資料2-4

泊発電所1号炉 高経年化技術評価 (中性子照射脆化)

補足説明資料

平成31年2月20日 北海道電力株式会社 :枠囲みの内容は機密情報に属しますので公開できません。

1.	概要 …		 	• • • •	 • • • •	1
2.	基本方案		 • • • •	• • • •	 	1
3.	評価対	象と評価手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 • • • •	• • • •	 	4
3	8.1 評価	対象 ・・・・・	 • • • •	• • • •	 	4
3	8.2 評価	i手法 ·····	 • • • •	• • • •	 	4
4.	代表機	器の技術評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 • • • •	• • • •	 • • • •	5
4	.1 関連	「温度に基づく評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 • • • •	• • • •	 	5
4	.2 上音	3棚吸収エネルギ評価・・・・・・・・・・・・・・・・・・・・・・・・・	 • • • •	• • • •	 	15
4	.3 現状	保全	 • • • •	• • • •	 	18
4	.4 総合	評価	 • • • •	• • • •	 	19
4	.5 高彩	年化への対応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 • • • •	• • • •	 	19
5.	まとめ		 • • • •	• • • •	 	19
5	5.1 審査	ガイド適合性・・・・・	 • • • •	• • • •	 • • •	19
5	5.2 保守	管理に関する方針として策定する事項・・・・・・	 • • • •	• • • •	 	19

別紙

別紙1.	関連温度の計算過程・・・・・	1-1
別紙2.	上部棚吸収エネルギの計算過程・・・・・	2-1

1. 概要

本資料は、「実用発電用原子炉の設置,運転等に関する規則」第82条第1項の規定に 基づき実施した、冷温停止状態が維持されることを前提とした高経年化技術評価のうち、 中性子照射脆化の評価結果を補足説明するものである。

一般的に材料は中性子の照射を受けると非常に微小な欠陥(析出物やマイクロボイド) が生じ、このような欠陥が存在すると材料の変形の際(転位の移動)の抵抗となり、破 壊に対する抵抗(靱性)の低下が生じる。原子炉容器の胴部(炉心領域部)においては、 中性子照射とともに関連温度(RT_{NDT})が上昇し、上部棚吸収エネルギ(USE)が 低下することは広く知られており、中性子照射脆化と呼ばれている。

そのため、重要機器である原子炉容器内には監視試験片を設置し、計画的に取り出し 監視試験を行って脆化程度を把握するとともに、原子炉容器の耐圧機能が脆化を考慮し ても確保されることが求められている。

したがって、中性子照射脆化の代表的な対象機器は原子炉容器とし、「4.代表機器の 技術評価」にて評価を行う。

2. 基本方針

中性子照射脆化に対する評価の基本方針は,対象機器について中性子照射による脆化 予測及び健全性評価を行い,運転開始後 60 年時点までの期間において「実用発電用原子 炉施設における高経年化対策審査ガイド」及び「実用発電用原子炉施設における高経年 化対策実施ガイド」の要求事項を満たすことを確認することである。

原子炉容器の中性子照射脆化を評価するにあたっての要求事項を表1に整理する。

なお、本事象は、原子炉の冷温停止状態が維持されることを前提とした場合、劣化の 進展が考えられない経年劣化事象である。したがって、高経年化対策上着目すべき経年 劣化事象ではないものの、現在までの劣化の進展を考慮した耐震安全性評価を行うため、 高経年化対策上着目すべき経年劣化事象と同様に健全性評価を行った。

評価に当たっては、実施ガイド3.1⑧ただし書きの規定に該当する場合*1ではなくなった際には、プラントの運転を開始した日から60年間について健全性評価を行うことを踏まえ、今回の評価においても、60年間の劣化の進展を仮定した評価を行うことで、40年間における健全性を評価している。

*1 運転開始以後 30 年を経過する日において技術基準*2 に適合しないものがある場合 *2 実用発電用原子炉及びその附属施設の技術基準に関する規則に定められる基準

ガイド	要求事項
	3. 高経年化技術評価等の審査の視点・着眼点
	(1)高経年化技術評価の審査
	⑫健全性の評価
	実施ガイド3.1⑤に規定する期間の満了日までの期間について,
	高経年化対策上着目すべき経年劣化事象の発生又は進展に係る健
	全性を評価していることを審査する。
	③現状保全の評価
実用発電用原子炉施設	健全性評価結果から現状の保全策の妥当性が評価されていること
における高経年化対策	を審査する。
審査ガイド	⑭追加保全策の抽出
	現状保全の評価結果から、現状保全に追加する必要のある新たな
	保全策が抽出されていることを審査する。
	(2)長期保守管理方針の審査
	①長期保守管理方針の策定
	すべての追加保全策について長期保守管理方針として策定され
	ているかを審査する。

