扉及び浸水防止蓋の設置並びに貫通部止水処置を実施する設計と する。 また，浸水防止設備として設置する水密扉及び浸水防止蓋につい ては，津波の流入を防止するため，扉及び蓋の閉止運用を保安規定 に定めて管理する。 内郭防護として設置及び実施する浸水防止設備については，貫通部，開口部等の一部分のみが浸水範囲となる場合においても貫通部，開口部等の全体を浸水防護することにより，浸水評価に対して裕度を確保する設計とする。 1．3．4 水位変動に伴う取水性低下及び津波の二次的な影響による重要 な安全機能及び重大事故等に対処するために必要な機能への影響防止 （1）非常用海水ポンプ，大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII）の取水性 非常用海水ポンプについては，評価水位としての海水ポンプ室で の下降側水位と非常用海水ポンプの取水可能水位を比較し，評価水位が非常用海水ポンプ取水可能水位を下回る可能性の有無を評価 する。 評価の結果，海水ポンプ室の下降側の評価水位が非常用海水ポン プの取水可能水位を下回ることから，津波防護施設として，海水を貯留するための貯留堰を設置することで，取水性を確保する設計と

	変更前	変更後
$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	－	する。 非常用海水ポンプについては，津波による上昇側の水位変動に対 しても，取水機能が保持できる設計とする。 大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII） についても，入力津波の水位に対して，取水性を確保できるものを用いる設計とする。 （2）津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ （タイプI）及び大容量送水ポンプ（タイプII）の機能保持確認基準津波による水位変動に伴ら海底の砂移動•堆積に対して，取水口，取水路及び海水ポンプ室が閉塞することなく取水口，取水路及び海水ポンプ室の通水性が確保できる設計とする。 非常用海水ポンプは，取水時に浮遊砂が軸受に混入した場合にお いても，軸受部の異物逃がし溝から浮遊砂を排出することで，機能 を保持できる設計とする。 大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII） についても，浮遊砂の混入に対しても取水機能が保持できるものを用いる設計とする。 漂流物に対しては，発電所敷地内及び敷地外で漂流物となる可能性のある施設•設備を抽出し，抽出された漂流物となる可能性のあ る施設•設備が漂流した場合に，非常用海水ポンプーの衝突並びに取水口，取水路及び海水ポンプ室の閉塞が生じることがなく，非常用海水ポンプの取水性確保並びに取水口及び取水路の通水機能が確保できる設計とする。 発電所敷地内及び敷地外の人工構造物については，設置状況を定

	変更前	変更後
	（	期的に確認し評価する運用を保安規定に定めて管理する。更に，従前の評価結果に包絡されない場合は，漂流物となる可能性，非常用海水ポンプの取水性及び浸水防護施設の健全性への影響評価を行 い，影響がある場合は漂流物対策を実施する。 1．3．5 津波監視 津波監視設備として，敷地への津波の繰返しの襲来を察知し，津波防護施設及び浸水防止設備の機能を確実に確保するため，津波監視カメラ（計測制御系統施設の中央制御室機能と兼用（以下同じ。））及び取水ピット水位計を設置する。 1．4 津波防護対策に必要な浸水防護施設の設計 1．4．1 設計方針 津波防護施設，浸水防止設備及び津波監視設備については，「1．2入力津波の設定」で設定している繰返しの襲来を想定した入力津波 に対して，津波防護対象設備の要求される機能を損ならおそれがな いよう以下の機能を満足する設計とする。 （1）津波防護施設 津波防護施設は，津波の流入による浸水及び漏水を防止する設計 とする。 津波防護施設のうち防潮堤及び防潮壁については，入力津波高さ を上回る高さで設置し，止水性を保持する設計とする。 津波防護施設のうち取放水路流路縮小工については，第1号機 の取水路及び放水路からの津波の流入を抑制し，入力津波に対して

	変更前	変更後
$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \omega \\ & \vdots \\ & \stackrel{\omega}{\omega} \end{aligned}$	（	浸水を防止する設計とする。また，第 1 号機へ悪影響を及ぼさない設計とする。 津波防護施設のらち貯留堰については，津波による水位低下に対 して，非常用海水ポンプの取水可能水位を保持し，かつ，泠却に必要な海水を確保する設計とする。 主要な構造体の境界部には，想定される荷重の作用及び相対変位 を考慮し，試験等にて止水性を確認した止水ジョイント等を設置 し，止水処置を講じる設計とする。 （2）浸水防止設備 浸水防止設備は，浸水想定範囲等における浸水時及び冠水後の波圧等に対する耐性を評価し，津波の流入による浸水及び漏水を防止 する設計とする。 また，津波防護対象設備を内包する建屋及び区画に浸水時及び冠水後に津波が流入することを防止するため，当該区画への流入経路 となる開口部に浸水防止設備を設置し，止水性を保持する設計とす る。 浸水防止設備である逆流防止設備，水密扉，浸水防止蓋，浸水防止壁及び逆止弁付ファンネルを設置並びに貫通部止水処置につい ては，入力津波による波圧に対し，耐性を評価又は試験等により止水性を確認した方法により止水性を保持する設計とする。 （3）津波監視設備 津波監視設備は，津波の襲来状況を監視可能な設計とする。津波監視カメラは，波力及び漂流物の影響を受けない位置，取水ピット水位計は波力及び漂流物の影響を受けにくい位置に設置し，津波監

	変更前	変更後
$\begin{aligned} & \infty \\ & 0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	－	溢水経路を構成する水密扉に関しては，扉の閉止運用を保安規定に定 めて管理する。 常設している堰の取り外し及びハッチを開放する場合の運用を保安規定に定めて管理する。 2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関 する溢水評価及び防護設計方針 2．5．1 没水の影響に対する評価及び防護設計方針 発生を想定する溢水量，溢水防護区画及び溢水経路から算出され る溢水水位と防護すべき設備が要求される機能を損ならおそれが ある高さ（以下「機能喪失高さ」という。）を評価し，防護す心゙き設備が要求される機能を損ならおそれがない設計とする。 また，溢水の流入状態，溢水源からの距離，人員のアクセス等に よる一時的な水位変動を考慮し，機能喪失高さは溢水による水位に対して裕度を確保する設計とする。 没水の影響により，防護すべき設備が溢水による水位に対し機能喪失高さを確保できないおそれがある場合は，溢水水位を上回る高 さまで，溢水により発生する水圧に対して止水性（以下「止水性」 という。）を維持する壁，扉，堰，逆流防止装置又は貫通部止水処置 により溢水伝播を防止するための対策を実施する。 止水性を維持する浸水防護施設については，試験又は机上評価に て止水性を確認する設計とする。 2．5．2 被水の影響に対する評価及び防護設計方針

	変更前	変更後
$$	－	溢水源からの直線軌道及び放物線軌道の飛散による被水及び天井面の開口部若しくは貫通部からの被水が，防護すべき設備に与え る影響を評価する。 防護すべき設備は，浸水に対する保護構造（以下「保護構造」と いう。）を有し，被水影響を受けても要求される機能を損ならおそ れがない設計とする。 保護構造を有さない場合は，機能を損ならおそれがない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わない消火手段（ハロンガス消火設備によ る消火，ケーブルトレイ消火設備による消火又は消火器による消火）を採用する設計とする。 保護構造により要求される機能を損ならおそれがない設計とす る設備については，評価された被水条件を考慮しても要求される機能を損ならおそれがないことを設計時に確認する。 消火対象以外の設備への誤放水がないよう，消火水放水時に不用意な放水を行わない運用とすることとし保安規定に定めて管理す る。 2．5．3 蒸気影響に対する評価及び防護設計方針 発生を想定する溢水源からの漏えい蒸気の直接噴出及び拡散に よる影響を受ける範囲内にある防護すべき設備が蒸気放出の影響 により安全機能を損なうおそれのない設計とする。 蒸気曝露試験又は試験困難な場合等に実施した机上評価により，防護すべき設備の健全性を確認した条件が，漏えい蒸気による環境

