平成 29 年度原子力規制庁委託成果報告書

耐津波設計・フラジリティ評価手法の整備に係 る防潮堤水理試験(漂流物影響・洗掘影響) (平成29年度分)

京都大学

平成 30 年 3 月 16 日

本報告書は、原子力規制委員会原子力規制庁からの委託により実施した業務の成果をとりまとめたものです。

本報告書に関する問い合わせは、原子力規制庁までお願いします。

【水理試験編】

目次

贫	第1章	事業概要	I-1
	1-1 事	事業の目的	I-1
	1-2 事	事業内容	I-1
甮	第2章	予備実験	I-2
	2-1 道	通過波の検定	I-2
	2-2	波圧測定	I-9
	2-3	ロードセルの性能検定	I-20
贫	第3章	漂流物衝突影響の把握	I-30
	3-1	既往評価式の前提および根拠の調査・関連論文等の調査・分析	I-30
	3-2	過年度水理試験及び解析結果の整理・分析	I-35
	3-3	今年度水理試験及び解析結果の整理・解析	I-41
	3-4	漂流物挙動の解析	I-53
甮	第4章	洗掘影響の把握	I-57
	4-1	既往評価式等の関連論文等の調査・分析	I-57
	4-2	過年度水理試験及び解析結果の整理・解析	I-61
	4-3	今年度水理試験及び解析結果の整理・解析	I-64
甮	亨5章	結果のまとめ	I-84
	5-1	漂流物衝突実験	I-84
	5-2	洗掘実験	I-86
	5-3	試験に関する今後の課題	I-88

参考資料

第1章 事業概要

1-1 事業の目的

平成25年7月,新規制基準や関連する審査ガイドが施行された.また,平 成25年11月改正の核原料物質,核燃料物質及び原子炉の規制に関する法律 では,「発電用原子炉施設の安全性の向上のための評価」を事業者に求め,「原 子力規制委員会で定める時期ごとに,当該発電用原子炉施設の安全性について, 自ら評価をしなければならない」としている.

さらに、平成25年11月策定の「実用発電用原子炉の安全性向上評価に関 する運用ガイド」(以下「運用ガイド」という.)では、新規制基準を適用し たプラントの安全性向上を「外部事象に係る確率論的リスク評価(PRA)」(以 下「リスク評価」という.)等を用いて評価することが求められており、リス ク評価に資する施設・設備のフラジリティ評価手法の高度化が必要となってい る.

本事業は、防潮堤に関する耐津波設計・フラジリティ評価手法の高度化を目 的に、「平成27年度原子力施設等防災対策等委託費(耐津波設計・フラジリ ティ評価手法の整備に係る防潮堤水理試験(その2))事業」及び「平成28 年度原子力施設等防災対策等委託費(耐津波設計・フラジリティ評価手法の整 備に係る防潮堤水理試験(漂流物影響・洗掘影響))事業」(以下「類似事業」 という.)で取得した水理試験結果及びシミュレーション解析結果について、 漂流物衝突影響及び洗掘影響の把握に着目した検証試験及びシミュレーション 解析を実施し、整理・分析することで、防潮堤に作用する漂流物衝突影響及び 洗掘影響を評価するとともにシミュレーション解析手法の適用範囲を確認する.

1-2 事業内容

本事業では、類似事業で取得した下記(1)及び(2)に関する水理試験及 びシミュレーション解析の結果及び3.2及び3.3で実施する検証試験及び シミュレーション解析の結果を基に、防潮堤の漂流物衝突影響及び洗掘影響を 評価するとともに、一般的に用いられる解析手法及び評価手法の適用範囲を確 認する.

(1) 漂流物衝突影響の把握

(2)洗掘影響の把握

漂流物衝突影響及び洗掘影響の評価及びシミュレーション解析手法の適用範 囲確認に際しては,過去の文献等で得られた知見を調査した上で整理・分析す ることで実施する.なお本事業の詳細については,原子力規制庁担当者と協議 して決定することとする.

なお本編は、上記事業内容のうち水理試験の結果について取りまとめたもの である.

第2章 予備実験

2-1 通過波の検定

2-1-1 実験の概要

津波波力特性の把握を目的に水理試験を行うのに先立ち,以下の2種類の津 波を試験水槽内で再現し,流速,波高を3回計測する.

① 孤立波(波高 15cm【沖波】)

② 長 波(規則波で周期 5 s, 波高 15 cm 【沖波】)

なお,実験は京都大学防災研究所宇治川オープンラボラトリー内に設置されている津波再現水槽で行い,海底地形勾配は1/10(単純勾配)で行う.

2-1-2 実験条件

(1) 実験水槽(津波再現水槽)

実験に用いた水槽は,長さ45m,幅4.0m,水深0.8mの津波再現水槽である.図 2-1-1 に実験水槽の概要を示す.

(2) 計測機器設置位置

図 2-1-2 に実験に用いた計測機器及びその設置位置を示す.

- (3) 実験ケース
- ①孤立波
 - ◇防潮堤なし
 ◇孤立波
 ・水深: 0.8m
 ・波浪条件: H=15.0cm
 ◇サンプリング
 ・データ個数: 6,000個
 ・サンプリング間隔: 25msec(40Hz)
 - ・サンプリング時間:150sec

実験回数	電圧データファイル名	解析ファイル名(Excelファイル)
1回目	N091406.vlt	N091406孤立波時系列(1回目)
2回目	N091407.vlt	N091407孤立波時系列(2回目)
3回目	N091408.vlt	N091408孤立波時系列(3回目)

②長波

◇防潮堤なし

- ◇長波
 - •水深:0.8m
 - ·波浪条件:H=15.0cm、T=5.0s

◇サンプリング

- ・データ個数:6,000個
- ・サンプリング間隔: 25msec(40Hz)
- ・サンプリング時間: 150sec

実験回数	電圧データファイル名	解析ファイル名(Excelファイル)
1回目	N091402.vlt	N091402長波時系列(1回目)
2回目	N091403.vlt	N091403長波時系列(2回目)
3回目	N091404.vlt	N091404長波時系列(3回目)

図 2-1-1 実験水槽(津波再現水槽)

図 2-1-2 計測機器・設置状況

2-1-3 実験結果

(1) 孤立波

孤立波に関する通過波の検定結果を以下に示す.

図 2-1-3 通過波実験測定結果(孤立波)

沖波(wave01)における誤差は±0.8%であり、精度上問題ない.

(2)長波

長波に関する通過波の検定結果を以下に示す.

図 2-1-5 通過波実験測定結果(長波)

沖波 (wave01) における誤差は-0.1~+1.5%であり,精度上問題ない.

2-2 波圧測定

2-2-1 実験の概要

津波波力を受ける防潮堤を対象とする水理実験を実施し,防潮堤(堤体模型) に作用する基本的な津波波力特性に関する試験データを取得する. 試験の概要 を図 2-2-1 に示す. 地形は単純勾配(勾配 1/10)とする.

図 2-2-1 実験の概要図

2-2-2 実験条件

(1) 実験水槽

実験に用いた水槽は,長さ45m,幅4.0m,水深0.8mの津波再現水槽である.図 2-2-2 に実験水槽の概要を示す.

図 2-2-2 実験水槽(津波再現水槽)

I - 9

(2)実験条件・実験ケース

実験は孤立波,長波について行う.堤体模型の位置は0.0m,0.6m(0.0m は汀線)の2種類とする.その他の実験条件については以下の通り.

\wedge	ſΠ	\div	油
1521	ЛТ	v	기고

◇孤立波	◇長波
•防潮堤設置位置: 0.6m	•防潮堤設置位置: 0.0m, 0.6m
•水位:0.8m	•水位:0.8m
▪波浪条件:H=15.0cm	•波浪条件:H=15.0cm、T=5.0s
・サンプリングデータ個数:30,000個	・サンプリングデータ個数:30,000個
・サンプリング間隔: 1msec(1,000Hz)	・サンプリング間隔:1msec(1,000Hz)
・サンプリング時間: 30sec	・サンプリング時間:30sec

実験ケースを表 2-2-1, 2-2-2 に示す.

中段同数	電圧ファイル名	防潮堤設置位置:0.0m
夫职凹贸		移動平均とドリフト補正
1回目	N092005.vlt	07 N092005孤立波(防潮堤0.0m:SG:DF:1回目)
2回目	N092006.vlt	08 N092006孤立波(防潮堤0.0m:SG:DF:2回目)
3回目	N092007.vlt	09 N092007孤立波(防潮堤0.0m:SG:DF:3回目)
中段回参	電圧ファイル名	防潮堤設置位置: 0.0m
夫职凹贸		移動平均とドリフト補正
1回目	N092205.vlt	07 N092205孤立波(防潮堤0.6m:SG:DF:1回目)
2回目	N092206.vlt	08 N092206孤立波(防潮堤0.6m:SG:DF:2回目)
3回目	N092207.vlt	09 N092207孤立波(防潮堤0.6m:SG:DF:3回目)

表 2-2-1 波圧実験ケース(孤立波)

表 2-2-2 波圧実験ケース(長波)

実験回数	電圧ファイル名	<u>防潮堤設置位置:0.0m</u> 移動平均とドリフト補正
1回目	N092002.vlt	07 N092002長波(防潮堤0.0m:SG:DF:1回目)
2回目	N092003.vlt	08 N092003長波(防潮堤0.0m:SG:DF:2回目)
3回目	N092004.vlt	09 N092004長波(防潮堤0.0m:SG:DF:3回目)
	電圧ファイル名	防潮堤設置位置: 0.6m
夫缺凹剱		移動平均とドリフト補正
1回目	N092202.vlt	07 N092202長波(防潮堤0.6m:SG:DF:1回目)
2回目	N092203.vlt	08 N092203長波(防潮堤0.6m:SG:DF:2回目)
3回目	N092204.vlt	09 N092204長波(防潮堤0.6m:SG:DF:3回目)

なお、実験でサンプリングした波圧データは、平成28年度に実施した移動 平均とドリフト補正(予め各波圧計の空気→水中時に発生するドリフト量を確 認し,その量を計測値から除去する,ドリフト量に関する予備実験結果は後述) を行って表記した.

(3) 測定機器

波圧計測した機器の仕様及びその配置を以下に示す.

<u>波圧計の仕様</u>

◇PS-05KC
 ◇株式会社 共和電業
 ◇容量: 50KPa
 ◇固有振動:約 10KHz
 ◇許容過負荷: 150%

tar	定格出力	DPM-911Bの設定
tag	mV/V	зц
P1	0.303	606
P2	0.310	620
P3	0.317	634
P4	0.317	634
P5	0.324	648
P6	0.345	690
P7	0.360	720
P8	0.368	736
P9	0.368	736
P10	0.384	768
P11	0.392	784
P12	0.400	800
P13	0.409	818
P14	0.409	818
P15	0.418	836
P16	0.303	606

波圧計の仕様及びその配置状況

2-2-3 実験結果

(1) 波圧計のドリフト量に関する予備実験

個々の波圧計のドリフト量について計測した結果を以下に示す.この結果を 基に,計測した波圧の時系列データに補正を加える.

	大気中	0.0cm	1.0cm	2.0cm	4.0cm	6.0cm	8.0cm	10.0cm	12.0cm	14.0cm	ドロラレ星
	-0.5cm	0.0cm	1.0cm	2.0cm	4.0cm	6.0cm	8.0cm	10.0cm	12.0cm	14.0cm	トリント里
P1	0.000	331.610	426.137	537.938	705.230	906.630	1089.028	1283.450	1464.132	1654.132	281.207
P2	0.000	-159.089	-107.458	25.288	220.819	429.672	629.856	834.482	1017.995	1212.395	-62.464
P3	0.000	121.275	134.048	252.020	489.686	692.528	884.769	1072.085	1260.944	1446.431	269.637
P4	0.000	260.945	270.251	323.406	676.535	892.467	1077.037	1270.305	1459.110	1643.775	565.048
P5	0.000	81.084	147.897	230.374	419.194	605.868	782.967	960.216	1146.995	1338.029	-34.897
P6	0.000	89.739	272.402	419.292	633.047	836.342	1016.670	1194.387	1390.119	1584.043	309.183
P7	0.000	78.597	150.114	372.994	703.192	928.796	1114.250	1290.182	1489.762	1682.285	505.491
P8	0.000	40.540	116.802	180.022	628.671	855.199	1042.558	1218.876	1418.353	1615.579	536.851
P9	0.000	5.147	43.187	83.507	111.835	522.303	722.022	907.927	1100.469	1290.602	408.007
P10	0.000	-11.861	-4.665	7.192	22.012	52.952	57.002	449.826	828.272	1051.238	658.973
P11	0.000	-14.659	-19.914	-17.234	33.585	45.524	29.796	60.504	75.662	630.405	630.405
P12	0.000	109.555	194.018	294.654	477.079	671.773	863.472	1039.718	1235.445	1440.174	67.248
P13	0.000	160.871	348.797	494.200	669.993	869.199	1057.698	1238.656	1398.021	1604.845	329.986
P14	0.000	60.457	79.022	361.921	646.749	851.266	1049.380	1225.183	1401.733	1608.443	431.649
P15	0.000	-47.786	-59.992	-60.869	200.558	415.185	623.102	807.110	1053.408	1266.857	188.130
P16	0.000	8.360	46.630	49.637	125.833	972.247	1258.554	1460.579	1610.769	1847.269	964.674
理論値		0.000	98.066	196.132	392.265	588.397	784.529	980.661	1176.794	1372.926	

表 2-2-3 波圧計のドリフト量に関する予備実験結果

(2) 波圧測定結果

孤立波条件における防潮堤の波圧分布を図 2-2-4 に,長波条件における防潮 堤の波圧分布を図 2-2-5 に示す.また,各測定条件における波圧の時系列デー タ(補正後)の一例を図 2-2-6~2-2-9 に,実験時の流況を写真 2-2-1 に示す.

【防潮堤位置:0.0m】

【防潮堤位置:0.6m】

図 2-2-4 防潮堤の波圧分布(孤立波)

【防潮堤位置:0.0m】

【防潮堤位置:0.6m】 図 2-2-5 防潮堤の波圧分布(長波)

I -17

I -18

写真 2-2-1 防潮堤の波圧実験時の流況

2-3 ロードセルの性能検定

2-3-1 実験の概要

平成28年度に実施した漂流物衝突実験で,漂流物モデルをロードセルに直 接衝突させる方法では,衝突確率が極めて低く,実験効率に支障を来したため, ロードセル前面に補助の冶具をつけて衝突しやすい条件で計測を行った.

しかしこの方法では,直接衝突する力に比べて"なまされている"のではないかという疑念があるため,ここでは空中で木片を落下させてロードセルでその衝突力を計測し,冶具の有無による影響度合いを確認した.

2-3-2 実験条件

(1) 実験·計測機器装置

実験に用いた装置を図 2-3-1 に示す.実験に用いた木片は,平成 28 年度に流 木モデルとして用いたもの(径 20mm,長さ 100mm)と同じである.落下距 離は自由落下による速度が概ね造波実験時の衝突速度(孤立波で最大 2.38m/s) に一致するよう,高さを 29cm とした.

(2) 計測機器

計測に用いたロードセルは以下の通り.

ロードセルの仕様 ◇LMB-A-2KNZ5P ◇株式会社 共和電業 ◇容量: 2KN ◇固有振動:約 54KHz ◇許容過負荷: 150%

tag	製造番号	定格出力 mV/V	DPM-911Bの設定 με(1KNで使用)
LS-1	GY1870026	1.627	1627
LS-2	GY1870027	1.658	1658
LS-3	GY1870028	1.652	1652
LS-4	GY1870029	1.635	1635
LS-5	GY1870030	1.640	1640

直接ロードセルに衝突させる方法

治具を設置して衝突させる方法

図 2-3-1 実験に用いた装置

(3) 実験ケース

実験は、ロードセル5台について試行5回、サンプリング周波数2種(3,333Hz, 4,000Hz) で行った. 実験ケースを表 2-3-1, 2-3-2 に示す.

表 2-3-1 ロードセル検証実験ケース (サンプリング周波数:3,333Hz)

◆ロードセル: LC-1

·校正ファイル: N090801.vlt

実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N090803.vlt	N090808.vlt	
2回目	N090804.vlt	N090809.vlt	
3回目	N090805.vlt	N090810.vlt	ロードセル性能試験(LS-1:3.3KHz)
4回目	N090806.vlt	N090811.vlt	
5回目	N090807.vlt	N090812.vlt	

◆ロードセル: LC-2

・校正ファイル: N090813.vlt

実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)				
1回目	N090814.vlt	N090819.vlt					
2回目	N090815.vlt	N090820.vlt					
3回目	N090816.vlt	N090821.vlt	ロードセル性能試験(LS-2:3.3KHz)				
4回目	N090817.vlt	N090822.vlt					
5回目	N090818.vlt	N090823.vlt					

◆ロードセル: LC-3

·校正ファイル: N090824.vlt

実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N090825.vlt	N090830.vlt	
2回目	N090826.vlt	N090831.vlt	
3回目	N090827.vlt	N090832.vlt	ロードセル性能試験(LS-3:3.3KHz)
4回目	N090828.vlt	N090833.vlt	
5回目	N090829.vlt	N090834.vlt	

◆ロードセル: LC-4

·校正ファイル: N090835.vlt

実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N090836.vlt	N090841.vlt	
2回目	N090837.vlt	N090842.vlt	
3回目	N090838.vlt	N090843.vlt	ロードセル性能試験(LS-4:3.3KHz)
4回目	N090839.vlt	N090844.vlt	
5回目	N090840.vlt	N090845.vlt	

◆ロードセル: LC-5

・校正ファイル: NC)90846.vlt		
実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N090847.vlt	N090852.vlt	
2回目	N090848.vlt	N090853.vlt	
3回目	N090849.vlt	N090854.vlt	ロードセル性能試験(LS-5:3.3KHz)
4回目	N090850.vlt	N090855.vlt	
5回目	N090851.vlt	N090856.vlt	

表 2-3-2 ロードセル検証実験ケース(サンプリング周波数:4,000Hz)

◆ロードセル: LC-1

·校正ファイル: N091101.vlt

実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N091102.vlt	N091107.vlt	
2回目	N091103.vlt	N091108.vlt	
3回目	N091104.vlt	N091109.vlt	ロードセル性能試験(LS-1:4.0KHz)
4回目	N091105.vlt	N091110.vlt	
5回目	N091106.vlt	N091111.vlt	

◆ロードセル: LC-2

·校正ファイル: N091112.vlt

	001112.010		
実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N091113.vlt	N091118.vlt	
2回目	N091114.vlt	N091119.vlt	
3回目	N091115.vlt	N091120.vlt	ロードセル性能試験(LS-2:4.0KHz)
4回目	N091116.vlt	N091121.vlt	
5回目	N091117.vlt	N091122.vlt	

◆ロードセル: LC-3

·校正ファイル: N091123.vlt

	051120.01		
実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N091124.vlt	N091129.vlt	
2回目	N091125.vlt	N091130.vlt	
3回目	N091126.vlt	N091131.vlt	ロードセル性能試験(LS-3:4.0KHz)
4回目	N091127.vlt	N091132.vlt	
5回目	N091128.vlt	N091133.vlt	

◆ロードセル: LC-4

・校正ファイル: N091134.vlt

実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N091135.vlt	N091140.vlt	
2回目	N091136.vlt	N091141.vlt	
3回目	N091137.vlt	N091142.vlt	ロードセル性能試験(LS-4:4.0KHz)
4回目	N091138.vlt	N091143.vlt	
5回目	N091139.vlt	N091144.vlt	

◆ロードセル: LC-5

·校正ファイル: N091145.vlt

実験回数	直接衝撃	治具設置	解析データファイル(Excelファイル)
1回目	N091146.vlt	N091151.vlt	
2回目	N091147.vlt	N091152.vlt	
3回目	N091148.vlt	N091153.vlt	ロードセル性能試験(LS-5:4.0KHz)
4回目	N091149.vlt	N091154.vlt	
5回目	N091150.vlt	N091155.vlt	

2-3-3 実験結果1(冶具の有無による影響)

実験結果を表 2-3-3, 2-3-4 に示す.機器によって多少のばらつきはあるが, 治具の有無による衝突力の差は数%程度であり,実質差はないとみなして差し 支えない. 衝突力の値は,水槽実験時のおよそ2倍程度となっている.