表1(1/2) 中性子照射脆化ついての要求事項

表1(2/2) 中性子照射脆化についての要求事項

ガイド	要求事項
	3.1 高経年化技術評価の実施及び見直し
	高経年化技術評価の実施及び見直しに当たっては、以下の要求
	事項を満たすこと。
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、以
	下に規定する期間の満了日までの期間について機器・構造物の健
	全性評価を行うとともに、必要に応じ現状の保守管理に追加すべ
	き保全策(以下「追加保全策」という。)を抽出すること。
	イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価
	プラントの運転を開始した日から60年間(ただし,⑧ただし
	書きの規定に該当する場合にはプラントの運転を開始した日
	から40年間とする。)
中田水康田居子居长部	3.2 長期保守官理力針の東正及び変更
美田発竜田原于炉施設	長期保守官理方町の東正及い変更に当につては,以下の要求事項
における高栓牛化対束	
美施ガイト	①高栓牛化技術評価の結果抽出されにすべくの追加保全東(発電用
	原于炉の運転を断続的に11 りことを削促として抽出されたもの及
	9、し、)についし、光电用原于炉ことに、床寸皆连の項日及び 当該頂日ごしの実施時期を相定した長期保空管理古社を筆字する
	→ 成項日 ここの 美地 時期 を 焼 た し に 茂 朔 休 寸 皆 座 刀 町 を 東 た す る
	ここ。
	る。1971年1月1日1日1日の「日本山口」では1971年1月1日で1971年1月1日 発雪田百子恒の運転を断続的に行うことを前提とした評価から抽
	出されたものと冷温停止状能が維持されることを前提とした評価
	いら抽出されたものの間で その対象の経年全化事象及び機器・
	構造物の部位が重複するものについては、双方の追加保全策を踏
	まえた保守的な長期保守管理方針を策定すること。
	ただし、冷温停止が維持されることを前提とした高経年化技術
	評価のみを行う場合はその限りでない。

- 3. 評価対象と評価手法
 - 3.1 評価対象原子炉容器を代表機器として評価する。
 - 3.2 評価手法
 - 以下に示す規格に基づき評価を行った。
 - ・日本電気協会 原子炉構造材の監視試験方法(JEAC4201-2007[2013年追補版]) (以下,「JEAC4201」という。)
 - ・日本電気協会 原子力発電所用機器に対する破壊靭性の確認試験方法 (JEAC4206-2007)(以下,「JEAC4206」という。)

- 4. 代表機器の技術評価
 - 4.1 関連温度に基づく評価
 - a. 評価点の抽出

中性子照射脆化に対し健全性評価上厳しい箇所は、炉心領域の下部胴である。胴 内表面での中性子照射量は、現時点(2011年4月時点)で2.72×10¹⁹n/cm²(E>1MeV)、 運転開始後 60 年時点で 6.59×10¹⁹n/cm²(E>1MeV)程度と評価される。なお、炉心の 有効高さを直接囲んでいる下部胴に対して、上部胴では相当運転期間における関連 温度移行量が十分に小さく炉心領域に含まれないことから、評価書本文においては 炉心領域の下部胴を対象として評価を実施した。以下にその内容を示す。

原子炉容器の炉心領域の範囲・構造

原子炉容器の下部胴は低合金鋼製の一体鍛造品であり,炉心領域の範囲に溶接 線,構造不連続部はない。炉心領域の範囲を図1に,炉心領域におけるクラッド の厚さ及び母材の厚さを表2に示す。

炉心領域上端から溶接線までの距離:約40 cm 炉心領域下端から溶接線までの距離:約30 cm

図1 炉心領域の範囲

表2 炉心領域部のクラッドの厚さ、母材の厚さ

クラッド厚さ (mm)	5. 5 ^{**1}
母材の厚さ(mm)	176 **1

※1 公称寸法を示す。

② 中性子照射量が1.0×10²¹n/m²(1.0×10¹⁷n/cm²)を超える範囲

運転開始後60年時点の原子炉容器軸方向中性子照射量分布を図2に,照射量が JEAC4201に規定されている脆化予測法の適用範囲の下限値である1.0×10¹⁷n/cm²を 超える範囲を図3に示す。

図3 中性子照射量が1.0×10¹⁷n/cm²を超える範囲

原子炉容器の炉心領域の下部胴のミルシートに記載の化学成分を表3に示す。

							(重量%)
チャージ No.	Cu	Ni	Р	Mn	Si	S	С
83D740 83C478 -1-1							

表3 ミルシート(化学成分)(母材)

- b. 監視試験結果
- ① 監視試験カプセルの配置

監視試験片の配置,試験片数,各試験片の化学成分,各カプセルの取出し時期 及び監視試験結果を以下に示す。なお,試験片はT方向の試験片の値を使用して いる。

監視試験片の全カプセル数:6体(3体を取出済)

カプセルの配置:

母材試験片数(1カプセルあたり)

	引張試験片	シャルピー試験片	CT 試験片
A型	6体	33 体	8体
B 型	9 体	33 体	32 体

監視試験片の化学成分(重量%)

区分	Cu	Ni	Mn	Mo	Si	Р	S
母材	0.036	0.75	1.44	0.51	0.22	<0.005	<0.005

監視試験結果:

監視	玉山	関連	上部棚吸収	中性子照射量	中性子束	RV 内表面に	照射
試験	取田	温度	エネルギ	$[\times 10^{19} n/cm^2]$,	$[\times 10^{10} n/cm^2/s,$	対するリード	温度
回次	时别	[°C]	[J]	E>1MeV]	E>1MeV]	ファクター	[°C]
第1回	1990年5月	-20	252	0.376	11.1	2.10	
第2回	2004年8月	10	247	5.40	12.9	2.56	288
第3回	2011年5月	12	240	7.15	12.0	2.63	

② 監視試験結果の中性子照射量の算出根拠について

監視試験カプセルの中性子照射量は,監視試験カプセルに装荷している U-238 を用いたドジメータの放射性核種分析結果より算出している。

- ・ 監視試験カプセルより取り出したドジメータの質量測定と放射能量測定に より、ドジメータ内のU-238に中性子照射によって生成されたCs-137の量を 計測する。測定した結果は比放射能(Bq/atom)という数値で表される。
- 下記の計算式により中性子照射量(n/cm², E>1 MeV)を算出する。

中性子照射量= (測定対象日における比放射能)×(定格負荷相当運転時間)×3600 (実効反応断面積)×(補正係数)×(核分裂収率)

測定対象日における比放射能:ドジメータの質量測定と放射能量測定により 求められる実測値。

定格負荷相当運転時間:定格出力で連続運転したと仮定して計算した時間。 実効反応断面積:反応の起こりやすさの尺度。対象核種毎に定まる物理量。 核分裂収率:核分裂で特定の核種が生成する割合。