	変更前	変更後
$\begin{aligned} & \infty \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	－	条件（温度，湿度及び圧力）を満足し，防護すべき設備が要求され る機能を損ならおそれがない設計又は配置とする。 漏えい蒸気の影響により，防護すべき設備が要求される機能を損 ならおそれがある場合は，漏えい蒸気影響を緩和するための対策を実施する。 具体的には，防護すべき設備に対して，実機での蒸気条件を考慮 しても安全機能を損なわないことを蒸気曝露試験により確認した保護カバーにより蒸気影響を緩和できる設計とする。 また，主蒸気管破断事故時等には，原子炉建屋原子炉棟内外の差圧による原子炉建屋ブローアウトパネル（設置枚数 1 枚，開放差圧 4．4kPa 以下）（原子炉冷却系統施設のうち「5．2 高圧炉心スプレ イ系」の設備を浸水防護施設の設備として兼用）の開放により，溢水防護区画内において蒸気影響を軽減する設計とする。 2．5．4 使用済燃料プールのスロッシング後の機能維持に関する溢水評価及び防護設計方針 使用済燃料プールのスロッシングによる溢水量の算出に当たっ ては，基準地震動S s による地震力によって生じるスロッシング現象を三次元流動解析により評価し，使用済燃料プール外い漏えいす る水量を考慮する。 その際，使用済燃料プールの初期条件は保守的となるように設定 する。 算出した溢水量からスロッシング後の使用済燃料プールの水位低下を考慮しても，使用済燃料プールの泠却機能及び使用済燃料プ

	変更前	変更後
$$	－	壁，堰，扉，蓋，逆流防止装置及び貫通部止水処置のうち，地震に起因する機器の破損等により生じる溢水（使用済燃料プール等のスロッシ ングにより発生する溢水を含む。）から防護する設備については，基準地震動 S s による地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損ならおそれがない設計とする。ただし，放射性物質を含む液体が管理区域外に伝播することを防止するために設置する堰については，要求される地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損なうおそれがない設計とする。 漏えい蒸気影響を緩和する保護カバーの設計においては，配管の破断 により発生する荷重に対し，蒸気影響を緩和する機能を損なうおそれが ない設計とする。 循環水系配管及びタービン補機冷却海水系配管の破損個所からの溢水量を低減する循環水系隔離システム及びタービン補機冷却海水系隔離システムの設計においては，基準地震動 S s による地震力に対し，地震時及び地震後においても，溢水量を低減する機能を損なうおそれがな い設計とする。
	－	3．主要対象設備 浸水防護施設の対象となる主要な設備について，「表 1 浸水防護施設 の主要設備リスト」に示す。

表1浸水防護施設の主要設備リスト $(1 / 10)$

O 2 （1）II R 0

表 1 浸水防護施設の主要設備リスト $(2 / 10)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設 ${ }^{(3 \times 1)}$		重大事故等対処設備 ${ }^{(3 \text { a }}$ 1）		名称	設計基準対象施設（\＃1 1）		重大事故等対処設備 ${ }^{(31)}$	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		分類	機器クラス	設備分類	重大事故等機器クラス
				－					浸水防止蓋（原子炉機器冷却海水配管ダクト）	S＊	－		－
				－					浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））	S＊	－		－
				－					浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））	S＊	－		－
				－					浸水防止蓋（第 3 号機補機冷却海水系放水ピ ット）	S＊	－		－
				－					浸水防止蓋（第 3 号機海水熱交換器建屋海水 ポンプ設置エリア角落し部）	S＊	－		－
$$				－					浸水防止蓋（第 3 号機海水熱交換器建屋海水 ポンプ設置エリア点検用開口部） （No．1），（No．2）	S＊	－		－
$\begin{gathered} 1 \\ 1 \\ 1 \\ 0 \end{gathered}$	$\begin{aligned} & \text { 郭啚噱 } \end{aligned}$		－	－					第 2 号機原子炬補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），（No．2），（No．3）	S＊	－		－
∞	防 譙 設 供	－		－					第 2 号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），（No．2），（No．3）	S＊	－		－
				－					第 2 号機高圧炬心スプレイ補機冷却海水ポン プ室逆止弁付ファンネル（No．1），（No．2）	S＊	－		－
				－					第 2 号機タービン補機泠却海水ポンプ室逆止弁付ファンネル（No．1），（No．2），（No．3）	S＊	－		－
				－					第 3 号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル（No．1），（No．2）	S＊	－		－
				－					第 3 号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル（No．1），（No．2）	S＊	－		－
				－					第 3 号機高圧炬心スプレイ補機冷却海水ポン プ室逆止弁付ファンネル（No．1），（No．2）	S＊	－		－
				－					第 3 号機タービン補機泠却海水ポンプ室逆止弁付ファンネル（No．1），（No．2），（No．3）	S＊	－	－	

表1浸水防護施設の主要設備リスト $(3 / 10)$

表1浸水防護施設の主要設備リスト（4／10）

$\begin{aligned} & \infty \\ & 0 \\ & \omega \\ & \omega \\ & \omega \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 緗 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計甚漼対象施設 ${ }^{(*) 1 \text {（1）}}$		重大事故等対処設備 ${ }^{(21)}$ ）		名称	設計甚漼対象施設 ${ }^{(011)}$		重大事故等対処設備 ${ }^{(21)}$	
				$\begin{aligned} & \text { 侕震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{array}{\|l} \text { 重大事故等 } \\ \text { 機器クラス } \end{array}$
			－					SGTS ヒータコニット（ $)^{\text {）室浸水防止水密扉 }}$	c	－		
			－					RHR Hx（ A ）室－RHR Hx（ B ）室浸水防止水密扉	C－2	－		
			－					原子炉建屋浸水防止水密扉（No．2）		－		－
			－					原子炉建屋浸水防止水密扉（No．1）	$\begin{aligned} & \hline \mathrm{S}^{(1(12)} \\ & \mathrm{C}-2^{(*)} \end{aligned}$	－		
			－					原子炉建屋浸水防止水密扉（No．3）	C－2	－		
			－					LPCS ポンプ室浸水防止水密扉	c	－		
			－					HPCS ポンプ室浸水防止水密扉	c	－		
	－	防水区画構造物	－					RHR ポンプ（B）室浸水防止水密屝	c	－		
			－					RTR ポンプ（ A ）室浸水防止水密屝	c	－		
			－					RHRポンプ（C）室－共通通路浸水防止水密扉	C－2	－		－
			－					FPMUW ポンプ室浸水防止水密扉	C－2	－		－
			－					RCIC タービンポンプ室－共通通路浸水防止水密扉	C－2	－		－
			－					HECW 泠涑機（B）（D）室－HECW 冷涑機（A）（C）室浸水防止水密扉	c	－		
			－					制御建屋共通エリア浸水防止水密扉	c	－		
			－					D／G（B）室－D／G（HPCS）室浸水防止水密扉	c	－		

表1浸水防隻施設の主要設備リスト $(5 / 10)$

表1浸水防護施設の主要設備リスト $(6 / 10)$

	勫森森	機器区分	変更前					変更後				
			名称			重大事故等対処設供 ${ }^{(1)^{(1)} \text { ）}}$		名称	設計甚漼対象施設 ${ }^{(121)}$		重大事故等対処設供 ${ }^{(121)}$	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{array}{\|l} \text { 重大事故等 } \\ \text { 機器クラス } \end{array}$
			－					250 V 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉	c	－		
			－					ISI 室浸水防止水密屝	c	－		
			－					制御建屋空調機械（ B ）室浸水防止水密扉	$\begin{aligned} & \mathrm{S} *^{(1 * 2)} \\ & \mathrm{C}-2^{(12 \pi)} \end{aligned}$	－		
			－					制御建屋空調機械（A）室－制御建屋空調機械 （B）室浸水防止水密扉（No．2）	c	－		
			－					燃料移送ポンプ（H）室－燃料移送ポンプ（A）室浸水防止水密扉	c	－		
			－					燃料移送ポンプ（A）室－燃料移送ポンプ（B）室浸水防止水密扉	c	－		
			－					RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉	c	－		
			－					HPSWポンプ室浸水防止水密扉	c	－		－
	－	防水区画構造物	－					TSW ポンプ室－RSW ポンプ（B）（D）室浸水防止水密扉	c	－		
			－					第 2 号機 MCR 浸水防止水密扉		－		
			－					RV 電気品室（B）浸水防止水密屝	c	－		－
			－					北西階段室管理区域外伝䊩止水密屝	C－2	－		－
			－					原子炉建屋大物搬入口	$\begin{aligned} & \mathrm{S} *\left(\begin{array}{l} (12) \\ \mathrm{C}-2^{(1 * 3)} \end{array}\right. \end{aligned}$	－		－
			－					原子炉建屋管理区域外伝播防止水密扉（No．3）	C－2	－		－
			－					RN 制御室管理区域外伝播防止水密扉	C－2	－		－
			－					原子炉建屋管理区域外伝播防止水密扉（No．1）	C－2	－		－
			－					原子炉建屋管理区域外伝播防止水密扉（No．2）	C－2	－		－

