平成29年度原子力施設等防災対策等委託費及び 放射性物質測定調査委託費 (80km 圏内外における航空機モニタリング)事業

報告書

平成 30 年 3 月

国立研究開発法人 日本原子力研究開発機構

本報告書は、「平成29年度原子力施設等防災対策等委託 費及び放射性物質測定調査委託費(80km 圏内外における 航空機モニタリング)事業の成果をとりまとめたもので ある。

1.	はじめ	ってこ	1
2.	航空機	きモニタリングの経緯	3
3.	測定シ	ィステムとヘリコプター	10
	3.1.	航空機モニタリングシステム	10
	3.2.	ヘリコプターの選定	12
	3.3.	線源試験	14
	3.4.	RSI システムの保守	15
4.	データ	'取得および解析方法	18
	4.1.	上空での測定値の地上への換算に関する基本的な考え方	18
	4.2.	データ取得方法	21
	4.3.	設定パラメータ妥当性確認のためのキャリブレーションフライト方法	23
	4.4.	解析のフロー	29
	4.5.	空間線量率への換算方法	30
		4.5.1. バックグラウンド (自己汚染および宇宙線)	30
		4.5.2. 高度補正	32
		4.5.3. 空間線量率への換算	33
		4.5.4. 空間線量率への換算方法	39
	4.6.	放射性セシウムの沈着量への換算方法	39
		4.6.1. 天然核種の弁別と放射性セシウム起源の計数率の算出	39
		4.6.2. 空間線量率-放射能換算係数	41
	4.7.	減衰補正	42
	4.8.	検出下限值	43
		4.8.1. 空間線量率の検出下限値	43
		4.8.2. 放射性セシウムの沈着量の検出下限値	44
	4.9.	不確かさ	44
	4.10.	マッピング	45
	4.11.	地上における測定値との比較	46
	4.12.	天然放射性核種由来の空間線量率マップの作成	49
5.	モニタ	マリング結果	53
	5.1.	第12次モニタリング	53
	5.2.	東日本第8次モニタリング	58
6.	モニタ	リング結果の考察	69
	6.1.	過去のモニタリング結果との比較	69
	6.2.	土地利用による空間線量率の変化傾向の違い	77
7.	地形補	育正手法のシステム化	80

目次

	7.1.	背景80
	7.2.	地形影響評価システムの概要80
	7.3.	地形データ抽出
	7.4.	PHITS 入力ファイル作成
	7.5.	PHITS 出力データ抽出85
	7.6.	まとめ
8.	高精度	ξGPSによる精度向上
	8.1.	おじめに
	8.2.	GPS 受信機の構成
	8.3.	測定期間及びデータ取得実績
	8.4.	解析方法
	8.5.	RSI システム GPS と高精度 GPS の位置情報取得結果の比較
9.	ラドン	∕除去手法のシステム化
	9.1.	ラドン子孫核種
	9.2.	ラドン弁別手法の理論
	9.3.	パラメータ (GI および RI) の決定101
	9.4.	GIの高度補正方法103
	9.5.	80 km 圏外データへの適用104
	9.6.	従来手法の評価109
10.	今後0)課題112
11.	まとめ	5
謝辞	ž	
参考	支献	

Table list

Table 2-1	航空機モニタリングの経緯	6
Table 2-2	航空機モニタリングに関わる技術開発の経緯	9
Table 3-1	使用したヘリコプターと RSI システムのリスト	13
Table 3-2	ポイントソースによる機体の遮蔽状況の比較	4
Table 4-1	キャリブレーションフライトの一覧	24
Table 4-2	機体とシステムの組み合わせと自己汚染による計数率および CR-index	31
Table 4-3	使用したパラメータのまとめ	33
Table 4-4	2017 年度に取得した AF データー覧 5	33
Table 4-5	2017 年度に取得した CD データー覧 5	38
Table 4-6	BG-index 一覧	1
Table 4-7	RSI システムの検出下限値	4
Table 4-8	使用した減弱係数 (m ⁻¹) のまとめ	50
Table 6-1	森林部および市街地部における空間線量率の比較	19
Table 8-1	使用した受信機の比較	37
Table 8-2	宇宙線寄与係数一覧	<i>)</i> 1
Table 8-3	高度補正係数(AF)一覧	<i>)</i> 1
Table 8-4	線量率換算係数(CD)一覧	<i>)</i> 2
Table 9-1	ラドン子孫核種の放出するγ線	99

Figure list

Fig.	2-1 航空機モニタリングの実績	7
Fig.	3-1 RSI システムのブロック図	. 10
Fig.	3-2 RSI システムの写真	11
Fig.	3-3 機底に燃料タンクのない機体一覧	. 12
Fig.	3-4 線源試験イメージ	. 14
Fig.	3-5 RSI システムの半値幅および Gain の変動 (RSI 1)	. 16
Fig.	3-6 RSI システムの半値幅および Gain の変動 (RSI 2)	. 17
Fig.	4-1 対地高度と空間線量率の関係	. 19
Fig.	4-2 均一無限平板線源を上空で測定した場合の検出器の積算計数に対する線源位置の関係.	. 19
Fig.	4-3 均一無限平板線源を上空で測定した場合の検出器の線源位置ごとの計数の割合	. 20
Fig.	4-4 上空からの測定イメージ	. 20
Fig.	4-5 フライトイメージ	. 21
Fig.	4-6 予定したフライトの測線	. 22
Fig.	4-7 テストラインフライトのイメージ	. 25
Fig.	4-8 テストラインの場所	. 25
Fig.	4-9 テストポイントフライトのイメージ	. 26
Fig.	4-10 テストポイントの場所	. 27
Fig.	4-11 宇宙線フライトのイメージ	. 28
Fig.	4-12 Rn 影響フライトおよび BG フライトのイメージ	. 28
Fig.	4-13 天然核種フライトの測線とオーバーラップフライト場所	. 28
Fig.	4-14 解析のフロー	. 29
Fig.	4-15 RSI システムにおける地上で取得したγ線スペクトルと海上でのスペクトル例	. 31
Fig.	4-16 海抜高度と 2,800 keV 以上の計数率の関係の例	. 31
Fig.	4-17 対地高度と計数率の関係例	. 32
Fig.	4-18 地上測定データ	. 35
Fig.	4-19 ヘリコプターの機種とオーバーラップフライトにおける計数率の関係	. 37
Fig.	4-20 放射性セシウムの計数率の算出イメージ	. 40
Fig.	4-21 BG-index の算出例	. 40
Fig.	4-22 重量緩衝深度と空間線量率-放射能換算係数の関係	. 42
Fig.	4-23 IDW に入力するパラメータとマップの関係	. 46
Fig.	4-24 地上の測線上における空間線量率測定結果との比較	. 48
Fig.	4-25 地上のランダムな位置における空間線量率測定結果との比較	. 48
Fig.	4-26 地上における in-situ Ge 測定結果との比較	. 48
Fig.	4-27 関数適合法を用いた ¹³⁴ Cs と ⁴⁰ K の弁別	. 50
Fig.	4-28 テストポイントの地上の空間線量率と空間線量率換算係数 (CD)の関係	. 51
Fig.	4-29 福島第一原子力発電所周辺の天然の空間線量率マップの作成例	. 51

Fig. 4-30 航空機モニタリングによる天然核種由来の空間線量率と in-situ Ge 半導体	検出器で得ら
れた天然核種由来の放射空間線量率の比較	52
Fig. 5-1 第 12 次モニタリングにおける空間線量率マップ	
Fig. 5-2 第 12 次モニタリングにおける放射性セシウム沈着量マップ	55
Fig. 5-3 第 12 次モニタリングにおける ¹³⁷ Cs 沈着量マップ	56
Fig. 5-4 第 12 次モニタリングにおける ¹³⁴ Cs 沈着量マップ	
Fig. 5-5 東日本第8次モニタリングにおける空間線量率マップ	59
Fig. 5-6 東日本第8次モニタリングにおける放射性セシウム沈着量マップ	60
Fig. 5-7 東日本第8次モニタリングにおける ¹³⁷ Cs 沈着量マップ	61
Fig. 5-8 東日本第8次モニタリングにおける ¹³⁴ Cs沈着量マップ	
Fig. 5-9 東日本第8次モニタリングと第12次モニタリングにおける空間線量率マッ	プ 63
Fig. 5-10 東日本第8次モニタリングと第12次モニタリングにおける放射性セシウ.	ム沈着量マッ
プ	
Fig. 5-11 東日本第8次モニタリングと第12次モニタリングにおける ¹³⁷ Cs 沈着量~	マップ 65
Fig. 5-12 東日本第8次モニタリングと第12次モニタリングにおける ¹³⁴ Cs 沈着量~	マップ 66
Fig. 5-13 東日本第8次モニタリングと第12次モニタリングにおける天然核種由来の	の空間線量率
マップ	
Fig. 5-14 測定年度における天然放射性核種による空間線量率マップの比較	68
Fig. 6-1 旧避難指示区域における過去の空間線量率マップの比較	
Fig. 6-2 発電所から 80km 圏内における第4次モニタリングおよび第12次モニタリ	ングの空間線
量率測定結果の比較	
Fig. 6-3 旧避難指示区域における第4次モニタリングおよび第12次モニタリングの	空間線量率74
Fig. 6-4 旧避難指示区域における第4次モニタリングおよび第12次モニタリングの	放射性セシウ
۸	
Fig. 6-5 航空機モニタリングによる旧避難指示区域内の空間線量率の変化傾向	
Fig. 6-6 航空機モニタリングによる旧避難指示区域内の ¹³⁷ Cs 沈着量の変化傾向	
Fig. 6-7 事故からの経過日数と重量緩衝深度の関係	
Fig. 6-8 発電所から 80km 圏内における土地利用図	
Fig. 6-9 森林部および市街地における減衰率の比較	
Fig. 7-1 システム全体のフロー	81
Fig. 7-2 地形データ抽出 GUI	
Fig. 7-3 DEM データの抽出結果	83
Fig. 7-4 PHITS 入力ファイル作成 GUI	
Fig. 7-5 PHITS 上の計算体系	
Fig. 7-6 DEM を変換して得られる TIN 及び三角ポリゴン	
Fig. 7-7 三角ポリゴン頂点座標の出力例	
Fig. 7-8 PHITS 出力データ抽出 GUI	
Fig. 8-1 GPS の接続図と外観	

Fig.	8-2 データマッチングのフロー図	88
Fig.	8-3 高精度 GPS による航跡図(測線上のみ)	89
Fig.	8-4 2017/11/10 宇宙線フライトにおける RSI 内蔵型 GPS データの異常	93
Fig.	8-5 高精度 GPS データを用いた空間線量率マップと比画像	95
Fig.	8-6 RSI 由来の位置情報で解析した空間線量率と高精度 GPS 由来の位置情報で解析した空間	訂
	線量率の比較	96
Fig.	8-7 微地形図と線量の比の重ね合わせ図	96
Fig.	8-8 測線フライト中の飛行高度、DEM、PDOPの確認図	97
Fig.	8-9 飛行中の GPS 衛星受信状況のイメージ	97
Fig.	9-1 ウラン系列およびトリウム系列	98
Fig.	9-2 ラドン用航空機モニタリング機器とヘリコプターへの搭載状況 1	00
Fig.	9-3 空気中のラドン子孫核種と地上からの放射線のイメージ1	01
Fig.	9-4 陸上における NaI RSI システムの計数率と LaBr RSI システムの計数率の関係1	02
Fig.	9-5 陸上における NaI RSI システムの計数率と LaBr RSI システムの計数率の関係1	02
Fig.	9-6 計算体系のイメージ1	03
Fig.	9-7 計算体系のベンチマーク 1	04
Fig.	9-8 シミュレーションによる測定高度と GI の関係1	04
Fig.	9-9 ラドン影響弁別手法適用後の東日本 8 次の空間線量率マップ1	06
Fig.	9-10 東日本 8 次の測定結果から計算した空気中のラドン子孫核種の NaI RSI システムで検	出
	された計数率マップ1	07
Fig.	9-11 ラドン影響弁別後の地上測定データとの比較(東日本8次) 1	08
Fig.	9-12 従来手法とラドン弁別手法の比較1	10
Fig.	9-13 Rn 影響フライトから求めた NaI RSI システムのバックグラウンド計数と同日にフライ	,
	トしたデータにラドン弁別手法を適用し求めたラドン子孫核種の計数率の平均値の比較1	.11

1. はじめに

2011 年 3 月 11 日の東北地方太平洋沖地震に起因して、東京電力福島第一原子力発電所事故 (以下、福島原子力発電所事故)が発生し、周辺環境に放射性物質が広く拡散したため、その影 響を評価することが急務となった。短時間で広域のモニタリングを実施する方法として、有人 のヘリコプターを用いた航空機モニタリング (Aerial Radiation Monitoring) が挙げられる。航空 機モニタリングによる放射線の測定マッピングは、1979 年に発生した米国スリーマイル島(以 下、スリーマイル島)の事故や 1986 年に発生したチェルノブイリ原子力発電所事故を契機と し、環境中の地表に沈着した人工の放射性核種を迅速に検出するための手法として、ウラン探 査の技術をベースに開発されてきた¹⁾。現在、米国ではエネルギー省(以下、DOE)を中心に多 数の航空機モニタリングの機器が所有されており、核実験場等の計測等で培った経験を基に緊 急時における運用方法が整備されている^{2.3)}。また、欧州ではチェルノブイリ原子力発電所事故 後、スコットランド大学連合環境放射能研究所(Scottish Universities Environmental Research Centre: SUERC)を中心に、各国で運用されている航空機モニタリングのシステムを一か所に集 め比較測定を実施することにより、データフォーマットや解析手法の標準化を行っている⁴⁾。

我が国でも航空機モニタリングは、1979年に起きたスリーマイル島原子力発電所事故以来、 旧日本原子力研究所(国立研究開発法人日本原子力研究開発機構)(以下、原子力機構)を中心 に開発が進められてきた。旧日本原子力研究所は、1980年から5年間にわたって航空機γ線サ ーベイシステム (Aerial Radiological Survey and Assessment System; ARSAS)の開発を行い、基本 的な航空機サーベイの方法を確立した^{5,6}。また、原子力災害時における空気中の放射性プルー ムの評価を目的とし、ガス状の放射性物質を航空機モニタリングで測定する際の換算係数をシ ミュレーション計算から求める研究を行った⁷⁾。その後、航空機モニタリングの技術は、公益 財団法人原子力安全技術センター(以下、NUSTEC)に引き継がれ、原子力防災における放射線 分布を早期に計測するツールとして整備されてきた⁸⁾。しかしながら実態としては、福島原子 力発電所事故当時、我が国において、航空機モニタリングは指針⁹⁾で原子力防災時に実施する ように位置づけられてはいたものの、今回のような広範囲の測定に対応できるデータ取得方法

福島原子力発電所事故直後、航空機モニタリングは DOE と文部科学省により開始された¹⁰⁻¹²⁾。航空機モニタリングの手法については、原子力機構をはじめとした航空機モニタリングの 経験のある研究機関や企業などが集結し、DOE の手法をベースに事故の状況や急峻な地形が多 いという日本独特の環境を加味して最適化を行ってきた。特に、地上高さ1mにおける空間線 量率や放射性セシウムの沈着量等の地上値への換算パラメータについては、実際にデータを取 得しつつ評価する必要があったため、得られた結果を基に考察し、最適化を行ってきた。また、 バックグラウンドとなる天然の放射線との識別方法や地上の線量に換算するパラメータの設定 には、試行錯誤を重ねてきた^{13,14)}。福島原子力発電所事故後に行った航空機モニタリングは、 我が国初の大規模な原子力災害における日本全域の航空機モニタリングを行った結果であり、 作成した汚染マップは避難指示区域設定の基礎資料となっている他、様々なメディアや研究に 活用されている¹⁵⁾。さらに、高度な解析例として、鳥居ら^{16,17)}は DOE が事故直後に実施した

1

航空機モニタリングデータのγ線スペクトルをコベル法により再解析し、得られた¹³¹Iのピー ク面積からモンテカルロ計算コードにより沈着量に換算する手法を開発した。また、事故直後 に実施されていた東京電力福島第一原子力発電所(以下、発電所)周辺の海上における航空機 モニタリングデータを再解析し、事故直後の海上における¹³¹Iや放射性セシウムの降下量マッ プを再構築し、シミュレーションと比較した例も報告されている¹⁸⁾。いずれの例も、福島原子 力発電所事故後における航空機モニタリングによるデータ取得の有効性および得られる情報量 の多さを示している。

福島原子力発電所事故から7年以上経過した現在では、放射性物質の環境中における移行状況の解明が必要となっており、継続的な航空機モニタリングが望まれている。航空機モニタリング事業は当初、文部科学省事業であったが、2013年度に原子力規制庁(以下、規制庁)に移管されて定期的に実施されており、その結果は規制庁のHPで随時公開されている¹⁹。

ここでは、2017年度に行われた、福島県およびその近隣県における航空機モニタリングの結果について報告する。また、通常のモニタリングの他に更なる高精度化を目的とし、地形補正 手法についてシステム化し、補正前後での精度変化について考察を加えた。また、昨年度に構築した大気中のラドンとの弁別手法のシステムを用いて線量率マップの作成を試みた。

2. 航空機モニタリングの経緯

·航空機モニタリングの一連のスケジュールと実績について Table 2-1 および Fig. 2-1 に示す。 航空機モニタリングは、2011 年 3 月 25 日に文部科学省(以下、文科省)によりプレス発表さ れた「文部科学省航空機モニタリング行動計画²⁰⁾」に則り、2011年4月6日から DOE と文科 省 (測定:NUSTEC) により「第1次モニタリング」として発電所から 80 km 圏内モニタリン グを開始した。また、2011 年 5 月 18 日から「第 2 次モニタリング」として発電所 80-100 km 圏を実施した。その後、2011年5月31日に開始された「第3次モニタリング」からは、文科 省が主体として実施することになり原子力機構が加わって、発電所から 80km 圏内を実施した。 さらに、100 km 圏外にも放射性物質が拡散していることが予想されたため、2011 年 6 月 22 日 から福島周辺県の宮城県、栃木県、茨城県を対象に実施した後、2011年8月2日から、文科省 委託事業である「広域環境モニタリングのための航空機を用いた放射性物質拡散状況調査」と して、原子力機構が主体となり東日本全域の航空機モニタリング「東日本第1次モニタリング」 を実施した。その後、発電所から 80km 圏内を 2011 年 10 月 22 日から「第4次モニタリング」 として実施した。また、文科省委託事業を拡大する形で、2012年1月30日からは、北海道か ら沖縄までの上記以外の地域における航空機モニタリング「西日本・北海道モニタリング」を 実施した。2012年2月6日からは、「警戒区域および計画的避難区域における航空機モニタリ ング (第4.5次)」として実施した。

2012 年度(平成 24 年度)は、それまでのデータに基づき、福島原子力発電所事故の影響が見 られる地域に限定し、モニタリングを継続した。空間線量率の比較的高い場所(0.2 µ Sv/h 以上) で発電所から 80 km 圏内を除く地域を対象に、2012 年 4 月 2 日から「東日本第 2 次モニタリン グ」を 2012 年 10 月 31 日から「東日本第 3 次モニタリング」を実施した。80 km 圏内について は、2012 年 6 月 22 日および 11 月 2 日から「第 5 次モニタリング」、「第 6 次モニタリング」を それぞれ実施した。さらに、2013 年 3 月 4 日には、「警戒区域および避難指示区域における航 空機モニタリング(第 6.5 次)」を実施した。

2013 年度 (平成 25 年度) は、事業主体が規制庁に移管され、80 km 圏内について 2013 年 8 月 27 日および 2013 年 11 月 2 日から「第 7 次モニタリング」および「第 8 次モニタリング」を 実施した。また、2013 年 9 月 3 日から空間線量率の比較的高い場所(0.2 µ Sv/h 以上)で発電 所から 80 km 圏内を除く地域を対象に「東日本第 4 次モニタリング」を実施した。平成 25 年 度の結果については、眞田ら(2014)²¹⁾ に詳しく報告されている。

2014 年度(平成 26 年度)は、80 km 圏内について 2014 年 9 月 1 日から「第 9 次モニタリン グ」を実施した。また、2014 年 9 月 21 日より発電所から 80 km 圏内を除く前年度と同地域を 対象に「東日本第 5 次モニタリング」を実施した。平成 26 年度の結果については、眞田ら(2015)²²⁾ に詳しく報告されている。

2015 年度(平成 27 年度) については、80 km 圏内について 2015 年 9 月 12 日から「第 10 次 モニタリング」を実施した。また、2015 年 10 月 2 日から発電所から 80 km 圏内を除く前年度 と同地域を対象に「東日本第 6 次モニタリング」を実施した。さらに、別事業においてバック グラウンド空間線量率の把握を目的として、九州電力川内原子力発電所周辺のモニタリングを 実施した。平成 27 年度の結果については、眞田ら(2016)²³⁾ に詳しく報告されている。