補正係数:燃料の中性子照射によるドジメータの放射化,放射化後の原子炉 運転期間,定検等による原子炉停止期間,及び原子炉停止後から 放射性核種分析までの期間による放射能の生成・減衰を補正する もの。下記の計算式により算出している。

$$\sum_{i=1}^{\infty} EFPi \times (1 - e^{-\lambda ti}) \times e^{-\lambda Ti}$$

EFPi : 第 i 回の運転期間中の定格負荷に対する実負荷の比

n

- **1 e^{-λti}** : 第 i 回の運転期間 ti に生成される定格負荷での Cs-137 の飽和 係数
- e^{-λTi} :第 i 回の運転期間終了から測定日までの期間 Ti の Cs-137 の減 衰係数
- λ : Cs-137 の壊変定数

また,各監視試験時の原子炉停止日から,放射能量測定日までの期間は以下の とおりであり,補正係数として考慮している。

回時	原子炉停止日	放射能量測定日	停止から測定までの日数
第1回	1990年4月27日	1990年11月19日※1	206 日
第2回	2004年8月14日	2005年3月29日	227 日
第3回	2011年4月22日	2013年3月1日	679 日 ^{※2}

※1 第1回監視試験は中性子照射期間が短期であるため、短期期間内の核種生成 量が多く、測定精度が良い Fe ワイヤから生成される Mn-54 にて中性子照射 量を求めており、Mn-54の測定日としている。

※2 第3回の取出しから測定までの日数が第1回,第2回と比べて長いのは,2011 年3月の震災により測定施設が被災したためである。

計算例として,現時点,運転開始後 60 年時点の中性子照射量の計算に使用している至近の第3回監視試験カプセルの中性子照射量算出に用いた数値を以下に示す。

測定対象日における比放射能	: 6.85 \times 10 ⁻¹⁶ (Bq/atom)
定格負荷相当運転時間	: 166,023(hr)
実効反応断面積	:289(mb) (b:断面積,1×10 ⁻²⁸ m ²)
補正係数	: 0. 3274
核分裂収率	: 0. 0605

これらの数値を上記の計算式に代入し計算した結果,中性子照射量を7.15×10¹⁹ n/cm²(E>1 MeV)としている。

なお、現時点、運転開始後 60 年時点の中性子照射量は、至近の第 3 回監視試 験結果を基に算出しているが、これは中性子照射量、及び中性子束は各炉心サイ クルの炉心運用により異なること、また、各監視試験はそれまでの中性子照射量 の総量であり、至近の結果を使用する方が長期にわたる運転履歴を考慮でき、将 来予測値が精緻化されるため至近の監視試験結果を使用している。

また,サイクル毎に炉心運用(炉心内の各燃料の配置)が異なるために監視試 験ごとに単位 EFPY 当たりの照射量は異なる。これは,運転期間中の炉心の燃料 の配置はサイクル毎に毎回異なるため,炉心内の相対出力分布が異なり,監視試 験片や原子炉容器が受ける中性子照射量が毎サイクル異なるためである。 ③ 定格負荷相当年数(EFPY)の算出

2011年4月末時点及び運転開始後60年時点での定格負荷相当年数(EFPY)は, 運転時間から下記の通り算出した。

<2011 年 4 月末時点の EFPY>

=2011 年 4 月末時点の定格負荷相当運転時間÷(24×365.25)

24(時間/日)×365.25(日/年)

=18.94

<運転開始後 60 年時点の EFPY>

- = (2011 年 4 月末時点の定格負荷相当運転時間+次回起動日以降の定格負荷相当
 運転時間^{*1}) ÷ (24×365.25)
- _ 166,023(時間)+236,682(時間)

24(時間/日)×365.25(日/年)

- =45.94
- ※1:次回起動日(暫定:2019年6月22日)~運転開始後60年時点(2049年6月22日)までの期間,稼働率を90%と想定し算出した。

④ 評価対象部位の中性子照射量について

中性子照射量の計算過程に用いたクラッド厚さ,母材厚さ及び実際の原子炉容 器の数値を表4に記す。

	記号	評価に用いた数値*1	実際の数値
クラッドの厚さ	– (mm)	_*2	5.6~7.0
母材の厚さ	t (mm)		175.0~176.7

表4 原子炉容器のクラッド厚さ及び母材厚さ

※1 最小板厚を適用している。

※2 保守的にクラッドの厚さは考慮していない。

内表面から板厚 t の 1/4t 深さ位置に係る,現時点及び運転開始後 60 年時点 (45.94EFPY)の中性子照射量の計算過程について以下に示す。

評価時期における原子炉容器内表面から板厚 t の 1/4t 深さ位置での中性子照 射量 f は, 第3回監視試験により得られた中性子照射量 f₁及び定格負荷相当年数 EFPY₁を用いて算出した中性子束に対し,原子炉容器内表面のリードファクタ LF 及び板厚方向の減衰係数を考慮し、評価時点での定格負荷相当年数 EFPY₂を乗じて算出する。

評価時期における板厚 tの 1/4t 深さ位置での中性子照射量

泊1号炉の中性子照射量算出に用いる値を表5に示す。

	記号	算出に用いる値			
監視試験カプセルの	$f_{1}(\times 10^{19} \text{ s}^{-1})$	7.15			
中性子照射量	$I_1 (\times 10^{-1} \text{ m/cm})$				
監視試験カプセル取出時の	FEDV	18.94			
定格負荷相当年数	EFFI ₁				
評価時点の	FEDV	18.94(現時点)			
定格負荷相当年数	EFP I ₂	45.94 (運転開始後 60 年時点)			
監視試験カプセルの原子炉	LE	0.00			
内表面に対するリードファクタ	Lſ	2.03			
原子炉容器板厚	t (mm)				