表1浸水防護施設の主要設備リスト $(7 / 10)$

	$\begin{aligned} & \text { 雞 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基淮対象施設 ${ }^{\text {（\＃\＃1）}}$		重大事故等対处設備 ${ }^{(21)}$		名称	設計基淮対象施設（3it 1）		重大事故等対処設備 ${ }^{(311)}$	
				$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \hline \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス			機器クラス	設備分類	重大事故等機器クラス
	－	防水区画構造物	－					制御建屋管理区域外伝播防止水密扉（No．1）	c	－		－
			－					タービン建屋管理区域外伝播防止水密扉	B	－		－
			－					主排気ダクト連絡トレンチ（2T－5）管理区域外伝播防止水密扉	C－2	－		－
			－					原子炬建屋浸水防止水密扉（No．4）	C－2	－		－
			－					燃料移送ポンプ（ A ）室浸水防止水密屝	c	－		－
			－					燃料移送ポンプ（ B ）室浸水防止水密扉	c	－		－
			－					${ }^{\mathrm{R}}$－01 階段浸水防止堰（ 地上3階）	C－2	－		－
				－				R－02 階段浸水防止堰（地上3階）	C－2	－		－
				－				${ }^{\mathrm{R}}$－01 階段浸水防止殹（ 地上2階）	c	－		－
				－				FCS 再結合装置（A）室浸水防止堰	c	－		－
				－				FCS 再結合装置（B）室浸水防止堰	c	－		－
				－				R－02 階段浸水防止殹（ 地上 2 階）	c	－		－
				－				SGTS ヒータコニット（B）室浸水防止殹	c	－		－
				－				CAMS ラック（B）室浸水防止殹	c	－		－
				－				SGTS ヒータコニット（ A ）室浸水防止殹	c	－		－

表1浸水防護施設の主要設備リスト $(8 / 10)$

表1浸水防護施設の主要設備リスト $(9 / 10)$

設 愋 斧	$\begin{aligned} & \text { 㯒 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				設計甚漼対象施設（14）		重大事故等対処設備 ${ }^{(2 \text {（1）}}$ ）		名称	設計基淮対象施設 ${ }^{(021)}$		重大事故等対処設備（1＋1）	
			名称	$\begin{aligned} & \text { 侕震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	
				－				原子炉補機（A）室送風機室－原子炉補機（HPCS）室送風機室浸水防止堰	c	－		
				－				原子炬補機（HPCS）室送風機室－原子炋補機（B）室送風機室および送風機エリア浸水防止堰	c	－		
				－				2 F 通路浸水防止殹	c	－		－
				－				区分I－III非常用D／G制御盤室浸水防止堰	c	－		－
				－				D／G 補機（ $)^{\text {a }}$ 室浸水防止殹	c	－		－
				－				区分［IHPCS 電気品室浸水防止殹	c	－		－
内				－				静止型PLR ポンプ電源装置室浸水防止殹	c	－		－
$\begin{array}{\|l\|l\|} \hline \text { 沝 } \end{array}$	－	防水区画構造物		－				IA－SA 室および通路浸水防止殹	c	－		－
設				－				区分I ケーブル处理室浸水防止堰	c	－		－
				－				常用系ケーブル处理室浸水防止殹（No．2）	c	－		－
				－				常用系ケーブル処理室浸水防止殹（No．1）	c	－		－
				－				タービン建屋管理区域外伝播防止堰（No．3）	B	－		－
				－				タービン建屋管理区域外伝播防止堰（No．4）	B	－		－
				－				タービン建屋管理区域外伝播防止堤（No．2）	B	－		－
				－				タービン建屋管理区域外伝播防止堰（No．1）	B	－		－

O 2 （1）II R 0

表1浸水防護施設の主要設備リスト（ $10 / 10$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \text { lon } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設 ${ }^{(3 \times 1)}$		重大事故等対処設備 ${ }^{(3 \text { a }}$ 1）		名称	設計基準対象施設（ ${ }^{(1)^{\text {1 }} \text { 1）}}$		重大事故等対処設備 ${ }^{(3 \times 1)}$	
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
浸水防護詵備	－	防水区画構造物	－					HNCW 冷谏機・ポンプ室管理区域外伝播防止堰	B	－		－
			－					CAMS（A）室空調機浸水防止堰	C	－		－
			－					CAMS（B）室空調機浸水防止堰	C	－		－
			－					中央制御室再循環フィルタ装置浸水防止堰	C	－		－
			－					制御建屋浸水防止水密扉（No．4）		－		－
			－					制御建屋浸水防止水密扉（No．5）	$\begin{gathered} \mathrm{S} *^{(¥ i 2)} \\ \mathrm{C}-2^{(i) 3} \end{gathered}$	－		－
			－					地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．1）		－		－
			－					地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．2）	$\begin{gathered} \left.\mathrm{S} *^{(i(2)} 2\right) \\ \mathrm{C}-2^{(¥ 2)} \end{gathered}$	－		－
			－					地下軽油タンク機器搬出入用浸水防止蓋	$\begin{aligned} & \left.\mathrm{S} *^{(i(2)} 2\right) \\ & \mathrm{C}-2^{(¥ 3)} \end{aligned}$	－		－
			－					ハッチ上部スペース浸水防止堰	C	－		－
			－					原子炬建屋地上 1 階の施設外との境界壁面及 び施設外へ出入口床面（原子炉建屋地上 1 階屋外への出入口，原子炉建屋地上 1 階タービ ン建屋を結ぶ連絡通路，原子炉建屋地上 1 階廃棄物処理系制御室出入口，原子炬建屋地上 1階通路部出入口）	B	－		－
			－					タービン建屋地下 2 階及び制御建屋地下 2 階配管エリアの施設外との境界壁面及びこれに囲まれた床面（タービン建屋地下 2 階 TCW 熱交換器室出入口）	B	－		－

没水防止設做としての耐震重要度を示す。
（注3）溢水の伝播を防止する設備としての耐震重要度を示す。

8． 5.4 浸水防護施設に係る工事の方法

変更前	変更後
浸水防護施設に係る工事の方法は，「原子炉本体」における「9原子炉本体に係る	
工事の方法」（「 1.3 燃料体に係る工事の手順と使用前事業者検査」「「2．1．3 燃料体	変更なし
に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従う。	

8． 6 補機駆動用燃料設備
8．6．1 燃料設備
（2）容器（常設）

注記＊：本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，補機駆動用燃料設備のうち燃料設備として本工事計画で兼用とする。

注記＊：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設備） であり，補機駆動用燃料設備のうち燃料設備として本工事計画で兼用とする。

		変更前	変 更 後
名	称	－	ガスタービン発電設備軽油タンク＊
8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．3 ガスタービン発電設備 （4）燃料設備 口 容器（常設） に記載する。			

注記＊：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，補機駆動用燃料設備のうち燃料設備として本工事計画で兼用とする。
（2）容器（可搬型）

					変更前	変更後
名		称			－	大容量送水ポンプ（タイプ I ） （燃料タンク）＊1
種			類	－		角形
容			量	L／個		450 以上（ $495{ }^{* 2}$ ）
最	使	圧	力＊ 3	MPa		静水頭
最	使	温	度＊3	${ }^{\circ} \mathrm{C}$		40
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	た		τ	mm		$1480 * 2$
		横		mm		$540 * 2$
	高		さ	mm		$640 * 2$
材			料	－		SUS304 相当（AISI304）
個			数	－		$2^{* 4}$
取	付	箇	所	－		大容量送水ポンプ（タイプI）

注記＊1 ：本設備は大容量送水ポンプ（タイプ I ）の付属機器である。
＊2 ：公称値を示す。
＊3：重大事故等時における使用時の値。
＊4：大容量送水ポンプ（タイプ I ）1 個当たりの個数を示す。