2016年度(平成28年度)については、80km 圏内について2016年9月14日から「第11次 モニタリング」を実施した。また、2016年10月15日から発電所から80km 圏内を除く前年度 と同地域を対象に「東日本第7次モニタリング」を実施した。さらに、別事業においてバック グラウンド空間線量率の把握を目的として、関西電力大飯原子力発電および高浜原子力発電所 周辺ならびに四国電力伊方原子力発電所周辺のモニタリングを実施した。平成28年度の結果 については、眞田ら(2017)²⁴に詳しく報告されている。

2017 年度(平成 29 年度)については、80 km 圏内について 2017 年 9 月 9 日から「第 12 次 モニタリング」を実施した。また、2017 年 9 月 29 日から発電所から 80 km 圏内を除く前年度 と同地域を対象に「東日本第 8 次モニタリング」を実施した。さらに、別事業においてバック グラウンド空間線量率の把握を目的として、北海道電力泊発電所、東京電力柏崎刈羽原子力発 電所ならびに九州電力玄海原子力発電所周辺のモニタリングを実施した。このように、これま で本事業では、日本全域の汚染分布全体像を示すとともに、影響の大きい地域については継続 的に測定するなど、信頼できるデータを提供してきた。

これらの定常的なモニタリングと並行して、関連する技術開発を実施してきた。Table 2-2 に 航空機モニタリングに関連する技術開発の経緯について示す。2011 年度は基本的な航空機モニ タリングの手法を確立し、2012年度はその手法をルーチン的に解析できるシステムを開発した。 また、航空機モニタリングの換算手法は地表面が平面で空間線量率が一定と仮定しているため、 山や谷などの地形が複雑な場所での精度が懸念されていたことから、地上の勾配を評価できる ように 10 m メッシュの数値標高モデル (DEM: Digital Elevation Model) データの抽出ツールを 開発した。開発したツールは、測定場所の直下に降ろした直線から45°の角度に降ろした直線 と地表の交点内に含まれる DEM データを抽出することができ、測定場所の平均的な地表の高 度を知ることができる。これにより、測定場所の地表面の勾配について評価できるようになっ た。2013 年度には、発電所から 80 km 圏内の谷や山地形等の特徴的な地形の上空から放射線の 計測データを取得し、測定場所の地形と航空機モニタリングの精度について基礎データを取得 した。2014年度には、取得されるγ線スペクトルデータに関数フィッティング法を適用するこ とにより、今まで弁別が難しかった¹³⁴Cs 起源の1,365 keV と⁴⁰K 起源の1,461 keV を弁別する 手法を開発した。本手法は、原子力発電所事故直後等の複数のγ線放出核種の評価等に応用可 能である。また、同一の場所において測定高度の異なるデータと地上測定値と比較することに より、データの信頼性を評価した。2015年度には、課題となっていた空気中のラドン子孫核種 の影響を減算するため、専用の空気中ラドン子孫核種減算用の検出器 (LaBr3:Ce シンチレーシ ョン検出器)を導入し、地表からの放射線と空気中からの放射線の測定されるレスポンスの差 を利用し、弁別測定する基礎的な手法を開発した。開発した手法については、2016年度に既存 の航空機モニタリング解析システムに組み込むとともに、80 km 圏外のデータに適用した。ま た、2015年度には、積雪の前後において、放射線計測とともにレーザー測量および写真測量デ ータを積雪の前後で取得し、積雪による放射線の減衰係数を評価した²⁵⁾。この手法は、事故直 後に積雪があり放射線が遮蔽された場合においても一定の精度で航空機モニタリングが可能に なる。2016年には、近年、精度が向上している最新の全球測位衛星システム(以下、GNSS)を

4

用いて航空機モニタリングデータの取得と同時に位置データを取得し、既存の GNSS の性能を 比較評価するとともに、地上の空間線量率への換算に与える位置情報の精度について評価した。 今年度は、Ishizaki et al. (2017)²⁶⁾が開発した地形の勾配を詳細に補正する手法を広い範囲の 航空機モニタリングに適用できるようにシステム化した。

Table 2-1 航空機モニタリングの経緯

モニタリング名	測定場所	測定実施機関	解析実施機関	測定実施日	結果公表日
第1次モニタリング	発電所から80km圏内	DOE: 60 km圏内 NUSTEC: 60-80 km圏内	DOE	2011/4/6~4/29	2011/5/6
第2次モニタリング	発電所から80-100 km圏内	NUSTEC	NUSTEC	2011/5/18~5/26	2011/6/16
第3次モニタリング	発電所から80km圏内	JAEA, NUSTEC: 40 km圏内 NUSTEC: 40-80 km圏内	JAEA, NUSTEC	2011/5/31~7/2	2011/7/8
東日本第1次モニタリング	青森→福井までの東日本 (2次, 3次実施部分除く)	JAEA (NUSTEC, OYO)	JAEA (NUSTEC, OYO)	2011/6/22~10/20	随時公表
第4次モニタリング	発電所から80km圏内	JAEA, NUSTEC: 40 km圏内 NUSTEC: 40-80 km圏内	JAEA, NUSTEC	2011/10/22~11/5	2011/12/16
西日本、北海道モニタリング	近畿~沖縄、北海道	JAEA (NUSTEC, OYO)	JAEA (NUSTEC, OYO)	2012/1/30~5/31	随時公表
警戒区域及び計画的避難区域に おける航空機モニタリング(4.5次)	警戒区域及び計画的避難 区域	NUSTEC	JAEA, NUSTEC	2012/2/6~2/10	2012/2/24
東日本第2次モニタリング	線量率の比較的高い場所 (0.2 µSv/h以上)	JAEA (NUSTEC, OYO)	JAEA (NUSTEC, OYO)	2012/4/2~5/7	2012/9/28
第5次モニタリング	発電所から80km圏内	JCAC(OYO)	JCAC(NUSTEC)	2012/6/22~6/28	2012/9/28
第6次モニタリング	発電所から80km圏内	JCAC(OYO)	JCAC(NUSTEC)	2012/10/31~11/16	2013/3/1
東日本第3次モニタリング	線量率の比較的高い場所 (0.2 µSv/h以上)	NUSTEC	JAEA	2012/10/31~12/28	2013/3/1
警戒区域及び避難指示区域にお ける航空機モニタリング(6.5次)	警戒区域及び避難指示区域	JCAC(NUSTEC)	JCAC(NUSTEC)	2013/3/4~3/11	2013/5/13
第7次モニタリング	発電所から80km圏内	JAEA (OYO)	JAEA (OYO)	2013/8/27~9/28	2013/12/25
東日本第4次モニタリング	線量率の比較的高い場所 (0.2 µSv/h以上)	JAEA (OYO)	JAEA (OYO)	2013/9/3~11/4	2014/3/7
第8次モニタリング	発電所から80km圏内	JAEA (OYO)	JAEA (OYO)	2013/11/2~11/19	2014/3/7
 第9次モニタリング	発電所から80km圏内	JAEA (OYO)	JAEA (OYO)	2014/9/1~9/20	2015/2/13
東日本第5次モニタリング	線量率の比較的高い場所 (0.2 µSv/h以上)	JAEA (OYO)	JAEA (OYO)	2014/9/21~11/7	2015/2/13
第10次モニタリング	発電所から80km圏内	JAEA (OYO)	JAEA (OYO)	2015/9/12~9/30	2016/2/2
東日本第6次モニタリング	線量率の比較的高い場所 (0.2 µSv/h以上)	JAEA (OYO)	JAEA (OYO)	2015/10/2~11/4	2016/2/2
H27_BGモニタリング	川内原子力発電所から80km 圏内	JAEA	JAEA	2016/2/1~2/7	-
H28_BGモニタリング(1)	 大飯・高浜発電所から80km 圏内	JAEA (OYO)	JAEA	2016/7/20~8/1	-
第11次モニタリング	発電所から80km圏内	JAEA (OYO)	JAEA (OYO)	2016/9/14~10/15	2017/2/13
東日本第7次モニタリング	線量率の比較的高い場所 (0.2 µSv/h以上)	JAEA (OYO)	JAEA (OYO)	2016/10/15~11/18	2017/2/13
H28_BGモニタリング(2)	伊方発電所から80km圏内	JAEA (OYO)	JAEA	2016/11/29~12/11	-
H29_BGモニタリング(1)	泊発電所から80km圏内	JAEA (OYO)	JAEA	2017/7/24~8/2	-
H28_BGモニタリング(2)	柏崎刈羽原子力発電所から 80km圏内	JAEA (OYO)	JAEA	2017/7/26~8/10 2017/9/30~10/11	-
第12次モニタリング	発電所から80km圏内	JAEA (OYO)	JAEA (OYO)	2017/9/9~9/25	2018/2/20
東日本第8次モニタリング	線量率の比較的高い場所 (0.2 µSv/h以上)	JAEA (OYO)	JAEA (OYO)	2017/9/29~11/16	2018/2/20
H29_BGモニタリング(3)	玄海原子力発電所から80km 圏内	JAEA (OYO)	JAEA	2017/11/28~12/5	-

DOE:米国エネルギー省、JAEA:(国研)日本原子力研究開発機構、NUSTEC:(公財)原子力安全技術センター OYO:応用地質株式会社、JCAC:(公財)日本分析センター

Fig. 2-1 航空機モニタリングの実績

Table 2-2 航空機モニタリングに関わる技術開発の経緯

年度 (和暦)	技術開発項目	開発成果
2011 (H23)	基本的な航空機モニタリング 解析手法の確立	地上への換算パラメータの最適化等基本的な航空機モニタリングの解析手法を確立した。
2012 (H24)	航空機モニタリング解析シス テムの開発	前年度開発した手法をルーチン的に開発できるシステムを構築した。
	DEM データ抽出ツールの開 発	航空機による測定範囲の標高データを抽出できるツールを開発した。これにより、放射線の測定範囲内の地形の勾配が評価可能となった。
2013 (H25)	地形の影響調査	谷や山地形等の特徴的な地形の上空から放射線の計測データを取得し、DEM データ抽出ツールを用いて測定結果に与え る影響を評価した。
2014 (H26)	地中の天然起源の放射性核 種の弁別評価手法の確立	スペクトルピークの関数フィッティングにより、弁別できなかった ¹³⁴ Cs 起源の 1,365 keV と ⁴⁰ K 起源の 1,461 keV を弁別す る手法を開発した。地上の天然の放射性核種起源の空間線量率分布を評価可能となった。
	フライト高度による測定精度 の評価	フライトの高度を変化させてデータを取得し、地上測定値と比較することにより、データの信頼性を評価した。
2015 (H27)	空気中ラドン子孫核種減算用 検出器の導入	空気中ラドン子孫核種の影響を評価するための LaBr3(Ce)検出器を導入し、データを取得して基礎的な手法を確立した。
	積雪の影響評価手法の開発	放射線計測とともにレーザー測量および写真測量データを積雪の前後で取得し、積雪による放射線の減衰係数を評価した。
2016 (H28)	空気中ラドン子孫核種減算シ ステムの航空機モニタリング 解析システムへの組み込み	前年度導入した専用の検出器からのデータを利用した空気中ラドン子孫核種減算システムを構築し、既存の航空機モニタリ ング解析システムに組み込むとともに、80 km 圏外のデータに適用した。
	GPS の精度評価	近年、精度が向上している最新の GNSS を用いて航空機モニタリングデータの取得と同時にデータを取得し、既存の GPS の性能を比較評価するとともに、地上の空間線量率への換算に与える位置情報の精度について評価した。
2017 (H29)	地形補正手法の高度化	lshizaki et al. (2017) ²⁶⁾ が開発した地形の勾配を詳細に補正する手法を広い範囲の航空機モニタリングに適用できるよう にシステム化した。

3. 測定システムとヘリコプター

3.1. 航空機モニタリングシステム

一般的に、航空機モニタリングシステム (Aerial Radiation Monitoring System: ARMS) には、 大型の NaI シンチレーション検出器を用いたスペクトル測定型の放射線検出器の情報と GPS (Global Positioning System, 全地球測位網) による位置情報をリンクしてデータ保存するシステ ムが用いられる。

今回のモニタリングで使用したシステム(以下、RSIシステム)は、事故当時にDOEにより 行われた航空機モニタリングで用いられたシステムと同タイプであり、Radiation Solution Inc. (RSI, Canada)製の機内に装着するタイプである。RSIシステムのブロック図をFig. 3-1 に示し、 外観をFig. 3-2 に示す。検出部(Detector)には、2"x4"x16"のNaIシンチレーション検出器 3本を組み込んだ検出器のユニットを2台使用している(検出器容量合計:12.6 L)。検出器で 計測した1,024 chのγ線のスペクトルは1秒ごとに同期するGPSによる位置データとともに、 RS701と呼ばれる検出器上部に取り付けてあるデータ収集装置に保存される。検出器2台のデ ータはRS501という装置で統合される。RS501はPCと接続でき、PCにインストールされてい る専用のソフトウエア(RadAssist)を使用することによってGPSによる位置情報やγ線の計数 率情報をリアルタイムに確認できる。また、全体は外付けのバッテリーで駆動し、完全充電で 5時間の稼働が可能である。以下、福島およびその周辺県で使用したRSIシステムは2セット あるため、それぞれRSI1およびRSI2と区別する。

Fig. 3-1 RSI システムのブロック図

Fig. 3-2 RSI システムの写真

3.2. ヘリコプターの選定

RSI システムは、機内に搭載するタイプであるため、機体 (ヘリコプター) を選ばないという メリットはあるが、ヘリコプターの機底に燃料タンクがある場合、燃料タンクの材料および燃 料による放射線の遮蔽を無視できず評価が難しくなる。そこで、その評価に伴う誤差の導入を 避けるため、RSI システムを使用できる機体は機底に燃料タンクのない機種に限定した。選定 した機体について、Fig.3-3 に示す。また、2012 年以降使用した機体と RSI システムの組み合わ せを Table 3-1 に示す。今年度は、機体繰りの都合から、Bell 430、Bell 412 を使用した。

Bell 430 ベル・ヘリコプター・テキストロン社製

Bell 412 ベル・ヘリコプター・テキストロン社製

AS 332 アエロスパシアル社製

S 76 シコルスキー・エアクラフト社製

Fig. 3-3 機底に燃料タンクのない機体一覧

		モニタリング期間	システム搭載へリコプター							
年度	モニタリング名		RSI-1		RSI-2		RSI-3		RSI-4	
	第5次航空機モニタリング	2012/6/22 ~ 6/28	Bell 430 (JA05TV)	NNK	AS 332 (JA9660)	NNK				
	第6次航空機モニタリング	2012/10/31 ~ 11/16	Bell 430 (JA6900)	AAC						
2012	東日本3次モニタリング	2012/10/31 ~ 12/28	Bell 412 (JA6767)	NNK	Bell 430 (JA05TV)	NNK				
	警戒区域及び避難指示区域における 航空機モニタリング(6.5次)	2013/3/4 ~ 3/11	Bell 412 (JA6767)	NNK						
			Bell 430 (JA6900)	AAC	Bell 412 (JA6928)	AAC				
	第7次航空機モニタリング	2013/8/27 ~ 9/28	Bell 412 (JA6767)	NNK	Bell 430 (JA05TV)	NNK				
2013			Bell 430 (JA6900)	AAC	Bell 430 (JA05TV)	NNK				
	東日本4次モニタリング	2013/9/3 ~ 11/4	Bell 412 (JA6767)	NNK						
	第8次航空機モニタリング	2013/11/2 ~ 11/19	Bell 430 (JA6900)	AAC	Bell 430 (JA05TV)	NNK				
	第9次航空機モニタリング	2014/9/1 ~ 9/20	Bell430 (JA05TV)	NNK	Bell412 (JA6928)	AAC				
2014			Bell430 (JA05TV)	NNK	Bell412 (JA6767)	NNK				
	東日本5次モニタリング	2014/9/21 ~ 11/7			Bell412 (JA6928)	AAC				
	第10次航空機モニタリング	2015/9/12 ~ 9/30	Bell430 (JA05TV)	NNK	Bell412 (JA6928)	AAC				
00/5		2015/10/2 ~11/4	Bell430 (JA05TV)	NNK	Bell412 (JA6767)	NNK				
2015	東日平6次モニダリンク				Bell412 (JA6928)	AAC				
	川内原発BGモニタリング	2016/2/1~2/7					Bell412 (JA6928)	AAC		
	大飯・高浜原発BGモニタリング	2016/7/20 ~ 8/1					Bell412 (JA9584)	AAC		
	第11次航空機モニタリング	2016/9/14 ~ 10/15	Bell430 (JA05TV)	NNK	S76 (JA6901)	AAC				
2016			Bell430 (JA05TV)	NIN IIZ	Bell412 (JA6767)	NNK				
	東日平/次モニダリンク	2016/10/15 ~ 11/18		NNK	Bell412 (JA9616)	AAC				
	伊方原発BGモニタリング	2016/11/29 ~ 12/11					Bell430 (JA05TV)	NNK		
	泊原発BGモニタリング	2017/7/24 ~ 8/2					Bell412 (JA6767)	NNK		
	柏崎刈羽原発BGモニタリング	2017/7/26 ~ 8/10 2017/9/30 ~ 10/1							Bell430 (JA05TV)	NNK
2047	第12次航空機モニタリング	2017/9/9 ~ 9/25	Bell430 (JA05TV)	NNK	Bell412 (JA9616)	AAC				
2017	声ㅁ★oồ포르ゟ니ヽ.서	2017/0/20 44/42	Pall420 (14 0570 0	NINUZ	Bell412 (JA6767)	NNK				
	ホ日平0 从てニダリノン	2017/9/29 ~ 11/16	Dell430 (JAUSTV)	ININK	Bell412 (JA9616) Bell412 (JA6928)	AAC				
	玄海原発BGモニタリング	2017/11/28 ~ 12/5			. ,		S76(JA6655)	AAC		
			()内は機体登録番号	₹	AAC:朝日 NNK:中日本	航洋所4 航空所4				

Table 3-1 使用したヘリコプターと RSI システムのリスト

3.3. 線源試験

ヘリコプターは、機底に燃料タンクのない機種を選定しているが、機種によって遮蔽の程度 は異なると考えられる。ここでは、遮蔽効果を把握するためにポイントソース (¹³⁷Cs: 10 MBq)を用いて検出器の計数する計数率を相互比較した。比較結果を Table 3-2 に示す。線源 は、検出器からの距離を固定し (50 cm)、1 分間の計数率で比較した。RSI システムと線源位 置の関係について Fig. 3-4 に示す。

今回使用した機体では、Bell 412 (JA6767)の計数率が14%ほど高かったが、これはBell 412 とBell 430の機体底部の構造の違いによるものと考えられる。機体間の線源試験と比較して高 低差があるものの15%以内に収まっていたため、機体内の検出器の配置位置は妥当であると判 断できる。このように機体の違いや機体が同一であっても、検出器を配置する位置によって若 干遮蔽状況は変わると考えられる。今後も今回のような線源試験を実施し、配置位置を決める のがよい。なお、この遮蔽状況の違いは、地上値への換算パラメータを設定する際に機種ごと でキャリブレーションを実施するため、単独でパラメータとして扱う必要はないが、数値の解 析の際の参考情報となる。

Table 3-2 ポイントソースによる機体の遮蔽状況の比較 (検出器から 50 cm 位置に線源を配置)

NL	- Sustan	ヘロープタ		(2017)計数率	No.1を1に
IN0	o System	ハリコノダー		at 50 cm	規格化
1	RSI-1	Bell430(JA05TV)	NNK	215,500	1.00
2	RSI-2	Bell412(JA9616)	AAC	233,000	1.08
3	RSI-2	Bell412(JA6767)	NNK	246,000	1.14
4	RSI-2	Bell412(JA6928)	AAC	227,000	1.05

Fig. 3-4 線源試験イメージ

3.4. RSI システムの保守

RSI システムの健全性をチェックするため、RSI システムに組み込まれているプログラムに より、フライト前の1日1回、以下の事項を確認した。

- ・RSI システムの接続チェック: データ収集装置 (RS701 および RS501) に表示されるエラーラ ンプチェック
- ・チェックプログラムによる検出器の特性確認(環境中に存在する ²⁰⁸Tl の 2,614 keV のピークの半値幅 (Full Width at Half Maximum: FWHM) と信号増幅回路 (Amplifier: アンプ)の振幅利得 (Gain: ゲイン)をチェック)