表5 中性子照射量算出に用いる値

現時点及び運転開始後 60 年時点における原子炉容器内表面から板厚 t の 1/4t 深 さ位置での中性子照射量 f は以下となる。

- (a). 原子炉容器内表面から板厚tの1/4t深さ位置:現時点
 - $f = 7.15 \times 10^{19} \div 18.94 \div 2.63 \times \exp(-0.24 \times 25.4) \times 18.94$ $\Rightarrow 1.83 \times 10^{19} \text{ (n/cm}^2)$
- (b). 原子炉容器内表面から板厚tの1/4t深さ位置:運転開始後60年時点
 - $f = 7.15 \times 10^{19} \div 18.94 \div 2.63 \times \exp(-0.24 \times 25.4) \times 45.94$ $\doteqdot 4.43 \times 10^{19} \text{ (n/cm}^2)$

c. 関連温度評価

① 関連温度算出に係る数値

関連温度の算出に用いる各部材のミルシートに記載の化学成分, R T_{NDT}初期値 及び公称照射温度を表 6 に,運転開始後 60 年時点における各部材の中性子照射量 及び中性子束を表 7 に示す。

立にキオ	チャージNo	化学	成分(重量	量%)	R T _{NDT}	公称照射 温度 (℃)
<u>ل</u> مارط) 7 - 7 No.	Сu	N i	Р	初期値 (℃)	
下部胴	83D740 83C478] -1-1		-	-		
上部胴	83D764-1-1					
トランジション リング	83C498-1-1					288
入口管台	83C482-1-1					
入口管台	83C482-1-2					

表6 各部材の化学成分, RT_{NDT}初期値及び公称照射温度

表7 運転開始後60年時点における各部材の板厚tの

部材	チャージ No.	中性子照射量 (n/cm ²) [E>1MeV]	中性子束 (n/cm²/s) [E>1MeV]
下部胴	83D740 83C478] -1-1	4. 43×10^{19}	3. 06×10^{10}
上部胴	83D764-1-1	2. 25×10^{18}	1.55×10^{9}
トランジション リング	83C498-1-1	2. 67×10^{18}	1.84×10^{9}
入口管台	83C482-1-1 83C482-1-2	9. 40×10^{16}	6. 48×10^7

1/4t 深さ位置での中性子照射量及び中性子束

② 関連温度算出結果

表6及び表7のデータを用いて, JEAC4201に基づいて算出した運転開始後60年時点における各部材の板厚tの1/4t深さ位置でのΔRT_{NDT}計算値を表8に,関 連温度を表9,計算方法を別紙1に示す。表9に示すように下部胴の関連温度が最 も高くなるため,評価書にて下部胴のみの評価を実施している。

表δ 連転開始後 60 年時点における各部材の板厚 t の 1/4t 保さ位直でのΔRI、	Гылт計算値
---	---------

部材	チャージ No.	∆RT _{NDT} 計算値 (℃)
下部胴	83D740 83C478]-1-1	30.6
上部胴	83D764-1-1	3. 9
トランジションリング	83C498-1-1	4.3
入口管台	83C482-1-1	_*
入口管台	83C482-1-2	_*

※:中性子照射量が JEAC4201 附属書表 B-2100-3 に記載の国内脆化予測法の適 用範囲外(下限以下)であるため、ΔRT_{NDT}計算値を算出していない。 ただし、入口管台については炉心領域と比べて中性子照射量が十分小さい ため、ΔRT_{NDT}計算値が炉心領域材料を上回る事はないと判断している。

部材	チャージ No.	関連温度(℃)
下部胴	83D740 83C478] -1-1	13*1
上部胴	83D764-1-1	-2^{*1}
トランジションリング	83C498-1-1	-1 ^{**1}
入口管台	83C482-1-1	%2
入口管台	83C482-1-2	%2

表9 運転開始後60年時点における各部材の板厚tの1/4t深さ位置での関連温度

※1: JEAC4201 に基づき, M_Rは 22℃としている。

※2:中性子照射量がJEAC4201附属書表B-2100-3に記載の国内脆化予測法の適用範囲 外(下限以下)であるため,関連温度を算出していない。ただし、入口管台につ いては炉心領域と比べて中性子照射量が十分小さいため、関連温度が炉心領域材 料を上回る事はないと判断している。

- 4.2 上部棚吸収エネルギ(USE)評価
 - ① 上部棚吸収エネルギ低下予測値の算出に係る数値

国内プラントを対象とした上部棚吸収エネルギの予測式(国内USE予測式)を用い た現時点(2011年4月時点)及び運転開始後60年時点での上部棚吸収エネルギ低下予 測値の算出に用いる各部材のミルシートに記載の化学成分,USE初期値及び公称 照射温度を表10に,運転開始後60年時点における各部材の中性子照射量を表11に, 計算方法を別紙2に示す。

立てたナ	チャージNo	化学成分(重量%)			USE	公称照射
いりは) 7 - 9 No.	C u	N i	Р	初 期 値 (J)	温度 (℃)
下部胴	83D740 83C478] -1-1					
上部胴	83D764-1-1					
トランジション リング	83C498-1-1					288
入口管台	83C482-1-1					
入口管台	83C482-1-2					

表10 各部材の化学成分, USE初期値及び公称照射温度

表 11 運転開始後 60 年時点における各部材の板厚 t の 1/4t 深さ位置での中性子照射量

部材	チャージ No.	中性子照射量 (n/cm ²) [E>1MeV]	
下部胴	83D740 83C478]-1-1	4. 43×10 ¹⁹	
上部胴	83D764-1-1	2. 25×10 ¹⁸	
トランジション リング	83C498-1-1	2. 67×10^{18}	
オロ答ム	83C482-1-1	0.40×10^{16}	
	83C482-1-2	9.40 \times 10 ¹⁰	