注記＊1：本設備は大容量送水ポンプ（タイプ II）の付属機器である。
＊2 ：公称値を示す。
＊3：重大事故等時における使用時の値。
＊ 4 ：大容量送水ポンプ（タイプ III） 1 個当たりの個数を示す。

注記 $~ 1 ~: ~$ 本設備は原子炉補機代替冷却水系熱交換器ユニットの付属機器である。
＊2 ：公称値を示す。
＊ 3 ：重大事故等時における使用時の値。
＊ 4 ：原子炉補機代替冷却水系熱交換器ユニット 1 個当たりの個数を示す。

（次頁へ続く）

枠囲みの内容は商業機密の観点から公開できません。
（前頁からの続き）

		変更前	変 更 後
取 付 箇 所	－	－	保管場所： - 第 2 保管エリア O．P．約 62 m - 第 3 保管エリア 0．P．約 14.8 m －第 4 保管エリア 0．P．約 62 m 上記 3 箇所にそれぞれ 1 個保管する。 取付箇所 －屋外 0．P．約 14.8 m 軽油タンク設置場所付近＊4 －屋外 0．P．約 62 m ガスタービン発電設備軽油タンク設置場所付近＊4

注記＊1 ：非常用電源設備の非常用発電装置（ガスタービン発電設備，可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備）と兼用。
＊2 ：公称値を示す。
＊3：重大事故等時における使用時の値。
＊ 4 ：燃料油の吸入箇所を示す。
（4）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値
＊4 ：本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，補機駆動用燃料設備のらち燃料設備として本工事計画で兼用とする。
$* 5$ ：非常用電源設備の非常用発電装置（ガスタービン発電設備，可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備）と兼用。
＊6：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設備）であり，補機駆動用燃料設備のうち燃料設備として本工事計画で兼用とする
＊ 7 ：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，補機駆動用燃料設備のらち燃料設備として本工事計画で兼用とする。
$* 8$ ：非常用電源設備の非常用発電装置（可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備）と兼用。
（4）主配管（可搬型）

注記 1 ：：重大事故等時における使用時の値。（ガスタービン発電設備，可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素がス供給装置発電設備）と兼用。
＊3－メーカにて規定する呼び柊を示す
 できるものとする
＊5 ：タンクローリ 1 個当たり7本を保管する。
＊6 ：非常用電源設備の非常用発電装置（可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備）と兼用
＊7 ：タンクローリ1個当たり1本を保管する。

8．6．2 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）の基本設計方針，適用基準及び適用規格
（1）基本設計方針

	変更前	変更後
	－	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。
$\begin{aligned} & \infty \\ & 1 \\ & \stackrel{1}{1} \\ & \stackrel{1}{1} \end{aligned}$	－	第1章 共通項目 補機駆動用燃料設備の共通項目である「1．地盤等， 2. 自然現象， 3 。火災，4．溢水等，5．設備に対する要求（5．3 使用中の亀裂等による破壊の防止，5．5 安全弁等，5．6 逆止め弁，5．8 電気設備の設計条件 を除く。），6．その他（6．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章共通項目」に基づく設計とする。
	－	第2章 個別項目 1．補機駆動用燃料設備 大容量送水ポンプ（タイプI）のポンプ駆動用燃料は，大容量送水ポン プ（タイプ I ）（燃料タンク）に貯蔵する。 大容量送水ポンプ（タイプII）のポンプ駆動用燃料は，大容量送水ポン プ（タイプII）（燃料タンク）に貯蔵する。 原子炉補機代替冷却水系熱交換器ユニットのポンプ駆動用燃料は，原子炉補機代替冷却水系熱交換器ユニット（燃料タンク）に貯蔵する。 非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油タンクは，大容量送水

	変更前	変更後
	－	ポンプ（タイプII），大容量送水ポンプ（タイプII）及び原子炉補機代替冷却水系熱交換器ユニットの燃料を貯蔵できる設計とする。 大容量送水ポンプ（タイプI），大容量送水ポンプ（タイプII），原子炉補機代替冷却水系熱交換器ユニット及びタンクローリ（走行用の燃料タン ク）の燃料は，燃料補給設備である非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油タンクよりタンクローリを用いて補給できる設計とする。
$\begin{aligned} & \infty \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	－	2．主要対象設備 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除 く。）の対象となる主要な設備について，「表 1 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）の主要設備リスト」 に示す。

表1補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）の主要設備リスト（ $1 / 2$ ）

$\begin{aligned} & \text { 醹 } \\ & \text { 畕 } \end{aligned}$	$\begin{aligned} & \text { 雞 } \\ & \text { 林 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基漼対象施設（\＃1）		重大事故等対処設窚 ${ }^{(121)}$		名称	設計基漼対象施設誁		重大事故等対処設備 ${ }^{\left.(4)^{(1)}\right)}$	
				$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
	－	容器	－					非常用ディーゼル発電設備軽油タンク		－	常設耐震／防止常設／緩和	火力技術基準
			－					高圧炬ふスプレイ系ディーゼル発電設偩㹩油 タンク		－	常設而震／防止常設／緩和	火力技術基準
			－					ガスタービン発電設備軽油タンク		－	常設耐震／防止常設／緩和	火力技術基淮
			－					大容量送水ポンプ（タイプI）（燃料タンク）		－	可搬／防止可搬／緩和	SAクラス 3
			－					大容量送水ポンプ（タイプII）（燃料タンク）		－	可搬／防止可搬／緩和	SAクラス 3
			－					原子炉補機代替冷却水系熱交换器ユニット（燃料タンク）		－	可搬／防止可搬／緩和	SAクラス 3
			－					タンクローリ		－	可搬／防止可搬／緩和	SAクラス 3
		主配管	－					非常用ディーゼル発電設備軽油タンク～燃料移送ポンプ入口配管分岐点		－	常設耐震／防止常設／緩和	火力技術基準
			－					燃料移送ポンプ入口配管分岐点～非常用ディ一ゼル発電設備軽油タンク払出口		－	常設耐震／防止 常設／緩和	火力技術基潍
			－					高圧炉ふスプレイ系ディーゼル発電設借㹩油 タンク～高圧炝心スプレイ系ディーゼル発電設備焱料移送ポンプ入口配管分岐点	－		常設耐震／防止 常設／緩和	火力技術基漼

表1補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）の主要設備少スト（2／2）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設（31）		重大事故等対処設備 ${ }^{(3} 1$ 1）		名称			重大事故等対処設備 ${ }^{(3)}$	
				$\begin{aligned} & \begin{array}{c} \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \end{array} . \begin{array}{l} \text { a } \end{array} \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 燃 } \\ & \text { 梙 } \\ & \text { 備 } \end{aligned}$	－	主配管	－					高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点～高圧炬心スプレ イ系ディーゼル発電設備軽油タンク払出口		－	常設耐震／防止常設／緩和	火力技術基準
			－					ガスタービン発電設備軽油タンク～ガスター ビン発電設備軽油タンク出口配管分岐点		－	常設耐震／防止常設／緩和	火力技術基準
			－					ガスタービン発電設備軽油タンク出口配管分岐点～ガスタービン発電設備軽油タンク払出口		－	常設耐震／防止常設／緩和	火力技術基準
			－					軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）		－	可搬／防止可搬／緩和	SAクラス 3
			－					給油用ホース（ $\dagger 25: 50 \mathrm{~m}$ ）		－	可搬／防止可搬／緩和	SA クラス 3

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。

8．6．3 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）に係る
工事の方法

変更前	変更後
補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）に係	
る工事の方法は，「原子炉本体」における「 9 原子炉本体に係る工事の方法」（「1．3	変更なし
燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2	
燃料体の加工に係る工事上の留意事項」を除く。）に従う。	

8.7 非常用取水設備

8．7．1 取水設備（非常用の冷却用海水を確保する構築物に限る。）

注記＊1：浸水防護施設の外郭浸水防護設備と兼用する。
＊2：公称値を示す。
＊3：引き波時に非常用海水ポンプの継続運転に必要な水量であり，貯留堰，取水口，取水路及び海水ポンプ室で確保する水量の合計値を示す。