ピークの FWHM については、メーカーから 6%以下という保守の推奨値が示されている。日 常の点検で数値を確認し、この推奨値を超えた場合には高圧電源の電圧を変更するなど再調整 を実施した。また、アンプのゲインについては、同様にメーカーから示されている推奨値であ る 0.8 を下回る場合に高圧電源の電圧の再調整を行った。福島およびその周辺県で行ったモニ タリング時における FWHM とアンプのゲインの推移について Fig. 3-5 および Fig. 3-6 に示す。 図は、RSI システムに組み込まれている計 6本の検出器ごとに示している。ピークの FWHM に ついては、概ね 6%以下を推移していることが分かる。また、アンプのゲインは測定日と緩やか な上昇傾向にある。これは、機器の異常ではなく、光電子増倍管の温度特性を反映していると 考えられる。RSI システムには一定期間ごとに自動でゲインを補正する機能があり、この温度 特性はある程度までは補正可能である。また、実際には取得したデータを確認し、エネルギー ピークの位置に変動がないことを確認している。

Fig. 3-5 RSI システムの半値幅および Gain の変動 (RSI 1)

Fig. 3-6 RSI システムの半値幅および Gain の変動 (RSI 2)

4. データ取得および解析方法

4.1. 上空での測定値の地上への換算に関する基本的な考え方

上空から地上の放射線を測定する基本的な考え方は、以下のような仮定に基づいている。

- ・上空で測定されている計数値は、上空を頂点とし対地高度を高さとした円錐の底面部分に 該当する地上の放射線の平均値とする。
- ・測定対象となる地表は、平坦かつ放射線の分布は一様とする。

このような条件における上空で測定されている計数値を考察するため、γ線の遮蔽計算に広 く用いられている点減衰核積分コード QAD-CGGP2R を用いてシミュレーションを行った。線 源は、¹³⁴Cs と¹³⁷Cs が無限平板(実際の計算では、無限相当とした半径 2,000 m×高さ 1 mm) で均一に分布していると仮定し、対地高度と空間線量率の関係を求めた。計算結果について Fig. 4-1 に示す。このように、対地高度 50 m 以上では、空間線量率と対地高度は指数の相関関係に あることがわかる。一方、50 m 以下では、指数の関係から外れる。これは、50 m 以上では地表 面からの放射線が検出器に対し平行入射に近いため、線源からの距離をパラメータとした指数 関数の関係で放射線が減衰するのに対し、50 m 以下では線源への距離がより近くなるため対地 高度が低くなるにつれ影響を受ける線源の範囲が広がり、指数関数の関係から逸脱することが 示唆される。

このように、上空から地上を測定する際には、高度が高くなると地上の対象となる範囲が広 がる。上空における地上からの放射線の到達状況を定量的に理解するために計算コードを用い てシミュレーションを実施した例を示す。計算は、光子・電子挙動シミュレーション用として 実績のあるカスケードモンテカルロ計算コード EGS5 を使用した。まず、EGS5 により、RSI シ ステムの検出器をモデル化した¹³⁾。次に、地上に無限平板の¹³⁷Cs円柱線源を模擬した。モデ ル化した検出器を線源円盤の中心軸上に配置し、線源円盤と検出器の距離を変化させ、検出器 に入射する放射線の計数率を計算した。さらに、同ジオメトリにおいて検出器に到達する放射 線の起源となる線源の位置を計算した。無限平板線源における任意の半径内の放射線が、検出 器で計数される割合を Fig. 4-2 に示す。ここで、検出器と線源の距離は、50、100、300 および 500 m の場合を計算した。航空機モニタリングの基準高度である 300 m から計測した場合、線 源の概ね 300 m の円内の放射線の計数が 80%以上の割合を占めることが分かる。また、検出器 の位置から同軸上の線源位置を中心として、100 m ごとのドーナツ状の面積で分割し、その部 分の放射線が検出器で計数される割合を Fig. 4-3 に示す。線源からの距離は 100、300、500 m の 場合で比較した。高度 300 m の場合を見ると、100~200 m の位置が 30% で最も割合が大きく、 0~100mおよび200~300mは20%程度であった。この割合の違いは計数効率を考慮すると大 きくなく、イメージとしては、対地高度 300 m で測定されている地上の範囲は、対地高度と同 じ 300m を半径とする円内の放射線の平均値と考えて良い。一方、比較として計算した検出器 と線源の距離が 50 m の場合は 80 %を占める線源半径は 120 m、検出器と線源の距離が 100 m の場合は線源半径が200m、500mの場合は線源半径が400mとなる。この傾向はFig.4-1で示 した高度と上空での計数率の関係と矛盾せず、高度が低くなるにつれて高度と測定範囲の半径 の関係が 1:1 から逸脱し、高度と比較して測定範囲が広くなることを示している。飛行する対 地高度が変化することは、地上の測定範囲が変化することになり、上空から測定する不確かさ を考慮すると対地高度は一定でフライトすることが望ましい。実際には、これらの理論や測定 の不確かさを考慮し、対地高度 300 m を目安とし対地高度 150 m から 600 m までのデータを使 用した。なお、この対地高度の逸脱が 1 km 以上に及んだ場合には再フライトによりデータを 再取得した。

以上のことから、航空機によるモニタリングは、飛行する対地高度(300m)と同じ半径(300m)の円内の放射線を飛行方向に向かって移動しながら測定していると説明できる。Fig. 4-4 に 航空機モニタリングの測定イメージを示す。

(半径 2,000 m×高さ1 mmの円柱線源で計算、縦軸は対数目盛)

Fig. 4-2 均一無限平板線源を上空で測定した場合の検出器の積算計数に対する線源位置の関係 (上空での検出器の計数率を100%に規格化し、線源半径由来の計数率の割合を積算)

Fig. 4-3 均一無限平板線源を上空で測定した場合の検出器の線源位置ごとの計数の割合 (上空での検出器の計数率を100%に規格化し、100mごとのドーナツ状の部分由来の計数率の割合)

Fig. 4-4 上空からの測定イメージ

データは、下記のようなフライト条件で取得した。なお、条件は、気象条件や地形の高度勾 配によって若干変化する。フライトイメージを Fig. 4-5 に示す。また、測定データは、1 秒ごと に GPS の位置情報と検出器のγ線のスペクトルを記録した。フライトの予定測線について Fig. 4-6 に示す。以降、本報告書で使用する背景地図は、ArcGIS データコレクションスタンダード パック (ESRI, Co. Ltd.) を使用した。

[フライト条件]

- 速度:160~185 km/h (=86~100 knot)
- 対地高度: 300 m (=1,000 ft)
- 測線間隔

○80 km 圏内 (発電所から3 km 以内を除く)

0.6 km: 避難指示区域(平成 23 年 9 月 30 日時点における避難指示区域:以下、 旧避難指示区域と表記)

0.9 km: 0.2µSv/h 以上の地域

- 1.8 km: その他の地域
- ○80 km 圈外

1.0 km: 0.2 µSv/h 以上の地域

- 3.0 km: その他の地域
- フライトに要した期間

○第12次: 平成29年9月9日~9月25日(のべ49フライト)

○東日本第8次: 平成29年9月29日~11月16日(のべ85フライト)

Fig. 4-5 フライトイメージ

Fig. 4-6 予定したフライトの測線 (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

4.3. 設定パラメータ妥当性確認のためのキャリブレーションフライト方法

上空で取得したデータを、地上1m高さにおける放射線量や地表面の放射性セシウムの沈着 量に換算するためのパラメータについては、2014年度までのデータを基に数値を決定している。 今年度は、決定したパラメータの妥当性を確認する目的で、キャリブレーションフライトを行 った。キャリブレーションフライトの種類と目的について Table 4-1 に示す。

テストラインフライトとは、高度を補正するための実効的な空気減弱係数(Attenuation Factor 以下、AF)を求めるためのフライトである。本フライトは、線量や地形の変化が少ない約3km のラインを設定し、その上空において高度を変化させながら(150、300、450、600、750、900 および1,500m)フライトを実施する。得られたデータは高度ごとに平均化し、高度と計数率の グラフを作成し、指数近似の傾きによって、高度を補正する。テストラインフライトのイメー ジをFig.4-7に示す。また、テストラインとして選定した場所についてFig.4-8に示す。テスト ライン上では25ポイントの地上測定を行っている。

テストポイントフライトとは、半径 1,000 m の範囲内で空間線量率の勾配が小さい場所およ び地形の平坦な地点を選定し、地上の空間線量率を測定した場所の上空をフライトし、基準高 度(300 m)における地上の空間線量率換算係数(Conversion factor of Dose-rate、CD: cps/[µSv/h]) を求めるためのフライトである。テストポイントでは、人手により NaI シンチレーション式サ ーベイメータ(日立製作所製 TCS-172B)を用いて、半径 1,000 m の範囲内で 60 ポイントを目安 に 1 m 高さの空間線量率の測定を行った。Fig. 4-9 にテストポイントフライトのイメージを示 す。また、テストポイントとして選定した場所を Fig. 4-10 に示す。なお、これまでの航空機モ ニタリングの経験から、ホバリングで同一の場所にとどまることは非常に難しいことから、高 度を変えたフライトの相互比較から算出する実効的な空気減弱係数を算出するフライトはテス トラインで実施し、地上で測定した空間線量率と比較する空間線量率換算係数を算出するフラ イトはテストポイントで実施することにしている。

宇宙線フライトとは、宇宙線の影響を差し引くため、海上を 300~2,500 m まで上昇し、デー タを取得するものである。宇宙線フライトのイメージを Fig. 4-11 に示す。フライト場所は、海 上であればどこでもいいので、天候等を見ながら太平洋上の適当な位置で実施する。

Rn 影響フライトとは、空気中に存在するラドン子孫核種の影響を考察するために、決められた場所の上空において対地高度 450~900 m までを直線的に上昇しデータを取得する。また、 BG フライトとは、地上からの放射線の影響のない対地高度 900 m に機体を保ち約2分のフライトを継続し、データを取得することにより機体および検出器のバックグラウンドデータを取得する。BG フライトは、Rn 影響フライトとセットで1日1回実施する。Rn 影響フライトおよび BG フライトのイメージを Fig. 4-12 に示す。

天然核種フライトとは、天然核種のみの場所において対地高度 300 m をフライトすることに より、データを取得しγ線スペクトルから天然核種の影響を差し引くスペクトルインデックス を算出する。本フライトは、過去に使用した実績のない機体について1回実施することとする。 天然核種フライトの場所の例を Fig. 4-13 (左) に示す。

23

オーバーラップフライトとは、異なる機体や RSI システムの組み合わせの相互評価のため、 同じ場所をフライトしデータを比較する。オーバーラップフライトの場所を Fig. 4-13 (中央お よび右) に示す。これらのフライトの中でオーバーラップフライトのみ、実際の解析に使用す るパラメータの取得が目的でなく、機器や機体間の相互評価に使用するものであり、パラメー タの妥当性を検証することを目的としている。

名称	目的	方法	頻度
テストラインフライト	空気減弱係数を算出	指定のテストライン上で	測線 5,000 km ごとに
		高度(150、300、450、	1回実施
		600、750、900 および	
		1,500 m)を変化させてフラ	
		7F	
テストポイントフライト	空間線量率換算係数	指定の地点上で、高度	測線 5,000 km ごとに
	を算出	300 m 高度で 2 分	1回実施
宇宙線フライト	宇宙線の影響を調査	海上を高度 300-2,500 m	1週間1回を目安
		まで上昇	
Rn 影響フライト	ラドンの影響を調査	フライト前に拠点近くの測線	毎日
		上を 450-900 m まで直線	
		的に上昇	
BG フライト	機体のバックグラウンド	高度 900 m を 2 分	毎日
	を調査	(Rn 影響フライト後に実施)	
天然核種フライト	天然核種のみのスペク	Cs の影響のない場所でフ	過去に使用実績がなけ
	トルインデックスを算出	ライト	れば1回
オーバーラップ	機体間のレスポンス	指定場所をフライト	機体と RSI システムの
フライト	補正		組み合わせごとに 1 回

Table 4-1 キャリブレーションフライトの一覧

Test line:線量率、地形の変化が少ない場所

Fig. 4-7 テストラインフライトのイメージ

Test line 1 (岩手県奥州市)

Test line 3 (群馬県みどり市)

Test line 4 (茨城県那珂市)

Test line 5 (栃木県大田原市)

(背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Test line A (福島県須賀川市) Fig. 4-8 テストラインの場所 (2/2)

(背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 4-9 テストポイントフライトのイメージ

Test point 1 (岩手県奥州市)

Test point 4 (茨城県那珂市)

Test point 5 (栃木県大田原市)

Test point D (福島県郡山市)

Test point E(福島県浪江町)

Fig. 4-11 宇宙線フライトのイメージ

Fig. 4-12 Rn 影響フライトおよび BG フライトのイメージ

Fig. 4-13 天然核種フライトの測線とオーバーラップフライト場所 図は左から天然核種フライト測線、中央が 80km 圏内オーバーラップフライト、 右が 80km 圏外オーバーラップフライト場所である。 (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用) 4.4. 解析のフロー

本測定法により計数される放射線は、主に以下の4種類に分けられる。

- ① 放射性セシウムからのy線
- ② 天然の放射性核種からのγ線
- ③ 自己汚染
- (4) 宇宙線

放射性セシウムの影響を測定することが目的であるため、②~④起源の計数率は減算する必要がある。これらを考慮した解析のフローを Fig. 4-14 に示す。なお、本章以降の空間線量率とは、周辺線量当量率 (1 cm 線量当量率) を意味する。

Fig. 4-14 解析のフロー
4.5. 空間線量率への換算方法

上空での計数率から地上への空間線量率へ換算する手順は、大まかに以下の手順となる。

- バックグラウンド:全計数率からバックグラウンド計数率 (自己汚染および宇宙線由 来の計数率) 減算
- ② 高度補正:フライト高度の基準高度からのずれを補正
- ③ 空間線量率への換算:空間線量率換算係数により地上空間線量率に換算
- 以下、上記項目の詳細について述べる。
- 4.5.1.バックグラウンド (自己汚染および宇宙線)

航空機モニタリングにおいて、自己汚染および宇宙線はバックグラウンドとなる。これらの 減算方法について示す。自己汚染については、BGフライトとして実施した地上からの放射線 が届かないと考えられる 900 m 以上のフライト(もしくは海上でフライトした際のデータ: 宇宙線フライト)を用いる。地上で測定したスペクトルと海上で取得したスペクトルの例を Fig. 4-15 に示す。また、平均的な自己汚染の計数率を Table 4-2 に示す。

これまでの経験から海抜高度が上昇すると宇宙線起因の計数率が上昇することが分かっている。宇宙線起因の計数率は、RSIシステムが測定している全エネルギー範囲(50~3,000 keV)で計数されるが、2,614 keVのTI-208 が放出する γ 線の影響により、2,614 keV以下の計数は弁別が難しい。そこで、宇宙線の影響だけを計数していると考えられる 2,800 keV以上の計数に着目した。Fig. 4-16 に海抜高度と宇宙線の計数率の関係例を示す。この例は、沖縄と北海道での海上において、50 m~2,000 m の高度で取得したデータの 2,800 keV 以上の計数率をプロットしたものである。なお、RSIシステムにおいて、3,000 keV 以上の計数は最終チャンネル(1,024 ch)に積算される。このように、海抜高度と計数率は指数の相関関係にあるが、計測する場所や時間帯に影響されない。また、2,800 keV 以上の計数率 (C>2,800 keV)と全計数率(Call)の比(CR-index = Call / C>2,800 keV)は高度に依存せず一定の数値を示すことから、CR-indexを機体と検出器の組み合わせごとに設定した。その後、実際に測定したスペクトルの 2,800 keV 以上の計数率から差し引いた。実測したデータを基に CR-index について Table 4-2 に示す。これらのパラメータを実際の解析に使用しバックグラウンドの減算を行った。

Fig. 4-15 RSI システムにおける地上で取得した 7線スペクトルと海上でのスペクトル例

System	ヘリコプター		自己汚染 計数率	CR-index
RSIシステム1	Bell 430 (JA05TV)	NNK	513	2.93
RSIシステム2	Bell 412 (JA9616)	AAC	495	2.97
	Bell 412 (JA6767)	NNK	482	2.97
	Bell 412 (JA6928)	AAC	566	2.97

Table 4-2 機体とシステムの組み合わせと自己汚染による計数率および CR-index

4.5.2.高度補正

測定点における対地高度の補正を行うために、テストラインであらかじめ取得したデータを 基に、実効的な AF を求めた。高度補正に必要な補正係数は、計算式 [1] を用いて算出できる。

[1]

 $\mathrm{HF} = \exp(\mathrm{AF} \times (H_{sd} - H_a))$

ここで、

HF: 高度補正係数(Height correction Factor: 以下、HF)

H_{sd}: 基準高度 (300 m)

Ha: 対地高度 (GPS 高度-DEM-ジオイド高度)

対地高度の算出には、GPS で記録した楕円対地高度から、公開されている 10 m メッシュの 数値標高モデル(DEM: Digital Elevation Model)²⁷⁾ およびジオイド高度を差し引いて求めた^{*1}。 Fig. 4-17 に対地高度と計数率の関係の例について示す。このように、Microsoft Excel[®]上で指数 関数フィッティングを行い、近似曲線の傾きを AF とした。実際の AF の数値は、2014 年度に 採用した数値を使用した。使用した数値と標準偏差(σ) について Table 4-3 に示す。

なお、2017 年度においても、数値の妥当性および RSI システムの健全性を確認するために、 キャリブレーションデータを取得した。取得したデータについて、Table 4-4 に示す。今回評価 した AF の数値の平均値と採用した数値との差は、Table 4-3 で示した誤差範囲であり、採用し た数値の妥当性を示していると考えられる。

^{*1} GPS で測定される高度は、世界測地系で使用している楕円体表面からの高さになっており、標高 (飛行体の場合は対地高度)を求める場合には、測地学的に定義されている海水面からの高さ (ジオイド高)を差し引 く必要がある。ジオイド高は、地域によって異なるが、日本においては 30~40 m である。

Table 4-3 使用したパラメータのまとめ

(誤差は測定結果の標準偏差(の)

	I	3ell412		Bell430	
	Value		Number of Data	Value	Number of Data
AF (m ⁻¹)	-0.0072 ±	0.00047	21	-0.0072 ± 0.00040	35
CD (cps/µSv/h)	12600 ±	2600	29	12800 ± 2800	65

Table 4-4 2017 年度に取得した AF データー覧

	System			Operarion			AF		
Monitiring No	(Device Serial)	Helicopter	Body No	campany	location	Date	μ(m-1)	R2	
F12th	5045	Bell430	JA05TV	NNK	Sukagawa_TestLine	2017/9/9	-0.00710	0.99960	
F12th	5089	Bell430	JA05TV	NNK	Sukagawa_TestLine	2017/9/24	-0.00702	0.99875	
E8th	5089	Bell430	JA05TV	NNK	Sukagawa_TestLine	2017/10/5	-0.00774	0.99978	
E8th	5089	Bell430	JA05TV	NNK	TestLine5	2017/10/18	-0.00701	0.99972	
E8th	5089	Bell430	JA05TV	NNK	TestLine1	2017/11/1	-0.00659	0.99962	
						Average	-0.00709		
F12th	5043	Bell412	JA9616	AAC	Sukagawa_TestLine	2017/9/9	-0.00756	0.99990	
F12th	5043	Bell412	JA9616	AAC	Sukagawa_TestLine	2017/9/19	-0.00707	0.99888	
E8th	5043	Bell412	JA6767	NNK	TestLine4	2017/9/30	-0.00687	0.99980	
E8th	5043	Bell412	JA6767	NNK	TestLine3	2017/10/18	-0.00482	0.99603	
E8th	5043	Bell412	JA9616	AAC	TestLine5	2017/11/7	-0.00589	0.99678	
E8th	5043	Bell412	JA6928	AAC	TestLine4	2017/11/16	-0.00670	0.99988	
						Average	-0.00649		

*R²: 近似した指数関数曲線の決定係数

F12th: 第12次モニタリング、E8th: 東日本第8次モニタリング

4.5.3.空間線量率への換算

地表面から高さ 1 m における空間線量率に換算するために設定する空間線量率換算係数 (Conversion Dose-rate 以下、CD) は、テストポイントの地上における測定点の平均値とその上 空 300 m をフライトした計数率の平均値の比を取って求めた。RSI システムは、機体の中に搭 載するため、ヘリコプターの機底の遮蔽により、CD は変化すると考えられることから、機体ご とに数値の設定が必要である。実際の数値は、2014 年度決定した数値を使用した。使用した数 値と標準偏差(σ) について Table 4-3 に示す。AF と同様に、2017 年度においても、数値の妥 当性および RSI システムの健全性を確認するために、キャリブレーションデータを取得した。 取得したデータについて、Table 4-5 に示す。また、地上のテストポイントにおける CD 算出の ための地上測定結果について、Fig. 4-18 に示す。なお、ここでいう空間線量率には、サーベイ メータの読み値を比較対象にしているため、天然核種による空間線量率が含まれる。