センサー	-名	LC	-1	LC	-2	LC	-3	LC	-4	LC	-5
型式		GY187	70026	GY187	70027	GY18	70028	GY18	70029	GY18	70030
定格出:	ታ	1627r	mV/V	1658r	nV/V	1652	mV/V	1635	mV/V	1640r	mV/V
設定出:	ታ	162	7µ	165	8µ	165	2µ	163	5µ	164	0µ
		N	Kgf								
セ	1回目	242.97	24.79	291.96	29.79	276.13	28.18	268.07	27.35	248.62	25.37
ン	2回目	250.03	25.51	279.49	28.52	255.98	26.12	276.24	28.19	218.72	22.32
サ	3回目	272.12	27.77	256.01	26.12	244.08	24.91	266.61	27.21	286.07	29.19
	4回目	257.79	26.31	280.79	28.65	229.01	23.37	261.83	26.72	258.55	26.38
直	5回目	218.98	22.34	269.74	27.52	256.24	26.15	297.70	30.38	251.98	25.71
撃	平均值	248.38	25.34	275.60	28.12	252.29	25.74	274.09	27.97	252.79	25.79
試	最大値	272.12	27.77	291.96	29.79	276.13	28.18	297.70	30.38	286.07	29.19
験	最小値	218.98	22.34	256.01	26.12	229.01	23.37	261.83	26.72	218.72	22.32
_											
治	1回目	244.04	24.90	271.10	27.66	236.33	24.12	226.25	23.09	247.47	25.25
具	2回目	228.95	23.36	230.58	23.53	253.61	25.88	250.88	25.60	228.99	23.37
設	3回目	277.08	28.27	229.67	23.44	258.21	26.35	286.35	29.22	286.80	29.27
置	4回目	297.31	30.34	271.14	27.67	274.92	28.05	243.12	24.81	234.17	23.89
衝	5回目	243.83	24.88	227.96	23.26	235.98	24.08	291.97	29.79	261.70	26.70
撃	平均值	258.24	26.35	246.09	25.11	251.81	25.70	259.72	26.50	251.83	25.70
試	最大値	297.31	30.34	271.14	27.67	274.92	28.05	291.97	29.79	286.80	29.27
験	最小値	228.95	23.36	227.96	23.26	235.98	24.08	226.25	23.09	228.99	23.37
直撃 (平≴	ど 間接 個 は り	0.9	96	1.1	2	1.0	00	1.0	06	1.0	00

表 2-3-3 ロードセル検証実験結果(サンプリング周波数:3,333Hz)

表 2-3-4 ロードセル検証実験結果 (サンプリング周波数:4,000Hz)

センサ-	-名	LC	-1	LC	-2	LC	-3	LC	-4	LC	-5
型式		GY18	70026	GY18	70027	GY18	70028	GY18	70029	GY187	70030
定格出:	ታ	1627r	mV/V	1658ı	mV/V	1652	mV/V	1635ı	mV/V	1640r	mV/V
設定出:	<u></u> л	162	7µ	165	8µ	165	2µ	163	5µ	164	0µ
		N	Kgf	N	Kgf	N	Kgf	N	Kgf	N	Kgf
セ	1回目	288.57	29.45	269.44	27.49	269.37	27.49	300.81	30.70	<mark>296.88</mark>	30.29
ン	2回目	286.48	29.23	275.03	28.06	262.43	26.78	305.23	31.15	293.03	29.90
サ	3回目	254.68	25.99	306.31	31.26	295.49	30.15	269.13	27.46	235.09	23.99
	4回目	303.29	30.95	280.06	28.58	277.25	28.29	273.10	27.87	290.68	29.66
直	5回目	256.11	26.13	232.24	23.70	301.63	30.78	240.22	24.51	245.83	25.08
撃	平均值	277.83	28.35	272.62	27.82	281.23	28.70	277.70	28.34	272.30	27.79
試	最大値	303.29	30.95	306.31	31.26	301.63	30.78	305.23	31.15	296.88	30.29
験	最小値	254.68	25.99	232.24	23.70	262.43	26.78	240.22	24.51	235.09	23.99
治	1回目	288.76	29.47	250.52	25.56	266.08	27.15	237.63	24.25	287.41	29.33
具	2回目	238.67	24.35	255.42	26.06	261.49	26.68	289.40	29.53	262.10	26.75
設	3回目	288.98	29.49	281.98	28.77	230.03	23.47	295.45	30.15	246.00	25.10
置	4回目	290.33	29.63	301.05	30.72	286.71	29.26	265.04	27.04	271.96	27.75
衝	5回目	296.01	30.21	271.15	27.67	269.24	27.47	267.34	27.28	289.49	29.54
撃	平均值	280.55	28.63	272.02	27.76	262.71	26.81	270.97	27.65	271.39	27.69
試	最大値	296.01	30.21	301.05	30.72	286.71	29.26	295.45	30.15	289.49	29.54
験	最小値	238.67	24.35	250.52	25.56	230.03	23.47	237.63	24.25	246.00	25.10
直撃 (平±	を / 間接 / し は し)	0.9	9	1.0	00	1.0)7	1.0)2	1.0	0

2-3-4 実験結果2(衝突位置による影響)

前節までに示した結果は、治具への衝突点をロードセル位置と一致させて行ったものである.しかし、漂流物衝突実験では必ずしも衝突点がロードセル位置と一致しているとは限らず、衝突点がずれることによりロードセルに作用する荷重値が変化することが想定される.

そこでここでは、治具に対する衝突位置を支点近傍から反支点側まで変化さ せて、荷重値の変化度合いを確認する.衝突位置と作用荷重との間に一定の関 係が確認される場合は、その関係を用いて従前に行った測定値の補正を試みる.

(1)実験条件

用いた実験装置及びロードセルは,前節までに示したものと同じであり,治 具の支点側を一方向,反支点側を+方向として,-40mm~+20mmの範囲で流木モ デルを落下させてその衝突力の計測を行った(図 2-3-2).表 2-3-5 に実験ケー スを示す.

図 2-3-2 実験装置と計測範囲

______ 表 2-3-5 ロードセル検証・追加実験ケース(サンプリング周波数:4,000Hz)

<u> ◆落下位置:-4</u>	0mm	
実験回数	電圧データファイル	解析データファイル(Excelファイル)
1回目	N102521.vlt	N102521.xlsm
2回目	N102522.vlt	N102522.xlsm
3回目	N102523.vlt	N102523.xlsm
4回目	N102524.vlt	N102524.xlsm
5回目	N102525.vlt	N102525.xlsm
◆落下位置:-3	0mm	
実験回数	電圧データファイル	解析データファイル(Excelファイル)
1回目	N102516.vlt	N102516.xlsm
2回目	N102517.vlt	N102517.xlsm
3回目	N102518.vlt	N102518.xlsm
4回目	N102519.vlt	N102519.xlsm
5回目	N102520.vlt	N102520.xlsm
◆落下位置:-2	0mm	
実験回数	電圧データファイル	解析データファイル(Excelファイル)
1回目	N102511.vlt	N102511.xlsm
2回日	N102512.vlt	N102512 xlsm
3回月	N102513.vlt	N102513.xlsm
4回日	N102514.vlt	N102514 xlsm
5回目	N102515.vlt	N102515.xlsm
◆落下位置:-1	0mm	
実験回数	雷圧データファイル	解析データファイル(Excelファイル)
<u></u>	N102506 vlt	N102506 xlsm
2回日	N102507.vlt	N102507 vism
2回日	N102508 vlt	N102508 vism
4回日	N102509.vlt	N102509 xlsm
5回日	N102510.vlt	N102510.xlsm
◆落下位置:0m	ım	
実験回数	電圧データファイル	解析データファイル(Excelファイル)
1回目	N102501.vlt	N102501.xlsm
2回日	N102502.vlt	N102502.xlsm
3回日	N102503.vlt	N102503.xlsm
4回目	N102504.vlt	N102504.xlsm
5回目	N102505.vlt	N102505.xlsm
◆落下位置:+0	.5mm	
実験回数	電圧データファイル	解析データファイル(Excelファイル)
1回目	N102536.vlt	N102536.xlsm
2回日	N102537.vlt	N102537.xlsm
3回日	N102538.vlt	N102538.xlsm
4回目	N102539.vlt	N102539.xlsm
5回目	N102540.vlt	N102540.xlsm
◆落下位置:+1	0mm	
実験回数	電圧データファイル	解析データファイル(Fxcelファイル)
	N102526 vl+	N102526 ylem
2回日	N102527 vit	N102527 vlsm
2回日	N1025227.VIL	N102528 vlem
	N102529.vit	N102529 ylem
5回日	N102520.vit	N102530 ylem
		11102000.815111
▲茲下位置・⊥0	Ոՠՠ	
▼冷下世世、72 宇酴同粉	● 雷圧データファイリ	解析データファイル(「いっつファイル)
	N102532.Vlt	N102532.XISM
3凹日 ⊿同日		N102533.XISM
4빈日		N102534.XISM
コビロ	N102535.Vlt	IN LUZDJD.XISM

(2)実験結果

実験結果を表 2-3-6 及び図 2-3-3 に示す. また, 各測点の平均値を 0mm の値 との比で表したのが図 2-3-4 である. 同図にはこれらの比の逆数を補正係数と して併示している.

0mmの衝突力をピークとして、支点側(一方向)、反支点側(+方向)何れ の方向にも減少傾向となる.支点側は、ロードセルと支点に衝突力が分散する ことによって、反支点側は模型上の支点の緩みによってそれぞれ衝突力が減少 したものと推察される.

流木の落下位置

図 2-3-3 流木モデル落下位置と衝突力の関係

図 2-3-4 流木モデル落下位置と衝突力比・補正係数の関係

落下位置	-40	mm	-30n	nm	-20r	mm	-10	mm	0 ^m	m	5m	ш Ш	10n	m	20m	E
単位	z	Kgf	z	Kgf	z	Kgf	z	Kgf	z	Kgf	z	Kgf	z	Kgf	z	Kgf
目回日	89.35	9.12	144.87	14.78	194.15	19.81	222.70	22.72	234.42	23.92	251.93	25.71	207.70	21.19	167.68	17.11
2回目	114.12	11.65	144.97	14.79	195.02	19.90	228.97	23.36	223.73	22.83	202.62	20.68	211.58	21.59	166.19	16.96
測 3回目	123.64	12.62	175.77	17.94	189.09	19.29	194.59	19.86	249.25	25.43	210.18	21.45	225.40	23.00	180.18	18.39
定 4回目	95.00	9.69	170.58	17.41	216.31	22.07	229.67	23.44	220.41	22.49	215.46	21.99	229.44	23.41	173.86	17.74
結 5回目	106.56	10.87	164.32	16.77	183.56	18.73	212.73	21.71	287.10	29.30	207.12	21.13	213.02	21.74	181.25	18.49
果 平均値	105.74	10.79	160.10	16.34	195.62	19.96	217.73	22.22	242.98	24.79	217.46	22.19	217.43	22.19	173.83	17.74
最大値	123.64	12.62	175.77	17.94	216.31	22.07	229.67	23.44	287.10	29.30	251.93	25.71	229.44	23.41	181.25	18.49
最小値	89.35	9.12	144.87	14.78	183.56	18.73	194.59	19.86	220.41	22.49	202.62	20.68	207.70	21.19	166.19	16.96
0mmとの比	Č		0.00		c c			c	Ť		à		000			
(平均値より)	0.4	4	0.01	0	0.0	_	9.0	0	0.1	0	0.0	2	0.0	a	n. / s	
補正係数	2.3	0	1.52	2	1.2.	4	1.1	2	1.0	0	1.1.	2	1.1	2	1.40	

結果(サンプリング周波数:4,000Hz) ロードセル検証・追加実験 表 2-3-6

実験値にバラつきがあるが,流木モデル落下位置と補正係数の関係を表すと 図 2-3-5 のようになる. 衝突位置がロードセル位置から 10~20mm ずれると 1 ~2 割程度値が小さくなるため,下記の関係を用いて衝突位置に関する補正が 必要となる.

図 2-3-5 流木モデル落下位置と補正係数の関係

I - 29

第3章 漂流物衝突影響の把握

3-1 既往評価式の前提および根拠の調査・関連論文等の調査・分析

ここでは、漂流物の衝突力算定式に関する既往研究の調査を行い、それぞれ の評価式に関する整理(前提および根拠等)を行った.

① 水谷式 1)

(1)評価式

$$F = 2\rho_m \eta_m B_c V_x^2 + \frac{W V_x}{a dt}$$

ここに、dt:衝突時間、 η_m :コンテナがないときの最大水位、 ρ_m :水の密度、 B_c :コンテナ幅、 V_x :コンテナの漂流速度、W:コンテナ重量、g:重力加速度

(2)前提および根拠等

コンテナの漂流速度でコンテナと水塊が一体となって衝突し,衝突前の運動量がすべて力積として作用したと考えることで漂流物による衝突力をモ デル化.右辺第一項が水の付加質量による力,第2項がコンテナの質量による力を示す.

対象とする津波	陸域遡上津波(規則波(長波)と孤立波の2種で実験)
対象とする漂流物	コンテナ
対象とする被衝突	言及なし
構造物	
前提条件	・コンテナに対し垂直に津波が入射する場合を想定
	・遡上津波がコンテナを越流しない.

② 池野式²⁾³⁾

(1)評価式

$F/(gM) = SC_{MA} \{V_H/(g^{0.5}D^{0.25}L^{0.25})\}^{2.5}$

ここに、g:重力加速度、M:漂流物質量、D:直径(角柱の場合は正方形断面辺長)、

L:長さ、 V_H :漂流物速度、 $S: 係数(S=5 (陸上設置), S=20 (水上設置)), C_{MA}: 付加質量係数$

(2)前提および根拠等

段波津波による漂流物(2001)および陸上を遡上する津波による漂流物 (2003)の直立壁に対する衝突力を測定し,無次元衝突力 F/(gM)と衝突直 前の漂流物移動速度 V_H を無次元化した支配パラメータ V_H/(g^{0.5 D^{0.25} L^{0.25})との関係から上記評価式を得ている.なお,無次元化するにあたり}

代表的長さスケールとして直径 D と長さ L の幾何平均 【(DL)】 ^0.5 を用いている,評価式における指数の 2.5 は実験に基づく値である,

対象とする津波	段波津波(2001),陸域遡上津波(2003)
対象とする漂流物	水上設置(2001),陸上設置(2003)の木材
	各種形状(円柱,角柱,球),縦向き横向き考慮
対象とする被衝突	水中設置(2001),陸上設置(2003)の直立壁
構造物	材料は記述なし.
前提条件	津波は直立壁を超えない.

③ 松冨式 4)

(1)評価式

$$F/\gamma D^2 L = 1.6C_{MA}(v_{AO}/(gD)^{0.5})^{1.2}(\sigma_f/\gamma L)^{0.4}$$

ここに、 γ :単位体積重量、D:流木径、L:長さ、 C_{MA} :見かけの質量係数、 v_{AO} :漂流物速度、g:重力加速度、 σ_f :木材降伏応力

(2)前提および根拠等

松富は流木衝突力に焦点をあて,見かけの質量係数(水の緩衝機能を含む)に関する水路実験,衝突力に関する空中での大規模実験及び次元解析 により上記衝突力評価式を提案している.見かけの質量係数は構造物の開 度(受圧壁の縦切り抜き幅/水路幅)で変化する.

対象とする津波	段波津波及びサージ
対象とする漂流物	流木(長軸流れ方向)
対象とする被衝突	鋼板の直立壁
構造物	

④ 有川式 5)6)

(1)評価式

$$F = \gamma_p \chi^{2/5} (\frac{5}{4} \widetilde{m})^{3/5} v^{6/5}$$

$$\chi = \frac{4\sqrt{a}}{3\pi} \frac{1}{k_1 + k_2}, \quad k_n = \frac{1 - \nu_n^2}{\pi E_n}, \quad \widetilde{m} = \frac{m_1 m_2}{m_1 + m_2}$$

ここに、a:衝突面半径の1/2, E_n :ヤング率、 v_n :ポアソン比、m:質量、 v:衝突速度、添え字 n(=1,2)はそれぞれ衝突体と被衝突体を示す $\gamma_p(=0.25)$ は塑性によるエネルギー減衰効果を示す (2)前提および根拠等

有川らは、コンテナなどの鋼構造物(2007)及び流木(2010)のコンクリート 版に対する衝突に焦点を当て、気中実験および陸上遡上津波を対象とした 水中実験を実施し、Hertzの弾性接触理論に基づく上記の衝突力推定式を提 案している. 流体効果を取り入れるためには見かけの質量係数を質量に設 定すればよく、段積みにした丸太の場合について松冨(1999)の係数が妥当で あることが述べられている.

対象とする津波	陸上遡上津波
対象とする漂流物	コンテナ及び流木
対象とする被衝突	コンクリート版の直立壁
構造物	

⑤ FEMA 式

(1)評価式

$$F = 1.3u_{max}\sqrt{km_d(1+c)}$$
$$k^{-1} = k_s^{-1} + k_d^{-1}$$

ここに, *u_{max}*:対象サイトでの流れの最大流速, *k*:有効軸剛性, *k_d*:漂流物の軸剛性, *k_s*:構造物の軸剛性, *m_d*:漂流物質量, *c*:付加質量係数

(2)前提および根拠等

被衝突体と衝突体の2質点系を考え,2体の衝突時のそれぞれの変位量の 和のみを考える1自由度の非減衰振動方程式から上記漂流物衝突力式を導 出している.ここで,係数1.3はASCE規格リスク分類Ⅳの構造物に適用 される値である.

対象とする津波	遡上津波の実験はしていない.
対象とする漂流物	流木,コンテナ
対象とする被衝突	水中に設置された鋼板(一部コンクリート,木材)
構造物	橋脚のように被衝突体の鋼板の下に水が流れる状
	況で試験している.

⑥ 道路橋示方書式

(1)評価式

$$F = 0.1 W v$$

ここに、W:漂流物の重量(kN)、v:表面流速(m/s)である.

(2)前提および根拠等

丸太などの漂流物が河川の橋脚に衝突する状況を想定している. 衝突前 の運動量がすべて力積として作用したと考えることで衝突力を評価してい る.

対象とする流れ	河川の橋脚に漂流物が衝突するような状況を対象
	としている.としている.津波に関する言及はない.
対象とする漂流物	流木
対象とする被衝突	河川の橋脚
構造物	

※道路橋示方書に対する道路協会・国総研側の正式回答について

評価式中の「0.1」は、以下の式において、重力加速度gを代入するとともに、 t=1sと仮定することによるものです.

 $P=(W/g) \cdot (v/t)$

ここに、P: 衝突力(kN)、W: 流送物の重量(kN)、g: 重力加速度(m/s²)
 v: 表面流速(m/s)、t: 流送物が橋に衝突し始めて静止するまでの時間(s)

なお,評価式自体の出典は不明です.

(国土技術政策総合研究所 道路構造物研究部 橋梁研究室)
【参考文献】

- 1) 「エプロン上のコンテナに作用する津波力と漂流物衝突力に関する研究」 水谷ら(土木学会論文集 B2(海岸工学), Vol.52, pp.741-745, 2005)
- 2)「砕波段波津波による波力と漂流物の挙動・衝突力に関する実験的研究」 池野ら(土木学会論文集 B2(海岸工学), Vol. 48, pp. 846-850, 2001)
- 3)「陸上遡上津波と漂流物の衝突力に関する実験的研究」
 池野ら(土木学会論文集 B2(海岸工学), Vol. 50, pp. 721-725, 2003)
- 4) 「流木衝突力の実用的な評価式と変化特性」 松冨英夫(土木学会論文集, No. 621, pp. 111-127, 1999)
- 5) 「遡上津波によるコンテナ漂流力に関する大規模実験」 有川ら(土木学会論文集 B2(海岸工学), Vol.54, pp.846-850, 2007)
- 6) 「津波による漂流木のコンクリート壁面破壊に関する大規模実験」 有川ら(土木学会論文集 B2(海岸工学), Vol.66, pp.781-785, 2010)
- 7) 「Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, Second Edition, FEMA P-646」
 Federal Emergency Management Agency (2012)
- 8)「道路橋示方書・同解説,I共通編・Ⅱ鋼橋編,71p」
 日本道路協会(2012)

3-2 過年度水理試験及び解析結果の整理・分析

漂流物の衝突力は、衝突時の速度を用いて以下に示す運動量公式の形で表す ことが出来る.

【運動量公式】

平成27年度および平成28年度の基礎水路で実施した実験結果を基に、衝突速度と実験衝突係数、衝突速度と衝突力の関係を再整理すると、図3-2-1、図3-2-2のようになる.これらの結果より、バラつきはあるものの、上記の実験係数Cは概ね以下のように纏められる.

防潮堤位置 漂流物	Ocm (汀線)	60cm
流木	C=3.5	C=1.5
小型船舶	C=2.2	C=1.5

表 3-2-1 衝突力の実験係数 C(基礎水路)

また,平成28年度の津波水路で実施した実験結果を再整理すると,図3-2-3, 図3-2-4のようになる.これらの結果より,バラつきはあるものの,上記の実 験係数Cは概ね以下のように纏められる.

防潮堤位置 漂流物	Ocm (汀線)	60cm
流木	C=4.8(上限)	C=1.5(下限)
小型船舶	C=3.5(上限)	C=1.5(下限)

表 3-2-2 衝突力の実験係数 C(津波水路)

以上の結果から,流木の衝突力に関しては運動量式を下限値,松冨の式を上 限値として作用し,主に衝突の瞬間に水による緩衝効果がどれくらい効くかに よってその値が変化すると推察される.

衝突速度Vと実験衝突係数Cの関係(H28津波水路) (小型船舶)

図 3-2-3 衝突速度と実験係数 Cの関係 (津波水槽)

衝突速度Vと実験衝突力Fの関係(H28津波水路) (流木)

図 3-2-4 衝突速度と衝突力の関係(津波水槽)

(3) 過年度データへの適用(補正)

過年度の実験データについては、画像解析から流木・小型船舶の冶具への衝 突位置が、H27年度の津波水路実験で(孤立波条件のみ)かろうじて読み取れ ることから、今回確認した補正係数に関して、その適用を試みる.

結果を図 3-2-5,図 3-2-6 に示す.補正前に比べて衝突力の値は大きくなるが, データのバラつきの収束度合いはあまり変化がない.

防潮堤位置 漂流物	Ocm (汀線)	60cm
流木	C=5.3(上限)	C=1.5(下限)
小型船舶	C=4.0(上限)	C=1.5(下限)

表 3-2-3 衝突力の実験係数 C(津波水路)補正後

なお、上述した結果は計測位置が水路中央寄りであり、解析画像が不鮮明な ため、精度はあまりよくない.今回確認した補正係数に関しては、今年度実施 する計測データについて適用を試みる.

図 3-2-6 衝突速度 V と実験衝突力 F の関係(H28 津波水路,小型船舶;補正後)

3-3 今年度水理試験及び解析結果の整理・解析

前節までに示した,過年度実験結果の考察を踏まえ,今年度改めて検証試験 を実施し,整理・分析に用いる.

3-3-1 実験条件

(1) 水路

実験に用いた水路は2章予備実験 2-2 波圧測定で示した水路と同じである.

(2) 計測機器

漂流物の衝突力測定に用いた計測機器は,2章予備実験 2-3 ロードセルの性 能検定で示したロードセルの仕様と同じである.

tor	制迭采只	定格出力	DPM-911Bの設定
Lag	表担留う	mV/V	με(1KNで使用)
LS-1	GY1870026	1.627	1627
LS-2	GY1870027	1.658	1658
LS-3	GY1870028	1.652	1652
LS-4	GY1870029	1.635	1635

衝突力計測用の冶具の取り付け状況,ロードセルの設置位置,およびデータ サンプリング条件を以下に示す.

【衝突力計測用の冶具・ロードセルの設置位置】

I - 41

衝突力計測用の冶具・ロードセルの設置状況

【データサンプリング条件】

データサンプリング条件は下表の通り(昨年度と同じ).

宝玲の話粉	データサンプリング	サンプリング		
天殿の性短	時間(s)	周波数(Hz)	ピッチ(s)	
孤立波	16.25	4,000	0.00025	
長波	30.00	2.000	0.00050	

(3)小型船舶模型

実験に用いた小型船舶模型は以下の通り.模型の材質は昨年度までに用いた 木製と,剛性を高めたモデルの位置付けで,ステンレス製の2種を用意した.

小型船舶模型

衝突実験時の初期設置位置

(4)実験ケース

①漂流物衝突実験

ケース数:12=(漂流物1×堤体配置2×入力波2)×試行3

漂流物影響実験ケース表							
ケースNo.	漂流物モデル	堤体位置	波浪条件	試行			
Case3-1-1) – <i>k</i> – –		1回目			
Case3-1-2		汀線0cm ①		2回目			
Case3-1-3			孤立波	3回目			
Case3-2-1		汀線 −60cm	H=15cm	1回目			
Case3-2-2				2回目			
Case3-2-3	小开山小面白	(2)		3回目			
Case3-3-1	小空加加			1回目			
Case3-3-2		汀緑0cm ①		2回目			
Case3-3-3		 汀線 −60cm	長波	3回目			
Case3-4-1			H=15cm	1回目			
Case3-4-2				2回目			
Case3-4-3		(2)		3回目			

① 漂流物軌跡実験

防潮堤から沖方向に 1.0m地点に小型船舶模型を設置し,その平面的な挙動 をビデオに記録し,位置の変化を画像解析する.実験実施ケースは漂流物衝突 実験と同じ 12 ケースとする.