枠囲みの内容は防護上の観点から公開できません。

				変 更	変 更 後
名			称		取水口＊1
種		類	－		鉄筋コンクリート函渠
容		量	m^{3}		2971 以上（4300＊2）＊3
	た	τ	m		$33.0 * 2$
＊			m		$39.8 * 2$
	高	さ	m		12． $0 * 2$
材		料	－		鉄筋コンクリート
個		数	－		1

注記＊ 1 ：本設備は既存の設備である。
＊2 ：公称値を示す。
＊3：引き波時に非常用海水ポンプの継続運転に必要な水量であり，貯留堰，取水口，取水路及び海水ポンプ室で確保する水量の合計値を示す。

				変 更	変 更 後
名			称		取水路＊${ }^{\text {1 }}$
種		類	－		鉄筋コンクリート函渠
容		量	m^{3}		2971 以上（4300＊2）＊3
	た	て	m		13． $4^{* 2}$
女			m		119．9＊2
	高	さ	m		5． $5^{* 2}$
材		料	－		鉄筋コンクリート
個		数	－		1

注記＊ 1 ：本設備は既存の設備である。
＊2 ：公称値を示す。
＊3：引き波時に非常用海水ポンプの継続運転に必要な水量であり，貯留堰，取水口，取水路及び海水ポンプ室で確保する水量の合計値を示す。

				変 更	変 更 後
名			称		海水ポンプ室＊1
種		類	－		鉄筋コンクリート取水槽
容		量	m^{3}		2971 以上（4300＊2）＊3
	た	て	m		$32.5 * 2$
\％			m		77． $0^{* 2}$
	高	さ	m		28． $4^{* 2}$
材		料	－		鉄筋コンクリート
個		数	－		1

注記＊ 1 ：本設備は既存の設備である。
＊2 ：公称値を示す。
＊3：引き波時に非常用海水ポンプの継続運転に必要な水量であり，貯留堰，取水口，取水路及び海水ポンプ室で確保する水量の合計値を示す。

8．7．2 非常用取水設備の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。
第1章 共通項目 非常用取水設備の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．2 材料及び構造等，4．3 使用中の亀裂等 による破壊の防止，4．4 耐圧試験等，4．5 安全弁等，4．6逆止め弁， 4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他（5．3 安全避難通路等，5．4 放射性物質による汚染の防止を除く。）」 の基本設計方針については，原子炉冷却系統の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 非常用取水設備の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．2 材料及び構造等，5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等，5．5安全弁等，5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他（6．3 安全避難通路等，6．4 放射性物質 による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。
第2章 個別項目 1．非常用取水設備の基本設計方針 設計基準事故に対処するために必要となる原子炉補機泠却海水系及び高圧炬心スプレイ補機冷却海水系に使用する海水を取水し，導水するため の流路を構築するため，取水口，取水路及び海水ポンプ室から構成される取水設備を設置することにより冷却に必要な海水を確保できる設計とす る。	第2章 個別項目 1．非常用取水設備の基本設計方針 設計基準事故に対処するために必要となる原子炉補機冷却海水系及び高圧炉心スプレイ補機冷却海水系に使用する海水を取水し，導水するため の流路を構築するため，取水口，取水路及び海水ポンプ室から構成される取水設備を設置することにより冷却に必要な海水を確保できる設計とす る。 また，基準津波に対して，原子炉補機冷却海水ポンプ及び高圧炉心スプ

変更前	変更後
	レイ補機冷却海水ポンプが引き波時においても機能保持できるよう，貯留堰を設置することにより冷却に必要な十分な容量の海水が確保できる設計とする。 重大事故等に対処するために必要となる大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の取水箇所として，非常用取水設備（貯留堰，取水口，取水路及び海水ポンプ室）を設置する。 非常用取水設備の貯留堰，取水口，取水路及び海水ポンプ室は，想定さ れる重大事故等時において，設計基準事故対処設備の一部を流路として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 なお，非常用取水設備は引き波時においても貯留堰を設置することによ り，泠却に必要な十分な容量の海水が確保できる設計とする。
2．主要対象設備 非常用取水設備の対象となる主要な設備について，「表1非常用取水設備の主要設備リスト」に示す。	2．主要対象設備 非常用取水設備の対象となる主要な設備について，「表 1 非常用取水設備の主要設備リスト」に示す。

表1非常用取水設備の主要設備リスト（1／1）

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。

8．7．3 非常用取水設備に係る工事の方法

変更前	変更後
非常用取水設備に係る工事の方法は，「原子炉本体」における「9 原子炉本体に係	
る工事の方法」（「1．2 主要な耐圧部の溶接部に係る工事の手順と使用前事業者検	
査」，「 1.3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．2 主要な耐圧部の	変更なし
溶接部に係る検査」，「 2.1 .3 事上の然料体に係る検査」及び意事項」を除く。）に従う。	

8．9．2 緊急時対策所の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。
第1章 共通項目 緊急時対策所の共通項目のらち「1．地盤等， 2 ．自然現象， 3 ．火災， 4．設備に対する要求（4．2 材料及び構造等，4．3 使用中の亀裂等によ る破壊の防止，4．4 耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他（5．4放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とす る。	第1章 共通項目 緊急時対策所の共通項目のうち「1．地盤等， 2 ．自然現象， 3 ．火災， 4．溢水等 5．設備に対する要求（5．2 材料及び構造等，5．3 使用中 の亀裂等による破壊の防止，5．4 耐圧試験等，5．5 安全弁等，5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染の防止を除 く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。
第2章 個別項目 1．緊急時対策所 1.1 緊急時対策所の設置等 1．1．1 緊急時対策所の設置 発電用原子炉施設には，原子炉冷却系統に係る発電用原子炉施設 の損壊その他の異常が発生した場合に適切な措置をとるため，緊急時対策所を中央制御室以外の場所に設置する。	第2章 個別項目 1．緊急時対策所 1．1 緊急時対策所の設置等 1．1．1 緊急時対策所の設置 発電用原子炉施設には，原子炉冷却系統に係る発電用原子炉施設 の損壊その他の異常が発生した場合に適切な措置をとるため，緊急時対策所を中央制御室以外の場所に設置する。

変更前	変更後
（1）緊急時対策所機能の確保 緊急時対策所は，以下の措置又は設備を備えることにより緊急時対策所機能を確保する。 a．居住性の確保 緊急時対策所は，原子灲冷却系統に係る発電用原子灲施設の損壊その他の異常が発生した場合に適切な措置をとるために必要 な要員を収容できるとともに，それら要員が必要な期間にわたり滞在できる設計とする。	7 日間（168 時間）以上連続給電が可能な設計とする。 可搬の代替電源設備は，緊急時対策所用代替交流電源設備である電源車（緊急時対策所用）1 台で緊急時対策所に電源供給するため に必要な容量を有する設計とする。 電源車（緊急時対策所用）使用時には電源車（緊急時対策所用） 1 台が必要負荷に対して7日間（168時間）以上連続運転が可能な容量を有する緊急時対策所軽油タンクい接続するため，プルーム通過時において，燃料を補給せずに運転できる設計とする。 ガスタービン発電機及び電源車（緊急時対策所用）により緊急時対策所の電源は多様性を有する設計とする。 （4）緊急時対策所機能の確保 緊急時対策所は，以下の措置又は設備を備えることにより緊急時対策所機能を確保する。 a．居住性の確保 緊急時対策所は，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常が発生した場合に適切な措置をとるために必要 な要員を収容できるとともに，それら要員が必要な期間にわたり滞在できる設計とする。 緊急時対策所は，重大事故等が発生した場合においても，重大事故等に対処するために必要な指示を行ら要員に加え，原子炉格納容器の破損等による発電所外への放射性物質の拡散を抑制す るための対策に対処するために必要な数の要員を含め，重大事故等に対処するために必要な数の要員を収容することができると ともに，重大事故等に対処するために必要な指示を行ら要員がと

b．情報の把握
緊急時対策所には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常に対処するために必要な情報を，中央制御室内 の運転員を介さずに正確かつ速やかに把握するための設備を設置する。