② 上部棚吸収エネルギ低下予測算出結果

表 10 及び表 11 のデータを用いて,JEAC4201 に基づいて算出した運転開始後 60 年時点における各部材の板厚 t の 1/4t 深さ位置での Δ USE予測値を表 12 に, USE調整値を表 13 に示す。表 13 に示すように,下部胴以外のUSE調整値は 算定できないものの,表 12 に示すように,下部胴のUSE低下率(Δ USE)は 最大であるため,評価書にて下部胴のみの評価を実施している。

部材	チャージ No.	∆USE予測値 (%)		
下部胴	83D740 83C478]-1-1	21. 8 ^{**1}		
上部胴	83D764-1-1	16. 2^{*1}		
トランジション リング	83C498-1-1	16. 5^{*1}		
入口管台	83C482-1-1	%2		
入口管台	83C482-1-2	*2		

表 12 運転開始後 60 年時点における各部材の板厚 t の 1/4t 深さ位置での A U S F 予測値

※1: JEAC4201 に基づき, M_uは 13.8%としている。

※2:中性子照射量が、JEAC4201 附属書表 B-3100-1 に記載の国内USE予測式の適用範囲外(下限以下)であるため、 ムUSE予測値を算出していない。ただし、入口管台については炉心領域と比べて中性子照射量が十分小さいため、 ムUSE予測値が炉心領域材料を上回る事はないと判断している。

部材	チャージ No.	USE調整値(J)
下部胴	83D740 83C478]-1-1	230 ^{**1}
上部胴	83D764-1-1	%2
トランジション リング	83C498-1-1	%2
入口管台	83C482-1-1	*3
入口管台	83C482-1-2	%3

表 13 運転開始後 60 年時点における各部材の板厚 t の 1/4t 深さ位置でのUSE調整値

※1:製造時にUSE初期値を計測していないため,照射前試験時の USE初期値を用いて算定した。

- ※2:製造時にUSE初期値を計測していないため、USE調整値を算 出してない。ただし、上部胴及びトランジションリングについて は炉心領域と比べて中性子照射量が十分小さいため、USE調整 値が 68Jを下回ることはないと判断している。
- ※3:中性子照射量が,JEAC4201 附属書表 B-3100-1 に記載の国内US E予測式の適用範囲外(下限以下)であるため,USE調整値を 算出していない。ただし、入口管台については炉心領域と比べて 中性子照射量が十分小さいため、USE調整値が炉心領域材料を 下回る事はないと判断している。

4.3 現状保全

下部胴(炉心領域部)材料の中性子照射による機械的性質の変化については, JEAC4201に基づいて,計画的に監視試験を実施し,破壊靭性の変化の傾向を把握している。

泊1号炉は、当初監視試験カプセルを6体挿入し、現在までに3体のカプセルを 取り出し、将来の運転期間に対する脆化予測を行っている。

泊1号炉のこれまでの監視試験片取出し実績及び取出し時期の考え方を表 14 に 示す。なお,泊1号炉の JEAC4201 に基づく標準監視試験計画は3回であるが,これ まで3回の監視試験片の取出しを実施しており,標準監視試験計画は終了している。

	取出し	取出し	適用した		租担程(IEAC4201-2007)	
L س	時期	時期	JEAC4201	適用した年度の規程内容	死焼性(12001 2001)	取出し時期の考え方
۲۸ ا	(年月)	(EFPY)	の年度		011日	
				6EFPY, 又は試験片の中	6EFPY, 又は監視試験片	監視試験プログラム策
				性子照射量が5×	の中性子照射量(E>1MeV)	定時に, JEAC4201-1986 に
껔				10 ¹⁸ n/cm ² を超える時期あ	が 5×10 ¹⁸ n/cm ² (E>1MeV)	従い最少取出しカプセル
1	1990年	1 07	1096	るいは最大のリードファ	を超える時期あるいは最	数は3個を計画していた。
I I	5 月	1.07	1900	クタを示す試験片の∆	大のリードファクタを示	第1回の取出し時期は,
Ш				RT _{NDT} が約 28℃と予測され	す監視試験片のΔRT _{NDT} が	試験片の中性子照射量が
				る時期のうち,いずれか	28℃と予測される時期の	5×10 ¹⁸ n/cm ² を超える約 1
				早い方。	うち、いずれか早い方。	年後と計画していた。
				15EFPY, 又は試験片の	15EFPY, 又は監視試験	第1回監視試験結果時
				中性子照射量が寿命末期	片の中性子照射量	に, JEAC4201-1986 に従い
				(32EFPY)に受ける原子炉	(E>1MeV)が, 相当運転期	最少取出しカプセル数は
껔				圧力容器内面の中性子照	間(32EFPY)に原子炉圧力	3個を計画していた。第2
প্র	2004年	12 97	1096	射量に到達する時期のう	容器が内面で受ける中性	回の取出し時期は、試験
	8月	13.27	1900	ち、いずれか早い方。	子照射量(E>1MeV)に到達	片の中性子照射量が原子
Ш					する時期のうち、いずれ	炉圧力容器内面の寿命末
					か早い方。	期に受ける中性子照射量
						に到達する約 13EFPY と計
						画していた。
				試験片の中性子照射量	監視試験片の中性子照	第2回監視試験結果時
				(E≧1MeV)が, 運転期間末	射量(E>1MeV)が,相当運	に, JEAC4201-2000 に従い
				期(32EFPY)に原子炉圧力	転期間(32EFPY)に原子炉	最少取出しカプセル数は
笜				容器が内面で受ける中性	圧力容器が内面で受ける	3個を計画していた。第3
3	2011年	18 04	2000	子照射量(E≧1MeV)の1倍	中性子照射量(E>1MeV)の	回の取出し時期は、試験
े नि	5月	10.94	2000	以上2倍以下であること。	1倍以上2倍以下であるこ	片の中性子照射量が原子
				ただし、先行試験結果に	と。ただし, 先行試験結	炉容器内面の寿命末期に
				基づき変更してもよい。	果に基づき変更してもよ	受ける中性子照射量の
					l∕ ∿₀	1.5 倍に到達する約
						19EFPY と計画していた。