今回評価した CD の数値の平均値と採用した数値との差は、Table 4-3 で示した誤差範囲であ

り、採用した数値の妥当性を示していると考えられる。また、この数値の違いについてさらに 妥当性を考察するため、Fig. 4-13 (中央および右) に示した同じ測線において Bell 412 と Bell 430 によって対地高度 300 m でフライトを実施し、相対的な効率の比較を行った (オーバーラ ップフライト)。フライトで得た測定値は、実際にフライトした高度の補正を行い、同じ場所 の計数率を比較した。結果を Fig. 4-19 に示す。この計数率の比は、Table 4-3 に示した CD の比 と一致することが望ましい。Table 4-3 に示した CD の比は、Bell 412/Bell 430 で 0.9 となった。 この数値は、Fig. 4-19 に示した近似直線の傾きと概ね等価であり、オーバーラップフライトの 結果も CD の数値の妥当性を支持するものであると考えられる。

Test point 1

Test point 4

Fig. 4-18 地上測定データ

(1/2)

(背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Test point 5

Test point E

Fig. 4-18 地上測定データ

(2/2)

(背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.)を使用)

Fig. 4-19 ヘリコプターの機種とオーバーラップフライトにおける計数率の関係

Manitarian	System			Oneration			Grou	nd data (Nal su	rvey)		AMS data			AGL (m)		<u> </u>
No	(Device	Body No.	Helicopter	Operation	Location	Date	Survey	Stdev	Stdev	AMS data	Stdev	Stdev		Stdev	Stdev	
INO.	Serial)			company			(uSv/h)	(2σ)	(%)	(cps)	(2σ)	(%)	AGE (III)	(2σ: %)	(%)	(cbs[h2v/u])
F12th	5045	JA05TV	Bell430	NNK	TestPoint D	2017/9/9	0.33	0.108	33	5739	604	11	269	12	5	11,800
F12th	5045	JA05TV	Bell430	NNK	TestPoint E	2017/9/9	1.24	1.020	82	20999	6326	30	269	50	19	12,500
F12th	5089	JA05TV	Bell430	NNK	TestPoint D	2017/9/24	0.32	0.108	33	5154	949	18	294	6	2	12,400
F12th	5089	JA05TV	Bell430	NNK	TestPoint E	2017/9/24	1.06	0.967	92	15676	9569	61	290	41	14	12,600
E8th	5089	JA05TV	Bell430	NNK	TestPoint D	2017/10/5	0.33	0.130	39	4705	1222	26	311	25	8	12,600
E8th	5089	JA05TV	Bell430	NNK	TestPoint5	2017/10/18	0.12	0.033	28	2306	279	12	315	25	8	13,900
E8th	5089	JA05TV	Bell430	NNK	TestPoint1	2017/11/1	0.07	0.016	24	1432	89	6	300	13	4	11,400
														Aver	age	12,457
F12th	5043	JA9616	Bell412	AAC	TestPoint D	2017/9/9	0.33	0.126	38	5410	1058	20	275	10	4	11,300
F12th	5043	JA9616	Bell412	AAC	TestPoint E	2017/9/9	1.18	1.021	86	14286	3471	24	292	8	3	10,400
F12th	5043	JA9616	Bell412	AAC	TestPoint D	2017/9/19	0.33	0.108	33	4416	317	7	386	24	6	19,700
F12th	5043	JA9616	Bell412	AAC	TestPoint E	2017/9/19	1.09	0.999	92	13014	6345	49	303	10	3	11,100
E8th	5090	JA6767	Bell412	NNK	TestPoint 4	2017/9/30	0.07	0.025	36	1154	76	7	325	3	1	8,500
E8th	5090	JA6767	Bell412	NNK	TestPoint 3	2017/10/18	0.06	0.017	30	1376	85	6	333	5	2	13,400
E8th	5090	JA9616	Bell412	AAC	TestPoint 5	2017/11/7	0.11	0.033	30	2348	407	17	282	5	2	13,300
E8th	5090	JA6928	Bell412	AAC	TestPoint 4	2017/11/16	0.07	0.031	44	1425	99	7	293	15	5	7,400

Table 4-5 2017 年度に取得した CD データー覧

Average 11,888

* Survey: 地上でのサーベイメータによる測定結果, Stdev: 標準偏差, AMS data: RSIシステムの計数率, AGL: フライト高度

F12th: 第12次モニタリング、E8th: 東日本第8次モニタリング

ここまでに求めたパラメータを用いて空間線量率に換算する方法について以下に示す。また、計算式を式 [2] に示す。

- ① 測定で得られたy線スペクトルから以下の領域の計数率を計算する。
 - (1) 全計数率 (Call)
 - (2) 2,800 keV 以上の計数率 (C_{cos})
- ② 式(2)のように、C_{cos}に CR-index (I_{cos}) をかけて全エネルギーの宇宙線のバックグ ラウンド計数率 (BG_{cos})を計算
- ③ BG フライトで取得したデータを自己汚染による計数率 (BG_{self}) とする
- ④ Call から BGcos と BGself を差し引いた計数率を Cnet とし、CD および HF を用いて 地表 1 m における空間線量率 D を算出

$$D = \frac{C_{net} \times HF}{CD}$$

$$C_{net} = C_{all} - BG_{cos} - BG_{self}$$
[2]

$$BG_{cos} = C_{cos} \cdot I_{cos}$$

4.6. 放射性セシウムの沈着量への換算方法

4.6.1.天然核種の弁別と放射性セシウム起源の計数率の算出

天然核種の弁別方法は、DOE が開発したいわゆる MMGC 法 (Man Made Gross Count) を参 考にした^{13), 21)}。本方法は、天然核種で得られる y 線スペクトルが、放射性セシウムの放出す る y 線を含まない 1,400 から 2,800 keV の計数率と全計数率の比 (BG-index) が一定であるこ とに着目し、機体と検出器の組み合わせごとに、あらかじめ放射性セシウムのない地域をフラ イトしたデータを基に BG-index を設定し、実際のフライトデータの 1,400 から 2,800 keV の計 数率を基に全体の計数率から減算する。BG-index 算出に用いるスペクトルの ROI (Region of Interest) のイメージを Fig. 4-20 に示す。

BG-index の算出例を Fig. 4-21 に示す。本データは、平成 23 年度に関西西部において、1 秒 ごとに測定した y線スペクトルから BG-index を求め、ヒストグラムで表示したものである。 このようにばらつきはあるものの、正規分布に近い形を示す。今回の測定で使用した機体と検 出器の組み合わせで設定した BG-index について Table 4-6 に示す。

これらのパラメータを設定し、放射性セシウムの沈着量の算出手順を以下に示す。また、計 算式を式 [3]に示す。

- ① 測定で得られた y 線スペクトルから 1,400~2,800 keV の計数率 (C_{BG}) を計算する。
- ② C_{BG}に BG-index (I_{BG}) をかけて天然核種起源の計数率 (BG_{nat}) を算出する。

- ③ Cnetから BGnatを差し引き、放射性セシウムのみの計数率 (Ccs) を求める。
- ④ C_{cs} に CD と HF を使用してから放射性セシウムのみの空間線量率 (D_{cs}) を算出する。
- ⑤ 式(3)より、空間線量率に空間線量率-放射能換算係数 (CF, [µSv/h]/[kBq/m²]) を除 して放射性セシウムの沈着量 Rd を求める。

$$Rd = \frac{D_{Cs}}{CF}$$

$$\Xi \Xi \mathcal{T},$$

$$C_{Cs} = C_{net} - BG_{nat}$$
[3]

 $BG_{nat} = C_{BG} \cdot I_{BG}$

$$D_{Cs} = \frac{C_{Cs} \times HF}{CD}$$

Fig. 4-20 放射性セシウムの計数率の算出イメージ

Fig. 4-21 BG-index の算出例 (関西西部において、1 秒ごとに測定した r 線スペクトルから BG-index を求めヒストグラムで表示、全 16,000 データ: Bell 430)

System	ヘリコプター	BG-index
RSIシステム1	Bell 430 (JA05TV) NNK	31
RSIシステム2	Bell 412 (JA9616) AAC	27
	Bell 412 (JA6767) NNK	27
	Bell 412 (JA6928) AAC	26

Table 4-6 BG-index 一覧

4.6.2.空間線量率-放射能換算係数

航空機モニタリングでは、地上の放射性セシウムの沈着量に換算する場合に、参考文献^{28,29)} に示される空間線量率-放射能換算係数 (Conversion Factor, CF: [μSv/h]/[kBq/m²])を使用する。 CF は、土壌への放射性セシウムの浸透度をしめす重量緩衝深度 (β)によって異なった値が設 定されている²⁶⁾。これまで、航空機モニタリングにおいては、過去との比較を考慮しβ=1.0の CFを継続的に使用している。一方、規制庁と原子力機構が行っている放射性物質分布状況等調 査の結果³⁰⁾から、発電所から 80 km 圏内の土壌において、緩衝深度 (β)が年々変化している ことが報告されている。ここで調査されている重量緩衝深度は、環境中での放射性セシウムの 動態観測が目的であるため、人間活動の影響の少ない土壌を対象としている。一方、航空機モ ニタリングの対象は森林のような人間活動が希少な場所から住宅地や農地のような人間活動が ある程度活発な場所まで多様な土地を含んでいる。さらに、その土地の利用の方法や程度は年々 変わってゆく。このような多面的な因子を考えると、従来のように、βに一つの固定的な値を 与えることは合理的ではない。そこで、従来との比較のためにあえて 1.0 とした場合について 解析するとともに、βに他の値を与えた場合に換算係数がどの程度影響があるかを以下に示す。

 β =1.0 と β =2.0 にした際の放射性セシウムの沈着量と地上 1 m 高さでの空間線量率の換算係 数([μGy/h]/[kBq/m²]) は、¹³⁴Cs、¹³⁷Cs ともに 16 %程度の差がある。どの数値を選択するのか は、換算値への影響が大きいので、さらなる検証が必要であろうと考える。Fig. 4-22 に文献^{28, 29}) に示されている重量緩衝深度と CF の関係について示す。図では、対数による近似曲線を記載 したように、重量緩衝深度と CF は 1 次対数の関係にある。解析の基本的な方針としては、今 年度についても過去との比較を考慮して、文献^{28, 29}) に記載のある緩衝深度 β =1.0 の場合の換 算係数を適用した。

Fig. 4-22 重量緩衝深度と空間線量率-放射能換算係数の関係 (文献 28, 29 のデータを基に対数による近似曲線を表示)

4.7. 減衰補正

発電所の放射性核種が放出されてから時間が経過し、半減期の短い核種はほぼ減衰しており、 2011 年 8 月 13 日以降では、¹³⁴Cs と ¹³⁷Cs が評価核種である。ここでは、空間線量率から放射 能への ¹³⁷Cs 換算係数、¹³⁴Cs/¹³⁷Cs 濃度比および測定時点の空間線量率を評価時点の空間線量率 に補正する方法について記述する。空間線量率から放射能への換算は、緩衝深度 β =1.0 の場合 の換算係数 CF を適用し、あらかじめ求めておいた ¹³⁴Cs/¹³⁷Cs 比を用いて、地上 1 m 高さにお ける空間線量率から地表における ¹³⁴Cs、¹³⁷Cs の放射性物質濃度に換算した。¹³⁴Cs/¹³⁷Cs 比は、 2011 年 8 月に福島県で 50 ポイント以上の in-situ Ge による測定データを取得し、2011 年 8 月 13 日時点での ¹³⁴Cs/¹³⁷Cs=0.917 (B₀) を基本とした。その基準日から、航空機モニタリングのデ ータ取得日に減衰計算して換算した。評価時における ¹³⁷Cs および ¹³⁴Cs の濃度 C_{Cs137}、C_{Cs134} は、 航空機サーベイデータから求める全空間線量率から天然核種によるバックグラウンドの空間線 量率を引いた空間線量率 E_{Cs137+134} (µSv/h) および評価時における ¹³⁴Cs/¹³⁷Cs 比 B を用い、下記 の式[4], [5]から算出する。

$$C_{Cs137} = A \cdot E_{Cs137+134}$$
[4]

$$C_{Cs134} = B \cdot C_{Cs137}$$

$$_4 = B \cdot C_{CS137}$$

[5]

ここで、評価時の空間線量率からの Cs-137 濃度換算係数 A は、式 [6] で表される。

$$A = \frac{\exp(-\lambda_{C_{S137}} \cdot t)}{CF_{C_{S137}} \cdot \exp(-\lambda_{C_{S137}} \cdot t) + B_0 \cdot CF_{C_{S134}} \cdot \exp(-\lambda_{C_{S134}} \cdot t)}$$
[6]

ここで、t: 基準日 (2011/8/13) からの経過時間、λ_{Cs137}およびλ_{Cs134}: 崩壊定数 (0.693/半減期) としている。

空間線量率の減衰補正方法は、以下のような手順を設定した。

- ① 換算した放射能を航空機モニタリングの取得日に合わせて減衰補正する。
- ② 減衰補正した値に CF を乗じて空間線量率に換算する。
- ③ 換算した空間線量率にバックグラウンド空間線量率を足し、全空間線量率とする。

4.8. 検出下限値

検出下限 (Limit of detection) と信頼性について評価を行った。式 [7] および式 [8] に航空 機モニタリングにおける全線量への換算方法および放射性セシウムの沈着量の換算式について 示す。本式をもとに、検出下限値および信頼性について検討を行った。

$$D = (C_{all} - BG_{self} - BG_{cos}) \times \frac{1}{CD} \times \exp(-AF \times (H_{std} - H_m))$$
^[7]

$$Rd_{134} = (C_{all} - BG_{nat} - BG_{cos} - BG_{self}) \times \frac{1}{CD} \times exp(-AF \times (H_{std} - H_m)) \times \frac{1}{CF} \times R_{\frac{134}{134+137}}$$
[8]

 \times DC₁₃₄

ここで、

D: 全空間線量率 (μSv/h)

Call: 全計数率 (cps)

BG_{self}: 機体の汚染 (cps)

CD: 空間線量率換算係数 (cps/µSv/h)

- AF: 空気減弱係数 (m⁻¹)
- H_{std}: 基準高度 (m)
- H_m: 測定高度 (m)

Rd₁₃₄: 放射性セシウムの沈着量 (Bq/m²) (*¹³⁷Cs の場合は 134 を 137 に読み替える) BG_{nat}: 天然起源の計数率 (cps) C_{BG}×I_{BG} (C_{BG}: 1400-2800 keV の計数率; I_{BG}: BG index) BG_{cos}: 宇宙線起源の計数率 (cps) C_{cos}×I_{cos} (C_{cos}: >2800 keV の計数率; I_{cos}: CR index) CF: 空間線量率-放射能換算係数 ([µGy/h]/[Bq/m²])^{28, 29)} R: 放射性セシウムに対する ¹³⁴Cs (¹³⁷Cs) の割合 DC: 減衰補正係数 (=exp[-λτ]) (*τ: 経過時間)

4.8.1.空間線量率の検出下限値

空間線量率は BG_{self} と BG_{cos} に依存する。これまでの測定結果を見ると、BG_{cos} は概ね 200-500 cps の範囲に入ることが分かっている。また、BG_{self} は海上の測定データから宇宙線成分を 減算することにより算出した結果、約 400 cps であったことから、BG_{self}+BG_{cos}=900 cps として 検出下限値の評価を行った。

一般的に、検出下限値を求める際には、バックグラウンド計数率 (N_B)の標準偏差 (σ)を 式[9]に示した Currie の式³²⁾に当てはめ、検出下限値 (N_D)を算出する。 $N_D = 4.653\sigma_{N_B} + 2.706$

[9]

ここで、 $N_B & \epsilon 900 \ cps \ b t absolute State S$

4.8.2.放射性セシウムの沈着量の検出下限値

放射性セシウムの沈着量は、γ線スペクトルのデータからバックグラウンド (宇宙線、機体の汚染)を差し引き求めている。放射性セシウムの沈着量の検出下限を求める上で、実際の測定データから、差し引くバックグラウンドを考慮し、各々の計数誤差の3σを計算した。この数値を計数率の検出下限とし、RSIシステムの標準的な CD (12,800 cps/μSv/h) および β =1 の場合の空間線量率-放射能換算係数で空間線量率に換算する。実際のバックグラウンドの計数率の数値は、空間線量率の場合に用いた BG_{self}と BG_{cos}以外に BG_{nat} が含まれる。ここでは、バックグラウンド計数率を標準的な 3,000 cps とし計算を行った。この条件を、式[9]に当てはめると、767 cps となる。これに、標準的な CD (12,800 cps/μSv/h)を用いて空間線量率に換算する。さらに¹³⁴Cs と¹³⁷Cs の比を第12 次モニタリングの減衰補正日である 2017 年 9 月 25 日における 0.252 と β =1 における空間線量率-放射能換算係数(¹³⁴Cs: 5.33×10⁻³ [µ Sv/h]/[kBq/m²])を用いて、放射性セシウムの沈着量の検出下限値を求めた。この結果、放射性セシウムの沈着量の検出下限は、22 kBq/m²と評価できた (Table 4-7)。

Table 4-7 RSI システムの検出下限値

	Limit of detection						
System	Dose rate at 1m above the ground(µSv/h)	Radioactivity of deposition radiocesium(kBq/㎡)*					
RSI	0.011	22					

* Total BG count: 3,000 cps

Evaluated value at 25, Sep. 2017

4.9. 不確かさ

本手法において、不確かさの要因としては、式 [7] から、以下の事項が上げられる。

- ・ 検出器の計数誤差:一般的に、計数率に対して統計的な誤差が生じる。
- ・ CD の選択: Table 4-3 に示したように、キャリブレーションのためのデータ取得には、測 定条件により 20%程度の誤差が生じる。本測定の経験を重ねてきた現在では、その不確か さは小さくなってきている。
- ・ 高度補正係数の選択: CD と同様に、キャリブレーションのためのデータ取得の状況により係数の選択時の不確かさが生じる。
- ・ 測定高度の誤差:現在使用している GPS には衛星の位置等の状況により最大 30 m 程度の

誤差がある。海抜高度の測定は GPS で実施しており、その誤差による不確かさが存在する。 本誤差を評価するため、近年商用利用を開始した準天頂衛星に対応する GPS で取得したデ ータとの比較を行った。詳細は、8章に示す。

ラドン子孫核種の影響:日本においては、特に冬場に大陸由来のラドンの影響が知られている。これまでの測定の中でもラドンの影響を示唆するデータが取得されており、その詳細については9章に述べる。

4.10. マッピング

空間線量率や放射性物質のマッピングについては、IAEA から標準的な方法が示されている³¹⁾。補間方法には、IDW (Inverse Distance Weighted:逆距離加重法)、クリギング(Kriging)、ス プライン (Spline)、Natural Neighbor 等の多くの方法が存在する。本事業では、2011 年 4 月 6 日 ~29 日にかけて実施された第 1 次航空機モニタリングの解析を担当した DOE が用いた IDW を 踏襲し、それ以後の解析を行った。IDW は、補間する地点の近傍にある複数の地点の測定値を 平均し、推定する方法である。IDW とは、補間点からサンプル点までの水平距離の逆数の二乗 を重みとした平均であり、以下の式[10]で得られる³³⁾。

$$\tilde{Z} = \frac{\sum_{I=1}^n \frac{Z_i}{e_i^2}}{\sum_{I=1}^n \frac{1}{e_i^2}}$$

[10]

ここで、Žは補間点における推定地表高度(この場合は空間線量率)である。また、eiは補間点か らサンプル点までの水平距離であり、補間点から近傍 n 点をサンプル点としたものである。補 間する条件として「測定地点からの距離が遠くなるにつれて、影響が小さくなることが前提に なる。そのため、各地点の測定値が局所的影響をもち、推定する(平均)値は、対象となる測 定値の最高値より大きくならず、最低値より小さくならない。また、IDW には複雑なパラメー タ設定が不要である。必要となるのは、距離に応じて影響度を制御する乗数と内挿処理の対象 となる地点数の 2 つである。本事業では、乗数 2.3、対象となる地点 180 を採用した。ちなみ に、第 3 次航空機モニタリングの空間線量率の RMS 誤差(Root Mean Square: 二乗平均平方根) は 0.208 であった。Fig. 4-23 にパラメータ設定の異なる場合の空間線量率マップを示す。一般 的に乗数が大きいほど、近傍データの影響力が大きくなり、推定値の詳細度が高くなる。 Fig. 4-23 の a) と b)を比べると、両者とも概ねの分布傾向は一緒であるが、線量のレンジの境 界をみると a)の方がなめらかになっていることがわかる。

航空機モニタリングにおいては、前述したとおり 300 m 上空からの測定を実施するため、地 上の測定される範囲は、地上の半径 300 m 円内における放射線の平均値となる。そこで、内挿 においては、測定対象のエリアを 250 m メッシュに区切り、実測データから内挿しコンターマ ップを作成した。