ケース数:12=(漂流物1×堤体配置2×入力波2)×試行3

漂流物軌跡追跡実験ケース表							
ケースNo.	漂流物モデル	堤体位置	波浪条件	試行			
Case3-5-1				1回目			
Case3-5-2		汀線0cm ①		2回目			
Case3-5-3			孤立波	3回目			
Case3-6-1			H=15cm	1回目			
Case3-6-2		-60cm		2回目			
Case3-6-3	小刑剑\血	(2)		3回目			
Case3-7-1	小空加加			1回目			
Case3-7-2		汀線0cm ①		2回目			
Case3-7-3			長波	3回目			
Case3-8-1			H=15cm	1回目			
Case3-8-2		-60cm		2回目			
Case3-8-3		2		3回目			

3-3-2 漂流物衝突実験結果

(1)小型船舶模型の材質の違いによる衝突力比較

小型船舶模型の材質について,昨年度まで木製を用いてきたが, "剛性がや や小さいのでは"という懸念から,今年度は0.3mmのステンレス鋼板を表面に 捲いたモデル(中空)でも衝突実験を行い,その比較を行った.結果を表 3-3-1, 3-3-2に示す(実験条件は孤立波,防潮堤位置;0cm).

これらの結果から、ステンレス鋼板を表面に捲いたモデルでは木製のモデル の衝突力よりむしろ小さい傾向となったため、必ずしも模型の剛性が高められ たとは言えないことから、結果として昨年までと同様、小型船舶模型の材質は 木製のままで行うものとした.

表-3-3-1 孤立波の衝突実験結果(測定値)									(単位:N)	
い的増刊の状態								木製		
加加快空の材具	衝突高さ	LC-1	LC-2	LC-3	LC-4	衝突高さ	LC-1	LC-2	LC-3	LC-4
1回目	34.6mm	216.17	153.69	167.95	261.88	31.0mm	299.99	215.81	236.54	165.54
2回目	29.7mm	230.41	141.16	174.46	254.97	26.3mm	329.36	291.42	307.85	203.31
3回目	40.2mm	194.43	165.34	177.83	226.21	31.9mm	328.20	243.68	208.69	299.62
平均值	-	213.67	153.40	173.42	247.69	-	319.18	250.30	251.03	222.83
最大値	-	230.41	165.34	177.83	261.88	-	329.36	291.42	307.85	299.62
最小値	_	194.43	141.16	167.95	226.21	-	299.99	215.81	208.69	165.54

※値は補正なし

表-3-3-2 衝突実験の材質による比較(測定値)						
ステンレス/木製						
1回目	0.72 0.71 0.71 1.58					
2回目	0.70	0.48	0.57	1.25		
3回目	0.59	0.68	0.85	0.76		
平均值	0.67 0.63 0.71 1.2					
最大値	0.72	0.71	0.85	1.58		
最小値	0.59	0.48	0.57	0.76		

(2) 衝突力結果

各実験条件における衝突力の結果を表 3-3-3 ~3-3-6 に示す(値は衝突位置 による補正前).

表 3-3-3 衝突実験結果(孤立波, 0cm)					(単位:N)
創むはました。	木製				
加加快空の材具	衝突高さ	LC-1	LC-2	LC-3	LC-4
1回目	31.0mm	299.99	215.81	236.54	165.54
2回目	26.3mm	329.36	291.42	307.85	203.31
3回目	31.9mm	328.20	243.68	208.69	299.62

表 3-3-4 衝突実験結果(孤立波,-60cm) (単位:N					

加加快空の材具	衝突高さ	LC-1	LC-2	LC-3	LC-4
1回目	42.2mm	—	296.41	445.82	271.79
2回目	46.5mm	_	290.99	277.58	166.83
3回目	41.2mm	220.17	284.91	297.14	232.57

表	(単位:N)				
い的増加の対策を行うしていたが、本製					
加加快空の材具	衝突高さ	LC-1	LC-2	LC-3	LC-4
取付位置(mm)		2250	1750	1250	350
1回目	51.7mm	25.34	—	—	105.69
2回目	45.9mm	32.01	82.48	—	121.06
3回目	50.7mm	_	_	_	109.68

表 3-3-6 衝突実験結果(長波,-60cm) (単位:N)											
魞 姉増刑のせ好			木製								
加加候空の材具	衝突高さ	LC-1	LC-2	LC-3	LC-4						
取付位置(mm)		2250	1750	1250	350						
1回目	45.5mm	134.02	65.32	85.48	177.77						
2回目	46.2mm	46.2mm 91.99 112.82 - 165									
3回目	46.0mm	_	106.72	_	163.72						

※衝突高さは LC-4のセンサー位置におけるビデオ撮影映像からの結果。 ※衝突高さは、地盤模型からの距離。センサー(LC-4)は地盤から 50mmの距離にセット ※表中の "-" は、船舶模型が衝突しなかったことを表す。 ロードセルの検証実験で示した,衝突位置による補正係数をかけると,表 3-3-3 ~3-3-6 は表 3-3-7 ~3-3-10のようになる.

表 3-3-7 衝突		(単位:N)								
叭姉揖刑の社気		木製								
加加候空の材具	補正係数	LC-1	LC-3	LC-4						
1回目	1.451	435.36	313.20	343.28	240.24					
2回目	1.702	560.60	496.03	523.99	346.06					
3回目	1.410	462.60	343.47	294.15	422.32					

表 3-3-8 衝突実験結果(孤立波,-60cm,補正後)									
いかせました			木製						
船舶候空の材質	補正係数	LC-1	LC-2	LC-3	LC-4				
1回目	1.076	-	318.96	479.72	292.46				
2回目	1.015	-	295.44	281.83	169.38				
3回目	1.097	241.49	312.49	325.90	255.08				

表 3-3	(単位:N)				
いかせました。			木製		
が加快空の材質	補正係数	LC-1	LC-2	LC-3	LC-4
1回目	1.002	25.39	-	-	105.92
2回目	1.021	32.68	84.22	-	123.60
3回目	1.000	_	-	-	109.72

表 3-3-1	(単位:N)							
いかせましてまた			木製					
が加快空の材質	材質 補正係数 LC-1 LC-2 LC-3							
1回目	1.025	137.41	66.97	87.65	182.27			
2回目	1.018	93.65	114.86	-	168.04			
3回目	1.020	-	108.85	-	167.00			

衝突力の結果を補正前,補正後で比較すると下図のようになる.孤立波条件では 0 cm 位置と-60 cm 位置での値が逆転し,作用波力に比例するような関係となる.

実験	実験条件		補正前 補正後		
孤立波	0cm	260.83	398.44	1.528	
孤立波	-60cm	278.42	297.27	1.068	
長波	0cm	79.38	80.25	1.011	※単位:N、値は平均値
長波	-60cm	122.54	125.19	1.022	(4測点、3回試行)

図 3-3-1 漂流物衝突力結果 (小型船舶模型、衝突位置による補正の有無比較)

(3) 衝突速度

表 3-3-11, 3-3-12 にビデオ画像の解析から算出した漂流物の衝突速度の一覧 を示す. なお同表には同様の解析方法による波の進行速度も併記している. 孤立波で 2.0~2.5m/s 程度,長波で 1.0~1.6m/s 程度で,波の進行速度よりや や遅くなる.

1 + + + + + +	設定波高	防潮堤	=+ %=	创入前台Na	2	則定位置(cm)	衝突速	度(m/s)	2	則定位置(cm	1)	波の速度
人力浑波	(cm)	位置	試行	用台 /打日ⅣO.	30	10	0		平均 [※]	30	10	0	(m/s)
				А		82	107	2 000					
				~		0.050	0.000	2.000			105	128	
				в		82	107	2.000					
			1			0.050	0.000		2.000				2.174
				С		82	107	2.000					
						0.050	0.000				0.046	0.000	
				D		0 0 7 2	0 000	1.389					
						82	107						
				A		0.050	0.000	2.000					
						82	107	0.000			107	131	
孤立法		汀線	2	В		0.050	0.000	2.000	2 000				2 083
1741-72 /12	15	0cm	2	C		82	107	2 000	2.000				2.000
						0.050	0.000	2.000			0.048	0.000	
				D		88	125	1.351					
						0.074	0.000						
				А		92	116	2.083					
						0.048	0.000				100	123	
				В		92	0.000	2.083					
			3			92	116		2.083				2.174
				С		0.048	0.000	2.083					
				6		82	117				0.046	0.000	
				D		0.070	0.000	1.429					
		= = =		2									
1 + 1 + 1 + 1	設定波高	防潮堤		6/\ 66N-	1	則定位置(cm)	衝突速	度(m/s)	ž	則定位置(cm	1)	波の速度
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No.	30	剛定位置(cm 10) 0	衝突速	度(m/s) 平均 [※]	30	則定位置(cm 10	1) 0	波の速度 (m/s)
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No.	30 78	創定位置(cm 10) 0 141	衝突速 2 3 9 1	度(m/s) 平均 [※]	30	則定位置(cm 10	1) 0	波の速度 (m/s)
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A	30 78 0.126	則定位置(cm 10) 0 141 0.000	衝突速 2.381	度(m/s) 平均 [※]	30	則定位置(cm 10 66	n) 0 81	波の速度 (m/s)
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B	30 78 0.126 76	創定位置(cm 10) 0 141 0.000 138	衝突速 2.381 2.419	度(m/s) 平均 [※]	30	則定位置(cm 10 66	n) 0 81	波の速度 (m/s)
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B	30 78 0.126 76 0.124	創定位置(cm 10) 0 141 0.000 138 0.000	衝突速 2.381 2.419	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66	n) 0 81	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤位置	試行 1	船舶No. A B C	30 78 0.126 76 0.124 81	創定位置(cm 10) 0 141 0.000 138 0.000 141	衝突速 2.381 2.419 2.500	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66	n) 0 81	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤位置	試行 1	船舶No. A B C	30 78 0.126 76 0.124 81 0.120	朝定位置(cm 10) 0 141 0.000 138 0.000 141 0.000	衝突速 2.381 2.419 2.500	度(m/s) 平均 [※] 2.433	30 30	則定位置(cm 10 66 0.030	n) 0 81 0.000	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B C D	30 78 0.126 76 0.124 81 0.120	测定位置(cm 10 95 0048) 0 141 0.000 138 0.000 141 0.000 119 0.000	衝突速 2.381 2.419 2.500 2.083	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030	n) 0 81 0.000	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B C D	30 78 0.126 76 0.124 81 0.120 0.120	则定位置(cm 10 9 9 95 0.048) 0 141 0.000 138 0.000 141 0.000 119 0.000 170	衝突速 2.381 2.419 2.500 2.083	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030	n) 0 81 0.000	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B C D A	30 78 0.126 0.124 81 0.120 0.120 108 0.124	则定位置(cm 10 9 95 0.048) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000	衝突速 2.381 2.419 2.500 2.083 2.419	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030	n) 0 81 0.000	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B C D A	30 78 0.126 0.124 81 0.120 0.120 108 0.124 108	则定位置(cm 10 95 0.048) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167	衝突速 2.381 2.419 2.500 2.083 2.419	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54	n) 0 81 0.000 70	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤位置	武行	船舶No. A B C D A B	30 78 0.126 76 0.124 81 0.120 0.120 108 0.124 107 0.120	測定位置(cm 10 95 0.048) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167 0.000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54	n) 0 81 0.000 70	波の速度 (m/s) 3.333
入力津波	設定波高 (cm)	防潮堤 位置 7 丁線 60cm	試行 1 2	船舶No. A B C D A B	30 78 0.126 76 0.124 81 0.120 108 0.124 108 0.124 107 0.120 110	測定位置(cm 10 95 0.048) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167 0.000 171	衝突速 2.381 2.419 2.500 2.083 2.419 2.500	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54	n) 0 81 0.000 70	波の速度 (m/s) 3.333 3.125
入力津波	設定波高 (cm)	防潮堤 位置 汀線 60cm	試行 1 2	船舶No. A B C D A B C	30 78 0.126 76 0.124 81 0.120 108 0.124 107 0.120 110 0.122	则定位置(cm 10 10 95 0.048) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167 0.000 171 0.000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54	n) 0 81 0.000 70	波の速度 (m/s) 3.333 3.125
入力津波 孤立波	設定波高 (cm)	防潮堤 位置	試行 1 2	船舶No. A B C D A B C C	30 78 0.126 76 0.124 81 0.120 108 0.124 107 0.120 110 0.122	測定位置(cm 10 10 9 9 5 0.048 9 5 0.048) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167 0.000 171 0.000 109	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000	度(m/s) 平均 [※] 2.433 2.459	30	則定位置(cm 10 66 0.030 54 0.032	n) 0 81 0.000 70 0.000	波の速度 (m/s) 3.333 3.125
入力津波 孤立波	設定波高 (cm)	防潮堤 位置 77線 60cm	試行 1 2	船舶No. A B C D A A B C C D	30 78 0.126 0.124 81 0.120 108 0.124 107 0.120 110 0.122	測定位置(cm 10 10 9 9 9 5 0.048 0 0 0 4 8 4 0.050) 0 141 0.000 138 0.000 141 0.000 119 0.000 167 0.000 167 0.000 171 0.000 109 0.000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54 0.032	n) 0 81 0.000 70 0.000	波の速度 (m/s) 3.333 3.125
入力津波 孤立波	設定波高 (cm)	防潮堤 位置 f0cm	武行 1 2	船舶No. A B C D A B C C D A	30 78 0.126 76 0.124 81 0.120 108 0.124 107 0.120 110 0.122 110 0.122 125	測定位置(cm 10 10 95 0.048 0.048 0.050) 0 141 0.000 138 0.000 141 0.000 170 0.000 167 0.000 167 0.000 167 0.000 167 0.000 167 0.000 167 0.000 185	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000 2.500	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54 0.032	n) 0 81 0.000 70 0.000	波の速度 (m/s) 3.333 3.125
入力津波 孤立波	設定波高 (cm)	防潮堤 位置 7 7線 60cm	武行 1 2	船舶No. A B C D A B C C D A	30 78 0.126 76 0.124 81 0.120 108 0.122 108 0.124 107 0.120 110 0.122 1125 0.120	測定位置(cm 10 10 95 0.048 95 0.048 95 0.048 84 0.050) 0 141 0.000 138 0.000 141 0.000 170 0.000 167 0.000 167 0.000 171 0.000 167 0.000 187 0.000 185 0.000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000 2.500	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54 0.032 75	n) 0 81 0.000 70 0.000 90	波の速度 (m/s) 3.333 3.125
八力津波 孤立波	設定波高 (cm)	防潮堤 位置 77線 60cm	武行 1 2	船舶No. A B C D A B C C D A A B	30 78 0.126 76 0.124 81 0.120 108 0.124 108 0.124 108 0.124 107 0.120 110 0.122 125 0.120 124 0.126 0.124 0.126 0.124 0.126 0.126 0.124 0.126	測定位置(cm 10 10 95 0.048 0.050) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167 0.000 0.000 167 0.0000 0.0000 0.000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000 2.500 2.500	度(m/s) 平均 [※] 2.433	30	則定位置(cm 10 66 0.030 54 0.032 75	n) 0 81 0.000 70 0.000 90	波の速度 (m/s) 3.333 3.125
孤立波	設定波高 (cm)	防潮堤 位置 汀線 60cm	試行 1 2 3	船舶No. A B C D A B C C D A B B C A B	30 78 0.126 76 0.124 81 0.120 108 0.124 107 0.120 110 0.122 125 0.120 124 0.120	測定位置(cm 10 10 95 0.048 0.048 0.050 0 84 0.050) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167 0.000 167 0.000 167 0.000 167 0.000 167 0.000 184 0.000 188 0.000 188 0.000 199 0.000 188 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 199 0.000 0.000 199 0.000 198 0.0000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000 2.500 2.500	度(m/s) 平均 [※] 2.433 2.459 2.500	30	則定位置(cm 10 66 0.030 54 0.032 75	n) 0 81 0.000 70 0.000 90	波の速度 (m/s) 3.333 3.125 3.333
孤立波	設定波高 (cm)	防潮堤 位置 汀線 60cm	試行 1 2 3	船舶No. A B C D A B C C A B C	30 78 0.126 76 0.124 81 0.120 108 0.124 107 0.120 110 0.122 125 0.120 124 0.120 124 0.120	測定位置(cm 10 10 9 9 5 0.048 9 5 0.048 0.050 0 4 8 4 0.050 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 0 141 0.000 138 0.000 141 0.000 119 0.000 170 0.000 167 0.000 167 0.000 167 0.000 167 0.000 185 0.000 185 0.000 184 0.000 186 0.000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000 2.500 2.500 2.500	度(m/s) 平均 [※] 2.433 2.459 2.500	30	則定位置(cm 10 66 0.030 54 0.032 75	n) 0 81 0.000 70 0.000 90	波の速度 (m/s) 3.333 3.125 3.333
孤立波	設定波高 (cm)	防潮堤 位置 50cm	試行 1 2 3	船舶No. A B C D A B C C A B C C	30 78 0.126 76 0.124 81 0.120 108 0.124 107 0.120 110 0.122 125 0.120 125 0.120 125 0.120 125 0.120 124 0.120	測定位置(cm 10 10 95 0.048 95 0.048 95 0.048 95 0.050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) 0 141 0.000 138 0.000 141 0.000 170 0.000 167 0.000 167 0.000 167 0.000 185 0.000 185 0.000 185 0.000 184 0.000 184 0.000 184 0.000 184 0.000 184 0.000 184 0.000 184 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.000 185 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	衝突速 2.381 2.419 2.500 2.083 2.419 2.500 2.459 2.000 2.500 2.500 2.500	度(m/s) 平均 [※] 2.433 2.459 2.500	30	則定位置(cm 10 66 0.030 54 0.032 75 0.030	n) 0 81 0.000 70 0.000 90 0.000	波の速度 (m/s) 3.333 3.125 3.333

表 3-3-11 画像解析による衝突速度一覧表(孤立波)