変更後

された場合は，対策要員の除染を行うことができる区画を，身体 サーベイを行う区画に隣接して設置することができるよう考慮 する。
b．情報の把握
緊急時対策所には，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常に対処するために必要な情報及び重大事故等 が発生した場合においても当該事故等に対処するために必要な指示ができるよう，重大事故等に対処するために必要な情報を，中央制御室内の運転員を介さずに正確かつ速やかに把握できる設備として，安全パラメータ表示システム（SPDS）を設置する。安全パラメータ表示システム（SPDS）として，事故状態等の必要な情報を把握するために必要なパラメータ等を収集し，緊急時対策所内で表示できるよう，データ収集装置，SPDS 伝送装置及 びSPDS 表示装置を設置する設計とする。
c．通信連絡
原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常 が発生した場合において，当該事故等に対処するため，発電所内 の関係要員に指示を行うために必要な通信連絡設備及び発電所外関係箇所と専用であって多様性を備えた通信回線にて通信連絡できる設計とする。

緊急時対策所には，重大事故等が発生した場合においても発電所の内外の通信連絡をする必要のある場所と通信連絡できる設計とする。

原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常

変更前	変更後
	が発生した場合において，通信連絡設備により，発電所内から発電所外の緊急時対策支援システム（ERSS）～必要なデータを伝送 できるデータ伝送設備として，SPDS 伝送装置を設置する設計と する。 データ伝送設備については，通信方式の多様性を確保した専用通信回線にて伝送できる設計とする。 緊急時対策支援システム（ERSS）～必要なデータを伝送できる SPDS 伝送装置で構成するデータ伝送設備については，重大事故等が発生した場合においても必要なデータを伝送できる設計と する。
2．主要対象設備 緊急時対策所の対象となる主要な設備について，「表 1 緊急時対策所 の主要設備リスト」に示す。	2．主要対象設備 緊急時対策所の対象となる主要な設備について，「表 1 緊急時対策所 の主要設備リスト」に示す。

表1 緊急時対策所の主要設備リスト（1／1）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 啝 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設 ${ }^{(\text {（1）}}$（）		重大事故等対処設備 ${ }^{(3 \times 1)}$		名称	設計基準対象施設 ${ }^{\text {（ia }}$ 1）		重大事故等対処設備 ${ }^{\text {（3 1 1）}}$	
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 緊 } \\ & \text { 犀 } \\ & \text { 対 } \\ & \text { 策 } \\ & \text { 幾 } \end{aligned}$	－	－		－				緊急時対策所機能 ${ }^{(3 \pm}$（2）	－	－	－	－

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炬本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。 （注 2）設計基準対象施設及び重大事故等対処設備として使用する。

8．9．3 緊急時対策所に係る工事の方法

変更前	変更後
緊急時対策所に係る工事の方法は，「原子炉本体」における「 9 原子炉本体に係る	
工事の方法」（「1．2 主要な耐圧部の溶接部に係る工事の手順と使用前事業者検査」，	
「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．2 主要な耐圧部の溶接	変更なし
部に係る検査」，「2．1．3 燃料体に係る検査」及び「3．2 燃料体の加工に係る工事上	
の留意事項」を除く。）に従う。	

III 工事工程表

```
O
```

	2021年									2022年												2023年								
	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9
			■＊																					－\quad＊						
原子炉本体																									厄＊－		－$\diamond *$	$\triangle \triangle *$		
			湤＊																								－\％＊	$\square *$		－－\square
																														－$\star *$
			■＊－																					■＊						
核燃料物質の取扱施設及び貯蔵施設																									$\diamond *-$		－$\diamond *$	$\triangle \triangle *$		
			放＊－																											
			$\star *-$																									\square		－－${ }_{\text {－} *}$
																								－＊						
原子炉冷却系統施設																								－	$\diamond *$		－＊	$\triangle \triangle *$		
			斿																								－狝＊	$\square *$		－－$\square *$
			＊＊																											－＊＊
																								－\quad＊						
計測制御系統施設																									＜＊－		－$*$	$\triangle \triangle *$		
																											－改＊	－		－－${ }^{*}$
			＊＊																											－$\star *$
			－																					－						
放射性廃重物の廃重施設																									厄＊－		－$\diamond *$	$\triangle \triangle *$		
			$\star *$																											－\star＊

■！現地工事期間
機能又は性能に係る検查（燃料体を挿入できる段階の検査）をすることができる状態になった時
機能又は性能に係る検査（臨界反応操作を開始できる段階の検査）をすることができる状態になった時
機能又は性能に係る検查（工事完了時の検査）をすることができる状態になった時
基本設計方針検査をすることができる状態になった時

＊：検查時期は，工事の計画の進捗により変更となる可能性がある。

IV 設計及び工事に係る品質マネジメントシステム

IV 設計及び工事に係る品質マネジメントシステム
1．設計及び工事に係る品質マネジメントシステム
当社は，原子力発電所の安全を達成•維持•向上させるため，安全文化を育成及び維持するための活動を含む原子炉施設の設計，工事及び検査段階から運転段階に係る保安活動を確実に実施するための品質マネジメントシステムを確立し，「女川原子力発電所原子炉施設保安規定」（以下「保安規定」という。）の品質マネジメントシステム計画（以下「保安規定品質マネジメントシステム計画」という。）に定めている。

「設計及び工事に係る品質マネジメントシステム」（以下「設工認品質管理計画」とい ら。）は，保安規定品質マネジメントシステム計画に基づき，設計及び工事に係る具体的 な品質管理の方法，組織等の計画された事項を示したものである。

2．適用範囲•定義

2.1 適用範囲

設工認品質管理計画は，女川原子力発電所第 2 号機原子炉施設の設計，工事及び検査に係る保安活動に適用する。
2.2 定 義

設工認品質管理計画における用語の定義は，以下を除き保安規定品質マネジメン トシステム計画に従う。
（1）実用炉規則
実用発電用原子炉の設置，運転等に関する規則（昭和53年12月28日通商産業省令第 77 号）をいう。
（2）技術基準規則
実用発電用原子炉及びその附属施設の技術基準に関する規則（平成 25 年 6 月 28日原子力規制委員会規則第 6 号）をいう。
（3）実用炉規則別表第二対象設備
実用発電用原子炉の設置，運転等に関する規則（昭和53年12月28日通商産業省令第 77 号）の別表第二「設備別記載事項」に示された設備をいう。
（4）適合性確認対象設備
設計及び工事の計画（以下「設工認」という。）に基づき，技術基準規則への適合性を確保するために必要となる設備をいう。

3．設計及び工事の計画における設計，工事及び検査に係る品質管理の方法等
設工認における設計，工事及び検査に係る品質管理は，保安規定品質マネジメントシ ステム計画に基づき以下のとおり実施する。
3.1 設計，工事及び検査に係る組織（組織内外の相互関係及び情報伝達含む。）設計，工事及び検査は，本店組織及び発電所組織で構成する体制で実施する。設計，工事及び検査に係る組織は，担当する設備に関する設計，工事及び検査につ いて責任と権限を持つ。
3.2 設工認における設計，工事及び検査の各段階とその審査

3．2．1 設計及び工事のグレード分けの適用
設工認におけるグレード分けは，原子炉施設の安全上の重要性に応じて以下 のとおり行う。すなわち，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」に基づく安全機能の重要度と，供給信頼に対する重要性に応じ て，クラス I～IVに分類する。

別表1 品質に係る重要度分類

重要度分類	定 義
	・その設備•系統等の不具合が発電所の運転停止または出力低 下に直接つながる設備•系統等 ・その設備•系統等の不具合が放射性物質の管理区域外への放 ク出につながる設備•系統等 •保安規定第 4 章「運転管理」•第3節「運転上の制限」に規 定される設備•系統等
クラスII	・その設備•系統等の不具合が長時間継続すると，発電所の運 転停止または出力低下につながる設備•系統等
その設備•系統等の不具合が長時間継続すると，放射性物質	
の管理区域外への放出につながる設備•系統等	

なお，重大事故等対処設備の重要度分類については，クラスIを原則とする。

3．2．2 設計，工事及び検査の各段階とその審査
設工認における設計，工事及び検査の流れを図3．2－1に示すとともに，設計，
工事及び検査の各段階と保安規定品質マネジメントシステム計画との関係を表
3．2－1に示す。
なお，実用炉規則別表第二対象設備のうち，設工認申請（届出）が不要な工事

を行ら場合は，設工認品質管理計画のらち，必要な事項を適用して設計，工事及 び検査を実施し，認可された設工認に記載された仕様及びプロセスのとおりで あること，技術基準規則に適合していることを確認する。