表14 泊1号炉の監視試験片取出し実績及び取出し時期の考え方

また,監視試験結果から,JEAC4206に基づき,運転管理上の制限として加熱・冷 却運転時に許容しうる温度・圧力の範囲(加熱・冷却制限曲線)及び耐圧漏えい試 験温度を設けて運用している。

4.4 総合評価

健全性評価結果から判断して,下部胴(炉心領域部)の中性子照射脆化が機器の健 全性に影響を与える可能性はないと考える。また,冷温停止状態においては燃料から の中性子照射がないことから,中性子照射脆化は今後進展しない。

下部胴(炉心領域部)材料は,原子炉容器の全材料の中で中性子照射脆化が最も大 きく代表性があり,機械的性質の予測は監視試験により把握可能であることから,保 全内容として適切である。

4.5 高経年化への対応

下部胴(炉心領域部)の中性子照射脆化については,現状保全項目に高経年化対 策の観点から追加すべきものはない。

- 5. まとめ
 - 5.1 審査ガイド適合性

「2. 基本方針」で示した要求事項について技術評価を行った結果,全ての要求を 満足していることを確認した。中性子照射脆化についての要求事項との対比を表 15 に示す。

5.2 保守管理に関する方針として策定する事項

今後も現状の保全方針により健全性を確認していくものとし,現状保全項目に高経 年化対策の観点から追加すべきものはなく,保守管理に関する方針として策定する事 項はない。

ガイド	要求事項	技術評価結果
	 3.高経年化技術評価等の審査の視点・着 眼点 (1)高経年化技術評価の審査 (2)健全性の評価 実施ガイド3.1⑤に規定する期間の 満了日までの期間について,高経年化 対策上着目すべき経年劣化事象の発生 又は進展に係る健全性を評価している ことを審査する。 	「4. 代表機器の技術評価」に示すとお り, 原子炉容器炉心領域部について運転 開始後 60 年時点を想定した健全性評価 を実施した。
実用発電用原子 炉施設における 高経年化対策審 査ガイド	③現状保全の評価 健全性評価結果から現状の保全策の妥 当性が評価されていることを審査す る。	「4.3 現状保全」に示すとおり,健全 性評価結果から,現状の保全策が妥当で あることを確認した。
	 ④追加保全策の抽出 現状保全の評価結果から,現状保全に 追加する必要のある新たな保全策が抽 出されていることを審査する。 	「4.5 高経年化への対応」に示すとお り,現状保全項目に,高経年化対策の観 点から追加すべき新たな保全策はなか った。
	 (2)長期保守管理方針の審査 ①長期保守管理方針の策定 すべての追加保全策について長期保 守管理方針として策定されているか を審査する。 	「4.5 高経年化への対応」に示すとお り,現状保全項目に,高経年化対策の観 点から追加すべきものはなく,保守管理 に関する方針として策定する事項はな かった。

表 15(1/2) 中性子照射脆化についての要求事項との対比

	表 15(2/2)	中性子照射脆化についての要求事項との対し	比
--	-------	------	----------------------	---

ガイド	要求事項	技術評価結果
	3.1 高経年化技術評価の実施及び見直し 高経年化技術評価の実施及び見直しに当たっては,以 下の要求事項を満たすこと。	
	 ⑤抽出された高経年化対策上着目すべき経年劣化事象について、以下に規定する期間の満了日までの期間について機器・構造物の健全性評価を行うとともに、必要に応じ現状の保守管理に追加すべき保全策(以下「追加保全策」という。)を抽出すること。 イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価プラントの運転を開始した日から60年間(ただし、⑧ただし書きの規定に該当する場合にはプラントの運転を開始した日から40年間とする。) 	「4.代表機器の技術評価」 に示すとおり,原子炉容器炉 心領域部について運転開始 後60年時点を想定した健全 性評価を実施し,また,「4. 5 高経年化への対応」に示 すとおり,現状保全項目に, 高経年化対策の観点から追 加すべき新たな保全策はな かった。
実用発電用原子 炉施設における 高経年化対策実 施ガイド	 3.2 長期保守管理方針の策定及び変更 長期保守管理方針の策定及び変更に当たっては、以下の要求事項を満たすこと。 ①高経年化技術評価の結果抽出されたすべての追加保全策(発電用原子炉の運転を断続的に行うことを前提として抽出されたもの及び冷温停止状態が維持されることを前提として抽出されたもののすべて。)について、発電用原子炉ごとに、保守管理の項目及び当該項目ごとの実施時期を規定した長期保守管理方針を策定すること。なお、高経年化技術評価の結果抽出された追加保全策について、発電用原子炉の運転を断続的に行うことを前提とした評価から抽出されたものの間で、その対象の経年劣化事象及び機器・構造物の部位 	「4.5 高経年化への対応」 に示すとおり,現状保全項目 に,高経年化対策の観点から 追加すべきものはなく,保守 管理に関する方針として策 定する事項はなかった。
	が重複するものについては,双方の追加保全策を踏まえ た保守的な長期保守管理方針を策定すること。 ただし,冷温停止が維持されることを前提とした高経 年化技術評価のみを行う場合はその限りでない。	