1 + + + + + +	設定波高	防潮堤	≣+ * ≪ <u>–</u>	的人前台Na	浿	l定位置(cm)	*	衝突速	度(m/s)	ž	則定位置(cm)	波の速度
入力洋波	(cm)	位置	訊1丁	灯口/灯目INO.	30	20	0(10)		平均	30	10	0	(m/s)
				А	138		227	1.685					
					0.178		0.000				383	406	
				В	0 178		0 000	1.685					
			1		182		271	1 005	1.681				2.174
				С	0.178		0.000	1.685			0.046	0.000	
				D		499	529	1.667			0.040	0.000	
						0.060	0.000						
				А	0 172		189	1.744					
					107		202				502	525	
E :#	片波	汀線	0	В	0.190		0.000	1.579	1.070				0.174
長 次	7.5	0cm	Z	C	119		199	1 875	1.078				2.174
					0.160		0.000	1.070			0.046	0.000	
				D		591	624	1.515					
					116	0.066	0.000						
				А	0.164		0.000	1.829					
				_	159		257				171	194	
			2	В	0.196		0.000	1.531	1.620				2 174
			5	с	168		259	1.648	1.020				2.174
					0.182		0.000				0.046	0.000	
				D		347	381	1.471					
					测定位置(cm)		衝突速度(m/s)		测定位置(crr				
	力津波 設定波高 防潮堤			2	則定位置(cm)	衝突速	庋(m/s)	2	則定位直(CM)	油の油曲	
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No.	30	創定位置(cm 10) 0	衝突速	度(m/s) 平均	ر 30	則定位直(cm 10) 0	波の速度 (m/s)
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No.	30 30	創定位置(cm 10 151) 0 198	衝突速	度(m/s) 平均	30	則定位直(cm 10) 0	波の速度 (m/s)
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A	30	創定位置(cm 10 151 0.094) 0 198 0.000	衝突速 1.064	度(m/s) 平均	30	則定位直(cm 10 163) 0 221	波の速度 (m/s)
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B	30	則定位置(cm 10 151 0.094 122) 0 198 0.000 185	衝突速 1.064 0.794	度(m/s) 平均	30	則定位直(cm 10 163) 0 221	2.174 2.174 2.174 波の速度 (m/s) 0.862 1.316
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B	30	則定位置(cm 10 151 0.094 122 0.126) 0 198 0.000 185 0.000	衝突速 1.064 0.794	度(m/s) 平均 1.063	30	則定位直(cm 10 163) 0 221	波の速度 (m/s) 0.862
入力津波	設定波高 (cm)	防潮堤 位置	試行 1	船舶No. A B C	30	創定位置(cm 10 151 0.094 122 0.126 161 0.096) 0 198 0.000 185 0.000 209	衝突速 1.064 0.794 1.042	度(m/s) 平均	30	則定位直(cm 10 163) 0 221	波の速度 (m/s) 0.862
入力津波	設定波高 (cm)	防潮堤 位置 ———————————————————————————————————	試行	船舶No. A B C	30	制定位置(cm 10 151 0.094 122 0.126 161 0.096 184) 0 198 0.000 185 0.000 209 0.000 221	衝突速 1.064 0.794 1.042	度(m/s) 平均	30	則定位直(cm 10 163 0.116) 0 221 0.000	波の速度 (m/s) 0.862
入力津波	設定波高 (cm)	防潮堤 位置	試行	船舶No. A B C D	30	制定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074) 0 198 0.000 185 0.000 209 0.000 221 0.000	衝突速 1.064 0.794 1.042 1.351	度(m/s) 平均 1.063	30	則定位直(cm 10 163 0.116) 0 221 0.000	波の速度 (m/s) 0.862
入力津波	設定波高 (cm)	防潮堤位置	試行 1	船舶No. A B C D	30	制定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147) 0 198 0.000 185 0.000 209 0.000 221 0.000 226	衝突速 1.064 0.794 1.042 1.351	度(m/s) 平均	30	则定位直(cm 10 163 0.116) 0 221 0.000	波の速度 (m/s) 0.862
入力津波	設定波高 (cm)	防潮堤 位置	1	船舶No. A B C D A	30	期定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118) 0 198 0.000 185 0.000 209 0.000 221 0.000 206 0.000	衝突速 1.064 0.794 1.042 1.351 0.847	度(m/s) 平均 1.063	30	則定位置(cm 10 163 0.116 222) 0 221 0.000 260	波の速度 (m/s) 0.862
入力津波	設定波高 (cm)	防潮堤位置	1	船舶No. A B C D A B	30	期定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 184 0.074 147 0.118) 0 198 0.000 185 0.000 209 0.000 221 0.000 226 0.000 199 0.000	衝突速 1.064 0.794 1.042 1.351 0.847 1.087	度(m/s) 平均 1.063	30	則定位直(cm 10 163 0.116 222) 221 0.000 260	波の速度 (m/s) 0.862
入力津波	設定波高 (cm) 片波 7.5	防潮堤 位置	試行 1 2	船舶No. A B C D A B	30	規定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164) 0 198 0.000 185 0.000 209 0.000 221 0.000 206 0.000 199 0.000 216	衝突速 1.064 0.794 1.042 1.351 0.847 1.087	度(m/s) 平均 1.063	30	则定位直(cm 10 163 0.116 222) 221 0.000 260	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 片波 7.5	防潮堤 位置 7000 60cm	試行 1 2	船舶No. A B C D A B C	30	期定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164 0.104) 0 198 0.000 185 0.000 209 0.000 221 0.000 206 0.000 199 0.000 216 0.000	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962	度(m/s) 平均 1.063	30	则定位直(cm 10 163 0.116 2222) 221 0.000 260	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 片波 7.5	防潮堤 位置 汀線 60cm	武行 1 2	船舶No. A B C D A B C C	30	規定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164 0.104) 0 198 0.000 185 0.000 209 0.000 221 0.000 206 0.000 199 0.000 216 0.000 257	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962	度(m/s) 平均 1.063 0.964	30	则定位直(cm 10 163 0.116 222 0.076) 221 0.000 260 0.000	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 片波 7.5	防潮堤 位置 7 7 線 60 cm	試行 1 2	船舶No. A B C D A A B C C D	30	期定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164 0.104 205 0.104) 0 198 0.000 185 0.000 209 0.000 221 0.000 206 0.000 199 0.000 216 0.000 257 0.000	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962	度(m/s) 平均 1.063	30	则定位置(cm 10 163 0.116 222 0.076) 221 0.000 260 0.000	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 方波 7.5	防潮堤 位置 汀線 60cm	武行 1 2	船舶No. A B C D A B C C D A		規定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164 0.104 205 0.104 198) 0 198 0.000 209 0.000 221 0.000 226 0.000 206 0.000 216 0.000 257 0.000 257 0.000	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962 0.962 1.087	度(m/s) 平均 1.063 0.964	30	期定位置(cm 10 163 0.116 222 0.076) 221 0.000 260 0.000	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 方.5	防潮堤 位置 70cm	武行 1 2	船舶No. A B C D A B C C D C C D A	30	規定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164 0.104 205 0.104 188 0.092) 0 198 0.000 185 0.000 209 0.000 221 0.000 206 0.000 216 0.000 216 0.000 257 0.000 244 0.000 244	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962 0.962 1.087	度(m/s) 平均 1.063	30	期定位置(cm 10 163 0.116 222 0.076 221) 221 0.000 260 0.000 252	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 方.5	防潮堤 位置 77線 60cm	武行 1 2	 船舶No. A B C D A B C D A B C D A B B C B B C C D C D A B B C D A B C D A B C D A B C D A D A D A D A D A D A A B C D A D D<		規定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164 0.104 205 0.104 198 0.092 180 0.092) 0 198 0.000 209 0.000 221 0.000 226 0.000 206 0.000 216 0.000 257 0.000 209 0.000 209 0.000 209 0.000 0.257 0.0000 0.231 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.257 0.0000 0.231 0.0000 0.0000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962 0.962 1.087 0.980	度(m/s) 平均 1.063 0.964	30	期定位置(cm 10 163 0.116 222 0.076 221) 221 0.000 260 0.000 252	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 方.5	防潮堤 位置 7 7 線 60cm	試行 1 2 3	船舶No. A B C D A B C C D A A B B		規定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.074 147 0.118 153 0.092 164 0.104 205 0.104 198 0.092 180 0.092) 0 198 0.000 185 0.000 209 0.000 221 0.000 206 0.000 216 0.000 216 0.000 257 0.000 244 0.000 231 0.000 242	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962 0.962 1.087 0.980	度(m/s) 平均 1.063 0.964	30	期定位置(cm 10 163 0.116 222 0.076 221) 221 0.000 260 0.000 252	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 方.5	防潮堤 位置 汀線 60cm	試行	船舶No. A B C D A B C C A B C		規定位置(cm 10 151 0.094 122 0.126 161 0.096 184 0.096 184 0.074 147 0.118 153 0.092 164 0.104 205 0.104 198 0.092 180 0.092 180 0.021 198) 0 198 0.000 209 0.000 221 0.000 221 0.000 226 0.000 216 0.000 216 0.000 216 0.000 216 0.000 216 0.000 211 0.000 244 0.000 231 0.000 242 0.000	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962 0.962 1.087 0.980 1.136	度(m/s) 平均 1.063 0.964	30	期定位置(cm 10 163 0.116 222 0.076 221) 221 0.000 260 0.000 252	波の速度 (m/s) 0.862 1.316
入力津波 長波	設定波高 (cm) 方.5	防 潮 置 前 御 置 60cm	武行 1 2 3	船舶No. A B C D A A B C C D A A B C C		規定位置(cm 10 10 151 0.094 122 0.126 161 0.096 184 0.096 184 0.074 147 0.118 153 0.092 164 0.104 198 0.092 180 0.0102 198 0.088 192) 0 198 0.000 209 0.000 221 0.000 226 0.000 206 0.000 216 0.000 257 0.000 244 0.000 244 0.000 242 0.000	衝突速 1.064 0.794 1.042 1.351 0.847 1.087 0.962 0.962 1.087 0.980 1.136 1.020	度(m/s) 平均 1.063 0.964	30	期定位置(cm 10 163 0.116 222 0.076 221 0.062) 221 0.000 260 0.000 252 0.000	波の速度 (m/s) 0.862 1.316 1.613

表 3-3-12 画像解析による衝突速度一覧表(長波)

測定位置

上段:ビデオ静止画No(静止画は1/500で作成)

下段:堤体(ロート・セル)に到達するまでの漂流物(波先端)の所要時間(堤体に到達した時間を0として表記)

漂流物衝突時の連続写真(小型船舶模型,H29 津波水槽)

(4) 衝突力と衝突速度の関係

ここでは,前項までに示した漂流物(小型船舶)の衝突力と衝突速度の関係 を示す(表 3-3-13, 3-3-14,および図 3-3-2). なお,図 3-3-2中の運動量公 式は下記に示すとおり.

【運動量公式】

衝突力 =
$$C \times MV/Dt$$

- C:実験係数
- M:漂流物の質量(kg)
- V: 衝突時の速度 (m/s)
- Dt: 衝突時の作用時間 (sec)

 \rightarrow 0.01/ $\sqrt{40} = 0.00158 \text{sec}$

表 3-3-13 衝突力の実験係数 C(小型船舶模型)

防潮堤位置 波浪条件	Ocm (汀線)	60cm
孤立波	C=4.0	C=2.4
長波	C=1.0	C=2.4

図 3-3-2 衝突速度 Vと実験衝突力 Fの関係(H29 津波水路)

左 7 Na	漂流物	担体位置	油泊冬州	衝突速度	質量	衝突	ミカF(N)	係数
	モデル	埞冲凹亘	波浪来件	v(m/s)	M(kg)	実測値	速度からの算定	С
Case3-1-1				2.000	0.080	333.02	101.27	3.289
Case3-1-2		汀線0cm ①		2.000	0.080	481.67	101.27	4.757
Case3-1-3		9	孤立波	2.083	0.080	380.64	105.49	3.608
Case3-2-1		汀線	H=15cm	2.433	0.080	363.71	123.21	2.952
Case3-2-2		-60cm		2.459	0.080	248.89	124.53	1.999
Case3-2-3	小刑叭血	(2)		2.500	0.080	283.74	126.58	2.242
Case3-3-1	小空加加	- (+ -		1.681	0.080	65.66	85.10	0.772
Case3-3-2		汀線0cm ①		1.678	0.080	80.17	84.98	0.943
Case3-3-3)	長波	1.620	0.080	109.72	82.01	1.338
Case3-4-1		汀線	H=15cm	1.063	0.080	118.57	53.80	2.204
Case3-4-2		-60cm		0.964	0.080	125.51	48.83	2.570
Case3-4-3		(2)		1.056	0.080	137.93	53.47	2.579

表 3-3-14 衝突実験結果一覧(小型船舶模型, H29 津波水路)

参考までに、H28,H29のデータを重ね書きしたものを図 3-3-2'に示す.

図 3-3-2' 衝突速度 V と実験衝突力 F の関係(H28, H29)

3-4 漂流物挙動の解析

防潮堤から沖方向におよそ1.0m地点に小型船舶模型を設置し,その平面的 な挙動をビデオに記録し,位置の変化を画像解析した.実験状況を写真3-4-1 に示す.また各条件における初期設置位置を表3-4-1に,実験結果(漂流物の 平面的な挙動の軌跡)を図3-4-1,3-4-2に示す.なお,小型船舶の初期設置位 置は汀線から概ね1mの位置とし,長波の軌跡は2波までの追跡とした.

孤立波の場合,かなりの検体(小型船舶模型)が衝突後(あるいは衝突せず) に越波に乗って防潮堤を越えて陸側に運ばれるが,長波の場合は,衝突後に越 波に乗って防潮堤を越えることは稀である.

(漂流物初期設置状況) 写真 3-4-1

(漂流物軌跡実験状況) 漂流物軌跡実験状況

(漂流物軌跡に関する考察)

上述した漂流物が防潮堤を越えるか否かの現象は,主に波浪条件の違い(孤 立波か長波か)によって区別されるが,これは防潮堤に波が打ち込んだ後の越 波の形状や流向が影響している(写真 3-3-1 参照).

孤立波で防潮堤位置が 0cm の場合は,砕波の瞬間に防潮堤に衝突しており, 越波時の流向が比較的水平方向に近いことから,この流向に乗って漂流物も防 潮堤を越えやすくなる.60cm の場合は,砕波後に防潮堤に衝突しており,越波 時の流向はほぼ鉛直方向であるが,衝突後の波の遡上高が 2m 近く生じており, この越波に乗った漂流物は高さがある分,防潮堤を越えやすくなる.

一方長波では,防潮堤位置に係らず砕波後に防潮堤に衝突しており,越波時 の流向がほぼ鉛直方向であること,孤立波ほど波の遡上高もないことから,防 潮堤を越える度合いが低かったものと推察される.

これらのことから,防潮堤への漂流物の衝突は,孤立波の場合は大きな力が ほぼ単発で生じるのに対し,長波では孤立波ほど大きな衝突力は作用しないが, 繰り返し衝突が生じる可能性が高いことに留意する必要がある.

				船舶初期位置(cm)							
入力津波	と 設定波高 (cm)	防潮堤 位置	船舶No.	試行1		試	<u>፟</u> ק2	試	行 3		
	(UIII)			縦断方向	横断方向	縦断方向	横断方向	縦断方向	横断方向		
			Α	139	60	126	79	173	58		
		汀線	В	134	150	136	128	151	151		
		0cm	С	131	241	127	265	157	214		
而去法			D	133	325	134	317	96	285		
加立波	15		Α	214	79	187	46	219	78		
		汀線 −60cm	В	216	98	184	150	192	151		
			С	223	181	193	246	161	206		
			D	184	291	238	317	176	356		
			А	122	96	109	72	132	58		
		汀線	В	110	173	103	141	133	137		
		0cm	С	120	270	100	239	137	198		
巨油			D	133	328	90	333	130	299		
天汉	15		А	196	85	212	62	130	142		
		汀線	В	188	180	212	163	134	213		
		-60cm	С	182	257	183	218	127	266		
			D	166	284	174	277	100	298		

表 3-4-1 漂流物軌跡実験・初期設置位置

第4章 洗掘影響の把握

4-1 既往評価式等の関連論文等の調査・分析

(1)調査結果

ここでは、津波による防波堤(護岸)付近の洗掘・打込み波圧に関する既往の関連研究に関する調査、分析を行った.

戻り流れによる海浜洗掘1(山本ら)¹⁾

陸域に遡上した津波の戻り流れによる,海岸護岸の前面洗掘を対象に,水理 模型実験により最大洗掘位置までの距離と最大洗掘深の算定法を提案している.

最大洗掘深 D = $C_{dh} \times 0.441 (\Sigma (E_y / \rho g))^{1/3}$ = $C_{dh} \times 0.159 (\Sigma (E_y \triangle t / \rho \sqrt{gh_r}))^{1/2}$ $C_{dh} = (1-0.0157(d_{50}-0.2mm)/0.2mm) \times (1-0.142(h/h_r))$ ここに、 ΣE_y : 運動エネルギーの累加値、 $\Sigma E_y \triangle t$: 単位幅当りの力積の累加値、 h_r : 護岸天端での戻り流れ水深、 d_{50} : 底質の中央粒径(mm)、 h: 海岸護岸の前面水深

主な実験諸元:

水路:幅 50cm×長さ 22m (2次元水路)

- 海浜勾配:1/15
- 底質粒径:0.2~10mm
- 護岸高 : 36cm, 43.5cm

② 戻り流れによる海浜洗掘2(野口ら)²⁾

海岸護岸に津波が来襲したときの,越波と前面洗掘の機構を大型水理模型実 験により検討している.大規模な洗掘が生じるのは,戻り流れが継続している 期間に形成される定在渦によるものとして,その最大洗掘深を戻り流れ流量等 により算定する手法を提案している.

最大洗掘深 D = 2.1R

R \sim g $^{-1/4}$ q $^{1/2}$ z $_{\rm f}$ $^{1/4}$

ここに、R: 定在渦の直径、q:単位幅流量、z_f:前面水深から護岸天端までの高さ

主な実験諸元: 水路:幅2.0m×長さ135m(2次元水路) 海浜勾配:1/20 底質粒径:不明 護岸高 :0.6m(初期水位:-0.1m~0.3m)

$$I - 5'$$

③ 堤防背後の洗掘量(有川ら)³⁾

直立型堤防を用いて,越流した際に生じる背後の洗掘深について水理模型実験を用いて検討し,野口らの評価式と比較している.

最大洗掘深 D = 5.83R

最大洗掘深 D = 5.91 η

ここに、R: 定在渦の直径、η:堤防の越流水深

主な実験諸元:

水路:幅0.8m×長さ105m(2次元水路) 海浜勾配:1/20 底質粒径:0.21mm 護岸高 :0.24m, 0.34m, 0.48m(初期水位:0.0m~0.139m)

④ 防波堤上面への越波水による打ち込み波力(間瀬ら)⁴⁾

スリット式透過ケーソン形式の防波堤を対象に,越波水によるケーソン上面への打ち込み波力・波圧分布の計測を行っている.その結果,H/H_D=2.11の条件で最大無次元波圧 P/(woH)=1.75程度,越流水深に対して5倍程度の波圧が作用するとしている.

主な実験諸元:

水路:幅0.7m×長さ40m(2次元水路) 海浜勾配:-波浪条件:不規則波(H_{1/3}:1.9m, T_{1/3}:5.5s) 模型縮尺:1/30

(2) 各諸元の整理方法

[打ち込み波圧]

間瀬ら(1997)に実験に基づき,越流水深による水圧が打ち込み波圧に比例 するものとする.越流水深はビデオ解析値より読み取る.実験値との誤差は, 実験係数を用いて調整する.

打込み波圧 Pm = 実験定数 × ρg×(最大越流波高)

最大越流波高 =防潮堤前面の波高 - 水面からの防潮堤高

[洗掘深]

野口の式(1997),山本の式(2011)等は護岸前面の戻り流れによる海浜の 洗掘を示し,防潮堤背後における洗掘深の推定には直接使用できない.有川ら (2014)はポンプによる強制越流を取り扱っており,洗掘深が大きく,今回の 実験の状況とは条件が異なっている.そこで,浸水深のみで洗掘深さを導く FEMA 式を参考にして,越流した水塊が一瞬浸水深となると考え,防潮堤背面に 生じる最大洗掘深と越流波高との関係を,以下の基本式で表せるものとする.

最大洗掘深 ym = 実験定数 × (最大越流波高) × (越流時間)

【参考文献】

- 「津波による陸域構造物被害の合理的評価法の提案」 山本ら(土木学会論文集 B2(海岸工学) Vol. 67, No. 1, 72-91, 2011.)
- 2) 「津波遡上による護岸越波および前面洗掘の大規模模型実験」
 野口ら(海岸工学論文集 第44巻, 296-300, 1997.)
- 「越流による直立型堤防背後の洗掘量に関する研究」
 有川ら(土木学会論文集 B2(海岸工学) Vol. 70, No. 2, I_926-I_930, 2014.)
- 4) 「親水性防波堤の耐波安定性に関する実験的研究」間瀬ら(海岸工学論文集 第44巻, 941-945, 1997.)

4-2 過年度水理試験及び解析結果の整理・解析

ここでは,平成28年度に津波水槽で行った実験のうち,防潮堤背面の打込み 波圧を計測した孤立波,長波の条件について,前述した既往文献を参考に再整 理,解析を行った.

用いたデータの一覧を表 4-2-1 に示す.

冲泊タル	叶湖坦什里	最大越流波高	最大打道	込み波圧	最大洗掘深		
波 浪衆件	防潮埞凹直	Hm(cm)	Pm(Pa)	位置(cm)	ym(cm)	位置(cm)	
孤寺法	0cm	29.80	7,290	36.0	1.481	18.0	
加立波	60cm	28.66	15,350	36.0	1.222	10.7	
巨油	0cm	25.71	2,145	17.0	1.605	13.8	
支次	60cm	29.50	_	_	1.231	7.7	

表 4-2-1 解析に用いたデータ (平成 28 年度,津波水槽実験)

(1) 最大洗掘深について

前述した既往文献を参考に,防潮堤背面に生じる最大洗掘深と越流波高との 関係を,以下の基本式で表せるものとする.

最大洗掘深 ym = 実験定数 × (最大越流波高) × (越流時間)

いま,最大越流波高を(防潮堤前面の波高)-(防潮堤高)とし,越流時間 を1sec(模型で0.158sec)と仮定して実験データを整理すると,表4-2-2のよ うになる.同表から,長波で防潮堤位置が0cmのケースを除き,最大洗掘深は 越流波高の概ね6割程度であることがわかる.図4-2-1に各条件における洗掘 縦断形状を示すが,長波で防潮堤位置が0cmのケースのみが最大洗掘深と最大 打込み波圧の作用位置が一致しており,他のケースと傾向が異なる要因のひと つと推察される.

波浪条件	防潮堤位置	最大越	流波高	最大洗掘深	宝駩宁粉	供		
		Hm(cm)	Hm-Hb(cm)	ym(cm)	天歌上奴	调石		
孤立波	0cm	29.80	14.8	1.481	0.633			
	60cm	28.66	13.7	1.222	0.566			
長波	0cm	25.71	10.7	1.605	0.948			
	60cm	29.50	14.5	1.231	0.537			

表 4-2-2 最大洗掘深に関する整理(平成 28 年度,津波水槽実験)

※Hm:防潮堤前面の波高,Hb:防潮堤高(=15.0cm)

図 4-5-1 各条件における洗掘縦断形状(水路中央;津波水槽)

(2) 打込み波圧について

前述した既往文献を参考に,防潮堤背面に生じる打込み波圧と越流波高との 関係を,以下の基本式で表せるものとする.

打込み波圧 Pm = 実験定数 × ρg×(最大越流波高)

最大越流波高 =防潮堤前面の波高 - 水面からの防潮堤高

上式にしたがって実験データを整理すると、表 4-2-3 のようになる. なお、 間瀬らは実験定数=5としていることから、その算定値も比較表示している. 孤立波で防潮堤位置が 0cm のケースでは、実験定数が 5 となり、間瀬らの結果 と一致するが、その他のケースでは食い違っている. これは写真 4-2-1 に示す ように、孤立波で防潮堤位置が 0cm のケースでは、越流後の水脈がそのまま打 込むのに対し、その他のケースでは一旦真上に打ち上がった水脈が落下する際 に生じる波圧なので、傾向が異なるものと推察される.

表 4-2-3 打込み波圧に関する整理(平成 28 年度,津波水槽実験)

波浪条件	防潮堤位置	最大越	流波高	打込み	実験値からの	
		/翻埞[1] Hm(cm) Hm−		定数=5.0	実験値	逆算定数
孤立波	0cm	29.80	14.8	7,252	7,290	5.03
	60cm	28.66	13.7	6,693	15,350	11.47
長波	0cm	25.71	10.7	5,248	2,145	2.04
	60cm	29.50	14.5	7,105	-	

写真 4-2-1 打込み波形の違いの一例

4-3 今年度水理試験及び解析結果の整理・解析

4-3-1 実験条件

(1) 水路

実験に用いた水路は2章予備実験 2-2波圧測定で示した水路と同じである.

(2) 計測機器

・打込み波圧計測用波圧計

形式名	規格容量	定格出力	固有振動数	製造元	
PS-1KC	1001 0	0.5mV/V以上	454 OL 11	株式会社 共和電業	
	100kPa	(1000×10 ⁻⁶ ひずみ以上)	新10kHz		

洗掘 打込み波圧設置タイプ PS-1KC

・データサンプリング
 孤立波:サンプリング周波数 4,000Hz(サンプリング時間: 16.25sec)
 長 波:サンプリング周波数 2,000Hz(サンプリング時間: 30.00sec)

· 平面配置

・3Dレーザープロファイラー

解像度:1mm ピッチ 照射距離(有効範囲):300±145mm 1度の走行でプロファイリング される幅:362.4mm 計測は2回走行して,幅600mm の範囲を合成

3 D レーザープロファイラー

(3)実験ケース

①打込み波圧実験

ケース数:12=(堤体配置 2×入力波 2)×試行 3

洗掘影響実験・打込波圧実験ケース表							
ケースNo.	防潮堤背面	堤体位置	波浪条件	試行			
Case4-1-1				1回目			
Case4-1-2		<u></u>)線0cm ①		2回目			
Case4-1-3		9	孤立波	3回目			
Case4-2-1		汀線	H=15cm	1回目			
Case4-2-2		-60cm		2回目			
Case4-2-3	■ 固定床	(2)		3回目			
Case4-3-1				1回目			
Case4-3-2		〉] 線0cm ①		2回目			
Case4-3-3)	長波	3回目			
Case4-4-1		汀線	H=15cm	1回目			
Case4-4-2		-60cm		2回目			
Case4-4-3		(2)		3回目			

②洗掘実験

防潮堤の直下流に長さ60cm,高さ6cmの容器を設置し,その中に平均粒径 0.2mmの砂を充填して,防潮堤を越波する波浪による洗掘状況をビデオに記録 し,通水後の洗掘形状を計測する.実験実施ケースは打込み波圧実験と同じ12 ケースとする.

ケース数:12=(堤体配置 2×入力波 2)×試行 3

洗掘影響実験・洗掘実験ケース表							
ケースNo.	防潮堤背面 堤体位置 波浪条件		波浪条件	試行			
Case4-5-1				1回目			
Case4-5-2		汀線0cm ①	孤立波 H=15cm	2回目			
Case4-5-3)		3回目			
Case4-6-1		汀線		1回目			
Case4-6-2		-60cm		2回目			
Case4-6-3	ᄧᆂᅣᄽ	(2)		3回目			
Case4-7-1	移動床		長 波 H=15cm	1回目			
Case4-7-2		汀線0cm		2回目			
Case4-7-3		9		3回目			
Case4-8-1		汀線		1回目			
Case4-8-2		-60cm		2回目			
Case4-8-3		(2)		3回目			
※移動床は長さ60cm、高さ6cmの容器に平均粒径0.2mmの砂を充填							

4-3-2 洗掘影響把握実験結果

(1) 打込み波圧

図 4-3-1 および表 4-3-1 に打込み波圧の結果を示す(値は時系列のデータの 最大値,3回試行の平均値).