設計又は工事を主管する箇所の長並びに検査を担当する箇所の長は，表3．2－ 1 に示す「保安規定品質マネジメントシステム計画の対応項目」ごとのアウトプ ットに対する審査（以下「レビュー」という。）を実施するとともに，記録を管理する。

なお，設計の各段階におけるレビューについては，本店組織及び発電所組織で当該設備の設計に関する専門家を含めて実施する。

設工認のうち，主要な耐圧部の溶接部に対する必要な検査は，「3．3 設計に係 る品質管理の方法」，「3．4 工事に係る品質管理の方法」，「3．5 使用前事業者検査の方法」及び「3．6 設工認における調達管理の方法」に示す管理（表3．2－1 における「3．3．3（1）基本設計方針の作成（設計 1 ）」～「3．6 設工認における調達管理の方法」）のらち，必要な事項を適用して設計，工事及び検查を実施し，認可された設工認に記載された仕様及びプロセスのとおりであること，技術基準規則に適合していることを確認する。

表 3．2－1 設工認における設計，工事及び検査の各段階

各段階			保安規定品質マ ネジメントシス テム計画の対応項目	概 要
$\begin{aligned} & \text { 設 } \\ & \text { 計 } \end{aligned}$	3.3	設計に係る品質管理の方法	7．3．1 設計開発計画	適合性を確保するために必要な設計を実施するための計画
	3．3．1	適合性確認対象設備に対する要求事項の明確化	7．3．2設計開発に用いる情報	設計に必要な技術基準規則等の要求事項の明確化
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定		技術基準規則等に対応するため の設備•運用の抽出
	$\begin{aligned} & 3.3 .3(1) \\ & \text { * } \end{aligned}$	基本設計方針の作成（設計1）	7．3．3設計開発の結果に係る情報	要求事項を満足する基本設計方針の作成
	$\begin{aligned} & \text { 3. 3. } 3 \text { (2) } \\ & \text { * } \end{aligned}$	適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2）	7．3．3設計開発の結果に係る情報	適合性確認対象設備に必要な設計の実施
	3．3． 3 （3）	設計のアウトプッ トに対する検証	7．3．5設計開発の検証	基準適合性を確保するための設計の妥当性のチェック
	$\begin{aligned} & \hline 3.3 .4 \\ & * \end{aligned}$	設計における変更	7．3．7設計開発の変更の管理	設計対象の追加や変更時の対応
$\begin{aligned} & \text { 工 } \\ & \text { 事 } \\ & \text { び } \\ & \text { 検 } \\ & \text { } \end{aligned}$	$\begin{aligned} & \text { 3.4.1 } \\ & \text { * } \end{aligned}$	設工認に基づく具体的な設備の設計 の実施（設計 3 ）	7．3．3設計開発の結果に係る情報 7．3．5設計開発の検証	設工認を実現するための具体的 な設計
	3．4．2	具体的な設備の設計に基づく工事の実施	－	適合性確認対象設備の工事の実 施
	3．5．1	使用前事業者検査 での確認事項	－	適合性確認対象設備が，認可され た設工認に記載された仕様及び プロセスのとおりであること，技術基準規則に適合していること
	3．5．2	使用前事業者検査 の計画	－	適合性確認対象設備が，認可され た設工認に記載された仕様及び プロセスのとおりであること，技術基準規則に適合していること を確認する計画と方法の決定
	3．5．3	検査計画の管理	－	使用前事業者検査を実施する際 の工程管理
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	主要な耐圧部の溶接部に係る使用前事業者検査を実施する際の プロセスの管理
	3．5．5	使用前事業者検査 の実施	7．3．6設計開発の妥当性碓認 8．2． 4 機器等の検査等	適合性確認対象設備が，認可され た設工認に記載された仕様及び プロセスのとおりであること，技術基準規則に適合していること を確認
調 達	3.6	設工認における調達管理の方法	7.4 調達 8．2．4 機器等の検査等	適合性確認に必要な，設計，工事及び検査に係る調達管理

注記＊：「3．2．2 設計，工事及び検査の各段階とその審査」で述べている「設計の各段階 におけるレビュー」の各段階を示す。

図3．2－1 設工認における設計，工事及び検査の流れ

3.3 設計に係る品質管理の方法

3．3．1 適合性確認対象設備に対する要求事項の明確化
設計を主管する箇所の長は，設工認における技術基準規則等への適合性を確保するために必要な要求事項を明確にする。

3．3．2 各条文の対応に必要な適合性確認対象設備の選定
設計を主管する箇所の長は，設工認に関連する工事において，追加•変更とな る適合性確認対象設備（運用を含む。）に対する技術基準規則への適合性を確保 するために，実際に使用する際の系統•構成で必要となる設備•運用を含めて，適合性確認対象設備として抽出する。

3．3．3 設工認における設計及び設計のアウトプットに対する検証
設計を主管する箇所の長は，適合性確認対象設備の技術基準規則等への適合性を確保するための設計を以下のとおり実施する。
（1）基本設計方針の作成（設計1）
「設計 1 」として，技術基準規則等の適合性確認対象設備に必要な要求事項を基に，必要な設計を漏れなく実施するための基本設計方針を明確化する。
（2）適合性確認対象設備の各条文への適合性を確保するための設計（設計 2）
「設計 2 」として，「設計 1 」で明確にした基本設計方針を用いて適合性確認対象設備に必要な詳細設計を実施する。

なお，詳細設計の品質を確保する上で重要な活動となる「調達による解析」及 び「手計算による自社解析」について，個別に管理事項を計画し信頼性を確保す る。
（3）設計のアウトプットに対する検証
設計を主管する箇所の長は，「設計 1」及び「設計 2 」の結果について，適合性確認を実施した者の業務に直接関与していない原設計者以外の要員に検証を実施させる。

3．3．4 設計における変更

設計を主管する箇所の長は，設計の変更が必要となった場合，各設計結果のう ち，影響を受けるものについて必要な設計を実施し，設計結果を必要に応じ修正 する。

3.4 工事に係る品質管理の方法

工事を主管する箇所の長は，工事段階において，設工認に基づく具体的な設備の設計（設計 3），その結果を反映した設備を導入するために必要な工事を以下のとおり

実施する。
また，これらの活動を調達する場合は，「3．6 設工認における調達管理の方法」を適用して実施する。

3．4．1 設工認に基づく具体的な設備の設計の実施（設計 3 ）

工事を主管する箇所の長は，工事段階において，以下のいずれかにより，設工認に基づく製品実現のための具体的な設備の設計（設計3）を実施する。
（1）自社で設計する場合
（2）「設計 3 」を本店組織の工事を主管する箇所の長が調達し，発電所組織の工事 を主管する箇所の長が調達管理として「設計 3」を管理する場合
（3）「設計 3」を発電所組織の工事を主管する箇所の長が調達し，かつ，調達管理 として「設計 3」を管理する場合
（4）「設計 3」を本店組織の工事を主管する箇所の長が調達し，かつ，調達管理と して「設計 3」を管理する場合

3．4．2 具体的な設備の設計に基づく工事の実施

工事を主管する箇所の長は，設工認に基づく設備を設置するための工事を，
「工事の方法」に記載された工事の手順並びに「3．6設工認における調達管理 の方法」に従い実施する。
3.5 使用前事業者検査の方法

使用前事業者検査は，適合性確認対象設備が，認可された設工認に記載された仕様及びプロセスのとおりであること，技術基準規則に適合していることを確認するた め，保安規定に基づく使用前事業者検査を計画し，工事実施箇所からの独立性を確保 した検查体制のもと，実施する。

3．5．1 使用前事業者検査での確認事項

使用前事業者検査は，適合性確認対象設備が，認可された設工認に記載された仕様及びプロセスのとおりであること，技術基準規則に適合していることを確認するために以下の項目について検查を実施する。
（1）実設備の仕様の適合性確認
（2）実施した工事が，「3．4．1 設工認に基づく具体的な設備の設計の実施（設計 3）」及び「3．4．2 具体的な設備の設計に基づく工事の実施」に記載したプロセス並び に「工事の方法」のとおり行われていること。

これらの項目のらち，（1）を表3．5－1に示す検査として，（2）を品質マネジメ ントシステムに係る検査（以下「 QA 検査」という。）として実施する。
（2）については，工事全般に対して実施する。
また，QA 検査では上記（2）に加え，上記（1）のらち工事実施箇所が実施する検查の，記録の信頼性確認を行い，設工認に基づく検査の信頼性を確保する。