別紙

- 別紙1. 関連温度の計算過程
- 別紙2. 上部棚吸収エネルギの計算過程

別紙1

<関連温度の計算過程>

1. 関連温度算出の詳細な要領 RTNDTの予測値(RTNDT調整値)は次のとおり算出する。

 $RTNDT調整値=RTNDT初期値+\Delta RTNDT予測値$ (1.1) $\Delta RTNDT予測値=\Delta RTNDT計算値+MR$ (1.2)

RTNDT初期値	:照射前の試験により決定したRTNDT(℃)
∆RTNDT計算値	:以下のように設定する。

 $\Delta R T NDT計算値(℃)は JEAC4201 の附属書表 B-2100-1(PWRの場合)より,公称照射$ 温度から適用表を選択し、中性子束、Cu 含有量、Ni 含有量及び中性子照射量又は EFPYにより比例法及び対数補間にて算出する。なお、中性子照射量 f(×10¹⁹n/cm², E>1MeV)は容器内面からの深さを a(mm) とすると次式で与えられる。

 $f = f_0 \cdot \exp(-0.24a/25.4)$ (1.3)

ここで, f₀: 容器内面での中性子照射量(×10¹⁹n/cm², E>1MeV)

しかしながら,監視試験によるΔRTNDTの実測値が(1.2)式で求まるΔRTNDT 予測値を上回った場合は実測値を包絡するようにMRを定め直す。

当該材料に対して2個以上の監視試験による $\Delta R T_{NDT}$ の実測値がある場合,その データを用いて以下の様に $\Delta R T_{NDT}$ 予測値を求め,それと(1.1)式を用いてRTND T調整値を求める。

 $\Delta R T N D T 予測値 = [\Delta R T N D T 計算値 + M c] + M R(1.4)$

△ R T N D T 計算値 : 附属書表 B-2100-1 より求めた Δ R T N D T 計算値(℃)

Mc :実測値で補正する場合に用いるマージン(℃)であり、次式で求める。
 ただし、[△RTNDT計算値+Mc]が負となる場合は、
 [△RTNDT計算値+Mc]を0とする。

$$MC = \frac{\sum_{i=1}^{n} \{(\Delta R T N D T 実測値)_{i} - (\Delta R T N D T 計算値)_{i}\}}{n} \dots \dots (1.5)$$

ここで、 n : 監視試験データ数
($\Delta R T N D T 実測値$) i : 第 i 回監視試験より得られた
 $\Delta R T N D T の実測値(°C)$

この場合, (1.4)式のマージンMRは18℃とすることができる。

ただし,監視試験による $\Delta R T_{NDT}$ の実測値が(1.4)式で求まる $\Delta R T_{NDT}$ 予測値を 上回った場合は実測値を包含するように M_R を定め直す。

なお、nが3以上の場合で、かつ以下のa.に該当する場合においては、監視試験で求められた最大の中性子照射量を超えて ΔRT_{NDT} 予測値を定める場合に限り、 M_{R} にさらに以下の M_{RMAX} を加えた値を M_{R} として定め直す。

a. 第n-1回までのすべての監視試験データを用い,(1.5)式で右辺のnをn-1 に置き換えて求めたMcに基づき(1.4)式で求められる第n回監視試験の ΔRT_{ND} _T予測値を求める。第n回監視試験の ΔRT_{NDT} 実測値がこの ΔRT_{NDT} 予測値を上回る場合には、 ΔRT_{NDT} 実測値- ΔRT_{NDT} 予測値をM_{RMAX}と定める。

母材

本脆化予測法の適用範囲を以下に示す。

・材料のCu含有量(mass%)	0.25以下
・材料のNi含有量(mass%)	0.5~1.1
・材料のP含有量(mass%)	0.025以下
・中性子照射量 (n/cm ² , E>1MeV)	$1.0 \times 10^{17} \sim 1.3 \times 10^{20}$
・中性子束(n/cm²/s, E>1MeV)	$1.0 \times 10^{7} \sim 1.0 \times 10^{12}$
・公称照射温度 (℃)	$270 \sim 290$

[注記]

 Cu含有量が 0.04mass%以下の場合は、Cu含有量は 0.04mass%として関連 温度移行量を予測する。

2. 関連温度算出結果

関連温度の算出に用いる化学成分及び公称照射温度を表 1-1, 各時期(照射前~第 3 回監視試験時点, 現時点(18.94EFPY)及び運転開始後 60 年時点(45.94EFPY))における 中性子照射量, 中性子束, RT_{NDT}実測値を表 1-2 に示す。

立てたナ	化学成分(重量%)			公称照射温度
<u>ل</u> ابراط	C u	N i	Р	(°C)
母材	0.036	0.75	0.005	288

表 1-1 各部材における化学成分及び公称照射温度

			ND I STORE
監視試験回次	中性子照射量	中性子束	RT _{NDT} 実測値(℃)
及び評価時期	$(\times 10^{19} n/cm^2)$ [E>1MeV]	$(imes 10^{10} { m n/cm^2/s}) \ [{ m E}\!>\! 1{ m MeV}]$	母材
0	_	—	-30
1	0.376	11.1	-20
2	5.40	12.9	10
3	7.15	12.0	12
現時点*	1.83	3.06	—
運転開始後 60 年時点*	4.43	3.06	—

表 1-2 各時期における中性子照射量,中性子束, R T NDT 実測値

*: 板厚 t の 1/4t 深さ位置

1. 項に従い表 1-1 及び表 1-2 のデータを用いて算出した R T_{NDT}計算値を表 1-3 に示す。

監視試験回次	ΔRT _{NDT} 計算値(℃)	
及び評価時期	母材	
1	11. 1	
2	37.2	
3	47.7	
現時点*	15.6	
運転開始後 60 年時点*	30.6	