孤立波で防潮堤 60cm の場合,防潮堤によって高所まで跳ね上げられた越波が 叩きつけるような流況となるため,打込みの主流部には比較的大きな圧力が発 生する.防潮堤 0cm の条件でも比較的大きな圧力が発生するが,0cm よりも 60cm でピーク圧力作用点より防潮堤側の圧力値が大きいのは,この範囲に一時的に 水塊が溜め込まれる水量が多いためである(次頁略図).

長波では越波が防潮堤直近に落下し、その位置エネルギーも低いので、打込 み波圧に顕著なピーク値は見られず,基本的に各測点に作用する静水圧に近い.

図 4-3-1 防潮堤背面の打込み波圧分布

[※]PB が中央, PA, PC は中央±450mm

孤立波						長	波	
距離(mm)	PC-1~PC-5	PB-1~PB-9	PA-1∼PA-5		- 野 尊(mm)	$PC = 1 \sim PC = 5$	$DR_{-1} \sim DR_{-0}$	$PA=1 \sim PA=5$
105.0	6349.06	6119.23	6881.81		105.0	207.26	700 00	1062.26
167.5	*******	5849 99			167.5	307.30	720.23	1003.30
230.0	6092.43	6440.26	7028.40		107.5	1020 71	3201.38	2460.00
292.5		6323.96			230.0	1939.71	116/ //	2400.00
355.0	6650.82	6467.94	6895.09		292.0	071.06	1104.44	1560.06
417.5		15217.98			<u> </u>	971.90	425.77	1300.90
480.0	7797.17	7126.14	8999.38		417.5	212.02	222.40	2145 29
542.5		3130.23			542.5	313.03	1666.01	2143.30
605.0	5831.81	7244.52	7336.22		605.0	1542 23	1000.91	1674.23
最大値	7797.17	15217.98	8999.38			1042.20	2261.22	2469.99
					取八直	1939.71	5201.50	2400.00
防潮堤:0cm				防潮堤:0cm				
距離(mm)	PC-1~PC-5	PB-1~PB-9	PA-1∼PA-5		距離(mm)	PC-1~PC-5	PB-1~PB-9	PA-1∼PA-5
705.0	9831.48	9702.24	10732.41		705.0	708.56	1388.66	3785.82
767.5		9432.87			767.5	***************************************	2808.26	***************************************
830.0	9546.19	10215.32	10812.42		830.0	194 03	167 78	2091 72
892.5		9871.25			892.5		177.62	
955.0	19345.06	18372.45	18549.77		955.0	639.21	361.88	1369.72
1017.5		12211.94			1017.5		1213.47	
1080.0	1755.39	2013.33	2868.30		1080.0	360.43	346.55	1792.94
1142.5		2289.78			1142.5		1118.97	
1205.0	4362.95	5245.89	5401.18		1205.0	445.75	128.41	1614.40
最大値	19345.06	18372.45	18549.77		最大値	708.56	2808.26	3785.82
					-			
防潮堤:60cm					防潮堤	: 60cm		

※PB が中央, PA, PC は中央±450mm

【孤立波,防潮堤:60cmの場合の流況概略図】

【長波,防潮堤:60cmの場合の流況概略図】
(2)洗掘深

図 4-3-2~4.3.5 に各実験条件における洗掘深の平面分布図を示す.また,図 4-3-6~4.3.7 に水路中央部における洗掘深の縦断図を示す.また前述した打込み波圧と洗掘深の縦断図を併記したものを図 4-3-8~4.3.9 に,各実験における流況を写真 4-3-1 に示す.

【孤立波】

防潮堤位置が汀線 0cm では打込み波圧の最大値が生じる位置より防潮堤側に 洗掘域が生じ,最大洗掘深も打込み波圧の最大値が生じる位置とは異なる.洗 掘のメカニズムは打込んだ波の内側にできる回転流によると推察される.

汀線−60cmでは砕波後に防潮堤に衝突するため,越波の打込み位置が変わり (汀線0cmより内側),防潮堤に近い側に最大洗掘深が生じる.また最大洗掘 深の値が汀線0cmより大きい.洗掘のメカニズムは汀線0cmとほぼ同様である 【長 波】

防潮堤位置に関わらず,防潮堤直背面に最大洗掘深が生じ,打込み波圧の最 大値(ピークは顕著ではない)が生じる位置と一致する.また,防潮堤位置が 汀線 0cm より汀線-60cm の方が全体の洗掘範囲がやや小さい.各ケースとも洗 掘・流下した土砂が陸側のエリアでやや堆積している.

なお,長波試験では入力波の2波目も越波しており,洗掘形状はその影響も 受けている.

図 4-3-2 実験後の洗掘深平面分布(孤立波,防潮堤:0cm)

図 4-3-3 実験後の洗掘深平面分布(孤立波,防潮堤:-60cm)

図 4-3-4 実験後の洗掘深平面分布(長波,防潮堤:0cm)

図 4-3-5 実験後の洗掘深平面分布(長波,防潮堤:-60cm)

写真 4-3-1 洗掘影響実験時の流況

(3)結果の整理・解析

ここでは、4-2節で示した過年度の実験データを整理したのと同様に、今年 度の実験結果について整理を行った。用いたデータの一覧を表 4-3-2に示す. また、各実験条件における防潮堤越波時の流況を写真 4-3-2に示す.

油泊冬 州	吐湖坦侍罢	=+* %==	最大越流波高	最大打道	込み波圧	最大淡	先掘深
波浪余件 防潮堤位直	ā玐1 J	Hm(cm)	Pm(Pa)	位 置(cm)	ym(cm)	位 置(cm)	
		1回目	29.60	12,184	41.8	1.01	12.0
	0cm	2回目	29.60	17,946	41.8	1.28	13.1
加去油		3回目	29.60	15,524	41.8	1.45	19.6
孤立波		1回目	32.90	17,300	35.5	1.63	6.0
	60cm	2回目	38.60	16,879	35.5	1.24	13.2
		3回目	39.30	20,938	35.5	1.47	7.7
		1回目	31.20	2,920	16.8	1.30	6.1
	0cm	2回目	32.20	3,348	16.8	1.36	7.4
三 法		3回目	33.20	3,517	16.8	1.27	8.8
長 波		1回目	37.80	3,261	16.8	1.79	8.8
	60cm	2回目	40.70	3,631	16.8	1.21	7.2
		3回目	41.40	1,533	16.8	1.43	7.2

表 4-3-2 解析に用いたデータ

※Hm:最大越流波高はビデオ画像による読取り

(3-1) 打込み波圧について

防潮堤背面に生じる打込み波圧と越流波高との関係を,以下の基本式で表せるものとする.

打込み波 $EPm = 実験定数 \times \rho g \times (最大越流波高)$

最大越流波高 =防潮堤前面の波高 - 水面からの防潮堤高

上式にしたがって実験データを整理すると、表 4-3-3 のようになる. なお、 間瀬らは実験定数=5としていることから、その算定値も比較表示している. 孤立波の条件では実験定数が 8.6~10.6、長波の条件で 1.2~1.9 となり、波浪 条件により傾向が変わる. これは写真 4-3-1、4-3-2 に示したように、孤立波で 防潮堤位置が 0cm のケース以外では砕波後に越波したり、越波方向がほぼ真上 だったりする等により、実験条件によって打ち込み形態が異なることがその原 因と推察される.

波浪条件	防潮堤	_是 最大越流波高		打込∂	実験値からの	
	位置	Hm(cm)	Hm-Hb(cm)	定数=5.0	実験値	逆算定数
孤立法	0cm	29.60	14.6	7,154	15,218	10.64
加立波	60cm	36.93	21.9	10,747	18,372	8.55
長波	0cm	32.20	17.2	8,428	3,261	1.93
	60cm	39.97	25.0	12,234	2,808	1.15

表 4-3-3 打込み波圧に関する整理

※Hb:防潮堤高 (=15.0cm), Hm, ym は各試行の平均値

(3-2) 最大洗掘深について

防潮堤背面に生じる最大洗掘深と越流波高との関係を,以下の基本式で表せるものとする.

最大洗掘深 ym = 実験定数 × (最大越流波高) × (越流時間)

いま,最大越流波高を(防潮堤前面の波高)-(防潮堤高)とし,越流時間 を1sec(模型で0.158sec)と仮定して実験データを整理すると,表4-3-4のよ うになる.同表から,防潮堤位置0cmで最大洗掘深が最大越流波高の5割前後, 防潮堤位置60cmで4割前後であることがわかる.

実験定数(最大洗掘深の最大越流波高に対する割合)が防潮堤位置 0cm より 60cmの方がやや小さくなる要因は,主として越波時の流況の差によると考えら れる.即ち,防潮堤位置 0cmの場合は越波方向が比較的水平方向に近く,堤体 背面に打込む際も角度をなしている.一方,防潮堤位置 60cmの場合は越波が防 潮堤によってほぼ鉛直方向に跳ね上げられ,堤体背面に打込む際も鉛直方向に 落下する.このことが,越流波高が高い割に洗掘度合いが比較的小さいという 傾向に繋がっていると推察される.

波浪条件	防潮堤	最大越流波高		最大洗掘深	中陸中新	进 书
	位置	Hm(cm)	Hm-Hb(cm)	ym(cm)	天歌上致	调方
孤立波	0cm	29.60	14.6	1.25	0.540	
	60cm	36.93	21.9	1.45	0.417	
長波	0cm	32.20	17.2	1.31	0.482	
	60cm	39.97	25.0	1.48	0.374	

表 4-3-4 最大洗掘深に関する整理

※Hb:防潮堤高 (=15.0cm), Hm, ym は各試行の平均値

第5章 結果のまとめ

5-1 漂流物衝突実験

実験に用いた衝突力の測定冶具の影響により,実際に作用する衝突力との乖離が懸念されたため,測定冶具の有無による影響,ロードセルからの衝突位置のずれによる影響を予備実験で確認した上で,改めて衝突流速と衝突力との関係について検討を行った.

(1)流木について

漂流物の衝突力を, 衝突時の速度を用いて以下に示す運動量公式の形で表す ものとした.

【運動量公式】

衝突力 = $C \times MV/Dt$

- C:実験係数
- M:漂流物の質量(kg)
- V: 衝突時の速度 (m/s)
- Dt:衝突時の作用時間 (sec)
 - \rightarrow 0.01/ $\sqrt{40} = 0.00158 \text{sec}$

過年度の実験結果の再整理により,実験係数Cは1.0~5.3の値を示す.また このことは,下限値が運動量公式もしくは池野らの式に近く,また上限値が松 冨の式もしくは有川らの式に近いことを示す.

図 5-1-1 衝突速度 V と実験衝突力 F の関係 (流木;H28 津波水路)

(2)小型船舶について

小型船舶については、今年度改めて実験を行うとともに過年度の結果を含めて再整理を行った.

流木と同様に漂流物の衝突力を,衝突時の速度を用いて以下に示す運動量公式の形で表すものとした場合の実験係数Cは1.0~6.0の値を示す.またこのことは,下限値が運動量公式もしくは池野らの式に近く,また上限値が有川らの式に近いことを示す.

図 5-1-2 衝突速度 Vと実験衝突力 Fの関係(小型船舶; H28, H29 津波水路)

5-2 **洗掘実験**

洗掘実験については,過年度の実験において打ち込み波圧と洗掘深の関係が 十分把握しきれなかったため,今年度改めて実験を行うとともにその結果を含 めて再整理を行った.

(1) 打ち込み波圧と洗掘深の関係

最大洗掘深の発生位置は、必ずしも最大打ち込み波圧の発生位置と一致しない.また洗掘深は、必ずしも打ち込み波圧の値に比例せず、打ち込んだ波によってできる回転流(渦流)の規模によると推察される.

図 5-2-1 打ち込み波圧と洗掘深の関係の一例(孤立波,防潮堤位置 0.6m)

(2) 打込み波圧と越流波高との関係

防潮堤背面に生じる打込み波圧と越流波高との関係を,以下の基本式で表せるものとした.

打込み波圧 Pm = 実験定数 × ρg×(最大越流波高)

最大越流波高 =防潮堤前面の波高 - 水面からの防潮堤高

孤立波の条件では実験定数が 8.6~10.6,長波の条件で 1.2~1.9 となり,波 浪条件により傾向が変わる.

(3) 最大洗掘深と越流波高との関係

防潮堤背面に生じる最大洗掘深と越流波高との関係を,以下の基本式で表せるものとした.

最大洗掘深ym = 実験定数 × (最大越流波高) × (越流時間)

越流時間を1sec(模型で0.158sec)と仮定すると,防潮堤位置0cmで最大洗 掘深が最大越流波高の5割前後,防潮堤位置60cmで4割前後となった.

5-3 試験に関する今後の課題

本委託で実施した水理試験に関する課題を以下に記す.

(1) 衝突力の測定方法の改良

本年度試験で,漂流物の衝突力測定について,漂流物材料の変更(剛性を上 げることを目的)や,測定冶具の衝突位置による衝突力の補正方法等について 検討を行った.ただし,測定冶具そのものの材質は木製であったため,もっと 剛性のある(例えばアクリル材のような)材質を用いた時の衝突力を測定し, 衝突力が過小評価でないかを確認する.更に,ロードセルの受圧面が小さいこ とも衝突力の測定を難しくしている要因でもあり,可能であれば受圧面そのも のを拡大できるロードセルの導入等も図る.

(2) 防潮堤全体に作用する波力の測定法の導入

本年度までの試験で,防潮堤に作用する波圧分布を計測してきたが,越波す る条件下では,波が防潮堤にあたった瞬間に最大波力が作用するとは限らず, 越波後の後流渦が発生している状態で,防潮堤全体に作用する波力が卓越する 可能性がある.これを確認するため,例えば分力計等を用いて防潮堤全体に作 用する波力の測定(時系列を含む)を行い,防潮堤に作用する設計外力に資す る資料としてとりまとめる.

(3) 衝突時に同時に流体の動きを解析できる手法の導入

本年度試験で,高速度カメラの画像を用いて,漂流物の衝突速度と並行して 流体の移動速度についても測定を試みた.ただし,その計測(画像解析)はマ ニュアル的な手法であったため,流速場としての把握はできていない.そこで 衝突時に同時に流体の動きを解析できるよう,例えば PIV のような手法を用い て計測を行い,漂流物の衝突速度との関係を検討する.

(4) 防潮堤の高さを変化させた実験ケースの実施

本年度までの試験で,越波する条件の試験では防潮堤の高さを固定して実験 を行ってきた.洗掘実験においては,打ち込み波圧や最大洗掘深と越流波高と の関係をとりまとめているが,越流波高のバリエーションが少なく,十分な精 度でその傾向を把握できていない.そこで,防潮堤の高さを変化させた実験ケ ースを実施し,越流波高のバリエーションを増やすことによってその評価精度 を上げる.

参考資料

〇漂流物衝突影響の把握実験

漂流物衝突時の角度

漂流物衝突速度と衝突力の関係・参考整理図

〇洗掘影響の把握実験

洗掘量

〇漂流物衝突影響の把握実験

漂流物衝突時の角度

	小型船舶模型〔木製〕 汀線−60cm 孤立波 波高15cm											
			船舶A			船舶B				船舶C		
平面	-1.6	°				2.9	9°				9.1°	
断面				-14.2°								
結果	衝突時角度	平面	A B C	-1.6° 2.9° 9.1°								
		断面	D	-14.2°								

	小型船舶模型(木製) 汀線0cm 長波 波高15cm								
			船舶A		船舶B	船舶C			
平面		12.1°			-61.1°	18.1°			
断面	ET -14.2°								
			А	-12.1°					
結里	衝空時鱼度	平面	В	-61.1°					
***	西大时万反		С	18.1°					
		断面	D	-14.2°					

				小型船舶	伯模型(木製) 汀線-60cm 長波 波高15cm 試行1回	18
			船舶A		船舶B	船舶C
平 個	18.8	3°	-		-2.2°	-34.9°
断固				17.4°		
			Α	18.8°		
結里	衝空時角度	平面	В	-2.2°		
而大	国天时円皮		С	-34.9°		
		断面	D	17.4°		

木材 過去データ

小型船舶 過去データのみ

小型船舶 今年度データのみ

小型船舶 過去データ+今年度データ

〇洗掘影響の把握実験

洗掘量(堆積分を考慮)

I -96

【解析編】

目次

第1章 津波通過波検定	II —2
1-1 試験の概要	$\Pi - 2$
1-2 試験条件	$\Pi - 2$
1-3 シミュレーションの概要	II -4
1-4 解析条件	II -4
1−5 解析結果と試験結果の比較	$II - 5$
第2章 漂流物影響の把握	II — 9
2-1 試験の概要	II — 9
2-2 試験条件	II — 9
2-3 漂流物影響に関する既往研究	II — 10
2-3-1 対象とする既往評価式	II — 10
2-3-2 既往評価式の概要	II −11
2-4 シミュレーションの概要	II −34
2-5 解析条件	II - 34
2-6 計算結果	II – 38
2-7 解析結果のまとめ	II -132
第3章 洗掘影響の把握	II −133
3-1 試験の概要	II –133
3-2 試験条件	II –133
3-3 洗掘影響に関する既往研究	II –134
3-4 シミュレーションの概要	II –136
3-5 解析条件	II –136
3-6 解析結果と試験結果の比較	II –139
3-7 解析結果	II –147
3-8 解析結果のまとめ	II — 168
第4章 漂流物・砂移動影響の把握に関する追加検討	II – 170
4-1 漂流物挙動の把握	II – 170
4-1-1 シミュレーションの概要	II –170
4-1-2 解析条件	II –170
4-1-3 解析結果の比較	II –173
4-2 砂移動による影響の把握	II — 203

4-2-1 シミュレーションの概要 Ⅱ-	203
4-2-2 解析条件	203
4-2-3 解析結果の比較:土塊移動解析 Ⅱ-	206
4-2-4 解析結果の比較:河床変動解析 Ⅲ-	·230
4-3 解析結果のまとめ Ⅱ-	·232
第5章 漂流物衝突力に関する既往評価式の比較検討	$\cdot 234$
第6章 解析結果のまとめと今後の課題	238

付録 A 漂流物解析モデルの概要

付録 B 河床変動モデルの概要

第1章 津波通過波検定

1-1 試験の概要

津波波力特性の把握を目的に水理試験を行うのに先立ち,以下の2種類の津波を試 験水槽内で再現し,流速,波高を3回計測するとともに,高速度カメラ画像計測を行う.

- ① 沖波波高で 15cm の孤立波
- ② 長波(規則波で周期 5 s, 波高 30cm)

なお,試験は京都大学防災研究所宇治川オープンラボラトリー内に設置されている 津波再現水槽で行い,海底地形勾配は1/10(単純勾配)として行う.

1-2 試験条件

津波再現水槽としては、断面水槽及び平面水槽を用いた.図 1-2-1 及び図 1-2-2 に は断面水槽及び平面水槽における水理模型実験水路寸法を示し、試験に用いた計測機 器及びその設置位置をそれぞれ示す.

図 1-2-1 断面水槽:水理模型実験水路寸法

図 1-2-2 平面水槽:水理模型実験水路寸法

1-3 シミュレーションの概要

通過波検定試験で用いられる2種類の津波を対象に、シミュレーション解析を行う. 解析コードは、京都大学防災研究所で開発された完全三次元流体解析モデルを利用する.通過波検定試験で計測された流速、波高及び動画撮影された津波波形等を解析結 果と比較することにより、それらの整合程度から解析手法の適用範囲を確認すると同 時に、解析手法および評価手法を提案する.また、津波の変形状況等の解析結果に対 しては、アニメーションによる可視化を行う.

1-4 解析条件

孤立波2ケース,長波1ケースの合計3ケースの解析を実施した.解析の水槽及び入力波条件を表 1-4-1 に示す.

ケース名	水槽・地形	入力波種類	入力波波高	対象時間
Case1	断面水槽・単純勾配	孤立波	15.0cm	9s
Case2	平面水槽・単純勾配	孤立波	15.0cm	9s
			実験の計測水	15s
Case3	平面水槽・単純勾配	長波	位を入射波と	
			して入力	

表 1-4-1 シミュレーション解析ケース一覧

計算メッシュは、実験水路の形状を適切に表現できるように作成した.

水路縦断方向のメッシュ分割について, 遡上時の津波の変形・伝播過程を詳細に 検討できるように, 縦方向のメッシュ分割について, 断面水槽における計算メッシ ュサイズは, -11.7m から-4.0m までを 2cm, -4.0m から 1.0m までを 1cm に設定し, 平面水槽における計算メッシュサイズは, -12.5m から-4.0m までを 2cm, -4.0m か ら 1.0m までを 1cm に設定した.

また、横断方向のメッシュ分割について、津波の横断方向の変化が少ない事を勘 案し、断面水槽における計算メッシュサイズは、縦方向-4m までは 50cm、縦方向-4m 以上は 10cm に設定し、平面水槽における計算メッシュサイズは、縦方向-4m まで は 2m、縦方向-4m 以上は 25cm に設定した.

鉛直方向のメッシュ分割について,解析対象となる津波波形の形状を表現する為に,何れの水槽においても,計算メッシュサイズを1cmに設定した.

1-5 解析結果と試験結果の比較

(1)水位の時系列波形図

図 1-5-1~図 1-5-3 は, Case1~3 における水位の時系列波形図を示し, 解析結果 を赤線と試験結果を青線で示した図である.

 $\rm I\!I-\!5$

【平面水槽·孤立波:設定波高 15.0cm】

【平面水槽・長波】

(2)最大水位の変化

図 1-5-4 は、数値計算結果と水理模型実験結果の各波高計における最高水位の相関 を示した図であり、グラフ中の赤丸は Case1 を、青丸は Case2 を、緑丸は Case3 を示している.図 1-5-4 のグラフに示されるように、Case1~3 に対する最高水位の 数値計算結果は、水理模型実験結果における最高水位を高い精度で再現している. 図 1-5-4 に示される最高水位の数値計算結果と水理模型実験結果との比較では、回 帰式の勾配は 1.0405 とほぼ 1 であり、またこのときの決定係数 R² は 0.9087 である ことがそれを示している.

図 1-5-4 最大水位の比較

第2章 漂流物影響の把握

2-1 試験の概要

津波再現水槽を用いて,漂流物が衝突する防潮堤を対象とした水理試験を実施し, 防潮堤(堤体模型)に衝突する漂流物の衝突挙動に関する試験データを取得する.流木 及び小型船舶の模型を漂流物とし,津波の流速,波高,波圧,衝突力を測定するとと もに,高速度カメラを用いた動画撮影を行い,衝突速度,衝突姿勢を測定している.