Fig. 4-23 IDW に入力するパラメータとマップの関係

4.11. 地上における測定値との比較

航空機モニタリングの妥当性を検証するために、測定対象区域から地形的に平坦な場所でか つヘリコプターの測線下の点を選定し、地上において、1m 高さの空間線量率を NaI サーベイ メータ(日立製作所製 TCS-172B)を用いて空間線量率の測定を行った。Fig. 4-24 に、航空機 モニタリングによる換算値と地上測定値との比較を示す。比較は、散布図(左)および航空機 の換算結果と地上の測定結果の差の地上の測定結果に対する相対偏差のヒストグラム(右)で 比較した。散布図を見ると、測定結果はファクター0.5~2.0の間に入り、概ね、地上の測定値 と正の相関関係にあることが分かった。ヒストグラムの形状は正規分布に近く、相対偏差の平 均値は、0付近となり、両者はよく一致しているといえる。

また、他の機関が実施した信頼のできる地上での測定結果として、同時期に実施された規制 庁と原子力機構が行っている地上の空間線量率の測定結果および in-situ Ge を用いた放射性セ シウムの沈着量の測定結果と比較した³¹⁾。また、放射性セシウムの沈着量は in-situ Ge 検出器 (Canberra 社製 Falcon 5000) を用いている。in-situ Ge 検出器の解析条件は、緩衝深度 (β) を 3.52 g/cm² としている。放射空間線量率の比較および in-situ Ge による放射性セシウムの沈着 量の比較について、それぞれ Fig. 4-25 および Fig. 4-26 に示す。いずれの測定結果も、正の相関 関係にあり、今回の結果は、概ね地上での測定値を再現できるといってよい。一方、空間線量 率については、詳細にヒストグラムを見ると、0.5 以上 (航空機の結果の方が高い) に分布があ ることが分かる。これは、除染等により局所的に空間線量率の低い場所を航空機モニタリング の結果が追従していないことが考えられる。In-situ Ge 検出器の測定結果との比較を見ると、空 間線量率に比べてばらつきが大きく、ヒストグラムを見ると、0 以下 (航空機モニタリングの 方が過小評価) にヒストグラムのピークがあるとともに、2.0 以上 (航空機モニタリングの方が 過大評価) にも 10%以上の頻度が確認できる。放射性セシウムの分布は、空間線量率と異なり 局所的なばらつきが大きいと考えられ、その状況が反映されていると考えられる。また、航空 機のデータに関しては前述の通り森林域の緩衝深度の推定が難しいためβ=1 として算出して おり、その違いも影響していると考えられる。今後、このように地上値との比較をしつつより 最適な線量率—放射能換算係数の設定値について検討していく。

なお、地上の測定結果との比較については、以下のような要因を考慮しなくてはならない。

- ① 測定の範囲の違い:空中からの測定値は、上空を頂点とし対地高度を高さとした円錐の底面部分に該当する地上の放射線の平均値となる。実際には、地上の測定される範囲は地上の半径 300 m 円内における放射線の平均値となる。一方、地上1 m 高さにおける測定範囲は半径 30 m 程度の円の平均値となる。よって、地上の放射線分布が一様の場所では整合しやすいが、地上の空間線量率の分布が均一でない場所では、測定結果が整合しにくいと考えられる。
- ② 周辺からの影響:地上の測定場所の近傍に大きな建物や森林等がある場合には、建物や木 自身に沈着している放射性物質が地上測定に影響する可能性がある。また、上空で測定する 場合においては、地表面からの放射線を遮蔽するため、単純に比較できない場所がある。な お、本章において、比較用に取得した地上測定値は比較的地形が平坦な場所が多く、条件が よい場所を選定している。

Fig. 4-24 地上の測線上における空間線量率測定結果との比較 (測線上の地点を選定) 左: 散布図, 右: 相対偏差のヒストグラム

Fig. 4-25 地上のランダムな位置における空間線量率測定結果との比較 (地上値:原子力規制庁事業³¹⁾) 左: 散布図, 右: 相対偏差のヒストグラム

Fig. 4-26 地上における in-situ Ge 測定結果との比較 (地上値:原子力規制庁事業 ³¹) 左: 散布図, 右: 相対偏差のヒストグラム

4.12. 天然放射性核種由来の空間線量率マップの作成

天然放射性核種由来の空間線量率マップの作成手法については平成 26 年度に開発した^{22,34)}。 航空機モニタリングで使用している RSI システムは、γ線のエネルギーを計測しているため、 天然の放射線由来の空間線量率を放射性セシウムによる空間線量率と弁別して計測が可能であ る。しかしながら、これまで、放射性セシウムの影響の大きな地域においては、⁴⁰Kの放出する 1,461 keV のエネルギーピークの領域に、¹³⁴Cs の放出する 1,365 keV (放出率 3.0%) が干渉する ため、正確な評価が難しかった。今回、これらのピーク弁別に関数適合法を適用することによ って、天然の放射線由来の空間線量率マップを作成した。

航空機モニタリングで使用している Nal シンチレータでは前述のように一定以上の放射性セシウムの影響のある地域では ⁴⁰K のエネルギーを弁別することは難しい。Fig. 4-27 に典型的な γ線スペクトルの例を示す。このような、緩衝したスペクトルを弁別する手法として関数適合 法³⁵⁾が考えられる。本手法は、ピークを関数でフィッティングし、緩衝している部分の推定を 行う手法である。実際には Fig. 4-27 のようにエネルギーピークを 2 つの Gauss 分布が干渉して いると仮定した式 [11] を使用した。

$$S(i,j) = a + bE + c_i e^{-(E-E_i)^2/2\sigma_i^2} + c_j e^{-(E-E_j)^2/2\sigma_j^2}$$
[11]

ここで、S(i,j)は計数率、E はエネルギー(keV)、E_iはピークエネルギー(keV)、σ²はピークの分散 (keV)、a+bE はベースライン、c は正味のピーク計数率、i,j は複合ピークのそれぞれの核種であ る。ピークの平均エネルギーや分散はフライト中に変わらないと仮定し、予め平均データから 決定した。ここから、一般逆行列を用いて1秒ごとにa、b、ci、cjを求め、1,365 keV の¹³⁴Cs が 1,400keV 以上のエネルギーへ与える寄与割合から Cs1400を算出した。

次に、放射空間線量率(D_{nr})への換算に使用した評価式を式 [12] に示す。従来の航空機モニタリング手法で使用している換算式に、¹³⁴Cs 由来の 1,400keV 以上に与える積算計数率(Cs₁₄₀₀)を除外するために必要な計数を追加した。

 $D_{nr} = (C_{1400} - BG_{1400} - Cs_{1400}) \times I_{BG} \times HF_{1400}/CD$ [12]

ここで、 C_{1400} は1,400~2,800keVの積算計数率 (cps)、 BG_{1400} は宇宙線生成物、RSIシステムの 自己汚染およびラドン壊変生成物由来の 1,400~2,800keV の積算計数率 (cps)、 I_{BG} は、放射性 セシウムが沈着していない地域における全計数率と1,400~2,800keV の積算計数率の比率 (BGindex)、 HF_{1400} は 1,400~2,800keV の積算計数率の高度補正係数、CD は空間線量率換算係数 (cps/[μ Sv/h])である。これらの計数は、計数率が比較的小さいので検出限界値を低くするため に積算計数率に対し 21 点 (21 秒)の移動平均を使用した。ヘリコプターの平均移動速度を約 50 m/s とすると、平均した測定エリアは 1 km (50m×21 s=1,000) となる。 HF_{1400} については、 過去のパラメータフライトの結果から、1,400~2,800 keV に相当するチャンネルの積算計数率 のフライト高度による変化を算出し、高度と計数率の関係式の傾きから求めた。使用した減弱 係数と参考に通常の航空機モニタリングで使用している全エネルギー領域で算出した減弱係数 について Table 4-8 に示す。全エネルギー領域で求めた減弱係数と比較して、エネルギーが大き い分、数値が小さくなっていることが分かる。CD については、これまでパラメータフライトで 求めた数値と地上の空間線量率の関係を調べたところ、空間線量率が低い場所(天然核種の寄 与が大きい場所)と空間線量率の高い場所(天然核種の寄与が小さい場所)で傾向がみられな かったことから、Table 4-3 の数値を使用した。地上の空間線量率と算出した CD の関係につい て Fig. 4-28 に示す。なお、ここでは、Gy: Sv = 1:1.2 とした。

発電所周辺の放射性セシウムの寄与分を取り除いた天然放射線の分布と、その取り除いた放 射性セシウム由来の空間線量率に対する自然放射線の空間線量率の比率を Fig. 4-29 に示す。 Fig. 4-29 (左) に示した天然放射線の分布図には Fig. 5-1 でみられるような発電所から北西方向 への分布が確認されない。一方、Fig. 4-29 (右)に示した比率をみると、発電所から北西方向への 分布が見られ、本手法により、放射性セシウムの影響を減算できているように見える。一方で、 定量的な評価を行なうため、福島県の周辺で in-situ Ge 測定器を用いて測定した天然放射性核 種の空気吸収線量と自然放射線強度を比較した結果を Fig. 4-30 に示す。ばらつきはあるものの 地上測定結果と相関関係にあり、近似直線の傾きは 1 に近い数値を示した。以上から、2 つの Gauss 分布を仮定した関数適合法により放射性セシウムを適切に弁別できると考えられる。

Table 4	4-8	使用し	った源	弱係致	(m ⁻¹)	のまとめ
(調拿	ミ(十调)	完結』	しの煙消	[佢羊	(a))

Energy range	Bell412		Bell430				
	Value	Number	Value	Number			
1,400 - 2,800keV	-0.0058 ± 0.00080	11	-0.0060 ± 0.00102	8			
50 - 3,000keV	-0.0072 ± 0.00047	21	-0.0072 ± 0.00040	35			

Fig. 4-28 テストポイントの地上の空間線量率と空間線量率換算係数 (CD) の関係

Fig. 4-29 福島第一原子力発電所周辺の天然の空間線量率マップの作成例 (左) 天然由来の空間線量率マップ、(右) 放射性セシウム由来の空間線量率と自然放射線の空間線量 率の比率

Fig. 4-30 航空機モニタリングによる天然核種由来の空間線量率とin-situ Ge 半導体検出器で得られた 天然核種由来の放射空間線量率の比較

5. モニタリング結果

5.1. 第12次モニタリング

航空機モニタリングの測定結果を基に、地上1m高さの空間線量率の分布状況を示した「空間線量率マップ」をFig. 5-1 に示す。また、放射性セシウムの沈着量の状況を示した「放射性 セシウム沈着量マップ」をFig. 5-2 に示す。¹³⁷Cs および¹³⁴Cs の沈着量マップをそれぞれ Fig. 5-3 および Fig. 5-4 に示す。なお、マップの作成にあたっては、第12 次の航空機モニタリングを 実施した最終日である平成 29 年 9 月 25 日現在の値に減衰補正した。なお、空間線量率マップ の色合いについては、以下の考え方で分けている。

天然核種を含む空間線量率

- ・0.1 µSv/h = 約 0.5 mSv/年 相当
- ・0.2 µSv/h = 約 1.0 mSv/年 相当
- ・0.5 µSv/h = 約 2.5 mSv/年 相当
- ・1.0 µSv/h = 約 5.0 mSv/年 相当
- ・1.9 µSv/h = 約 10 mSv/年 相当
- •9.5 µSv/h = 約 50 mSv/年 相当

② 放射性セシウムの沈着量

玄米中の放射性セシウム濃度が 2011 年当時の食品衛生法上の暫定規制値 (500 Bq/kg) と なる土壌中の放射性セシウム濃度の上限値は、5,000 Bq/kg である。この濃度の放射能が 5 cm までに沈着している水田の土壌を深さ 15 cm まで採取し、撹拌した場合の濃度を計算す ると、約 1,000 kBq/m² となる。この時、深さ 15 cm までの土壌の体積は密度 1.3 kg/L とし た。

 $(150 \text{ L/m}^2 \times 1.3 \text{ kg/L} \times 5,000 \text{ Bq/kg} = 975,000 \text{ Bq/m}^2 \approx 1,000 \text{ kBq/m}^2)$

・3,000 kBq/m² = 1,000 kBq/m² の 3 倍

- ・1,000 kBq/m²= 基準
- ・600 kBq/m² = 300 1000 kBq/m²の中間値
- ・300 kBq/m² = 1,000 kBq/m² の約半桁下 (10^{-0.5})
- 100 $kBq/m^2 = 1,000 kBq/m^2 \times 1/10$
- 60 $kBq/m^2 = 600 kBq/m^2 \times 1/10$
- 30 $kBq/m^2 = 300 kBq/m^2 \times 1/10$
- 10 $kBq/m^2 = 100 kBq/m^2 \times 1/10$

Fig. 5-1 第 12 次モニタリングにおける空間線量率マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-2 第 12 次モニタリングにおける放射性セシウム沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-3 第 12 次モニタリングにおける ¹³⁷Cs 沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-4 第 12 次モニタリングにおける ¹³⁴Cs 沈着量マップ

(背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

航空機モニタリングの測定結果を基に、地上1m高さの空間線量率の分布状況を示した「空間線量率マップ」をFig. 5-5 に示す。また、放射性セシウムの沈着量の状況を示した「放射性 セシウム沈着量マップ」をFig. 5-6 に示す。¹³⁷Cs および¹³⁴Cs の沈着量マップをそれぞれ Fig. 5-7 および Fig. 5-8 に示す。なお、マップの作成にあたっては、東日本第8次の航空機モニタリン グを実施した最終日である平成29年11月16日現在の値に減衰補正した。

また、80 km 圏内のモニタリングとの整合性を確認するために、東日本第8次モニタリング を実施した最終日である平成29年11月16日現在の値に減衰補正し、内挿した「空間線量率マ ップ」および「放射性セシウム沈着量マップ」をそれぞれ、Fig. 5-9 および Fig. 5-10 に示す。 ¹³⁷Cs および¹³⁴Cs の沈着量マップをそれぞれ Fig. 5-11 および Fig. 5-12 に示す。境界部分のマッ プの整合性も違和感がなく、良く一致していることが分かる。

天然核種由来の空間線量率マップを Fig. 5-13 に示す。空間線量率の分布をみると新潟県と福 島県の県境に天然の放射線量が高い場所が存在する。ここは、帝釈山地という花崗岩地帯とし て知られた場所であり、過去に日本全国の空間線量率を計測した結果と比較しても矛盾しない ³⁴⁾。天然核種由来の空間線量率は、地すべり等の大きな地形の変化がなければ測定年度ごとに 変化しないと考えられ、過去のデータと比較して同様な結果が得られていることを確認するこ とは解析結果の妥当性を表すものと考えられる。そこで、天然放射性核種起源の空間線量率解 析手法が確立した平成 26 年度以降のデータから、作成した天然核種由来の空間線量率マップ 比較を Fig. 5-14 に示す。

Fig. 5-5 東日本第 8 次モニタリングにおける空間線量率マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-6 東日本第 8 次モニタリングにおける放射性セシウム沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-7 東日本第 8 次モニタリングにおける ¹³⁷Cs 沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-8 東日本第 8 次モニタリングにおける ¹³⁴Cs 沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-9 東日本第 8 次モニタリングと第 12 次モニタリングにおける空間線量率マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-10 東日本第 8 次モニタリングと第 12 次モニタリングにおける放射性セシウム沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-11 東日本第 8 次モニタリングと第 12 次モニタリングにおける ¹³⁷Cs 沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-12 東日本第 8 次モニタリングと第 12 次モニタリングにおける ¹³⁴Cs 沈着量マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 5-13 東日本第8次モニタリングと第12次モニタリングにおける天然核種由来の空間線量率マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

²⁰¹⁵ 年のデータを解析

2017 年のデータを解析

Fig. 5-14 測定年度における天然放射性核種による空間線量率マップの比較 (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

²⁰¹⁶ 年のデータを解析

6.1. 過去のモニタリング結果との比較

これまでの旧避難指示区域における航空機モニタリングの結果について示す。このように、 空間線量率の高い暖色系の面積が小さくなっていることが分かる。このような空間線量率の減 少傾向を定量的に把握するための比較方法を検討した。比較方法は、時期の異なるモニタリン グデータについて 250 m メッシュのデータに区切り、各メッシュの中心点の測定結果の比を算 出することで行った。現状と同じ手法で実施したもっとも古いデータである第4次モニタリン グと今回の第12次モニタリングの全領域における比較結果を散布図として Fig. 6-2 に示す。な お、第4次モニタリング以前については、自衛隊のヘリを使用し、簡易的なパラメータを適用 していたことから、過去の結果との定量比較の基準としては第4次を採用している。Fig. 6-2 に 示したように、回帰直線の傾きを全体の空間線量率の平均的な減少傾向としてみることができ る。図中に、重量緩衝深度 (β)を1と仮定し、放射性セシウムの半減期から算出した理論的な 減衰を表す直線を示す。このように、航空機モニタリングの測定結果は、半減期による理論直 線よりも大きく減少する傾向を示していることが分かる。一方で、80 km 圏内には、0.1 µ Sv/h 以下の天然放射性核種による影響の大きな場所が多く、放射性セシウムによる減少傾向を見る には、天然放射性核種による影響の無視できる比較的空間線量率の高い場所を選定するのがよ い。また、最小2乗法による近似は、数値の大きな結果に影響を受けやすいので、より平均的 な減少率を評価できる方法として空間線量率の比をヒストグラムとして表示することを検討し た。

まず、Fig. 6-1 に示した旧避難指示区域のみを抽出し、それぞれのメッシュにおける変化量の 割合(相対減少率)を算出し、ヒストグラムとして示した。例として、第12次モニタリングと 第4次モニタリングの空間線量率の比較をそれぞれFig. 6-3 に示す。また、第12次モニタリン グと第4次モニタリングの¹³⁷Csの沈着量の比較をそれぞれFig. 6-4 に示す。空間線量率のヒス トグラムと比較して、¹³⁷Csのヒストグラムはばらつきが大きい。これは、空間線量率が宇宙線 と自己汚染を差し引いて換算しているのに対し、¹³⁷Csの沈着量はこれに加えて天然核種のバッ クグラウンドを差し引いているので計数誤差を含む数値が相対的に多くなることに起因する。 このような、ヒストグラムの平均値を各モニタリングの平均的な相対減少率とし、標準偏差を ばらつきとして比較した。第4次のモニタリングを基準とし、旧避難指示区域の空間線量率の 測定結果について相対偏差のヒストグラムを求め、その平均値をプロットした図をFig. 6-5 に 示す。また、Fig. 6-6 には同様に¹³⁷Csの沈着量について比較した図を示す。Fig. 6-5 より、半減 期による放射性セシウムの減衰を起因とした空間線量率の減衰傾向よりも、航空機モニタリン グで測定された空間線量率の変化傾向は多く減衰していることが分かる。

本原因の考察の一助として、土壌中への浸透度合いの評価について検討した。過去の原子力 施設の事故の経験から、年月ともに土壌深さ方向に放射性セシウムは移動・拡散することは知 られており、前述したように重量緩衝深度(β)によりパラメータ化され、空間線量率から放 射性セシウムの沈着量に換算する係数が与えられている^{25,27)}。重量緩衝深度とは、地中の放射 性セシウムの分布形を指数関数の数式 [13] で表すとき、

$$C = C_0 \cdot \exp(-\frac{x}{\beta})$$
[13]

x=βとなる深さである。この時、C: 地中の放射性セシウム濃度、C₀: 地表面放射性セシウム濃 度および x: 地中の深さ (g/cm²) である。発電所から 80 km 圏内における重量緩衝深度につい ては、事故以降、文部科学省および規制庁により攪乱の少ない土壌サンプル (85 か所) におい て継続的に調査されている^{30,31)}。各調査年度における重量緩衝深度の平均値をプロットし、線 形近似を行った図を Fig. 6-7 に示す。この報告結果から重量緩衝深度の変化を考慮し空間線量 率を計算した。重量緩衝深度は、経過時間と一次関数の関係にあると仮定し、平成29年度の重 量緩衝深度は外挿により求めた。線量から放射性セシウムの沈着量へ換算する係数は、文科省 「ゲルマニウム半導体検出器を用いた in-situ 測定法²⁸⁾」に重量緩衝深度ごとに与えられてい る。与えられた数値間の換算係数については、Fig. 4-22 で示したように対数で近似した近似式 から推定した。これらの条件で計算した空間線量率の経時変化の結果を Fig. 6-5 に示す。この ように、航空機モニタリングの測定結果と計算結果はよく一致することが分かる。この結果は、 土壌中への浸透度合いが空間線量率の変化に大きな影響を与えることを示唆している。しかし ながら、航空機モニタリングによる測定の場合、平坦で攪乱の少ない土壌の場所だけでなく、 森林、山林や住宅地なども測定範囲に含むため、単純な重量緩衝深度の考え方が適用できない 場所も多いことから、見かけ上、数値が一致しているだけの可能性もある。今後、土地利用状 況との関連や森林や構造物の上空を測定した場合の評価方法の検討が必要と考える。今後も航 空機モニタリングのデータを解析・比較することにより、放射性セシウムの環境中での移行の 重要な知見となると考えられる。

