東京電力福島第一原子力発電所事故分析に関する当面の調査•分析項目

中間報告書（平成26年10月）以隆の経緯

東京電力福島第一原子力発電所における事故の分析に係る検討会（以下，「1F事故分析検討会」という。）は，原子力規制委員会の重要な事務として，東京電力福島第一原子力発電所事故の継続的な調査•分析を行うため，平成25年5月1日に第1回会合を開催した。廃炉の進捗にあわせて，発電所敷地内及び原子炉建屋内外の放射線量評価が進められたことから，現場の汚染状況を考慮しながら， 1号機タービン建屋及び4号機原子炉建屋の現地調査を中心として調査•分析を行い，平成26年10月に中間報告書を取りまとめた。 これまで高い汚染のために現地調査が困難であった原子炉建屋及び主排気筒周辺についても，廃炉の進捗並びに原子炉建屋内外の除染作業の進捗により，アクセス性が向上し，一部の箇所については，現地調査が可能な状況となっている。

これらの現場状況等を踏まえ，令和元年9月11日に原子力規制委員会は，1F事故分析検討会を再開することとした。調査•分析にあ たつては，現場へのアクセス性が向上した原子炉建屋及び主排気筒周辺を中心として，現地調査，試料の分析•評価，解析等を行う。

福島第一原子力発電所廃炉•事故調査に係る連絡•調整会議事故分析と廃炉に関する連絡•調整を実施

1F事故分析検討会
事故分析に関する調査•分析項目の検討，議論

原子力規制庁（必要に応じて，関係機関）
現地調査，試料採取•分析•評価，解析等の実施

1）耐圧強化ベント（AM対策）

（（1）1，2号機ベント配管の汚染
（2）（2）1～3号機耐圧強化ベント
（（3）非常用ガス処理系（SGTS）逆流汚染 （他号機及び自号機）
○（4）ラプチャーディスク（RD）の動作
（（13）設計，運転記録等の基礎情報）

2）放射性物質の放出経路

（5）3号機原子炉建屋（R／B）4階付近の活染
（ㅇ）3号機原子炉格納容器（PCV）フランジヘッド Δ（7）各号機漏えい
（PCVペネ，トップヘッドフランジ（THF））
Δ（8）建屋DF
O（9）1号機R／Bオペフロウェルプラグ
（（13）設計，運転記録等の基礎情報）

3）原子炉の冷却に関する設計等

Δ（101号機非常用復水器（IC）
Δ（113号機自動減圧系（ADS）
Δ（12）消防車による原子炉注水
（⑴設計，運転記録等の基礎情報）

目的，対象

－耐圧強化ベントの設計の確認（サプ レッションチェンバ（S／C）の除染係数 （DF）の効果，蒸気凝縮の影響，真空破壊装置の機能維持等）

内容，論点

\checkmark 1，2号機ベント配管の高い汚染
\checkmark S／CにおけるDFの効果，蒸気凝縮の影響，真空破壊装置の機能維持
$\checkmark 1 ~ 3$ 号機のベント成立性 等

内容，論点

\checkmark 3号機R／B4階付近の高い汚染
$\checkmark 1$ ， 2 号機 R / B 内部の 3 ， 4 号機よりも高い汚染
\checkmark モニタリングポスト（MP）観測データと放射性物質の放出経路•時期（THFの破損及び ベント等）等

目的，対象

－放射性物質の放出経路の確認（2． 3階原子炉補機冷却系（RCW）配管， 4階排気ダクト，4階フロア等の高線量汚染の汚染源）

目的，対象

－原子炉の冷却に関する設計の確認 （ 1 号機非常用復水器の作動， 3 号機自動減圧系の作動，1～3号機の原子炉内注水）

内容，論点

炉心冷却系におけるICの設計（起動条件，機能要求等）
\checkmark ADSの設計（作動条件，インターロック設定， S / C 過圧状態の考慮等）
\checkmark 注水に係るライン（経路），バイパス流，注入水量 等