表 1-3 各時期における R T_{NDT}計算値

*: 板厚 t の 1/4t 深さ位置

1. 項に従い表1-2及び表1-3のデータを用いて算出したMc及びMRを表1-4に示す。

衣 1 ⁻ 4 谷	各即州 (Cわけ SMC及UMR			
部材	Mc	Mr		
母材	-1.3	18		

表 1-4 各部材におけるMc及びMR

ここで, (1.1)式及び(1.4)式に従い, 関連温度の算出式をまとめると, 以下のとおり。

RTNDT調整値

 $= RTNDT初期値+ [\Delta RTNDT計算値+Mc] + MR$ (1.6)

1. 項に従い表 1-1~表 1-4 のデータを用いて,(1.6)式より現時点(18.94EFPY)及び運転 開始後 60 年時点(45.94EFPY)における内表面から板厚 T の 1/4t 深さでの関連温度を算 出した結果を以下に示す。

現時点(18.94EFPY)

母材 $3(^{\circ}C) \doteq (-30) + 15.6 + (-1.3) + 18$

運転開始後 60 年時点(45.94EFPY)

母材 $18(^{\circ}C) \Leftrightarrow (-30) + 30.6 + (-1.3) + 18$

別紙2

<上部棚吸収エネルギの計算過程>

 上部棚吸収エネルギ算出の詳細な要領 USE の予測値(USE 調整値)は次のとおり算出する。

USE 調整値(J) = USE 初期値×(1-ΔUSE 予測値/100) ·······(2.1)

USE 初期値:照射前の試験により決定した USE(J)

$$\Delta \text{USE} 予測値(\%) = C_0 + [CF_u] \cdot [FF_u]_{(f)} + M_U \quad \cdots \quad (2.2)$$

- C₀ : 母材については-0.95
- [CF_u] : 化学成分(mass%)による係数 母材 [CF_u]=5.23+9.36・(0.5+0.5・tanh{(Cu-0.087)/0.034}) ×(1+0.59・Ni) ······ (2.3) Cu : 銅の含有量(mass%)
 - Ni : ニッケルの含有量(mass%)
- $[FF_{U}]_{(f)} : 中性子照射量 f(×10¹⁹n/cm², E>1MeV)による係数$ 母材 $[FF_{U}]_{(f)}=f^(0.349-0.068logf)(2.4)$ $f=f_{0} \cdot exp(-0.24a/25.4) ...(2.5)$ $f_{0} : 容器内面での中性子照射量(×10¹⁹n/cm², E>1MeV)$

 - a : 容器内面からの深さ(mm)
- Mu :マージン(%)。以下のように設定する。
- 当該の材料に対して監視試験による ΔUSE の実測値が 2 個未満の場合 MU=2σ_{ΔU} ·······(2.6) σ_{ΔU} : ΔUSE に関する標準偏差(%), 母材については 6.9%

ただし,監視試験(第1回)による Δ USEの実測値が(2.2)式で求まる Δ USE予測値を上回った場合は実測値を包含するようにMuを定め直す。

2) 当該の材料に対して監視試験による Δ USE の実測値が 2 個以上の場合

ただし、監視試験による最大の Δ USEの実測値が(2.2)式で求まる Δ USE 予測値を上回った場合は実測値を包含するようにMUを定め直す。

国内 USE 予測式の適用範囲を以下に示す。

	母材
・材料のCu含有量(mass%)	0.25 以下
・材料のNi含有量(mass%)	0.5~1.0
・材料のP含有量(mass%)	0.020以下
・中性子照射量(n/cm ² , E>1MeV)	$1.0 \times 10^{17} \sim 1.2 \times 10^{20}$
・公称照射温度(℃)	$274 \sim 310$

2. 上部棚吸収エネルギ算出結果

上部棚吸収エネルギの算出に用いる各部材の化学成分及び公称照射温度を表 2-1,各時期(照射前~第3回監視試験時点,現時点(18.94EFPY)及び運転開始後 60 年時点 (45.94EFPY)における中性子照射量,USE 実測値を表 2-2 に示す。

表 2-1 各部材の化学成分及び公称照射温度

立四大大	ſĿ	公学成分(重量》	6)	公称照射温度
[vh0]	Сu	N i	Р	(°C)
母材	0.036	0.75	0.005	288

監視試験回次	中性子照射量 (×10 ¹⁹ n/om ²)	USE 実測値(J)
及び評価時期	[E > 1 MeV]	母材
0	_	294
1	0.376	252
2	5.40	247
3	7.15	240
現時点*	1.83	_
運転開始後 60 年時点*	4.43	_

表 2-2 各時期における中性子照射量, USE 実測値

*: 板厚 t の 1/4t 深さ位置

ここで, (2.1) 式及び(2.2) 式に従い, 上部棚吸収エネルギの算出式をまとめると, 以下のとおり。

USE 調整値 = USE 初期値×(1-(C_0 +[CF_U]·[FF_U]_(f)+MU)/100) ·······(2.8)

表 2-1 及び表 2-2 のデータを用いて[CF_U], [FF_U]_(f)及びMUを算出し, (2.8)式より現時 点(18.94EFPY)及び運転開始後 60 年時点(45.94EFPY)における内表面から板厚 t の 1/4t 深さでの上部棚吸収エネルギを算出した結果を以下に示す。

現時点(18.94EFPY)

母材 248 (J) \doteq 294×(1-((-0.95)+5.87×1.22+9.16)/100)

運転開始後 60 年時点(45.94EFPY) 母材 242 (J) ≒ 294×(1-((-0.95)+5.87×1.57+9.16)/100)