3．5．2 使用前事業者検査の計画

検查を担当する箇所の長は，適合性確認対象設備が，認可された設工認に記載された仕様及びプロセスのとおりであること，技術基準規則に適合している ことを確認するため，使用前事業者検查を計画する。
使用前事業者検查は，「工事の方法」に記載された使用前事業者検査の項目及 び方法並びに表 3．5－1に定める要求種別ごとに確認項目，確認視点及び主な検査項目を基に計画を策定する。

適合性確認対象設備のうち，技術基準規則上の措置（運用）に必要な設備に ついても，使用前事業者検查を計画する。

個々に実施する使用前事業者検査に加えてプラント運転に影響を及ぼしてい ないことを総合的に確認するため，定格熱出力一定運転時の主要パラメータを確認することによる使用前事業者検査（負荷検査）の計画を必要に応じて策定 する。

また，使用前事業者検查の実施に先立ち，設計結果に関する具体的な検查概要及び判定基準を使用前事業者検査の方法として明確にする。

3．5．3 検査計画の管理

検査に係るプロセスの取りまとめを主管する箇所の長は，使用前事業者検査 を適切な段階で実施するため，関係箇所と調整のらえ検査計画を作成する。

使用前事業者検査の実施時期及び使用前事業者検査が確実に行われることを適切に管理する。

3．5． 4 主要な耐圧部の溶接部に係る使用前事業者検査の管理
主要な耐圧部の溶接部に係る検查を担当する箇所の長は，溶接が特殊工程で あることを踏まえ，工程管理等の計画を策定し，溶接施工工場におけるプロセス の適切性の確認及び監視を行う。

また，溶接継手に対する要求事項は，溶接部詳細一覧表（溶接方法，溶接材料，溶接施工法，熱処理条件，検查項目等）により管理し，これに係る関連図書を含 め，業務の実施に当たつて必要な図書を溶接施工工場に提出させ，それを審査，承認し，必要な管理を実施する。

3．5．5 使用前事業者検査の実施

使用前事業者検査は，検査要領書の作成，体制の確立を行い実施する。
（1）使用前事業者検査の独立性確保
使用前事業者検査は，組織的独立を確保して実施する。
（2）使用前事業者検査の体制
使用前事業者検査の体制は，検査要領書で明確にする。
（3）使用前事業者検査の検査要領書の作成
検査を担当する箇所の長は，適合性確認対象設備が，認可された設工認に記載 された仕様及びプロセスのとおりであること，技術基準規則に適合しているこ とを確認するため「3．5．2 使用前事業者検査の計画」で決定した確認方法を基 に，使用前事業者検査を実施するための検査要領書を作成し，検査実施責任者が制定する。

実施する検査が代替検査となる場合は，代替による使用前事業者検査の方法 を決定する。
（4）使用前事業者検査の実施
検査実施責任者は，検査要領書に基づき，確立された検査体制の下で，使用前事業者検査を実施する。

表 3．5－1 要求事項に対する確認項目及び確認の視点

要求種別			確認項目	確認視点	主な検査項目
設備	設計 要求	設置 要求	名称，取付箇所，個数，設置状態，保管状態	設計要求どおりの名称，取付箇所，個数で設置さ れていることを確認す る。	据付検查状態確認検查外観検查
		機能 要求	材料，寸法，耐圧•漏えい等 の構造，強度 に係る仕様 （要目表）	要目表の記載どおりであ ることを確認する。	材料検査 寸法検査 建物•構築物構造検査 外観検査据付検査状態確認検査耐圧検査漏えい検査特性検査機能•性能検査
			系統構成，系統隔離，可搬設備の接続性	実際に使用できる系統構成になっていることを確認する。	
			上記以外の所要の機能要求事項	目的とする機能•性能が発揮できることを確認す る。	
		$\begin{aligned} & \text { 評価 } \\ & \text { 要求 } \end{aligned}$	解析書のイン プット条件等 の要求事項	評価条件を満足している ことを碓認する。	内容に応じて，評価条件を設置要求，機能要求の検査を適用
運用	運用要求		手順確認	（保安規定） 手順化されていることを確認する。	状態確認検査

3.6 設工認における調達管理の方法

設工認で行う調達管理は，保安規定品質マネジメントシステム計画に基づき以下 に示す管理を実施する。

3．6．1 供給者の技術的評価

調達を主管する箇所の長は，供給者が当社の要求事項に従つて調達製品を供給する技術的な能力を有することを判断の根拠として供給者の技術的評価を実施する。

3．6．2 供給者の選定

調達を主管する箇所の長は，設工認に必要な調達を行う場合，原子力安全に対 する影響や供給者の実績等を考慮し，「3．2．1設計及び工事のグレード分けの適用」に示す重要度分類に応じたグレード分けを行い管理する。

3．6．3 調達製品の調達管理

業務の実施に際し，原子力安全に及ぼす影響に応じて，調達管理に係るグレー ド分けを適用する。
（1）仕様書の作成
調達を主管する箇所の長は，業務の内容に応じ，保安規定品質マネジメントシ ステム計画に示す調達要求事項を含めた仕様書を作成し，供給者の業務実施状況を適切に管理する。（「（2）調達製品の管理」参照）

調達を主管する箇所の長は，一般産業用工業品を原子炉施設に使用するに当 たって，当該一般産業用工業品に係る情報の入手に関する事項及び供給先で検査を行う際に原子力規制委員会の職員が同行して工場等の施設に立ち入る場合 があることを供給者へ要求する。
（2）調達製品の管理
調達を主管する箇所の長は，仕様書で要求した製品が確実に納品されるよう調達製品が納入されるまでの間，製品に応じた必要な管理を実施する。
（3）調達製品の検証
調達を主管する箇所の長又は検査を担当する箇所の長は，調達製品が調達要求事項を満たしていることを確実にするために調達製品の検証を行う。

調達を主管する箇所の長は，供給先で検証を実施する場合，あらかじめ仕様書 で検証の要領及び調達製品のリリースの方法を明確にした上で，検証を行う。

3．6．4 供給者監査

供給者に対する監査を主管する箇所の長は，供給者の品質保証活動及び健全

な安全文化を育成し維持するための活動が適切で，かつ，確実に行われているこ とを確認するために，供給者監査を実施する。
3.7 記録，識別管理，トレーサビリティ

3．7．1 文書及び記録の管理
（1）適合性確認対象設備の設計，工事及び検査に係る文書及び記録
設計，工事及び検查に係る組織の長は，設計，工事及び検査に係る文書及び記録を，保安規定品質マネジメントシステム計画に示す規定文書に基づき作成し， これらを適切に管理する。
（2）供給者が所有する当社の管理下にない設計図書を設計，工事及び検査に用い る場合の管理

設工認において供給者が所有する当社の管理下にない設計図書を設計，工事及び検査に用いる場合，供給者の品質保証能力の確認，かつ，対象設備での使用 が可能な場合において，適用可能な図書として扱う。
（3）使用前事業者検查に用いる文書及び記録
使用前事業者検査として，記録確認検査を実施する場合に用いる記録は，上記 （1），（2）を用いて実施する。

3．7．2 識別管理及びトレーサビリティ
（1）測定機器の管理
設計又は工事を主管する箇所の長並びに検査を担当する箇所の長は，保安規定品質マネジメントシステム計画に従い，設計，工事及び検査で使用する測定機器について，校正•検証及び識別等の管理を実施する。
（2）機器，弁及び配管等の管理
工事を主管する箇所の長は，機器，弁及び配管等について，保安規定品質マネ ジメントシステム計画に従った管理を実施する。
3.8 不適合管理

設工認に基づく設計，工事及び検査において発生した不適合については保安規定品質マネジメントシステム計画に基づき処置を行う。

4．適合性確認対象設備の施設管理
適合性確認対象設備の工事は，保安規定に規定する施設管理に基づき業務を実施する。

V 変更の理由

V 変更の理由
平成 24 年 6 月の「核原料物質，核燃料物質及び原子炉の規制に関する法律」の改正及び関連規則等の改正を踏まえ，重大事故等に対処するために必要な施設の整備など，実用発電用原子炉及びその附属設備の基本設計方針等の変更を行う。