Fig. 6-1 旧避難指示区域における過去の空間線量率マップの比較

(背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

9.5 - 19.0

3.8 - 9.5

1.9 - 3.8

0.5 - 1.0

0.2 - 0.5

0.1 - 0.2

//// 測定結果が得られて いない範囲

^(1/2)

Fig.6-1 旧避難指示区域における過去の空間線量率マップの比較

(2/2) (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 6-2 発電所から 80km 圏内における第 4 次モニタリングおよび第 12 次モニタリングの空間線量率 測定結果の比較

30 n=10,624 10,000 第12次モニタリングにおける放射性セシウム 25 平均值 -0.449 標準偏差 0.158 Percentage of frequency (%) 20 沈着量 (kBq/m) 1,000 15 100 10 5 10 10 100 1,000 10,000 0 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 第4次モニタリングにおける放射性セシウム 沈着量 (kBq/m²) Relative diviation(12th-4th) / 4th

(左: 散布図, 右: 相対偏差のヒストグラム)

Fig. 6-4 旧避難指示区域における第4次モニタリングおよび第12次モニタリングの放射性セシウム

沈着量測定結果の比較

(左: 散布図, 右: 相対偏差のヒストグラム)

Fig. 6-5 航空機モニタリングによる旧避難指示区域内の空間線量率の変化傾向

Fig. 6-6 航空機モニタリングによる旧避難指示区域内の ¹³⁷Cs 沈着量の変化傾向

Fig. 6-7 事故からの経過日数と重量緩衝深度の関係

文部科学省および原子力規制庁の実施した「東京電力(株)福島第一原子力発電所事故に伴う放射性物質の 長期的影響把握手法の確立」事業の報告書^{30,31)}から調査結果の平均値をプロットし、一次関数で近似

6.2. 土地利用による空間線量率の変化傾向の違い

発電所周辺における土地利用形態による空間線量率の減少率の違いを考察するため、国土地 理院が提供している「国土数値情報土地利用細分メッシュデータ³⁷⁾」を利用した。80 km 圏内 の土地利用図について、Fig. 6-8 に示す。これらの土地利用区分の内、最も違いが現れると考え られる市街地部および森林部について、過去の80 km 圏内のモニタリングを比較し、空間線量 率の減少率を比較した。市街地部および森林部の定義は以下の通りである。

・森林部:多年生植物の密生している地域とする。Fig. 6-8の凡例中、森林を指す。

・市街地部:住宅地、市街地等で建物が密集しているところ、鉄道、操車場、道路などで、面的 にとらえられるもの、運動競技場、空港、競馬場、野球場、学校港湾地区、人工造成地の空地 等とする。Fig. 6-8 の凡例中、建物用地、道路、鉄道、その他用地を指す。

空間線量率の比較は、6.1項に示したように、測定範囲を 250 m×250 m メッシュに区切り、 同一メッシュ上の空間線量率の相対偏差を算出し、平均値と標準偏差を求めた。比較の例とし て、第4次モニタリングと第12次モニタリングにおける市街地部および森林部のメッシュご との相対偏差の頻度をヒストグラムにして Fig. 6-9 に示す。第4次モニタリングを基準にして、 過去のモニタリングにおいてのそれぞれ土地利用における空間線量率の比率を Table 6-1 に示 す。なお、誤差として示したのは、相対偏差の標準偏差 (σ=1) である。第12次モニタリング と第4次モニタリングの比をみると、平均値で市街地部が27%、森林部が29%であることが わかった。すなわち、平均値で2%程度、市街地部の方が森林部より減少率が大きい。これは、 市街地において行われている除染やアスファルト上の放射性物質が雨水等で洗い流された効果 によるものと考えられる。また、過去のモニタリングの結果においても、森林部よりも市街地 の方が、2~7%減少率が大きいことがわかった。この結果から、傾向として森林部よりも市 街地の方が空間線量率の減少幅が大きい傾向にあることを示していると考えられる。また、全 エリアの減少率と森林部の状況は概ね同様であった。これは、80km 圏内の土地利用の65%が 森林部であることに起因すると考えられる。規制庁による発電所近傍の車両モニタリングや人 手による空間線量率測定結果から解析した報告書 31)をみると、森林部においては森林部以外と 比較して減衰傾向が小さいことが示されており、本データも矛盾しない。ただし、地上の測定 結果と比較して航空機モニタリングの方が減衰率の差が小さいのは、航空機モニタリングによ る空間線量率の位置分解能と地上測定の位置分解能の差に起因すると考えられる。

77

Fig. 6-8 発電所から 80km 圏内における土地利用図 (平成 21 年度 国土地理院土地利用調査データより)

Relative diviation[(12th-4th)/4th]

Table 6-1 森林部および市街地部における空間線量率の比較

Ratio of dose rate (%)										
	Gross area	5th/4th	6th/4th	7th/4th	8th/4th	9th/4th	10th/4th	11th/4th	12th/4th Ave. (%)	
	(km²)	Ave. (%)								
Urban area	732	70 ± 11	55 ± 8.8	50 ± 8.4	44 ± 9.7	41 ± 8.8	34 ± 8.7	27 ± 6.7	27 ± 8.1	
Forest area	5,841	77 ± 10	57 ± 8.5	54 ± 9.0	49 ± 9.2	44 ± 9.2	37 ± 8.1	30 ± 6.4	29 ± 7.4	
All area	8,923	72 ± 11	56 ± 9.0	53 ± 9.0	48 ± 10	43 ± 10	37 ± 8	29 ± 7	28 ± 7.5	

7. 地形補正手法のシステム化

7.1. 背景

航空機モニタリングで取得されたデータを解析する際、測定対象地形は平坦であるという前提 の基、空間線量率等への換算が行われている。実際の地形は平坦なものや山地等の起伏のある場 合があり、特に日本は国土の7割が山地である。福島県内の限定された範囲内に対して、地形影 響補正を適用した例があり、その結果、補正により一定の精度向上効果が得られたことが示され た²⁰。このことから、さらなる地形影響評価と今後の航空機モニタリング事業において日本全国 の様々な地形に対して換算精度を維持するため、地形を考慮した航空機モニタリングデータの解 析のための実用的なソフトウェアシステムを作成した。

7.2. 地形影響評価システムの概要

本システムでは、モンテカルロ粒子輸送コード PHITS³⁸⁾を用いて、空間線量率換算に用いられ る換算係数(航空機モニタリングで測定される計数率に対する地上空間線量の比)を地形に応じ て計算する。PHITS の入力ファイルには線源および土壤表層を定義する必要があるが、これらは 数値標高モデル DEM を基に GIS データ解析から Esri 社製 ArcGIS³⁹⁾を用いてモデル化し、入力す る。さらに、地形の起伏度を数値として示し、簡易的な補正へ利用することを検討するため、DEM データの解析結果から簡易的な補正係数を算出するシステムも作成した。システム全体のフロー を Fig. 7-1 に示す。

本システムの動作の流れを以下に示す。

(1) 地形データ抽出:

航空機モニタリングデータの各測定ポイント直下から任意の半径内の DEM データを抽出する。 (2) PHITS 入力ファイル作成:

測定ポイントごとに抽出された DEM を基に PHITS の入力ファイルを作成する。

(3) PHITS 出力データ抽出:

PHITS の出力データのうち、必要なデータを抽出し、換算係数を出力する。

(4) 簡易換算係数算出:

測定ポイントごとに抽出された DEM データごとに平均値や分散等の値を解析し、簡易的な換 算係数を出力する。

以上の(1)~(4)の各項目について以降に詳細を述べる。

Fig. 7-1 システム全体のフロー

航空機モニタリング測定点ごとの DEM データを抽出する。DEM データは 10m メッシュの DEM を用いる。このほか、1m および 5m メッシュも使用可能である。Fig. 7-2 にシステムの GUI を示す。GUI 上では、抽出した DEM データや以降の PHITS 入力ファイル作成等で出力される各データを格納するためのプロジェクトの作成、航空機モニタリング測定点データ、DEM のメッシュサイズ、DEM を抽出する半径が選択できる。さらに、地上測定データとの比較を目的として、航空機モニタリング測定点に近接した地上測定点の抽出も行える機能も整備されている。本 GUI を用いて、DEM データを抽出した例を Fig. 7-3 に示す。このような DEM が測定点数分抽出される。

😵 航空機モニタリングにおける地刑	8影響評価システムGUI	_	o x						
地形データ抽出 地形影響補正(係数計算 PHITS2入力生	成 PHITS2結果抽出							
アプリケーション設定									
プロジェクトフォルダー:									
F:¥地形影響補正¥エリア限定テス	、ト¥2013年データ¥10km_me	esg_D6¥TEST201 新規作成…	参照						
航空機モニタリング測定地点データファイル: (この測定地点のみを用いて地形データを抽出します) F:¥地形影響補正¥エリア限定テスト¥2013年データ¥10km_mesg_D6¥地形ソフトINP¥CountRate 参照… 地上測定地点データファイル:									
			参照						
使用するDEMデータの解像度:	クリップ領域の半径 (m): 800 🔶	測定地点データの座標系: 日本測地系 2011 (JGD	2011) 🗸						
プロジェクト詳細設定…		地形データ抽出 ArcMap	で可視化						
ログ出力			~						

Fig. 7-2 地形データ抽出 GUI

Fig. 7-3 DEM データの抽出結果 緑丸は航空機モニタリング測定点を示す。

7.4. PHITS 入力ファイル作成

抽出した DEM データから PHITS の入力ファイルを作成する GUI を Fig. 7-4 に示す。作成する 入力ファイルは PHITS ver. 3.02 で実行可能な形式とした。PHITS 上では Fig. 7-5 に示すような起 伏地形表面から任意の高度におけるガンマ線フラックスの計算を行う。測定点ごとの地形の起伏 と地表面に沈着した放射性核種を設定するためには、[Surface]、[Source]のセクションにてそれぞ れの条件に応じた設定を行う必要がある。これらの設定のため、DEM データを TIN 変換し、さら に三角ポリゴンに変換する (Fig. 7-6)。三角ポリゴンを ASCII 変換すると、Fig. 7-7 のように三角 形の頂点座標が出力される。この座標を用いて、PHITS 入力ファイル内の[Surface] セクション内 で面を定義する。[Source]セクションでは三角柱形状分布ソースを三角ポリゴンごとに定義する。 三角柱形状分布ソースは上表面から指数関数的に線源強度を減衰させる分布を定義できるため、 放射性核種が沈着した時点からの日数に応じた緩衝深度の設定を行う。また、ガンマ線フラック スの計算出力は[T-Point]タリーを用いる。ガンマ線フラックスの計算高度は航空機モニタリング測 定点データから抽出された対地高度が設定される他、対地高度 300m 及び 1m についても出力され る。また、ガンマ線フラックスと換算係数を用いて空間線量率に変換する場合に備えてである。

😵 航空機モニタリン	リグにおける地形影響評	『価システムGUI	— C	ı x
地形データ抽出		PHITS入力生成	PHITS結果抽出	
ヒストリー数(PC用) ヒストリー数(大型用 バッチ数(PC用): バッチ数(大型用): PHITSインストール: PHITSインストール:): 200000 用): 200000 8 23 フォルダー(PC用): フォルダー(大型用):	C:¥phits /home/****/phits31]	参照
土壌領域深さ: 空気領域高さ:	5 m	線源相	亥種名: 線源密度(通常1.0): Cs-137 1.0 Bq/cr	n²
線源深さ: 緩衝深度:	100 cm 1.09 cm		Cs-134 0.917 Bq/cr	n²
地上測定点: 基準高度:	100 cm 300 m	線源〕	選択: 補間の選択…	
			PHITS入力生成 フォルタ	一を開く
ログ出力				< >

Fig. 7-4 PHITS 入力ファイル作成 GUI

Fig. 7-5 PHITS 上の計算体系

Fig. 7-6 DEM を変換して得られる TIN 及び三角ポリゴン

(左) TIN 、(右) 三角ポリゴン

1 79946.3698378101 191167.6083053036 526.4000 80001.8561669192 191245.2891657464 541.5000 80079.5370276729 191145.4137737483 530.5000 79946.3698378101 191167.6083053036 526.4000 END 2 80135.0233567820 191267.4836973010 519.5000 80079.5370276729 191145.4137737483 530.5000 80001.8561669192 191245.2891657464 541.5000 80135.0233567820191267.4836973010519.5000 END З 80212.7042175354 191200.9001026361 529.1000 80079.5370276729 191145.4137737483 530.5000 80135.0233567820 191267.4836973010 519.5000 80212.7042175354 191200.9001026361 529.1000 END 4 80079.5370276729 191145.4137737483 530.5000 80212.7042175354 191200.9001026361 529.1000 80179.4124200700 191123.2192421935 500.3000 80079.5370276729 191145.4137737483 530.5000 END

Fig. 7-7 三角ポリゴン頂点座標の出力例

7.5. PHITS 出力データ抽出

作成した PHITS 入力ファイルを実行後に航空機モニタリング測定点の数だけ出力される。複数の出力ファイルを一度に解析するため、それぞれの出力ファイルから必要な値を抽出する GUI を作成した (Fig. 7-8)。出力ファイル群から抽出したガンマ線束データを航空機モニタリング測 定点高度における計数率(C)、平坦な地形上の計数率(C_{flat})地上 1m 空間線量率(D_{1m})に変換する。 ここからさらに、式(1)、(2)のように地上 1m 線量率換算係数(*CD*)および地形影響補正係数(*F*)を 出力する。

$$CD = C/D_{1m} \tag{1}$$

$$\mathbf{F} = C/C_{flat} \tag{2}$$

ここで得られた CD を用いて、航空機モニタリングデータの空間線量率への換算を行う。

😵 航空機モニタリング	における地形影響評価	話システムGUI		-		×
地形データ抽出 地形	彩響補正係数計算	PHITS入力生成	PHITS結果抽出			
線源密度比:	1.0 (Cs	-137)				
線量率換算係数:	0.849 (/c	m²/sec)/cps				
PHITS結果フォルダー:	☑ PHITS入力生成	で出力されたフォルダ	を使用			
	F洋地形影響補正¥	Eリア限定テスト¥201	l3年データ¥10km_m	esg_D6¥	参照	
	PC					
	○ SC(大型コンピュ・	ーター)				
				7#1	レダーを開	<
		1	PHITS結果抽出	0voM		11-
				Arcim	арсчтя	.16
ログ出力 						
						~

Fig. 7-8 PHITS 出力データ抽出 GUI

7.6. まとめ

航空機モニタリングにおける解析精度向上および地形影響評価のため、地形影響評価システム を整備した。今後、本システムを用いてこれまでに取得された膨大な航空機モニタリングデータ の解析を行い、実用化に向けた地形影響評価を進める。同時に、簡易補正手法の開発を視野に起 伏度と地形の影響についての知見を蓄積する。

8. 高精度 GPS による精度向上

8.1. はじめに

航空機モニタリングでは、上空におけて測定した放射線の計数率を高度補正計数 HF により補 正し、地上 1m 高さでの計数率に変換している。よって、上空での位置情報の精度は地上 1m での 空間線量率の計算値に影響を及ぼす。また、キャリブレーションフライト実施時の位置情報の精 度は、補正計数の決定に影響を及ぼす。以上のような背景から、平成 28 年度に複数の GPS 受信 機の性能比較を行い、導入機種の選定を行った。今年度の計測において実際にデータ取得を実施 し、解析パラメータの再算出、地上 1m での空間線量率の計算を行い地上の空間線量率換算に与 える影響について調査を行った。

8.2. GPS 受信機の構成

導入した GPS と既存の RSI システムの受信機の機能の比較を Table 8-1 に示す。導入した GPS 受信機は平成 28 年度に実施した試験において、航空機モニタリングに適した受信機として報告された CORE 社の受信機である。試験時には「CD311」として発売されていたがメーカー生産中止となったため、後継機種である「QZ-NAV」を採用した。「QZ-NAV」は「CD311」と同型の処理用チップを使用しているため性能面の差はない。「QZ-NAV」では既存の RSI 内蔵の GPS 受信機と比較し、利用できる信号が増加している。QZSS(準天頂衛星システム:通称みちびき)からの情報を利用できるほか、L1-SAIF と呼ばれる補強信号を受信することにより精度の高い位置情報の測定を行うことができる。

導入した機材の外観および各機器の接続図を Fig. 8-1 に示す。各機器は航空機への搭載が容易 となるように耐衝撃、耐水性のペリカンケースに収められている。各機器はペリカンケース内部 で接続されており、各機器への電源供給はタブレットPCのUSBケーブルを介して行われている。 そのため別途外部電源を必要としない。また、高度情報の参考データとして気圧高度計を搭載し ている。

RSI システムにより取得された計数率データと高性能 GPS 装置により取得された位置情報を各 機材によって収録された GPSTime をキーとしてとしてデータマッチングを行い、解析用データの 作成を実施した。データマッチングのフロー図を Fig. 8-2 に示す。

メーカー	製品名	利用信号	収集周期	備考
		GPS L1、L2		
CORE(日本)	QZ-NAV	QZSS L1、L1-SAIF	10Hz	参考データとして気圧高度を収録
		SBAS		
Trimble (米国)	CopornicusII	GPS L1	1⊔-7	PSにフテムに内蔵
THINDIE (水国)	Copernicush	SBAS	1112	れらレスノムに内蔵

Table 8-1 使用した受信機の比較

Fig. 8-1 GPS の接続図と外観

- Fig. 8-2 データマッチングのフロー図
- 8.3. 測定期間及びデータ取得実績

平成 29 年度の第 12 次モニタリング及び東日本第 8 次モニタリングの全期間(平成 29 年 9 月 9 日~11 月 16 日)において高性能 GPS 装置を RSI システムと同時に搭載し測定を行った。高性能 GPS により取得した航跡図を Fig. 8-3 に示す。航跡は測線上のみを表示している。期間中に一部 フライトにおいて機器トラブル等により高性能 GPS データが取得できていない箇所が存在した。

Fig. 8-3 高精度 GPS による航跡図(測線上のみ)

8.4. 解析方法

解析パラメータについては、今年度行ったキャリブレーションフライト時に高精度 GPS につ いてもデータを取得し、高精度 GPS のデータを元に解析パラメータを算出した。パラメータの算 出方法自体は第4章に示した手法を適用した。Table 8-2 に宇宙線寄与係数、Table 8-3 に高度補正 係数 AF、Table 8-4 に空間線量率換算係数 CD の算出結果を示す。各パラメータとも RSI にて算出 した結果と概ね整合している。なお、CD 値を算出するためのフライトにおいて高度情報の異常値 が見られた。

宇宙線寄与係数を算出するための宇宙線フライトデータにおいて、高精度 GPS の有効性を示す 例が確認された。2017/11/10 に実施した宇宙線寄与係数を算出するフライトにおいて、RSI 内蔵型 GPS が異常値を示す事例があった。宇宙線寄与係数を算出するフライトでは一定の上昇率を保っ て高度 8000ft まで上昇する。フライトの途中で上昇率を変化することは考えにくい。しかし、Fig. 8-4 に示すとおり高度 1000m 付近を境に RSI 内蔵型 GPS 受信機の飛行高度が不安定となった。 GPS の位置精度低下率 PDOP (Position Dilution of Precision: 天空における GPS 衛星の配置によっ て決まる測位精度の低下率を表す値。数値が大きくなるほど精度が低くなる) 値を確認すると同 時刻を境に急激な悪化が確認できる。しかし、高精度 GPS 受信機においては飛行高度が安定的に 取得されており、PDOP 値も安定していた。RSI 内蔵型受信機の PDOP 値が悪化した理由に関して は不明だが、同様な受信状況にある高精度 GPS 受信機は安定的にデータを受信できているため、 一方のデータに異常値がある場合でも後続作業を実施できるため有用といえる。

高精度 GPS の結果を用いた解析パラメータには、高精度 GPS の位置情報を使用して得られた パラメータフライト解析結果の平均値を採用した。なお、高精度 GPS のデータが得られていない 箇所(図中網掛け部)においては内挿補完によりデータが作成されているため、実際の値と異な る。算出したパラメータを基に、空間線量率マップを作成した。