（－）原子力規制委員会

1）耐圧強化ベント（AM対策）

1～4号機の耐圧強化ベントについては，非常用ガス処理系及び主排気筒周辺の放射性物質による汚染の程度が異なっている。原子炉格納容器内からのベント物質の影響，系統構成，仕様の影響等を検討し，各号機の耐圧強化ベントの成立性の調査•分析を行う。

（1）1，2号機ベント配管の汚染
（2） $1 ~ 3$ 号機耐圧強化ベント （3）SGTS逆流汚染（他号機及び自号機） （4）ラプチャーディスクの動作 （（13）設計，運転記録等の基礎情報）

```
号機)
```


1，2号機ベント配管等の高線量箇所

ベント配管の汚染調査

＞ 1,2 号機及び 3 ， 4 号機のベント配管系の線量測定，分析は可能か。
＞蒸気凝縮の影響は確認できるか。
＞SGTSへの逆流による汚染は確認でき るか。

主排気筒の汚染調査

＞主排気筒の内部構造の確認
＞ドレンラインの線量測定，分析は可能か。

ベント時の核分裂性物質等の挙動検討

＞真空破壊弁の機能は維持されていたか。
＞S／Cのスクラビングの効果は十分だったか。
＞原子炉格納容器スプレイの効果は十分 だったか。
＞事象進展について，PCVに対する過圧もしく は，過温破損の影響を確認。

建屋へのアクセス性の向上

系統構成，仕様

＞ベント時の系統構成，手順の確認。
＞ラプチャーディスクは動作したのか。
＞グラビティダンパは機能したのか。
＞ベント時の大弁•小弁の機能は確認できるか。
＞トップヘッドフランジは適切に機能したのか。

2）放射性物質の放出経路

3号機の原子炉建屋4階付近には，高放射線源が確認されている。 この高放射線源の要因，及びその放射性物質の放出経路の調査•分析を行う

1～3号機オペフロ，シールドプラグの活染

損傷，活染データの確認

＞シールドプラグのずれの状況，原因は確認でき るか。
（5）3号機 $R / B 4$ 階付近の汚染
（6）3号機PCVフランジヘッド
（7）各号機漏えい（PCVペネ，THF）
（8）建屋DF
（9）1号機R／Bオペフロウェルプラグ （（13）設計，運転記録等の基礎情報）

3号機R／B4階付近の高線量箇所

損傷，污染データの確認

＞PCV周辺の遮蔽壁の状況は確認できるか。
－建屋内の汚染状況は確認できるか。
＞PCVの過圧破損，過温破損の影響評価は可能か。
＞直接線，放射性核種等の測定，分析は可能か

建屋へのアクセス性の向上

放射線量の測定

＞建屋内のRCW配管等に污染はあるか。
＞直接線，放射性核種等の測定，分析は可能か。

3）原子炉の泠却に関する設計等

1号機の非常用復水器の作動，3号機の自動減圧系の作動及び $1 \sim 3$ 号機の消防車による原子炉注水について，事故時の原子炉の冷却の観点から設計の調査•分析を行う。
（10） 1 号機非常用復水器
（11）3号機自動減圧系
（12）消防車による原子炉注水 （（13）設計，運転記録等の基礎情報）

設備の設計

1号機非常用復水器の作動

＞ICの自動起動の条件の確認。
＞IC作動のシミュレーションは可能か。

3号機自動減圧系の作動

＞ADSの作動条件の確認。
＞PCV及びS／Cの圧状態のシミュレーションは可能か。

消防車による原子炉注水

＞ $1 ~ 3$ 号機の注水ラインの系統構成の確認。
＞原子炉注水のシミュレーションは可能か。
＞原子炉への注水量の推定は可能か。

1）耐圧強化ベント（AM対策）【調査•分析事項】

（1）1，2号機ベント配管の汚染

\checkmark スタック下部のドレン水サンプル【試料要求，分析】
\checkmark スタック内高度別汚染分布【試料要求，分析】
\checkmark シミュレーションによる汚染分布再現【解析】
$\checkmark s / C$ におけるDF【実験or文献調査】
（2）1～3号機耐圧強化ベント
\checkmark ベントの成立性の検討
\checkmark 設計時のベント使用条件と事故時条件の比較
\checkmark ベント時の手順（ベント等の操作マニュアルも含む。）
－ベント時の系統構成（電動駆動弁（MO弁），空気作動弁 （AO弁），真空破壊装置等の状態•設計も含む。）