図 2-1-1 漂流物影響の把握試験 概略図

2-2 試験条件

(1) 試験水槽

試験に用いた水槽は,長さ45m,幅4.0m,水深0.8mの津波再現水槽である.図 2-2-1 に試験水槽の概要を示す.

図 2-2-1 試験水槽(津波再現水槽)

2-3 漂流物影響に関する既往研究

- 2-3-1 対象とする既往評価式
- これまでに提案されている漂流物の衝突力算定式をまとめる.
- 評価式①:水谷式

「エプロン上のコンテナに作用する津波力と漂流物衝突力に関する研究」

水谷ら(土木学会論文集 B2(海岸工学), Vol.52, pp.741-745, 2005) 評価式②:池野式

> 「砕波段波津波による波力と漂流物の挙動・衝突力に関する実験的研究」 池野ら(土木学会論文集 B2(海岸工学), Vol.48, pp.846-850, 2001)

「陸上遡上津波と漂流物の衝突力に関する実験的研究」

池野ら(土木学会論文集 B2(海岸工学), Vol.50, pp.721-725, 2003) 評価式③: 松冨式

「流木衝突力の実用的な評価式と変化特性」

松冨英夫(土木学会論文集, No.621, pp.111-127, 1999)

評価式④:有川式

「遡上津波によるコンテナ漂流力に関する大規模実験」

有川ら(土木学会論文集 B2(海岸工学), Vol.54, pp.846-850, 2007) 「津波による漂流木のコンクリート壁面破壊に関する大規模実験」

有川ら(土木学会論文集 B2(海岸工学), Vol.66, pp.781-785, 2010)

評価式⑤:FEMA式

「Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, Second Edition, FEMA P-646」

Federal Emergency Management Agency (2012)

評価式⑥:道路橋示方書式

「道路橋示方書・同解説, I共通編・Ⅱ鋼橋編, 71p」

- 日本道路協会(2012)
- 評価式⑦:京都大学防災研究所平石式

本報告書水理試験編にて提案した評価式である.

2-3-2 既往評価式の概要

評価式① : 水谷式 (1)評価式

$$F = 2\rho_m \eta_m B_c V_x^2 + \frac{WV_x}{qdt}$$

ここで、dt:衝突時間、 η_m : コンテナがないときの最大水位、 ρ_m :水の密度、 B_c :コン テナ幅、 V_x :コンテナの漂流速度、W:コンテナ重量、g:重力加速度である.右辺第一 項が水の付加質量による力、第2項がコンテナの質量による力を示す.

(2)概要

コンテナの漂流速度でコンテナと水塊が一体となって衝突し,衝突前の運動量がすべて力積として作用したと考えることで漂流物による衝突力のモデル化を行い,式(1)を導出している.

対象とする津波	陸域遡上津波(規則波(長波)と孤立波の2種で実験)
対象とする漂流物	コンテナ
対象とする被衝突構	言及なし
造物	
前提条件	・コンテナに対し垂直に津波が入射する場合を想定
	・遡上津波がコンテナを越流しない.

(3)水理実験の概要

図 2-3-1 に実験装置の概要を示す. 矩形のエプロン模型上にコンテナ模型を設置し, 津波を作用させる. コンテナ模型として長さ 20ft と 40ft の 2 種類, 重量としてそれ ぞれ 6 種類を用意した.

漂流物衝突力を評価するためには、コンテナ前面の最大遡上水位が必要となるが、 本論文では固定されている場合のコンテナ前面の最大水位 η_f で代用している. 図 2-3-2にコンテナ前面の最大水位とコンテナのない場合の最大水位 η_m との関係を示す. 越波が生じない限り $\eta_f = 2\eta_m$ が成り立つ.

図 2-3-1:実験水槽の概要

図 2-3-2:最大遡上水位とコンテナ前面の最大水位

(4)評価式導出及び水理実験による漂流物衝突力の検証

評価式(1)の第一項は水塊の質量による衝突力を示す. コンテナが衝突する際にコンテナがせき止めている水塊を,図 2-3-3 のように,直方体で近似する. 直方体の各辺の長さは縦: B_c ,横: $V_x * dt$,高さとしては固定されているときのコンテナ前面最大水位 η_f を用いる.

また,水理実験により得られたコンテナがない場合の最大水位 (η_m) と固定されたコンテナに入射したときのコンテナ前面の最大水位 (η_f) との関係式 (図 2-3-2 参照)

$$\eta_f = 2\eta_n$$

を用いる.この関係式は津波水位がコンテナの高さを超えないことを前提にしている. 直方体の密度を用いて,直方体の質量 *M*は

$$M = \rho_m * (2\eta_m B_c V_x dt)$$

力積の関係より、直方体の速度 V_x 、衝突時間dtを用いて衝突力の以下の式が得られる.

$$F = \rho_m * (2\eta_m B_c V_x dt) * V_x = 2\rho_m \eta_m B_c V_x^2$$

図 2-3-3:水塊のモデル図

評価式(1)の第2項はコンテナの質量による衝突力を示し、コンテナの質量W/g、コンテナの速度V_x、衝突時間 dtより衝突力は

$$F = (W/g) * V_x/dt = \frac{WV_x}{gdt}$$

ここで、衝突時間としては図 2-3-4 のように衝突力の時間波形の立ち上がりから最大 値までの時間とする.ただ論文中では衝突力計算に用いた dtの値について記述がない.

図 2-3-4:衝突時間のモデル図

漂流物衝突力の実測値と提案されている評価式による計算値の比較結果を図 2-3-5 に, 衝突力評価式第一項と第 2 項の比を図 2-3-6 に示す.実測値と計算値との差は水塊を 直方体とみなしていること,移動しているコンテナの前面水位を固定されたコンテナ の前面水位で近似していることなどによると考えられる.コンテナの質量による力に 比べ,水の付加質量による力が非常に大きく,そのため,衝突力はコンテナの重量よ りもコンテナの長さによって変化する.

図 2-3-5: 衝突力の実測値(縦軸)と計算値(横軸)

図 2-3-6: 衝突力における付加質量とコンテナ質量の比

評価式②:池野式 (1)評価式

$$F/(gM) = SC_{MA} \{ V_H / (g^{0.5} D^{0.25} L^{0.25}) \}^{2.5}$$

ここで、g:重力加速度、M:漂流物質量、D:直径(角柱の場合は正方形断面辺長)、L:長さ、 $V_H:$ 漂流物速度、S:係数(S=5 (陸上設置)、S=20 (水上設置))、 $C_{MA}:$ 付加質量係数である.

設置位置	漂流物形状・配置	付加質量係数C _{MA}
陸上設置	円柱横向き	断面二次元的衝突 2.0, 三次元的衝突 1.5
	角柱横向き	断面二次元的衝突 2.0~4.0, 三次元的衝突 1.5
	円柱縦向き	2.0
	角柱縦向き	2.0
	球	0.8
水上設置	形状・配置に依らな	0.5
	ない	

ここで、断面二次元衝突とは円柱長さが水路奥行幅 90cm に近い場合、三次元的衝突 とは円柱長さが水路奥行幅よりかなり短い場合を示す.

水上設置時も陸上設置時にそろえて係数S=5とすると、付加質量係数は2.0となる.

(2)概要

池野らは段波津波による漂流物(2001)および陸上を遡上する津波による漂流物 (2003)の直立壁に対する衝突力を測定し,無次元衝突力F/(gM)と衝突直前の漂流 物移動速度V_Hを無次元化した支配パラメータV_H/(g^{0.5}D^{0.25}L^{0.25})との関係から上記評 価式を得た.ここで,無次元化するにあたり代表的長さスケールとして直径Dと長さL の幾何平均(DL)^{0.5}を用いている.評価式における指数の2.5は実験に基づく値である.

対象とする津波	段波津波(2001)及び陸域遡上津波(2003)	
対象とする漂流物	水上設置(2001)及び陸上設置(2003)の木材	
	各種形状(円柱,角柱,球),縦向き横向き考慮	
対象とする被衝突構	水中設置(2001)及び陸上設置(2003)の直立壁	
造物	材料は記述なし.	
前提条件	津波は直立壁を超えない.	

(3)実験の概要

貯水ゲートを急開することにより段波を発生させ、水上設置(2001)及び陸上設置 (2003)の漂流物による直立壁に対する衝突力を測定している.漂流物の形状として は、水上設置時および陸上設置時ともに、円柱、角柱、球の3種形状を用意し、柱状 のとき L/D(円柱の場合、長さ/直径、角柱の場合、横長さ/縦長さ)を1.3~30、Dを 2.6~8cm で変え、球のときは Dを 6.3~14cm で変えた.水上設置時及び陸上設置時 の実験装置図を、それぞれ図 2-3-7 および図 2-3-8 に示す.

図 2-3-8:陸上設置時実験装置

(4)水理実験による漂流物衝突力に対する検討

水上設置時の各種漂流物の無次元衝突力と支配パラメータ $V_H/(g^{0.5}D^{0.25}L^{0.25})$ との関係を図 2-3-9 に示す. この結果から衝突力は漂流物の形状や横向き・縦向きに関わら ず支配パラメータを用いて統一した整理が可能であることがわかる. 付加質量係数 C_{MA} を導入し松冨(1999)より $C_{MA} = 0.5$ を用い,上記の衝突力算出式を提案している. 図 2-3-10 に衝突力算定式の適用性を示す.

陸上設置時については松富(1999)に倣い衝突力波形より衝突時の力積を求め、これが 衝突前後での見かけの付加質量を含む運動量変化に寄与すると仮定し、各種漂流物の 付加質量係数を算定している.横向き配置の場合、円柱の方が角柱より付加係数は小 さいが、円柱は遡上段波により回転しながら移動するのに対し、角柱は回転せずによ り多くの水塊が角柱でせき止められ、一緒に運動するためであると考えられる.陸上 設置時の無次元衝突力と支配パラメータとの関係を図 2-3-11 に示すように、漂流物 の形状・配置によりばらつきが大きい.先に求めた付加質量係数を考慮した算出式と 衝突力実験とを比較した結果が図 2-3-12 であり、算出式は各種衝突力をおおむね再 現している.

図 2-3-9:各種漂流物の無次元衝突力と支配パラメータとの関係

図 2-3-10: 衝突力実験値及び衝突力算定値との関係(白四角は松冨(1999)による評価 値)

図 2-3-11: 無次元衝突力と支配パラメータとの関係

図 2-3-12:各種漂流物に対する衝突力実験値と評価式による衝突力との関係

評価式③:松冨式 (1)評価式

 $F/\gamma D^2 L = 1.6C_{MA}(v_{AO}/(gD)^{0.5})^{1.2}(\sigma_f/\gamma L)^{0.4}$

ここで、Y:単位体積重量、D:流木径、L:長さ、 C_{MA} :見かけの質量係数、 v_{AO} :漂流物速度、g:重力加速度、 σ_f :木材降伏応力

津波	開度λ	見かけの質量係数 C_{MA}
段波	$\lambda \ge 40\%$	1.7
	$\lambda < 40\%$	$0.03\lambda + 0.5$
サージ	$\lambda \ge 40\%$	1.7
	$\lambda < 40\%$	$0.015\lambda + 1.1$

(2)概要

松富は流木衝突力に焦点をあて,見かけの質量係数(水の緩衝機能を含む)に関す る水路実験,衝突力に関する空中での大規模実験及び次元解析により上記衝突力評価 式を提案している.見かけの質量係数は構造物の開度(受圧壁の縦切り抜き幅/水路幅) で変化する.

対象とする津波	段波津波及びサージ
対象とする漂流物	流木(長軸流れ方向)
対象とする被衝突構	鋼板の直立壁
造物	

有川式との比較について

松冨式は、後述の有川式と係数倍を除き、同等の式とみなせる.丸太の質量 $m = \gamma \pi (D/2)^2 L$ を用いて上記評価式を変形すると、係数分を除いて

$$F \propto \sigma_f^{2/5} m^{3/5} D^{1/5} v^{6/5}$$

となる.

一方で有川式は丸太の質量mが被衝突体の質量より大きく,かつ衝突物のヤング率 *E*₁が被衝突物のヤング率より小さい(被衝突物の剛性は無限大)とみなせる場合,

 $F \propto E_1^{2/5} m^{3/5} D^{1/5} v^{6/5}$

松冨式では降伏応力を用い,有川式においてはヤング率を用いていること以外,上 記2式は係数分を除いて同じ式となる.松冨式,有川式は接触部における局所的な変 形を考慮し衝突力を評価している点が共通している.松冨式においては漂流物表面近 傍の塑性変形を考えているのに対し,有川式においては弾性変形において適用可能で あるヘルツの式を用いている点が異なる.ただし,有川式においては塑性によるエネ ルギー減衰効果として係数γ_pを取り入れている.

II - 19

(3)水路実験の概要

ゲート急開により段波(津波本体)及びサージ(陸上遡上部における津波先端部の流 れ)を発生させ水上設置(段波条件)または陸上設置(サージ条件)の流木模型を漂 流させた.ここで用いた流木模型は直径 4.8~12cm,長さ 38.4~160cm,重量 305~8615gfのラワン材である.貯木場の木材流出防止工や防浪ビルなどが横に並ん だ地域を想定し開度(受圧壁の縦切り抜き幅/水路幅)を 2%から 87%まで変えた受圧壁 (アクリル樹脂製)に衝突させ衝突力波形F(t)を求め,各開度に対して下評価式を用い て見かけの質量係数C_{MA}を算出した.

$$\int_{0}^{\Delta t} F(t)dt = C_{MA}Mv_{AO}$$

ここで, M:湿潤時の流木質量, v_{A0}:流木移動速度である.

(4)気中実験の概要

衝突物として直径 20 及び 30cm,長さ/直径の比 6~20,重量 24~253kgf のカラ松及 びラワンを用い,ワイヤーで水平に吊るした丸太を鋼板に衝突させた.図 2-3-13 に 実験装置の概略を示す.ここで,水平衝突角度θを5 度から 20 度の範囲で変えた. 危険側を考慮することとし,鉛直衝突角度は考慮しなかった.

図 2-3-13: 空中流木衝突実験装置の概略

(5)水路実験による見かけの質量係数に関する検討

水路実験の結果得られた見かけの質量係数の開度による変化を段波およびサージの場合についてそれぞれ図 2-3-14,図 2-3-15 に示す.

図 2-3-14: 開度による見かけの質量係数の変化(段波)

図 2-3-15: 開度による見かけの質量係数の変化(サージ)

(6)漂流物衝突力に関する検討

衝突物表面の局所的な塑性変形の運動方程式を考えることにより無次元衝突力 F/γD²Lに対して以下の評価式が提案されている.

 $F/\gamma D^2 L \sim (v_{AO}/(gD)^{0.5})^{1.2} (\sigma_f/\gamma L)^{0.4}$

ここで、 $v_{AO}/(gD)^{0.5}$ は無次元衝突速度、 $\sigma_f/\gamma L$ は無次元弾性係数であり、構造物の剛性は無限大としている.実験結果より衝突角度 θ への依存性は非常に小さいことから、上記評価式においては無視されている.図 2-3-16 に左辺と右辺(=X₃)との関係を示す.実験値のほぼ上限を示す係数を採用することとして空気中での衝突力評価式として以下の式を得る.

$$F/\gamma D^2 L = 1.6(v_{AO}/(gD)^{0.5})^{1.2}(\sigma_f/\gamma L)^{0.4}$$

実際の衝突力として流体効果を水理実験により得られた見かけの質量係数をかけることで取り入れ,最終的に以下の評価式を得る.

 $F/\gamma D^2 L = 1.6C_{MA}(v_{AO}/(gD)^{0.5})^{1.2}(\sigma_f/\gamma L)^{0.4}$

図 2-3-16: 気中衝突力の検証

評価式④:有川式 (1)評価式

$$F = \gamma_p \chi^{2/5} (\frac{5}{4} \widetilde{m})^{3/5} v^{6/5}$$
$$\chi = \frac{4\sqrt{a}}{3\pi} \frac{1}{k_1 + k_2}, \quad k_n = \frac{1 - v_n^2}{\pi E_n}, \quad \widetilde{m} = \frac{m_1 m_2}{m_1 + m_2}$$

ここで、a: 衝突面半径の 1/2、 E_n :ヤング率、 $v_n:$ ポアソン比、m: 質量、v:衝突速度、添え字 n(=1,2)はそれぞれ衝突体と被衝突体を示す. $\gamma_p(=0.25)$ は塑性によるエネルギー減衰効果を示す.

漂流物	衝突面半径の 1/2 : aの与え方
コンテナ	コンテナ衝突面の縦横長さの平均の 1/4
流木	$a = a_{ave}\sqrt{N}, a_{ave}$:平均半径, N :木材本数(木材を段積みにした場合)

(2)概要

有川らは、コンテナなどの鋼構造物(2007)及び流木(2010)のコンクリート版に対する 衝突に焦点を当て、気中実験および陸上遡上津波を対象とした水中実験を実施し、 Hertz の弾性接触理論に基づく上記の衝突力推定式を提案している.流体効果を取り 入れるためには見かけの質量係数を質量に設定すればよく、段積みにした丸太の場合 について松冨(1999)の係数が妥当であることが述べられている.

対象とする津波	陸上遡上津波
対象とする漂流物	コンテナ及び流木
対象とする被衝突構	コンクリート版の直立壁
造物	

(3)コンテナ実験の概要

図 2-3-17 のように、最大高さ 1m の位置からタイヤのついているコンテナ模型を 放しコンクリート版に衝突させる気中実験及び図 2-3-18 のように遡上津波をコンテ ナ模型に作用させコンクリート版に衝突させる水理実験を行っている. コンテナ模型 のサイズは縮尺 1/5 で長さ 1.21m,高さ 0.52m,幅 0.49m,材質は厚さ 2.3mmの鉄 板である.図 2-3-19 に空中衝突力および漂流衝突力実験結果及び Hertz の式による 衝突力推定式を衝突速度の関数としてまとめた.

図 2-3-19: 衝突速度と衝突力との関係

(4)木材衝突実験の概要

気中における丸太振り子実験を行った. コンクリート版中に埋め込まれた鉄筋のひ ずみ時系列データから衝突作用時間を測定した. また運動量保存則

$F\Delta t = \mathbf{m}v_2 - mv_1$

より Hertz の式及び松富(1999)の式から衝突作用時間を計算し,実験値との比較を行った.ここで, v_1 , v_2 は衝突前後の速度でありカメラ映像から $v_2 = 0$ であった.比較結果を図 2-3-20 に示す.衝突体として木材 A(直径 51cm,長さ 133cm,重さ 131kg), 木材 B(直径 41cm,長さ 132cm,重さ 90kg)の 2 つを用い,材質はラワン,ヤング率 10*10⁹(N/m²),ポアソン比 0.3 である.被衝突体のコンクリートの物性はヤング率 20*10⁹(N/m²),ポアソン比 0.2 であった.

松富式では作用時間を過小評価(=衝突力を過大評価)することになるが、松富 (1999)に記載のとおり、松富式は衝突力を過大評価側にあることを認めたうえで提 案されておりほぼ妥当な結果と考えられる.

図 2-3-20:実験と算定式の衝突作用時間の比較

また,津波による表流木の衝突実験も行い,図 2-3-21 のように段積みにした丸太 を津波に作用させ壁体に衝突させた.ひずみゲージの時系列データから得られる作用 時間と Hertz の式から計算される衝突時間とを比較し,流体効果による見かけの質量 係数の検討を行っている.松冨による 1.7 の値が妥当であることを示している.

図 2-3-21:漂流木衝突実験の概略

評価式⑤: FEMA 式 (1)評価式

$$F = 1.3u_{max}\sqrt{km_d(1+c)}$$
$$k^{-1} = k_s^{-1} + k_d^{-1}$$

ここで、 u_{max} :対象サイトでの流れの最大流速、k:有効軸剛性、 k_d :漂流物の軸剛性、 k_s :構造物の軸剛性、 m_d :漂流物質量、c:付加質量係数である.

漂流物	質量(kg)	付加質量係数c	漂流物軸剛性 k_d (N/m)
材木(軸方向)	450	0.0	$2.4^{*}10^{6}$
20ft 標準コンテナ(軸方向)	2200	0.3	$85^{*}10^{6}$
20ft標準コンテナ(法線方向)	2200	1.0	$80*10^{6}$
20ft 重量コンテナ(軸方向)	2400	0.3	$93^{*}10^{6}$
20ft 重量コンテナ(法線方向)	2400	1.0	$87^{*}10^{6}$
40ft 標準コンテナ(軸方向)	3800	0.2	$60*10^{6}$
40ft標準コンテナ(法線方向)	3800	1.0	$40*10^{6}$

コンテナ内の荷物の質量は荷物が衝突時に動かないようにコンテナに固定されてい る場合のみ含まれるべきである.

材木、コンテナ以外の漂流物に対しては別途質量と剛性を評価する必要がある.

(2)概要

被衝突体と衝突体の2質点系を考え,2体の衝突時のそれぞれの変位量の和のみを 考える1自由度の非減衰振動方程式から上記漂流物衝突力式を導出している.ここで, 係数1.3はASCE 規格リスク分類Wの構造物に適用される値である.

対象とする津波	遡上津波の実験はしていない.
対象とする漂流物	流木、コンテナ
対象とする被衝突構	水中に設置された鋼板(一部コンクリート,木材)
造物	橋脚のように被衝突体の鋼板の下に水が流れる状況で
	試験している.

(3)導出

衝突物と被衝突物の衝突時の変位量の和xのみを自由度として考える.この考えは 被衝突物の支持剛性,質量が大きく被衝突物が動かないという前提の下で正当化される.xの時間発展は次式に従う.

$$m_d \ddot{x} + kx = 0$$

ここで、kは衝突時の実効的な軸剛性で $k^{-1} = k_s^{-1} + k_d^{-1}$ が成り立つ.

衝突瞬間(t = 0)においてx = 0,衝突時の速度を $\dot{x} = u_1$ とした時,上式の解は以下となる.

$$x = u_1 \sqrt{\frac{m_d}{k}} \sin(\sqrt{\frac{k}{m_d}}t)$$

衝突力最大値は

$$F = \max(kx) = u_1 \sqrt{km_d}$$

となる.

流体力学的な付加質量を考えると、

$$m_d \ddot{x} + kx = -m_a x$$

ここで、maxは流体力学的な付加質量であり、付加質量係数cを導入して

$$m_a = m_d c$$

とする.

衝突時速度の漂流物速度として衝突地点での最大流速umaxを採用し,ASCE 規格リスク分類Wの構造物に適用される係数 1.3 をかけることで衝突力算定式を得る.

この導出では衝突に際し軸剛性kが一定値であることが仮定されているが,実際に は軸剛性kは変位量xの関数になる可能性が論文中で指摘されている.また運動量保存 式に基づく衝突力評価式,エネルギー保存式に基づく衝突力評価式ではそれぞれ衝突 時間,衝突停止距離が必要になるが,これらなしに衝突力を評価できる利点がある.