Table 8-2 宇宙線寄与係数一覧

	System						R	SI			高精』	度GPS			高精度(GPS/RSI	
FlightNo	(Device Serial)	Helicopter	Body No	Operarion	Date	30keV ~ 2800keV	450keV ~ 2800keV	900keV~ 2800keV	1400keV ~ 2800keV	30keV ~ 2800keV	450keV~ 2800keV	900keV~ 2800keV	1400keV~ 2800keV	30keV ~ 2800keV	450keV ~ 2800keV	900keV~ 2800keV	1400keV~ 2800keV
F12A	5045	Bell430	JA05TV	NNK	2017/09/09	6.166	1.268	0.590	0.266	高精度	ま GPSデータ	なしのため算	【出不可			-	
F12A	5089	Bell430	JA05TV	NNK	2017/09/24	2.187	0.583	0.297	0.208	2.095	0.599	0.242	0.204	0.96	1.03	0.81	0.98
E8A	5089	Bell430	JA05TV	NNK	2017/10/05	2.338	0.704	0.346	0.232	2.414	0.746	0.375	0.244	1.03	1.06	1.08	1.05
E8A	5089	Bell430	JA05TV	NNK	2017/11/10	GF	Sデータ異常	のため算出	不可	3.889	1.020	0.488	0.318			-	
					Average	2.263	0.644	0.322	0.220	2.255	0.673	0.309	0.224	1.00	1.04	0.95	1.02
F12B	5043	Bell412	JA9616	AAC	2017/09/09	2.288	0.701	0.373	0.226	1.916	0.620	0.348	0.231	0.84	0.88	0.93	1.02
F12B	5043	Bell412	JA9616	AAC	2017/09/19	2.590	0.751	0.368	0.230	2.702	0.750	0.380	0.244	1.04	1.00	1.03	1.06
E8B	5043	Bell412	JA6767	NNK	2017/10/01	2.296	0.660	0.311	0.204	2.291	0.657	0.302	0.189	1.00	1.00	0.97	0.93
E8B	5043	Bell412	JA6767	NNK	2017/10/10		外乱により	り算出不可			外乱によ	り算出不可				-	
E8B_50	5043	Bell412	JA6767	NNK	2017/10/10	3.525	0.894	0.432	0.263	3.476	0.878	0.430	0.259	0.99	0.98	1.00	0.98
					Average	2.675	0.752	0.371	0.231	2.596	0.726	0.365	0.231	0.97	0.97	0.98	1.00

:宇宙線除去後の計数が負値となるため不採用

Table 8-3 高度補正係数(AF)一覧

Monitirina	System			Operation	n location Date y		AF	(RSI)	AF (高精	高精度	
No	(Device Serial)	Helicopter	Body No	campany			µ(m-1)	R2	µ(m-1)	R2	GPS/RSI
F12th	5045	Bell430	JA05TV	NNK	Sukagawa_TestLine	2017/9/9	-0.00710	0.99960	高精度GPSデータ	なしのため算出不可	-
F12th	5089	Bell430	JA05TV	NNK	Sukagawa_TestLine	2017/9/24	-0.00702	0.99875	-0.00702	0.99988	1.00
E8th	5089	Bell430	JA05TV	NNK	Sukagawa_TestLine	2017/10/5	-0.00774	0.99978	-0.00738	0.99999	0.95
E8th	5089	Bell430	JA05TV	NNK	TestLine5	2017/10/18	-0.00701	0.99972	-0.00705	0.99995	1.01
E8th	5089	Bell430	JA05TV	NNK	TestLine1	2017/11/1	-0.00659	0.99962	-0.00741	0.91835	1.13
						Average	-0.00709		-0.00722		1.02
F12th	5043	Bell412	JA9616	AAC	Sukagawa_TestLine	2017/9/9	-0.00756	0.99990	-0.00689	0.99969	0.91
F12th	5043	Bell412	JA9616	AAC	Sukagawa_TestLine	2017/9/19	-0.00707	0.99888	-0.00585	0.98860	0.83
E8th	5043	Bell412	JA6767	NNK	TestLine4	2017/9/30	-0.00687	0.99980	-0.00718	0.99969	1.04
E8th	5043	Bell412	JA6767	NNK	TestLine3	2017/10/18	-0.00482	0.99603	高精度GPSデータ	なしのため算出不可	-
E8th	5043	Bell412	JA9616	AAC	TestLine5	2017/11/7	-0.00589	0.99678	-0.00591	0.99491	1.00
E8th	5043	Bell412	JA6928	AAC	TestLine4	2017/11/16	-0.00670	0.99988	-0.00705	0.99991	1.05
						Average	-0.00649		-0.00658		1.01

	System						Ground	data (Nal s	survey)		AMS data			R	SI			高精度	GPS		
Monitoring	(Device	Body No	Heliconter	Operation	Location	Date	Survey	Stdev	Stdev	AMS data	Stdev	Stdev		AGL (m)		CD		AGL (m)		CD	高精度
No.	(Device Serial)	Douy No.	rielicoptei	company	Location	Date	(uSv/h)	(2m)	(%)	(cne)	(2g)	(%)	AGL (m)	Stdev	Stdev	(cps[µ	AGL (m)	Stdev	Stdev	(cps[µ	GPS/RSI
	Senai)						(030/11)	(20)	(70)	(cps)	(20)	(70)	AGE (III)	(2 0 : %)	(%)	Sv/h] ⁻¹)	AGE (III)	(2σ: %)	(%)	Sv/h] ⁻¹)	
F12th	5045	JA05TV	Bell430	NNK	TestPoint D	2017/9/9	0.33	0.108	33	5739	604	11	882	40	5	11,800	高糖度の	PSデータt	rl.のため管	11日本可	
F12th	5045	JA05TV	Bell430	NNK	TestPoint E	2017/9/9	1.24	1.020	82	20999	6326	30	881	165	19	12,500			K () () // () () () ()	≠щт∘л	
F12th	5089	JA05TV	Bell430	NNK	TestPoint D	2017/9/24	0.32	0.108	33	5154	949	18	966	18	2	12,400	1001	85	8	13,800	1.11
F12th	5089	JA05TV	Bell430	NNK	TestPoint E	2017/9/24	1.06	0.967	92	15676	9569	61	952	134	14	12,600	990	162	16	13,800	1.10
E8th	5089	JA05TV	Bell430	NNK	TestPoint D	2017/10/5	0.33	0.130	39	4705	1222	26	1020	82	8	12,600	1007	129	13	12,200	0.97
E8th	5089	JA05TV	Bell430	NNK	TestPoint5	2017/10/18	0.12	0.033	28	2306	279	12	1034	81	8	13,900	2306	279	12	11,000	0.79
E8th	5089	JA05TV	Bell430	NNK	TestPoint1	2017/11/1	0.07	0.016	24	1432	89	6	985	43	4	11,400	367	34	9	2,800	0.25
															Average	12,457			Average	12,700	0.99
F12th	5043	JA9616	Bell412	AAC	TestPoint D	2017/9/9	0.33	0.126	38	5410	1058	20	902	33	4	11,300	951	91	10	12,200	1.08
F12th	5043	JA9616	Bell412	AAC	TestPoint E	2017/9/9	1.18	1.021	86	14286	3471	24	958	27	3	10,400	1045	106	10	12,400	1.19
F12th	5043	JA9616	Bell412	AAC	TestPoint D	2017/9/19	0.33	0.108	33	4416	317	7	1266	80	6	19,700	1065	38	4	12,000	0.61
F12th	5043	JA9616	Bell412	AAC	TestPoint E	2017/9/19	1.09	0.999	92	13014	6345	49	993	32	3	11,100	1080	126	12	13,200	1.19
E8th	5090	JA6767	Bell412	NNK	TestPoint 4	2017/9/30	0.07	0.025	36	1154	76	7	1066	8	1	8,500	1100	35	3	9,100	1.07
E8th	5090	JA6767	Bell412	NNK	TestPoint 3	2017/10/18	0.06	0.017	30	1376	85	6	1091	18	2	13,400	1103	40	4	11,400	0.85
E8th	5090	JA9616	Bell412	AAC	TestPoint 5	2017/11/7	0.11	0.033	30	2348	407	17	925	18	2	13,300	996	122	12	13,100	0.98
E8th	5090	JA6928	Bell412	AAC	TestPoint 4	2017/11/16	0.07	0.031	44	1425	99	7	962	48	5	7,400	1025	53	5	8,400	1.14
-										•					Average	11.888			Average	11.475	1.01

Table 8-4 線量率換算係数(CD)一覧

:高度情報が異常値のため不採用

Fig. 8-4 2017/11/10 宇宙線フライトにおける RSI 内蔵型 GPS データの異常

8.5. RSI システム GPS と高精度 GPS の位置情報取得結果の比較

高精度 GPS の情報を基に作成した空間線量率マップを Fig. 8-5 に示す。なお、比較として RSI 内蔵 GPS 由来の位置情報を用いた解析結果についても示す。このように、マップの外観としては 大きな違いは見られない。さらに、定量的に比較するために解析結果をメッシュ単位で比較した。 比較は高精度 GPS データが正常に取得できていると思われる範囲で実施した。Fig. 8-6 に空間線 量率の散布図(左)とヒストグラム(右)を示す。散布図を見ると全体的な傾向はよい相関関係 にあるが、プロットはばらつきが確認できる。ヒストグラムで見ると平均値は 0.072、標準偏差は 0.271 となり、場所によっては最大±0.5 の差があることが分かった。

差が大きい場所を特定するため Fig. 8-5(c) に両者の比を表す画像を示す。両者の比を表す画像 を確認すると、栃木県、群馬県にまたがる山岳地域において差が存在する地域が確認された。周 辺の地形と線量率の差を確認するため、数値地形データから傾斜角と曲率を重ね合わせ表現した 微地形図を用いた。Fig. 8-7 に当該地域の微地形図を示す。図を確認すると谷部において RSI の線 量率が高く評価され、尾根部においては RSI の線量率が低く評価されていることがわかる。これ はモニタリング実施時には地形に追従するために航空機の高度を常に変化させ、一定の対地高度 を保つフライトを実施しているが、その際の高度変化に RSI 内蔵の GPS 受信機が追従できていな いことが考えられる。谷部においての線量率の差について、当該測線をフライトした際の PDOP 値を確認した。Fig. 8-8に確認図を示す。この図に示すとおり、谷部に地形がなっている部分で RSI 内蔵 GPS の PDOP が大きく悪化している。そのため位置精度が悪化し線量の差につながっている ことが原因と考えられる。 PDOP が大きく悪化した原因として Fig. 8-9 に示すとおり周辺地形の影 響で GPS 衛星の可視衛星が減少し、位置精度が悪化した可能性が高い。 高精度 GPS 装置について は準天頂衛星「みちびき」の電波を利用していることにより谷部においての可視衛星数の減少に よる影響を小さくすることができ、位置精度を確保することができたものと推測される。谷部か ら尾根部に大きく地形が変化していく箇所においては、谷部で可視衛星数が減少したのち、再度 GPS 衛星を補足し測位計算を始めて安定した位置情報を得られるまでの間に谷部から尾根部へ地 形が変化し、位置の計算結果が不安定になっている可能性が高い。

Fig. 8-5 高精度 GPS データを用いた空間線量率マップと比画像

Fig. 8-6 RSI 由来の位置情報で解析した空間線量率と高精度 GPS 由来の位置情報で解析した空間線量 率の比較

Fig. 8-7 微地形図と線量の比の重ね合わせ図

● Alt[m] ● DEM[m] ● PDOP_RSI ● PDOP_高精度GPS

Fig. 8-8 測線フライト中の飛行高度、DEM、PDOPの確認図

Fig. 8-9 飛行中の GPS 衛星受信状況のイメージ

9.1. ラドン子孫核種

地殻中に存在するウランやトリウムの壊変系列には、気体であるラドン (Rn) が存在し、ラド ンの一部は大気中に散逸する。Fig. 9-1 に主な天然の放射性核種系列であるウラン系列とトリウム 系列について示す。大気中に散逸したラドンは、Po、Pb および Bi などのラドン子孫核種に壊変 し、大気中の微粒子に吸着して大気中を浮遊する。航空機モニタリングの測定高度、対地 300 m 付近におけるラドン子孫核種濃度は測定されていないものの、地上におけるラドン濃度は広く測 定されており、日本の屋外における濃度レベルは 6 Bq/m³程度となっている⁴⁰⁾。これらのラドン の濃度レベルは低いものの、航空機モニタリングにおいては、ヘリコプターの周辺に存在するた め検出器との距離が近く、一定の影響があると考えられる。また、日単位や季節単位で濃度が変 動することが知られており、航空機モニタリングへの影響も一定ではない⁴¹⁾。

ラドン子孫核種の放出するγ線は、地殻にも同じ核種が存在するので、地上からの放射線との γ線スペクトル上で弁別が難しい。また、放射性セシウムの放出するエネルギーに似ているため、 福島原子力発電所事故の近傍ではなおさらである。Table 9-1 にラドン子孫核種の放出するγ線エ ネルギーについて示す。これらのラドン子孫核種の影響を除去し、航空機モニタリングによる空 間線量率への換算を高精度化する検討を平成 27 年度に実施した。平成 28 年度は、開発した手法 を大量のデータに適用できるように既存の航空機モニタリング解析システムに組み込んだ。本シ ステムを本年度の結果に適用し妥当性を考察した。以下、大気中のラドン子孫核種の影響の除去 手法を「ラドン弁別手法」と表記する。

Fig. 9-1 ウラン系列およびトリウム系列

Nuclide	Series	Gamma energy (keV)	Blanching ratio (%)	Note
Pb-212	Th	239	43.3	
Pb-214	U	352	37.6	
TI-208	Th	583	84.5	Cs-134: 569 keV (15.4 %)
Bi-214	U	609	46.1	Cs-134: 605 keV (97.6 %)
Bi-214	U	768	4.94	Cs-134: 796 keV (85.5 %)
Bi-214	U	1,120	15.1	
Bi-214	U	1,765	15.4	
TI-208	Th	2,615	99.2	

Table 9-1 ラドン子孫核種の放出する γ 線

9.2. ラドン弁別手法の理論

前述したように、ラドン子孫核種は大気中だけでなく、地表面および地殻にも存在することか ら、γ線のエネルギーによって大気中のラドン子孫核種の影響と地上のラドン子孫核種の影響を 区別することは難しい。また、¹³⁴Cs と²¹⁴Bi は放出するγ線エネルギーが似通っているため、福島 原子力発電所事故の影響を受けた地域ではさらに困難である。航空機モニタリングにおけるラド ン子孫核種の影響を弁別する方法として、航空機モニタリング用の検出器以外にラドン子孫核種 用の検出器を搭載し、その比較からラドン子孫核種の影響を弁別する方法が知られている⁴²。

今回、ラドン子孫核種の影響を弁別する手法を検討するため、RSI (Radiation Solution Inc.) 社製 LaBr₃シンチレータ (3インチ (3インチ + H) を用いた航空機モニタリング機器 (以下、LaBr RSI システム)を採用し、フライトデータの取得および換算パラメータの最適化を行った。採用した LaBr RSI システムをヘリコプター内に搭載した状況について Fig. 9-2 に示す。写真のように、地 上からの放射線を遮蔽することを目的とし、通常用いている NaI シンチレーション検出器 (以下、 NaI RSI システム)の上方に配置した。

手法の理論としては、空気中のラドン子孫核種からの放射線と地表面からの放射線の距離の差 に着目する。Fig.9-3 にヘリコプター内の検出器と線源の位置関係のイメージについて示す。この ように、大気中のラドン子孫核種と検出器の位置は近いため、検出器内に搭載した検出器は、地 上の放射性核種からのγ線と比較して検出されやすい。また、γ線は検出器に等方向より放射さ れることから、LaBr RSI システムの下方に置いた NaI RSI システムの遮蔽としての影響は小さい。 一方、地上から LaBr RSI システムに到達するγ線は、下方からの照射となるため NaI RSI システ ムに遮蔽されやすい。すなわち、大気中のラドン子孫核種を計測した NaI RSI システムの計数率 に対する LaBr RSI システムの計数率の比 (LaBr RSI システム/NaI RSI システム)、地上の放射性核 種起源の計数率の比よりも大きくなると考えられる。

実際には、地上からのγ線による影響のない海上で取得したデータから、ラドン子孫核種起源 の NaI RSI システムの計数率に対する LaBr RSI システムの計数率の比を求めておき、この数値を ラドンインデックスと定義する。一方、ラドン子孫核種の影響が無視できるほど、地上からの影 響が大きなエリアで取得したデータから地上の放射性核種起源の求めた NaI RSI システムの計数 率に対する LaBr RSI システムの計数率の比を求めておき、この数値をグラウンドインデックスと 定義して、この2つの定数の差を利用してラドン子孫核種の影響を弁別する。これらを数式で表 すと式 [15] で表すことができ、ここに式 [16] を代入してラドン子孫核種の影響を弁別した NaI RSI システムの全計数率 (Ng) について解くと、式 [17] が導かれる。

$$N_g = N_{all} - N_r$$
[15]

 $N_r = RI \cdot L_r$
[16]

 $Ng = \frac{GI \cdot N_{all} - GI \cdot RI \cdot L_{all}}{GI - RI}$
[17]

ここで、
[17]

Ng: ラドン子孫核種の影響を除去した Nai RSI システムの全計数率
[17]

Lg: ラドン子孫核種の影響を除去した LaBr RSI システムの全計数率
Nr: ラドン子孫核種のみの Nai RSI システムの計数率

Lr: ラドン子孫核種のみの LaBr RSI システムの計数率

GI: グラウンドインデックス: 陸上における対地高度 300 m での NaI RSI システムと LaBr RSI シ ステムの測定データにおける近似曲線の傾き

RI: ラドンインデックス: 海上における海抜高度 300 m での NaI RSI システムと LaBr RSI システ ムの測定データにおける近似曲線の傾き

Lall: LaBr RSI システムの全計数率

Nall: Nal RSI システムの全計数率

である。

Fig. 9-2 ラドン用航空機モニタリング機器とヘリコプターへの搭載状況

地上からの放射性核種(^{134,137}Cs or 天然の放射性核種)

9.3. パラメータ (GI および RI) の決定

式 [17] に記載したように、ラドン子孫核種と地上からの寄与を弁別する信頼性は、GI と RI の 設定に依存する。GI と RI については、ヘリコプターの遮蔽によって変化するため、東日本第 8 次 で使用したヘリコプターごとで実測データから数値を決定した。測定データは 40 秒ごとに取得し た計数率を積算した。積算したデータから宇宙線および自己汚染の寄与分を差し引き GI の算出に 使用した。また、GPS データは中間値を採用した。東日本第 8 次で取得した地上高さ 300 m 位置 (実際のフライトの対地高度が 290~320 m のデータ) における NaI RSI システムの計数率と LaBr RSI システムの計数率の関係を Fig. 9-4 に示す。なお、東日本 8 次では、Bell 412 (JA6767、JA9616、 JA6928) および Bell 430 (JA05TV) を使用しており、それぞれ E8th_A および E8th_B と記述する。 これらのデータにはラドン子孫核種の影響が含まれているが、完全にラドン子孫核種の影響のな い環境でのデータ取得は困難であること、多くのデータを取得し平均化していることから、地上 からの放射線の計数と比較してラドン子孫核種の影響が小さいと仮定する。一方、RI については、 海上の 300 m 位置 (実際のフライトの対地高度が 290~320 m のデータ) で取得したデータを抽出 し、GI と同様なバックグラウンドの減算を行った。各へリコプターにおける NaI RSI システムの 計数率と LaBr RSI システムの計数率の関係を Fig. 9-5 に示す。本散布図の近似直線の傾きを RI と する。

Fig. 9-4 陸上における Nal RSI システムの計数率と LaBr RSI システムの計数率の関係 (1 次近似曲線の傾きを GI と定義)

Fig. 9-5 陸上における Nal RSI システムの計数率と LaBr RSI システムの計数率の関係 (1 次近似曲線の傾きを RI と定義)

9.4. GI の高度補正方法

GI については、平成 27 年度に実施した予備的な調査により、対地高度に依存して数値が変化 することが分かっている。しかしながら、実測のデータではラドン子孫核種の寄与がないデータ を取得することは不可能であるため、計算シミュレーションにより実際の測定体系を模擬し、GI の高度補正手法について検討した。

シミュレーションに用いた計算コードは、モンテカルロ計算コードの一種である電磁カスケー ドモンテカルロコード EGS5 とし、ヘリコプター内の検出器の体系を簡易的に Fig. 9-6 のように 模擬した。計算体系の妥当性については、正面および横の周辺からの点線源を模擬した場合の検 出器のレスポンスを計算した結果と、実際に有人のヘリコプターに検出器 (NaI RSI システム)を 搭載した状態で、点線源 (¹³⁷Cs)を照射することによって求めた検出器のレスポンスの結果を比 較してベンチマークとした。Fig.9-7 に計算結果と実測結果の比と線源の照射方向の関係について 示す。このように概ね一致している。一部値が外れている部分は、計算体系に考慮されていない 局所的な構造物が影響していると考えられるが、全体として構築した体系は、検出器のレスポン スを再現するのに十分な精度を有する。本体系に対し、地上の無限平板線源を模擬し、距離を変 化させることにより GI の測定高度との関係を計算した。なお、実際の計算では NaI RSI システム と LaBr RSI システムを別で実施した。LaBr RSI システムの計算時には、下部の NaI RSI システム を体系に加えた。線源の模擬体系は、以下の条件を設定した。土壌中の天然放射性核種濃度は、 全国的な地上における測定結果から平均値を採用した⁴³。

・空気(1 km×1 km×1.3 km)と土壌(深さ1 m, 密度 ρ:1.6 g cm⁻³)