- ベントラインの汚染分布測定（1）を除く）ガンマカメラ
- ベントによる格納容器加温破損防止の可能性確認
- 有効ベント回数の推定
\checkmark ベント時の排気挙動シミュレーション【解析】

（3）SGTS逆流汚染（他号機及び自号機）

- 自号機•他号機の汚染状況の確認（7）と同じ）ガンマカメラ
- SGTS逆流箇所の汚染分布 ガンマカメラ
\checkmark ベント時の自号機，他号機への排気比率のシミュレーション【解析】
－グラビティダンパの逆流機能の確認•実験【実験】

（4）ラプチャーデイスクの動作

\checkmark RD設置時の動作設定圧カとAM対策との関係整理（東電－他電力（ATENA））
\checkmark RD破壊圧力と格納容器破損モ一ドのシミュレーション【解析】
\checkmark RD破壊試験【実験】

（13）設計，運転記録等の基硒情報

－設計図面，運転記録等の確認（旧事務本館，情報棟）

2）放射性物質の放出経路【調査•分析事項】

（5）3号機R／B4階付近の污染

- 原子炬建屋の汚染分布•核種確認【試料採取，分析】
- 破損箇所の碓認
- 高線量箇所の直接放射線測定

（6）3号機のPCVフランジヘッド

- THFの外観•表面の観察（塗料劣化，温度履歴碓認）
- オペフロ or 使用済然料プールゲートからの直接観察
\checkmark THFの漏えいとオペフロ破損の関係性
\checkmark THFの事故時温度，核分裂生成物の付着シミュレーション ［解析】

（7）各号機漏えい（PCVペネ，THF）

－汚染分布の測定•分析（3）と同じ）ガンマカメラ
\checkmark MP観測データにおけるピークとの関係性

（8）建屋DF

- 3号機のシールドプラグ裏面汚染分布確認
- 2号機オペフロの汚染分布確認 ガンマカメラ

（9）1号機R／Bオペフロウェルプラグ

\checkmark シールドプラグのずれに関するデータ確定【記録要求】
\checkmark シールドプラグの汚染データ取得【試料要求，分析】
－必要水素量の評価と供給箇所の確認
\checkmark 水素爆発位置におけるずれ及び爆発痕•破損シミュレーショ ン【解析】

（13）設計，運転記録等の基礎情報

－設計図面，運転記録等の確認（旧事務本館，情報棟）

3）原子炉の冷却に関する設計等【調査•分析事項】

（10）1号機非常用復水器

\checkmark ICの起動条件の確認
\checkmark 今回しくが起動した理由（特殊な状況でなくとも起動する理由 を確認）
\checkmark コンパクトシミュレーションを用いた再現実験【実験】
－AM対策を含めたIC使用の妥当性

（11）3号機自動減圧系

\checkmark ADSの作動条件の確認
－S／C過圧条件と主蒸気逃がし安全弁の関係
\checkmark 減圧操作と水蒸気量の関係（PCV及びS／Cの圧力状態のシミュ レーション）【解析】

（12）消防車による原子炉注水

- 1～3号機注水ラインの系統状態調査
- コンデンサーホットウェル内の水のサンプリング【試料要求分析】
\checkmark 代替注水シミュレーションによる原子炉圧力容器（RPV）への注水量推定【解析】

（13）設計，運転記録等の基礎情報

－設計図面，運転記録等の確認（旧事務本館，情報棟）