<u>補足(「平成 23 年度建築基準整備促進事業 40.津波危険地域における建築基準等の整</u> 備に資する検討 中間報告書 その2 平成 23 年 10 月東京大学生産技術研究所」と の比較)

上記報告書において、FEMA 式を用いた漂流物衝突力Fとして以下のように試算がなされている.40ft コンテナの有効軸剛性 $k = 6.5 * 10^8$ N/mとし,速度 $u_{max} = 2.4$ m/s, 質量 30ton,付加質量係数 $C_m = 2.0$ として

 $F = C_m u_{max} \sqrt{km} = 2.0 * 2.4 * \sqrt{6.5 * 10^8 * 30000} = 21196$ kN

一方で FEMA P646 に記載されているとおりの評価式に従い,速度 2.4m/s,質量 30ton,有効剛性として FEMA P646 に記載の $k = 60 * 10^6$ N/m,付加質量係数c = 0.2 を用いて衝突力Fを計算すると,以下のとおりになる.

$$F = 1.3 * 2.4 * \sqrt{60 * 10^6} * 30000 * (1 + 0.2) = 4585$$
kN

(4)木材衝突実験の概要

水路における縮小模型実験と実スケール実験の2通りの実験が行われた. 模型実験 では幅1.22m, 深さ0.61m, 長さ36.6mの水路において衝突体として長さ91cm, 縦 8.9cmから19cm, 横14cmまたは19cmの模型を用い, 被衝突体として木材または 鋼板を用いた. 図 2-3-22 に示すように流れを発生させることで丸太を漂流させ被衝 突体に衝突させている.

実スケール実験では、幅 9.1m,長さ 37m,深さ 2.4mの水槽において静止した水上に丸太を浮かべ、図 2-3-23 のように被衝突体を動かすことで衝突させた。用いた丸太は直径 24~32cm,長さ 4.6m~8.5m のアカマツであり,被衝突体は鋼板である. また実スケール実験に用いた水槽において水路実験で用いたものと同じスケールの実験を行い、2 つの実験が整合していることを確認している.

図 2-3-22:縮小実験概略図

図 2-3-23: 実スケールにおける被衝突体概略図

(5)衝突力実験の評価

図 2-3-24 に、横軸を補正速度 $u\sqrt{m}$ 、縦軸を衝突力としたグラフを示す. 0-deg が丸 太の軸を流れ方向に向けた時の結果で 90-deg は軸が流れに垂直の時の結果である. 補正速度と衝突力とが直線関係にあることがわかる. 図 2-3-25 に、水路実験(Flume)、 水槽における実スケール実験(Basin - Full scale)、水槽において行った水路実験と同 じスケールの実験(Basin – Reduced scale)について衝突力実験値と衝突力推定値と を比較した結果を示す(0-deg の結果のみ). ここで、推定値は軸剛性として $k = 2.4 * 10^6$ の値を用いたものであり、係数 1.3 は含まれていない.

図 2-3-24:補正速度u√mと衝突力の関係

図 2-3-25: 衝突力実験値と衝突力推定値との関係

評価式⑥道路橋示方書式 (1)評価式

F = 0.1 W v

ここで、W:漂流物の重量(kN)、v:表面流速(m/s)である.

(2)概要

丸太などの漂流物が河川の橋脚に衝突する状況を想定している. 衝突前の運動量が すべて力積として作用したと考えることで衝突力を評価している.

対象とする流れ	河川の橋脚に漂流物が衝突するような状況を対象としている.としている.津波に関する言及はない.
対象とする漂流物	流木
対象とする被衝突構	河川の橋脚
造物	

(3)導出

衝突前の運動量(W/g)vがすべて力積として橋脚に作用し、衝突後速度0になると 考えると、 Δt を衝突時間として以下の式が成り立つ.

$$F\Delta t = (W/g)v$$

衝突時間 $\Delta t = 1$ 秒と考えることで重力加速度 $g = 9.8m/s^2$ より,

F = 0.1Wv

が成り立つ.

ここで,実際の衝突時間は0.01 秒のオーダーであると考えられ,1 秒は過大である. 衝突1 秒前のまだ丸太と橋脚とが接していない時点の流速をvとし,1 秒かけて丸太 が減速するときに流体を介して橋脚が受ける平均的な力がこの道路示方書において 提案されている衝突力であるとみなせる.衝突直前に流速が急変するなどの状況では 適用が難しいと考えられる.なお,ここでは,Wとして漂流物の重量を考えており, 流体による付加質量効果は考慮されておらず衝突力の過小評価になっていると考え られる. 評価式⑦京都大学防災研究所平石式 (1)評価式

F = CMV/Dt

ここで,*C*:実験係数,*M*:漂流物の質量(kg),*V*:衝突時の速度(m/s),*Dt*:衝突時の作用時間である.*C*の値一覧を以下の表に示す.

漂流物	波浪条件	防潮堤位置 0cm(汀	防潮堤位置 60cm
		線)	
小型船舶	孤立波	4	2.4
	長波	1	2.4
流木	孤立波	5.3	1.5

(2)概要

模型実験を行い、小型船舶、流木を模した水上設置の漂流物が防潮堤に衝突すると きの衝突力を計測し実験係数の評価をしている.

対象とする流れ	孤立波,長波
対象とする漂流物	小型船舶,流木
対象とする被衝突構造物	防潮堤(防潮堤位置を考慮)

(3)導出

衝突前の運動量Mv がすべて力積として被衝突物に作用し、衝突後速度0になると 考えると、Dtを衝突時間として以下の式が成り立つ.

FDt = Mv

実験係数Cを取り入れ、衝突力評価式

F = CMv/Dt

が成り立つ.

2-4 シミュレーションの概要

漂流物が防潮堤に与える影響の評価手法の検討に資するため,漂流物の三次元形状 を考慮した三次元漂流挙動解析を行う.解析コードは,京都大学防災研究所で開発さ れた完全三次元流体解析モデルを利用する.また,漂流物の挙動について,アニメー ションによる可視化を行う.

2-5 解析条件

(1)解析モデル

漂流物の形状を正確に反映させることができ,並進3自由度および回転3自由度を 考慮した漂流物の挙動解析が可能なモデルを用いる.また計算時間短縮のために,沖 合については平面二次元解析モデルで計算し,水路斜面部から直立護岸を含む岸側の 領域は三次元解析モデルで計算を行うこととする.

(2)計算区間

造波境界,直線部,岸近傍部,直線部,直立護岸,遡上区間を含む一連の水路をモ デル化した.岸近傍部については一様勾配と直立護岸の2ケースの検討を行った.横 断方向については計算時間節約のために小型船舶型の場合幅20cm,流木型の場合は 幅4cmとした.汀線-2.0mの地点から沖側を二次元モデルで計算し,岸側を三次元モ デルで計算した.水路の平面図および断面図を図2-4-1に示す.

図 2-4-1 平面水路の平面図および断面図(一様勾配型)

(3)計算メッシュ

三次元モデルに関して,水路縦断方向および鉛直方向のメッシュ分割については計 算メッシュサイズを 0.5cm に設定した. 横断方向については漂流物として船舶型模型 を使用する場合は 2.5cm,流木模型を使用する場合は 0.5cm とした.

三次元計算域の総メッシュ数は小型船舶型の場合および流木型の場合ともに,縦断 方向 600×横断方向 8×鉛直方向 240=1,152,000 である.

(4)初期条件

初期条件は静水状態(沖合直線部水深 80cm)とした.

(5)入力波

波高 10cm, 15cm の孤立波及び長波の 3 ケースを入力波とし、岸壁部に対し垂直 に入射させた.

(6)漂流物条件

漂流物は小型船舶型および流木型の二通りとした.小型船舶型の船首部分は台形で, 流木型は正八角形でモデル化した.各漂流物の計算模型を図 1-2-2 に示す.密度は小 型船舶型のとき 459.8kg/m³,流木型のとき 601.8kg/m³とし,初期位置は一様勾配の とき汀線-20.3cm,直立護岸のとき汀線-48cmの位置に漂流物の先頭を配置した.

図 2-4-2 流木型および小型船舶型模型図

(7)解析ケース

漂流物形状(小型船舶,流木),地形(一様勾配,直立護岸護岸),防潮堤位置(汀線 0cm, 汀線 60cm),入射波形(孤立波 10cm, 15cm,長波)の計 2×2×2×3=24 ケースの解析を 実施する.解析ケースの一覧を表 2-4-1 に示す.

ケース名	入射波	漂流物	地形	防潮堤位置
SW10_SEN_c_0cm			一様勾配	汀線 0cm
SW10_SEN_c_60cm		小型船舶		汀線 60cm
SW10_SEN_t_0cm	孤立波		直立護岸	汀線 0cm
SW10_SEN_t_60cm	10cm			汀線 60cm
SW10_TRE_c_0cm			一様勾配	汀線 0cm
SW10_TRE_c_60cm		流木		汀線 60cm
SW10_TRE_t_0cm			直立護岸	汀線 0cm
SW10_TRE_t_60cm				汀線 60cm
SW15_SEN_c_0cm			一様勾配	汀線 0cm
SW15_SEN_c_60cm		小型船舶		汀線 60cm
SW15_SEN_t_0cm	孤立波		直立護岸	汀線 0cm
SW15_SEN_t_60cm	15cm			汀線 60cm
SW15_TRE_c_0cm	-		一様勾配	汀線 0cm
SW15_TRE_c_60cm		流木		汀線 60cm
SW15_TRE_t_0cm	-		直立護岸	汀線 0cm
SW15_TRE_t_60cm				汀線 60cm
LW_SEN_c_0cm	-		一様勾配	汀線 0cm
LW_SEN_c_60cm		小型船舶		汀線 60cm
LW_SEN_t_0cm	長波		直立護岸	汀線 0cm
LW_SEN_t_60cm				汀線 60cm
LW_TRE_c_0cm			一様勾配	汀線 0cm
LW_TRE_c_60cm		流木		汀線 60cm
LW_TRE_t_0cm			直立護岸	汀線 0cm
LW_TRE_t_60cm				汀線 60cm

表 2-4-1 シミュレーション解析ケース一覧

2-6 計算結果

(1)計算結果一覧および比較

船舶型および流木型漂流物の移動軌跡の比較結果を図2-6-3から図2-6-14に示す. 漂流物の重心位置および重心速度時系列の比較結果を図2-6-15から図2-6-26にまと めた.また漂流物の移動速度から算出した漂流物の影響を考慮した波力の比較結果を 図2-6-27から図2-6-29にまとめた.波力は以下に示す式で算出した.

波力 F = MV/Dt

M:漂流物の質量(N)

V:漂流物の移動速度(m/s)

Dt: 0.00158s *

※「平成 28 年度原子力施設等防災対策等委託費(耐津波設計・フラジリティ評価手法の整備に係 る防潮堤水理試験(漂流物影響,洗掘影響))事業 調査報告書」の漂流物試験結果より.

漂流物移動の目安として漂流物の重心 x 座標が防潮堤 5cm 手前位置を切る時刻 T を確認し,表 2-6-1 に整理した.

また,孤立波 15cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 60cm のケースについては,試験結果の高速度ビデオカメラの画像より抽出した衝突の瞬間 の波の移動速度と計算での移動速度を比較した.図 2-6-1 に衝突の瞬間の実験画像と 計算結果の流速の断面分布を示す.

衝突の瞬間の画像と5フレーム前の画像の波面の移動距離を計測し、5フレームの時間で除して衝突までの移動速度を算出したところ、1.585m/sとなった.計算結果の衝突直前の波の先端部付近の流速は約1.5m/sとなっていることから、漂流物を含む衝突直前の波の移動は概ね再現できていると考えらえる.

孤立波 15cm, 一様勾配地形,小型船舶型の結果について,計算による衝突力と実 験による衝突力の比較結果を表 2-6-2 にまとめた.孤立波 15cm の場合,計算におい て漂流物の防潮堤との衝突が見られたケースはこのケースのみであった.防潮堤に働 く力の時系列(図 2-6-2)から漂流物の衝突力を見積もった.図 2-6-2 の衝突時刻 t=7.83 秒において見られるピークから静水圧分の分の力(t=7.9s 以後に見られる一定力 60N を静水圧分とみなす)を除き,漂流物衝突力とした.防潮堤にかかる力には津波波力 も含まれるため漂流物による衝突力としてはこの値は過大であるが,目安として示し た.図 2-6-2 には同時に漂流物の流速及び衝突時の断面圧力分布図を示した.計算結 果については同時に運動量による衝突力の見積もりも示した. 長波のケースについては、漂流物を水理試験と同じ位置に配置して全8ケースの解 析を行ったが、漂流物と波が接触した際に計算が不安定になり、発散して最後まで計 算することができなかった.この原因は、長波が汀線に到達するかなり手前で砕波し、 砕けた波頂部が漂流物に衝突する状態となる為であり、孤立波ケースのように砕波し ていない波が漂流物と接触する場合に比べて格段に複雑な接触条件となることが数 値的な不安定を引き起こしていると考えられる.

このことから、本検討では【孤立波 10cm,小型船舶型,一様勾配型,防潮堤位置 汀線 0cm】のケースについて,長波の砕波が発生する前の沖の地点に漂流物を配置し た場合の解析を行い,計算が最後まで実行できることを確認した.砕波している波の 先端部分での漂流物の衝突については,今後の解析の課題とする.接触時の境界条件 を改良することで,砕波を含む不安定な波と漂流物の衝突についても十分対応できる と考えられる.

ケース名	重心 x 座標が防潮堤 5cm 手前位
	置を切る時刻 T
SW10_SEN_c_0cm	8.89s
SW10_SEN_c_60cm	超えていない
SW10_SEN_t_0cm	9.33s
SW10_SEN_t_60cm	超えていない
SW10_TRE_c_0cm	超えていない
SW10_TRE_c_60cm	9.44s
SW10_TRE_t_0cm	超えていない
SW10_TRE_t_60cm	超えていない
SW15_SEN_c_0cm	7.83s
SW15_SEN_c_60cm	8.21s
SW15_SEN_t_0cm	7.89s
SW15_SEN_t_60cm	8.55s
SW15_TRE_c_0cm	超えていない
SW15_TRE_c_60cm	8.21s
SW15_TRE_t_0cm	7.88s
SW15_TRE_t_60cm	超えていない
LW_SEN_c_0cm	超えていない
LW_SEN_c_60cm	-
LW_SEN_t_0cm	-
LW_SEN_t_60cm	-
LW_TRE_c_0cm	-
LW_TRE_c_60cm	-
LW_TRE_t_0cm	-
LW_TRE_t_60cm	-

表 2-6-1 計算結果一覧

(a) 高速度ビデオカメラ画像からの波の移動速度の算出

(b) 高速度ビデオカメラ画像(c) 解析結果(流速ベクトル図)

図 2-6-1 防潮堤に波が衝突する瞬間の波の移動速度の比較 【孤立波 15cm,小型船舶型,一様勾配型,防潮堤位置汀線 0cm】

表 2-6-2:衝突力比較一覧(孤立波 15cm, 小型船舶を想定)

ケース	衝突力
実験(衝突位置による補正後の値)	398.44N
計算(防潮堤にかかる力からの見積もり)	145N
計算(運動量による見積もり)	80N

図 2-6-2 衝突力解析図 【上:防潮堤にかかる力の時系列,中:漂流物流速時系列,下:衝突時断面圧力分布図】

図 2-6-3 漂流物の移動軌跡

【孤立波 10cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 0cm】

図 2-6-4 漂流物の移動軌跡

【孤立波 10cm, 小型船舶型および流木型, 一様勾配型, 防潮堤位置汀線 60cm】

図 2-6-5 漂流物の移動軌跡

【孤立波 10cm,小型船舶型および流木型,直立護岸型,防潮堤位置汀線 0cm】

図 2-6-6 漂流物の移動軌跡

【孤立波 10cm, 小型船舶型および流木型, 直立護岸型, 防潮堤位置汀線 60cm】

図 2-6-7 漂流物の移動軌跡

【孤立波 15cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 0cm】

図 2-6-8 漂流物の移動軌跡

【孤立波 15cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 60cm】

図 2-6-9 漂流物の移動軌跡

【孤立波 15cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 60cm】

【孤立波 15cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 60cm】

図 2-6-11 漂流物の移動軌跡

【長波,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 0cm】

【長波,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 60cm】

図 2-6-13 漂流物の移動軌跡

【長波,小型船舶型および流木型,直立護岸型,防潮堤位置汀線 0cm】

図 2-6-14 漂流物の移動軌跡

【長波,小型船舶型および流木型,直立護岸型,防潮堤位置汀線 60cm】

図 2-6-19 漂流物重心位置 x 座標, z 座標および重心速度 Vx,Vz の時間変化 【孤立波 15cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 0cm】

図 2-6-20 緑加初重心位置 x 座標, z 座標わよび重心速度 vx, vz の時間愛忙 【孤立波 15cm,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 60cm】

【孤立波 15cm,小型船舶型および流木型,直立護岸型,防潮堤位置汀線 0cm】

図 2-6-22 標価物重心位置 x 座標, z 座標わよび重心速度 vx, vz の時间変化 【孤立波 15cm,小型船舶型および流木型,直立護岸型,防潮堤位置汀線 60cm】

【長波,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 0cm】

【長波,小型船舶型および流木型,一様勾配型,防潮堤位置汀線 60cm】

【長波,小型船舶型および流木型,直立護岸型,防潮堤位置汀線 0cm】

【長波,小型船舶型および流木型,直立護岸型,防潮堤位置汀線 60cm】

図 2-6-27 漂流物の影響を考慮した波力の時間変化(孤立波 10cm,上段:一様勾配,防潮堤汀線 0cm,中上段:直立護岸,防潮堤汀線 0cm,中下段:一様護岸,防潮堤汀線 60cm,下段:直立護岸,防潮堤汀線 60cm)

図 2-6-28 漂流物の影響を考慮した波力の時間変化(孤立波 15cm,上段:一様勾配, 防潮堤汀線 0cm,中上段:直立護岸,防潮堤汀線 0cm,中下段:一様護岸,防潮堤汀 線 60cm,下段:直立護岸,防潮堤汀線 60cm)

図 2-6-29 漂流物の影響を考慮した波力の時間変化(長波,上段:一様勾配,防潮堤 汀線 0cm,中上段:直立護岸,防潮堤汀線 0cm,中下段:一様護岸,防潮堤汀線 60cm, 下段:直立護岸,防潮堤汀線 60cm)

(2)ケース SW10_SEN_c_0cm(流木型,一様勾配地形,防潮堤位置汀線 0cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-29 に示す.また図 2-6-30 に断面二次 元圧力スナップショットを,図 2-6-31 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-30 漂流物および水面位置三次元鳥瞰図

【孤立波 10cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

図 2-6-31 鉛直断面二次元圧力スナップショット

【孤立波 10cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

図 2-6-32 鉛直断面二次元流速スナップショット

【孤立波 10cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

(3)ケース SW10_SEN_c_60cm(流木型,一様勾配地形,防潮堤位置汀線 60cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-32 に示す.また図 2-6-33 に断面二次 元圧力スナップショットを,図 2-6-34 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-33 漂流物および水面位置三次元鳥瞰図

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-34 鉛直断面二次元圧力スナップショット

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-35 鉛直断面二次元流速スナップショット

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

(4)ケース SW10_SEN_t_0cm(小型船舶型,直立護岸地形,防潮堤位置汀線 60cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-35 に示す.また図 2-6-36 に断面二次 元圧力スナップショットを,図 2-6-37 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-36 漂流物および水面位置三次元鳥瞰図

【孤立波 10cm,小型船舶型,直立護岸,防潮堤位置汀線 0cm】

図 2-6-37 鉛直断面二次元圧力スナップショット

【孤立波 10cm,小型船舶型,直立護岸,防潮堤位置汀線 0cm】

図 2-6-38 鉛直断面二次元流速スナップショット

【孤立波 10cm,小型船舶型,直立護岸,防潮堤位置汀線 0cm】

(5)ケース SW10_SEN_t_60cm(小型船舶型,一様勾配地形,防潮堤位置汀線 60cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-38 に示す.また図 2-6-39 に断面二次 元圧力スナップショットを,図 2-6-40 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-39 漂流物および水面位置三次元鳥瞰図

【孤立波 10cm, 小型船舶型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-40 鉛直断面二次元圧力スナップショット

【孤立波 10cm, 小型船舶型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-41 鉛直断面二次元流速スナップショット

【孤立波 10cm,小型船舶型,直立護岸,防潮堤位置汀線 60cm】

(6)ケース SW10_TRE_c_0cm(流木型,一様勾配地形,防潮堤位置汀線 0cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-41 に示す.また図 2-6-42 に断面二次 元圧力スナップショットを,図 2-6-43 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-42 漂流物および水面位置三次元鳥瞰図

図 2-6-43 鉛直断面二次元圧力スナップショット

図 2-6-44 鉛直断面二次元流速スナップショット

(6)ケース SW10_TRE_c_60cm(流木型,一様勾配地形,防潮堤位置汀線 60cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-44 に示す.また図 2-6-45 に断面二次 元圧力スナップショットを,図 2-6-46 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-45 漂流物および水面位置三次元鳥瞰図

図 2-6-46 鉛直断面二次元圧力スナップショット

図 2-6-47 鉛直断面二次元流速スナップショット

(6)ケース SW10_TRE_t_0cm(流木型, 直立護岸地形, 防潮堤位置汀線 0cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-47 に示す. また図 2-6-48 に断面二次 元圧力スナップショットを, 図 2-6-49 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-48 漂流物および水面位置三次元鳥瞰図

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 0cm】

図 2-6-49 鉛直断面二次元圧力スナップショット

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 0cm】

図 2-6-50 鉛直断面二次元流速スナップショット

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 0cm】

(6)ケース SW10_TRE_t_60cm(流木型,直立護岸地形,防潮堤位置汀線 60cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-50 に示す.また図 2-6-51 に断面二次 元圧力スナップショットを,図 2-6-52 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-51 漂流物および水面位置三次元鳥瞰図

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-52 鉛直断面二次元圧力スナップショット

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-53 鉛直断面二次元流速スナップショット

【孤立波 10cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

(10)ケース SW15_SEN_c_0cm(小型船舶型,一様勾配地形,防潮堤位置汀線 0cm)
漂流物および水面位置三次元鳥瞰図を図 2-6-53 に示す.また図 2-6-54 に断面二次
元圧力スナップショットを,図 2-6-55 に断面二次元流速スナップショットを示す.
断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-54 漂流物及び水面位置三次元鳥瞰図

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

図 2-6-55 鉛直断面二次元圧力スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

図 2-6-56 鉛直断面二次元流速スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

(11)ケース SW15_SEN_c_60cm(小型船舶型,一様勾配地形,防潮堤位置汀線 60cm)
漂流物および水面位置三次元鳥瞰図を図 2-6-56 に示す.また図 2-6-57 に断面二次
元圧力スナップショットを,図 2-6-58 に断面二次元流速スナップショットを示す.
断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-57 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm, 小型船舶型, 一様勾配, 防潮堤位置汀線 60cm】