・山等の地面の凹凸を再現せずに地面は平坦

・地面中の自然放射性核種(U系列、Th系列、⁴⁰K) は一様分布

・地面中の人工放射性核種(¹³⁴Cs と¹³⁷Cs)表層から深さ方向に指数関数的な分布(緩衝深度 β =3 g/cm²)

・土壌中の放射性核種濃度 ⁴⁰K:500 Bq/kg、U 系列:20 Bq/kg、Th 系列:10 Bq/kg、¹³⁴Cs:50 kBq/m²、¹³⁷Cs:200 kBq/m²

検出器と線源の距離(測定高度)と GI の計算結果を Fig. 9-8 に示す。このように測定高度と GI は正の相関関係にある。この結果における近似直線の傾きを採用し、測定高度ごとに GI を補正した。

103

Fig. 9-8 シミュレーションによる測定高度と GI の関係

9.5. 80 km 圏外データへの適用

ラドン弁別手法を今年度の測定結果に適用した。本手法は、大気中のラドン子孫核種の計数率 と地上からの計数率が拮抗している場所に効果的であり、地上からの影響が著しく大きな場所で は計数誤差の影響により適用が難しく、そもそも放射性セシウムの影響が大きな地域では大気中 のラドン子孫核種の影響は無視できるため、適用評価には発電所から 80 km 以遠のデータ (東日 本8次)のみに適用した。本手法は GI の数値により大きく変化すると考えられるため、Fig.9-4 に 示したヘリコプターごとの GI の数値 (±0) に-1 および-2 とした場合についても解析した。解析 の結果は、地上における測定結果 296 点と比較し、その妥当性について考察した。なお、4 章で示 した従来の空間線量率換算手法においては、これまでの経験から Table 4-1 で示すように、Rn 影 響フライトとして測定日ごとに測定前に拠点近くの測線上を 450-900 m まで直線的に上昇して得 られたデータをバックグラウンドとして差し引いているため、ある程度のラドン子孫核種の影響 は弁別されていると考えられる。本手法の検証には、Rn 影響フライトで取得したバックグラウン ドを減算せずにラドン弁別手法を適用する。よって、ラドン弁別手法なしの空間線量率マップは Fig. 5-5 で示したマップとは異なる。Rn 影響フライトから求めたバックグラウンド減算によるラドン子孫核種の弁別効果については 9.6 節で評価する。

Fig. 9-9 にラドン弁別手法を適用した東日本 8 次の空間線量率マップを示す。比較としてラドン 弁別手法を適用しない解析結果についても示している。傾向としては、GI の数値が大きいほど空 間線量率は低くなる傾向があることが分かる。さらに、ラドン子孫核種の影響の高い地域につい て考察するために、ラドン弁別手法で減算した NaI RSI システムの計数率を抽出し、計数率マッ プを作成した。また、本マップは測定の時間が場所により異なるので、瞬間的な空気中のラドン 子孫核種の影響が時間的につぎはぎ状でマップとして表現されている。Fig. 9-10 に東日本 8 次の 測定結果から計算した空気中のラドン子孫核種由来の計数率のマップを示す。このように、ラド ン子孫核種の検出されたエリアは、越後山脈から関東山地に向けての比較的標高の高いエリアで あることが分かる。一方、標高の低い関東平野ではほとんど検出されていない。ラドン子孫核種 の起源としては中国大陸からの輸送と地殻からの放出が考えられ、後者由来のものは濃度の時間 変化は小さいと考えられる。ラドン子孫核種の検出された標高の高いエリアは、地質的に地殻由 来のラドン子孫核種濃度が高いとすると、この結果は矛盾しない。

結果の妥当性を評価するために、地上値との比較を行った。比較結果を Fig. 9-11 に示す。結果 を見るとラドン弁別手法を適用しない場合と適用した場合を比較すると、近似直線の傾きと決定 係数は地上測定データに近くなることが分かる。一方、GI が大きくなるほど近似直線の傾きは 1 に若干近くなるものの、有意な差とは言い難い。この結果から、ラドン弁別手法の適用により地 上の空間線量率を過小評価しない観点から、GI はなるべく小さく評価することが望ましいと考え られる。本手法には、高度補正の手法や GI の数値決定方法に若干の不正確さが残っているため、 今後もこのような解析経験を積み上げ、最適化を行っていくことが必要である。

Fig. 9-9 ラドン影響弁別手法適用後の東日本 8 次の空間線量率マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 9-10 東日本 8 次の測定結果から計算した空気中のラドン子孫核種の Nal RSI システムで検出された計数率マップ (背景地図は、ArcGIS データコレクションスタンダードパック (ESRI, Co. Ltd.) を使用)

Fig. 9-11 ラドン影響弁別後の地上測定データとの比較(東日本8次)

9.6. 従来手法の評価

前章で言及したように、従来の手法においても Rn 影響フライトとして測定日ごとに測定前に 拠点近くの測線上を 450-900 m まで直線的に上昇して得られたデータをバックグラウンドとして 差し引いているため、ある程度のラドン子孫核種の影響は弁別されていると考えられる。従来手 法によるラドン子孫核種弁別の効果と上記の新たなラドン弁別手法の有効性を評価するために、 Fig. 5-5 で示した従来手法の空間線量率マップとラドン弁別手法を適用した GI±0 を適用した空 間線量率マップを Fig. 9-12 に示す。このように全体的な傾向は概ね一致しており、従来の手法で あってもラドン子孫核種の影響はある程度除去できていることが分かる。一方、詳細に見ると、 会津地方や群馬県の北部など従来の手法の結果において空間線量率の高い場所が散見され、岩手 県南部などではラドン弁別手法を適用した方が空間線量率の高くなっている場所があることが分 かる。

これらの違いを定量的に理解するために、従来法で求めた測定日ごとのバックグラウンド計数 率と同日における新たなラドン弁別手法で求めた計数率の平均値の比較を Fig. 9-13 に示す。図に は比較のため、放射性セシウムの存在しない泊発電所、柏崎刈羽原子力発電所および玄海原子力 発電所のバックグラウンドを航空機モニタリングで求めたデータもプロットしている。このよう に一定の正の相関関係にあるものの、ばらつきが大きいことが分かる。プロット自体は放射性セ シウムの有無に関わらず固まっており、従来手法でもラドン子孫核種の弁別はある程度できるこ とが示唆される。しかしながら、従来手法は必ず目的の測線のデータ取得の前にラドン影響フラ イトを行わなければならないという手間があること、大気中のラドン子孫核種濃度が1日を通し て測定範囲で一定である場合のみ効果があることを考慮すると、新たな弁別手法によりコストに 関係するフライト時間の短縮やラドン弁別の精度が向上することが期待できる。

109

(a) 従来手法

(b) ラドン弁別手法 (GI±0)

Rn影響フライトから求めたバックグラウンド計数率

Fig. 9-13 Rn 影響フライトから求めた Nal RSI システムのバックグラウンド計数と同日にフライトしたデ ータにラドン弁別手法を適用し求めたラドン子孫核種の計数率の平均値の比較

10. 今後の課題

今年度得られた成果をまとめ、今後の課題について示す。

・RSI システムの保守方法について

規制庁所有の RSI システムも 8 年目となり、軽微な異常が何件か発生している。例えば、GPS のエラーによるデータの未取得や RSI システムのバグ等である。本 RSI システムの保守・運用に ついても、時間が経つにつれて必要性が増すため、メーカーを含めた体制作りが必要と考える。

・空間線量率マップについて

ヘリコプターと RSI システムの組み合わせによりデータの蓄積が行われ、信頼性の高い数値の 選択が可能になってきたと判断し、あらかじめ定めた1つの数値を用いた。結果として、地上測 定の結果ともよく整合し、今後も同様な方法で問題ないと考える。しかしながら、パラメータフ ライトは、確認・参考データの位置づけにし、今後も実施していくことが望ましい。

・地形効果補正のシステム化について

今回、地形情報とモンテカルロシミュレーションを組み合わせた新たな地形補正手法を大量な データに適用できるような地形補正手法のシステム化を行った。今後、過去のデータにさかのぼ り、データの精度の変化について考察を行っていく。

・位置情報取得方法の最適化について

昨年度、複数の GPS の性能を評価し、コスト面や性能で最適と判断した CORE 社製の「QZ-NAV」 により、通常の RSI システムに付属の GPS と同時にデータを取得して実際に解析することで結果 を比較した。その結果、場所によって 20%ほどの差が出ることが分かった。特に山間部の谷間で は位置情報の精度に差があると考えられる。今後もデータを比較し、精度評価を行っていく。

・ラドン子孫核種の弁別手法について

昨年度に続いて、80 km 圏外の航空機モニタリングデータにラドン弁別手法を適用した。その 結果、地上の測定値と比較した結果から有効性が示された。一方で、これまで経験的に採用して きた測定日ごとにラドン影響フライトを行って減算する手法についても精度的に劣るものでない ことが分かった。しかしながら、ラドン影響フライトの手間がなくなりフライト時間が短縮でき ること、および場所ごとに大気中のラドン子孫核種の影響が除去できることから、新たな方法の メリットは大きい。今後、本手法について従来手法と比較しつつ、データを蓄積し最適化してい くことが望ましい。

112

11. まとめ

平成 29 年度に予定された 80 km 圏内の航空機モニタリング 1 回および 80 km 圏外の航空機モ ニタリング 1 回を確実に実施した。今回の結果を過去のモニタリングの結果と比較し、福島原子 力発電所事故の影響があったエリアの空間線量率の全体的な減少傾向を把握することができた。 また、複数の異なった位置情報取得手法を比較し、各機器の性能について評価するとともに、航 空機モニタリングの換算手法に与える影響について評価した。さらに、空気中のラドン子孫核種 の弁別手法についてシステム化を行い、初めて発電所から 80 km 圏外のデータに適用した。

事故以来、航空機モニタリングが日本で実施されて、7年目となった。事故当時、定まっていな かった手法についてもある程度確立し、パラメータの精度やRSIシステムの定期的な保守および 軽微なトラブルへの対応経験により、作成する放射空間線量率マップの精度は高まってきている といえる。測定者の技能にかかわらず同じ測定結果が得られることを目的とし、専用の解析シス テムについて開発を継続的に実施してきており、今年度は新たな地形補正手法についてもシステ ム化を行った。今後、システムの最適化を行うとともに新たな手法の精度向上の効果について評 価していくことが望ましい。

謝辞

本調査研究は、「平成 29 年度原子力施設等防災対策等委託費及び放射性物質測定調査委託費(80 km 圏内外における航空機モニタリング)事業」の成果をとりまとめたものである。原子力機構、応用地質(株)、(株) NESI、エイ・ティ・エス(株)により 30 余名が、航空機に搭乗しての測定、地上での空間線量率測定、さらにデータ解析とそのマップ化に取り組んだ。航空機の運航は、朝日航洋(株)、中日本航空(株)が行った。ここに本モニタリングに参加された皆様に謹んで謝意を表します。

参考文献

- 飯田義正;伊藤洋昭;笹尾英嗣;鶴田忠彦;永島礼二;三谷稔;小林孝男:海外ウラン資源探査 -探査技術取りまとめ-,核燃料サイクル機構技術資料, JNC-TN7410 2001-007, 2001.
- 2) Barasch G. E. and Richard H. B., Aerial radiological measuring surveys of the nuclear fuel services plant, west valley, New York, 1968 and 1969, AEC Report No. ARMS-68.6.9, 1972.
- Hendricks, T. and Riedhauser, S., An aerial radiological survey of the Nevada test site., DOE/NV/11718-324, 1999.
- 4) Sanderson D.C.W., Cresswell A.J., Lang J.J. eds. An International Comparison of Airborne and Ground Based Gamma Ray Spectrometry. Results of the ECCOMAGS 2002 Exercise held 24th May to 4th June 2002, Dumfries and Galloway, Scotland. University of Glasgow, Glasgow. ISBN 0 85261 783 6., 2003, 387p.
- 5) 長岡鋭, 森内茂: 航空機 y 線サーベイシステム ARSAS, 保健物理, 25, pp. 391-398, 1990.
- 6) 森内茂,長岡鋭,坂本隆一,堤正博,斎藤公明,天野光,松永武,柳瀬信之,笠井篤,緊急時に おける航空機サーベイ法確立とシステム実用化に関する検討, JAERI-M 89-017, 1989, 82p.
- 7) Saito, K. and Moriuchi, S., Conversion factors for estimating release rate of gaseous radioactivity by an aerial survey., JAERI-M 88-016, 1988, 84p.
- 8) 大西亮一: 無人ヘリコプタを活用した空中放射線測定システムについて, 航空と宇宙, 671, pp.

8-14, 2009.

- 9) 原子力安全委員会:環境放射線モニタリング指針,平成20年3月.
- 10) 鳥居建男, 眞田幸尚, 杉田武志, 田中圭: 航空機モニタリングによる東日本全域の空間線量率 と放射性物質の沈着量調査, 日本原子力学会誌(ATOMOZ), Vol. 54 No. 3, pp. 160-165, 2012.
- 11) 眞田幸尚, 近藤敦也, 杉田武志, 鳥居建男, 航空機モニタリングによる放射性セシウムの汚染 分布, 放射線, 38 (3), pp. 137-140, 2012.
- 12) 眞田幸尚, 日本全域における航空機モニタリング, FB news, 432, pp. 7-11, 2012.
- 13) 鳥居建男, 眞田幸尚, 杉田武志, 近藤敦哉, 志風義明, 高橋昌樹, 石田睦司, 西澤幸康, 卜部嘉, 広域環境モニタリングのための航空機を用いた放射性物質拡散状況調査, JAEA-Technology 2012-036, 2012.
- 14) Sanada, Y., Sugita, T., Nishizawa, Y., Kondo, A., and Torii, T., The aerial radiation monitoring in Japan after the Fukushima Daiichi nuclear power plant accident, Prog. Nuc. Sci. Tech., 4, pp.76-80, 2014.
- 15) IAEA, Additional Report of the Japanese Government to the IAEA The Accident at TEPCO's Fukushima Nuclear Power Stations -(Second Report), 2011.
- 16) 鳥居建男, 事故後初期の航空機モニタリングから得られたヨウ素 131 沈着量の分布,日本原子 力学会誌 (ATOMOZ), 55, pp. 702-706, 2013.
- 17) Torii. T., Sugita, T., Okada, C. E., Reed, M. S. and Blumenthal, D. J., Enhanced Analysis Methods to Derive the Spatial Distribution of ¹³¹I deposition on the Ground by Airborne Surveys at an Early Stage after the Fukushima Daiichi Nuclear Power Plant Accident, Health. Phys., 105, pp. 92-200, 2013.
- 18) Inomata, Y., Aoyama, M., Hirose, K., Sanada, Y., Torii, T., Tsubono, T., Tsumune, D. and Yamada, M., Distribution of radionuclides in surface seawater obtained by an aerial radiological survey. J., Nucl. Sci. Tech., 51, pp. 1059-1063, 2014.
- 19) 原子力規制庁 HP, 航空機モニタリング結果, http://radioactivity.nsr.go.jp/ja/list/191/list-1.html (2018 年 3 月 1 日閲覧).
- 20) 原子力規制庁, 文部科学省航空機モニタリング行動計画, http://radioactivity.nsr.go.jp/ja/contents/6000/5274/view.html (2018 年 3 月 1 日閲覧).
- 21) 眞田幸尚, 西澤幸康, 卜部嘉, 山田勉, 石田睦司, 佐藤義治, 平山弘克, 髙村善英, 西原克哉, 伊村光生, 土田清文, 石橋聖, 前島正道, 結城洋一, 鳥居 建男, 平成 25 年度福島第一原子力 発電所周辺における航空機モニタリング(受託研究), JAEA-Research 2014-012, 2014.
- 22) 眞田幸尚, 森愛理, 石崎梓, 宗像雅広, 中山真一, 西澤幸康, 卜部嘉, 中西千佳, 山田勉, 石田睦司, 佐藤義治, 平山弘克, 高村善英, 西原克哉, 伊村光生, 土田清文, 石橋聖, 吉田真美, 前島正道, 結城洋一, 鳥居建男, 平成 26 年度福島第一原子力発電所周辺における 航空機モニタリング(受託研究), JAEA-Research 2015-006, 2015.
- 23) 眞田幸尚, 宗像雅広, 森愛理, 石崎梓, 嶋田和真, 廣内淳, 西澤幸康, 卜部嘉, 中西千佳, 山田勉, 石田睦司, 佐藤義治, 佐々木美雪, 平山弘克, 高村善英, 西原克哉, 伊村光生, 宮本賢治, 岩井毅行, 松永祐樹, 豊田政幸, 飛田晋一朗, 工藤保, 中山真一, 平成 27 年度原子 力発電所周辺における航空機モニタリング(受託研究), JAEA-Research 2016-016, 2016.
- 24) 眞田幸尚; 森愛理; 岩井毅行; 瀬口栄作; 松永祐樹; 河端智樹; 豊田政幸; 飛田晋一朗; 平賀 祥吾; 佐藤義治; 卜部嘉; 石崎梓; 嶋田和真; 廣内淳; 工藤保, 平成 28 年度原子力発電所周辺 における航空機モニタリング(受託研究). JAEA-Technology 2017-034, 2017.
- 25) Ishizaki, A., Sanada, Y., Mori, A., Imura, M., Ishida, M. and Munakata, M., Investigation of snow cover effects and attenuation correction of gamma ray in aerial radiation monitoring, Remote Sens., 8(11), 892; doi:10.3390/rs8110892, 2016.

- 26) Ishizaki, A., Sanada, Y., Ishida, M., and Munakata, M., Application of topographical source model for air dose rates conversions in aerial radiation monitoring., J. Environ. Radioact., 180, 82-89, 2017.
- 27) 国土地理院ホームページ, <u>http://www.gsi.go.jp/kibanchizu/kibanchizu60004.html (</u>2018 年 3 月 1 日 閲覧).
- 28) 文科省, ゲルマニウム半導体検出器を用いた in-situ 測定法, 放射能測定法シリーズ 33, 1992.
- 29) ICRU, Gamma-ray spectrometry in the environment, ICRU report 53, 1994.
- 30) 原子力機構 HP, 平成 28 年度放射能測定調査委託事業「東京電力株式会社福島第一原子力発 電所事故に伴う放射性物質の分布データの集約」成果報告書, http://fukushima.jaea.go.jp/initiatives/cat03/entry03.html (2018 年 3 月 1 日閲覧).
- 31) 原子力機構, 平成 29 年度放射性物質測定調査委託費 80km 圏内外における航空機モニタリン グ事業「東京電力株式会社福島第一原子力発電所事故に伴う放射性物質の分布データの集約」 成果報告書, in press.
- 32) G. F. KNOLL, 神野郁夫, 木村逸朗, 阪井英次訳, 放射線計測ハンドブック (第4版), 日刊工 業新聞社, 2013.
- IAEA, Guidelines for radioelement mapping using gamma ray spectrometry data, IAEA-TECDOC-1363, 2003.
- 34) Nishizawa, Y., Sugita, T., Sanada, Y. and Torii, T., Analytical method for distribution of natural radionuclides after the FDNPP accident by aerial monitoring, Proceedings of the Twenty-First EGS Users' Meeting in Japan, KEK Tsukuba, 62-71, 2014.
- 35) 文部科学省, ゲルマニウム半導体検出器による γ 線スペクトロメトリー, 放射能測定法シリ ーズ 7, 1992.
- 36) 湊進, 日本における地表 y 線の空間線量率分布, 地学雑誌, 115, pp. 87-95, 2006.
- 37) 国土地理院 HP, http://nlftp.mlit.go.jp/ksj/jpgis/datalist/KsjTmplt-L03-b.html, (2018年3月1日閲覧).
- 38) Tatsuhiko Sato, Yosuke Iwamoto, Shintaro Hashimoto, Tatsuhiko Ogawa, Takuya Furuta, Shin-ichiro Abe, Takeshi Kai, Pi-En Tsai, Norihiro Matsuda, Hiroshi Iwase, Nobuhiro Shigyo, Lembit Sihver and Koji NiitaFeatures of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol., (2018)
- 39) Esri Japan Home Page, https://www.esrij.com/products/arcgis/(2018年3月1日閲覧)
- 40) Oikawa S., Nobuyuki, K., Sanada, T., Ohashi, N., Uesugi, M., Sato, K., Abukawa, J. and Higuchi, H. A nationwide survey of outdoor radon concentration in Japan. J. Environ. Radioact., 65, pp. 203-213, 2003.
- 41) 西川嗣雄, ラドン族(2) 自然放射線環境, 福井大学地域環境研究教育センター研究紀要「日本 海地域の自然と環境」, 5, pp. 83-94, 1998.
- 42) IAEA, Guidelines for radioelement mapping using gamma ray spectrometry data, IAEA-TECDOC-1363, 2003.
- 43) 産業技術総合研究所地質調査総合センターホームページ,海と陸の地球化学図, https://gbank.gsj.jp/geochemmap/(2018年3月1日閲覧).