T= 7.4025 XZ plain y= 0.47(j=6) presurre max=4000.000000 2.950e+003 2.950e+003 0.500e+003 0.500e+002 -2.000e+002	T= 8.1622 XZ plain y= 0.47(j=6) presurre max=4000.000000 ^{4.000+003} 2.950+003 8.500+002 -2.000+002
T= 7.8523 XZ plain y= 0.47(j=6) presurre max=4000.000000 4.0000+003 2.9500+003 1.900+003 0.5000+002 -2.0000+002	T= 8.2122 XZ plain y= 0.47(j=6) presurre max=4000.000000 2.950+003 1.900+003 8.500+002 -2.000+002
T= 8.0723 XZ plain y= 0.47(j=6) presurre max=4000.000000 1,000+003 2,950+003 1,900+003 8,500+002 -2.000e+002	T= 8.4721 XZ plain y= 0.47(j=6) presurre max=4000.000000 ^{4.000e+003} ^{2.950e+003} ^{1.900e+003} ^{8.500e+002} ^{-2.000e+002}
	Contract of the second se

図 2-6-58 鉛直断面二次元圧力スナップショット

【孤立波 15cm, 小型船舶型, 一様勾配, 防潮堤位置汀線 60cm】

図 2-6-59 鉛直断面二次元速度スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 60cm】

(12)ケース SW15_SEN_t_0cm(小型船舶型,直立護岸地形,防潮堤位置汀線 0cm)
漂流物および水面位置三次元鳥瞰図を図 2-6-59 に示す.また図 2-6-60 に断面二次
元圧力スナップショットを,図 2-6-61 に断面二次元流速スナップショットを示す.
断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-60 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm,小型船舶型,直立護岸,防潮堤位置汀線 0cm】

図 2-6-61 鉛直断面二次元圧力スナップショット

【孤立波 15cm,小型船舶型,直立護岸,防潮堤位置汀線 0cm】

図 2-6-62 鉛直断面二次元流速スナップショット

【孤立波 15cm,小型船舶型,直立護岸,防潮堤位置汀線 0cm】

(13)ケース SW15_SEN_t_60cm(小型船舶型,直立護岸地形,防潮堤位置汀線 60cm)
漂流物および水面位置三次元鳥瞰図を図 2-6-62 に示す.また図 2-6-63 に断面二次
元圧力スナップショットを,図 2-6-64 に断面二次元流速スナップショットを示す.
断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-63 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm, 小型船舶型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-64 鉛直断面二次元圧力スナップショット

【孤立波 15cm, 小型船舶型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-65 鉛直断面二次元流速スナップショット

【孤立波 15cm, 小型船舶型, 直立護岸, 防潮堤位置汀線 60cm】

(14)ケース SW15_TRE_c_0cm(流木型,一様勾配地形,防潮堤位置汀線 0cm)
漂流物および水面位置三次元鳥瞰図を図 2-6-65 に示す.また図 2-6-66 に断面二次
元圧力スナップショットを,図 2-6-67 に断面二次元流速スナップショットを示す.
断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-66 漂流物および水面位置三次元鳥瞰図

図 2-6-67 鉛直断面二次元圧力スナップショット

図 2-6-68 鉛直断面二次元流速スナップショット

【孤立波 15cm, 流木型, 一様勾配, 防潮堤位置汀線 0cm】

(15)ケース SW15_TRE_c_60cm(流木型,一様勾配地形,防潮堤位置汀線 60cm)
 漂流物および水面位置三次元鳥瞰図を図 2-6-68 に示す.また図 2-6-69 に断面二次
 元圧力スナップショットを,図 2-6-70 に断面二次元流速スナップショットを示す.
 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-69 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm, 流木型, 一様勾配, 防潮堤位置汀線 60cm】

図 2-6-70 鉛直断面二次元圧力スナップショット

【孤立波 15cm, 流木型, 一様勾配, 防潮堤位置汀線 60cm】

図 2-6-71 鉛直断面二次元流速スナップショット

【孤立波 15cm, 流木型, 一様勾配, 防潮堤位置汀線 60cm】

(16)ケース SW15_TRE_t_0cm(流木型,直立護岸地形,防潮堤位置汀線 0cm)
 漂流物および水面位置三次元鳥瞰図を図 2-6-71 に示す.また図 2-6-72 に断面二次
 元圧力スナップショットを,図 2-6-73 に断面二次元流速スナップショットを示す.
 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-72 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm, 流木型, 直立護岸, 防潮堤位置汀線 0cm】

図 2-6-73 鉛直断面二次元圧力スナップショット

【孤立波 15cm, 流木型, 直立護岸, 防潮堤位置汀線 0cm】

図 2-6-74 鉛直断面二次元流速スナップショット

【孤立波 15cm, 流木型, 直立護岸, 防潮堤位置汀線 0cm】

(17)ケース SW15_TRE_t_60cm(流木型,直立護岸地形,防潮堤位置汀線 60cm)
 漂流物および水面位置三次元鳥瞰図を図 2-6-74 に示す.また図 2-6-75 に断面二次
 元圧力スナップショットを,図 2-6-76 に断面二次元流速スナップショットを示す.
 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 2-6-75 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-76 鉛直断面二次元圧力スナップショット

【孤立波 15cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

図 2-6-77 鉛直断面二次元流速スナップショット

【孤立波 15cm, 流木型, 直立護岸, 防潮堤位置汀線 60cm】

(18)ケース LW_SEN_c_0cm(小型船舶型,一様勾配地形,防潮堤位置汀線 0cm) 漂流物および水面位置三次元鳥瞰図を図 2-6-77 に示す.また図 2-6-78 に断面二次 元圧力スナップショットを,図 2-6-79 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する. ※このケースは漂流物を長波が砕波する前の沖側に配置したテストケースとなる.

図 2-6-78 漂流物および水面位置三次元鳥瞰図

【長波,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

図 2-6-79 鉛直断面二次元圧力スナップショット

【長波,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

図 2-6-80 鉛直断面二次元流速スナップショット

【長波,小型船舶型,一様勾配,防潮堤位置汀線 0cm】

2-7 解析結果のまとめ

漂流物解析の結果について,以下に整理する.

(1) 移動軌跡および移動速度

入射波形(孤立波 10cm, 孤立波 15cm, 長波), 漂流物形状(小型船舶型または流木型)および地形形状(一様勾配型または直立護岸型), 防潮堤位置(汀線 0cm または 汀線 60cm)を変更し,移動軌跡の違いについて検討した.

以下に孤立波の場合について記述する.

いずれの地形形状,入射波形に関しても漂流物形状(小型船舶型または流木型)による軌跡の差は小さかった.

ー様勾配型地形,防潮堤位置汀線 0cm の場合には孤立波 10cm,孤立波 15cm のケースともに漂流物が防潮堤に衝突し,その後上方に打ち上げられ防潮堤を超える様子が見られた.

直立護岸型地形,防潮堤位置汀線0cmの場合には孤立波10cm,15cmのケースとも に漂流物は防潮堤に堰止められた津波に乗り防潮堤に衝突することなく防潮堤を超 えた.

防潮堤位置汀線 60cm の場合には,入射波形孤立波 10cm のとき,地形形状(一様勾 配型地形,直立護岸型地形)によらず,反射波により漂流物は防潮堤を越えなかった. 入射波形孤立波 15cm の場合,漂流物は防潮堤を超えた.

以下に長波の場合について記述する.

長波の場合, 沖合領域において入射波がくずれるため漂流物は不安定な挙動を示 す. 一様勾配型地形, 防潮堤位置汀線 0cm の場合, 漂流物は反射波に巻き込まれ防潮 堤に達しなかった.

(2) 漂流物の影響により堤体にかかる波力に関する評価

衝突の際に衝突時間 DT の間に運動量が0になると考えることにより, 漂流物の重 心速度から漂流物の影響により堤体にかかりうる波力の評価を行った.

ー様勾配型地形,防潮堤位置汀線 0cm のとき漂流物が堤体に衝突する.このときの 衝突速度の漂流物形状による差異は小さかった.漂流物の質量の分だけ船舶型の方が 流木型より衝突力は大きくなる結果となった.

第3章 洗掘影響の把握

3-1 試験の概要

津波再現水槽を用いて,防潮堤の洗掘を対象とした水理試験を実施し,防潮堤周り での洗掘に関する試験データを取得する.具体的には,防潮堤直下流に,長さ60cm, 高さ6cmの箱を設置し,その中に移動床材料(平均粒径0.2mmの砂)を充填して移 動床を再現し,その洗掘状況を3Dレーザープロファイラーで計測を行う.また,防 潮堤を越流した津波の打込み波圧を,箱内の底面に波圧計を設置して計測する.

洗掘影響の把握試験 概略図

3-2 試験条件

(1) 試験水槽

試験に用いた水槽は,長さ45m,幅4.0m,水深0.8mの津波再現水槽である.図 1に試験水槽の概要を示す.

3-3洗掘影響に関する既往研究

高橋モデル(高橋ら(1999))の概略

高橋モデル(1999)の基礎方程式は、次の通りである.

○砂移動の連続式

$$\frac{\partial Z}{\partial t} + \frac{1}{1 - \lambda} \left(\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} + w_{ex} \right) = 0 \qquad \cdots \cdots (1)$$
ここに、 λ : 空隙率
 Z : 地盤高
 w_{ex} : 掃流砂層と浮遊砂層間の交換砂量
 Q_x, Q_y : 掃流砂量の x および y 方向成分

○掃流砂量則:津波を対象とする高橋ら(1999)による水理実験結果

$$\begin{split} \frac{Q}{\sqrt{sgd^3}} = \begin{cases} A\psi^{15} & \text{at } \psi > \psi_c \\ 0 & \text{at } \psi \leq \psi_c \end{cases}, \psi = \frac{u_*^2}{sgd}, \quad \psi_c = \frac{u_{c^*}^2}{sgd} \\ Q_x = \frac{MQ}{\sqrt{M^2 + N^2}} + \varepsilon_s |Q| \frac{\partial h}{\partial x}, \quad Q_y = \frac{NQ}{\sqrt{M^2 + N^2}} + \varepsilon_s |Q| \frac{\partial h}{\partial y} \\ \text{Constraints and a straints and a stra$$

$$u_{c^*}^2 = \begin{cases} 80.9d & \text{at } 0.3030 \le d \\ 134.6d^{31/22} & \text{at } 0.1180 \le d \le 0.3030 \\ 55.0d & \text{at } 0.0565 \le d \le 0.1180 \\ 8.41d^{11/32} & \text{at } 0.0065 \le d \le 0.0565 \\ 226d & \text{at } d \le 0.0065 \end{cases}$$
 (3)

○摩擦速度:マニング則

$$u_* = \sqrt{\frac{gn^2(M^2 + N^2)}{D^{7/3}}}$$
 · · · · · (4)
ここに、n : Manning の粗度係数
 D : 全水深(=h+η; η: 水位変動量、h: 水深)

○浮遊砂の連続式

ここに、C_s : 浮遊砂層での平均体積濃度h_s : 浮遊砂層厚

○掃流砂層と浮遊砂層の交換砂量

$$\frac{w_{ex}}{\sqrt{sgd}} = \begin{cases} A_s \psi^2 - \frac{w_s C_s}{\sqrt{sgd}} & \text{at } \psi > \psi_c \\ -\frac{w_s C_s}{\sqrt{sgd}} & \text{at } \psi \le \psi_c \end{cases}$$
 (6)

沈降速度には、次式の Rubey 式を適用する。

$$\frac{w_s}{\sqrt{sgd}} = \left(\sqrt{\frac{2}{3} + \frac{36\nu^2}{sgd^3}} - \sqrt{\frac{36\nu^2}{sgd^3}}\right) \qquad (7)$$

ここに、ν:動粘性係数

3-4 シミュレーションの概要

対津波設計・フラジリティ評価手法の高度化に資することを目的に,別途実施される水理模型試験結果を対象とした完全三次元流体解析モデルによる数値シミュレーションを実施することで,防潮堤周辺における洗掘影響を把握する.

3-5 解析条件

解析の概要及びケース数を表 1 に示す. Case1~Case12 の地形は, 1-1 の試験の 概要及び 1-2 の試験条件で上述した平面水槽において単純勾配とし, Case13~ Case24 の地形は,同様の平面水槽において直立護岸とした.また,入力波は孤立波, 長波の解析を実施した.なお,試験結果と比較可能なケースは,孤立波・波高 15 c mの Case7,8,19,20 及び長波の Case11,12,23,24 である.

ケース名	地形	入力波種類	防潮堤位置	入力波高
			(汀線から : cm)	(cm)
Case1	単純勾配	孤立波	0	7.5cm
Case2	単純勾配	孤立波	-60	7.5cm
Case3	単純勾配	孤立波	0	10.0cm
Case4	単純勾配	孤立波	-60	10.0cm
Case5	単純勾配	孤立波	0	12.5cm
Case6	単純勾配	孤立波	-60	12.5cm
Case7	単純勾配	孤立波	0	15.0cm
Case8	単純勾配	孤立波	-60	15.0cm
Case9	単純勾配	孤立波	0	17.5cm
Case10	単純勾配	孤立波	-60	17.5cm
Case 11	単純勾配	長波	0	試験の計測水位を入
Casell				射波として入力
Caso12	単純勾配	長波	-60	試験の計測水位を入
Case12				射波として入力
Case13	直立護岸	孤立波	0	7.5cm
Case14	直立護岸	孤立波	-60	7.5cm
Case15	直立護岸	孤立波	0	10.0cm
Case16	直立護岸	孤立波	-60	10.0cm
Case17	直立護岸	孤立波	0	12.5cm
Case18	直立護岸	孤立波	-60	12.5cm
Case19	直立護岸	孤立波	0	15.0cm
Case20	直立護岸	孤立波	-60	15.0cm
Case21	直立護岸	孤立波	0	17.5cm
Case22	直立護岸	孤立波	-60	17.5cm
Case23	直立護岸	長波	0	試験の計測水位を入
				射波として入力
Case24	直立護岸	長波	-60	試験の計測水位を入
				射波として入力

表 1 シ	/ミュレーショ	ン解析ケー	ス一覧表
-------	---------	-------	------

1)計算メッシュ

計算メッシュは、図1の試験水槽の形状を適切に表現できるように作成した.水路 縦断方向のメッシュ分割について、遡上時の津波の変形・伝播過程を詳細に検討でき るように、計算メッシュサイズを5mmに設定した.横断方向のメッシュ分割につい て、津波の横断方向の変化が少ない事を勘案し、計算メッシュサイズを4mに設定し た.

鉛直方向のメッシュ分割について,解析対象となる津波波形の形状を表現するために,計算メッシュサイズを5mmに設定した.

2)防潮堤

防潮堤を汀線から 0cm ないし-60cm の位置に設置する条件で解析を実施した.

3)入力波

孤立波は波高 7.5cm~17.5cm の入力波高とし,長波は試験の計測水位を入射波(以下「計測入射波」と略す)とする条件で解析を実施した.なお,計測入射波の入力波高は,孤立波の入力波高 15cm と対応している.

3-6 解析結果と試験結果の比較

(1) 単純勾配,孤立波,入力波高 15.0cm (Case7 及び Case8)

図 2は Case7 及び Case8 における打込み波圧の最大値【単純勾配, 孤立波, 入力 波高 15.0cm】を示す. (a)は Case7 (防潮堤位置: 汀線 0cm)を示し, (b)は Case8 (防潮堤位置: 汀線-60cm)を示す.

図 2 打込み波圧の最大値

【単純勾配, 孤立波, 入力波高 15.0cm】

以下では、各ケースにおける流速場の計算結果及び防潮堤法尻背面における河床変動高の縦断分布の計算結果を示す(図3~図6参照).なお、全ケースの河床変動高の縦断分布について、解析結果においては越流後波が十分収まる時刻の結果を採用し、試験結果においては河床変動高中央部における洗掘深の結果を図化した.

図 3 及び図 4 は、断面二次元流速スナップショット【単純勾配,孤立波,入力波高 15.0cm】を示す.図3は Case7(防潮堤位置:汀線 0cm)を示し、図4は Case8(防 潮堤位置:汀線-60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に 到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十 分収まる時刻を示す.

図 3 断面二次元流速スナップショット【単純勾配,孤立波,汀線 0cm,入力波高 15.0cm】

図 4 断面二次元流速スナップショット

【単純勾配, 孤立波, 汀線·60cm, 入力波高 15.0cm】

II −140

Case7(防潮堤位置: 汀線 0cm)の河床変動高の縦断分布を図 5, Case8(防潮堤 位置: 汀線-60cm)の河床変動高の縦断分布を図 6 に示す.

図 5 河床変動高の縦断分布【単純勾配, 孤立波, 汀線 0cm, 入力波高 15.0cm】

【単純勾配, 孤立波, 汀線·60cm, 入力波高 15.0cm】

(2) 単純勾配,長波,計測入射波(Case11及び Case12)

図 7は Case11 及び Case12 における打込み波圧の最大値【単純勾配,長波,計測 入射波】を示す. (a)は Case11 (防潮堤位置:汀線 0cm)を示し, (b)は Case12 (防 潮堤位置:汀線-60cm)を示す.

図 7 打込み波圧の最大値

【単純勾配,長波,計測入射波】

以下では,各ケースにおける流速場の計算結果及び防潮堤法尻背面における河床変動高の縦断分布の計算結果を示す(図 8~図 11 参照). なお,全ケースの河床変動高の縦断分布について,解析結果においては越流後波が十分収まる時刻の結果を採用し,試験結果においては河床変動高中央部における洗掘深の結果を図化した.

図 8 及び図 9 は, 断面二次元流速スナップショット【単純勾配, 長波, 計測入射波】 を示す. 図 8 は Case11(防潮堤位置: 汀線 0 cm)を示し, 図 9 は Case12(防潮堤 位置: 汀線・60 cm)を示した図であり, (a)は越流直後, (b)は越流した波が地面に到着 した直後, (c)は洗掘再現用の箱全体に波が行き渡った時刻, (d)は越流後波が十分収 まる時刻を示す.

図 8 断面二次元流速スナップショット 【単純勾配,長波,汀線 0cm,計測入射波】

図 9 断面二次元流速スナップショット 【単純勾配,長波,汀線-60cm,計測入射波】

Case11(防潮堤位置: 汀線 0cm)における河床変動高の縦断分布を図 10, Case12 (防潮堤位置: 汀線-60cm)の河床変動高の縦断分布を図 11 に示す.

【単純勾配,長波,汀線-60cm,計測入射波】

(4) Case7,8,11,12 の最大洗掘深

表 2 は Case7,8,11,12 の試験結果と解析結果の最大洗掘深をそれぞれ示す. なお, 試験結果においては河床変動高中央部における洗掘深の最大値を求め, その値を最大 洗掘深としている.

ケース名	試験結果[m]	解析結果[m]
Case7	0.01445	0.02716
(単純勾配, 孤立波, 汀線 0cm, 入力波高 15.0cm)		
Case8	0.01645	0.01267
(単純勾配,孤立波,汀線-60cm,入力波高15.0cm)	0.01645	
Case11	0.01366	0.00726
(単純勾配, 長波, 汀線 0cm, 計測入射波)		
Case12	0.01796	0.00217
(単純勾配, 長波, 汀線-60cm, 計測入射波)		

表 2 各ケースの試験結果と解析結果における最大洗掘深

また,図 12のグラフは、各ケースの最大洗掘深の試験結果と解析結果との比較を示す.

図 12 各ケースにおける最大洗掘深の試験結果と解析結果との比較

3-7 解析結果

(1) 単純勾配, 孤立波,入力波高 7.5~17.5cm (Case1~Case10)

図 13は Case1~Case10における打込み波圧の最大値【単純勾配, 孤立波, 入力波高 7.5~17.5cm】を示す. (a)は Case1, 3, 5, 7, 9(防潮堤位置: 汀線 0cm)を示し, (b)は Case2, 4, 6, 8, 10(防潮堤位置: 汀線-60cm)を示す.

図 13 打込み波圧の最大値【単純勾配,孤立波,入力波高 7.5~17.5cm】

以下では,各ケースにおける流速場の計算結果及び防潮堤法尻背面における河床変動高の縦断分布の計算結果を示す(図14~図23参照).なお,流速場の計算結果においては,入力波高15.0cmのCase7及びCase8のケースは図3~図4で示した通りであり,重複するため,それ以外のケースの計算結果を以下に示す.また,全ケースの河床変動高の縦断分布について,解析結果においては越流後波が十分収まる時刻の結果を採用し,試験結果においては河床変動高中央部における洗掘深の結果を図化した.

図 14 及び図 15 は、断面二次元流速スナップショット【単純勾配,孤立波,入力波高 7.5cm】を示す.図 14 は Case1(防潮堤位置:汀線 0cm)を示し、図 15 は Case2(防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 15 断面二次元流速スナップショット 【単純勾配,孤立波,汀線-60cm,入力波高 7.5cm】

図 16 及び図 17 は、断面二次元流速スナップショット【単純勾配,孤立波,入力波高 10.0cm】を示す.図 16 は Case3 (防潮堤位置:汀線 0cm)を示し、図 17 は Case4 (防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 17 断面二次元流速スナップショット 【単純勾配,孤立波,汀線-60cm,入力波高 10.0cm】

図 18 及び図 19 は、断面二次元流速スナップショット【単純勾配,孤立波,入力波高 12.5cm】を示す.図 18 は Case5(防潮堤位置:汀線 0cm)を示し、図 19 は Case6(防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 18 断面二次元流速スナップショット 【単純勾配,孤立波,汀線 0cm,入力波高 12.5cm】

図 19 断面二次元流速スナップショット 【単純勾配,孤立波,汀線-60cm,入力波高 12.5cm】
図 20 及び図 21 は、断面二次元流速スナップショット【単純勾配,孤立波,入力波高 17.5cm】を示す.図 20 は Case9(防潮堤位置:汀線 0cm)を示し,図 21 は Case10(防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 21 断面二次元流速スナップショット 【単純勾配, 孤立波, 汀線・60cm, 入力波高 17.5cm】

Case1, 3, 5, 7, 9(防潮堤位置: 汀線 0cm)の河床変動高の縦断分布を図 22, Case2, 4, 6, 8, 10(防潮堤位置: 汀線-60cm)の河床変動高の縦断分布を図 23 に示す.

II - 152

(2) 単純勾配, 長波, 計測入射波(Case11, Case12)

図 24 は Case11 及び Case12 における打込み波圧の最大値【単純勾配,長波,計 測入射波】を Case7 及び Case8 における打込み波圧の最大値【単純勾配,孤立波, 入力波高 15.0cm】と比較して示す. (a)は赤線において Case11 (長波,計測入射波, 防潮堤位置:汀線 0cm),青線において Case7 (孤立波,入力波高 15.0cm,防潮堤位 置:汀線 0cm)を示し,(b)は赤線において Case12 (長波,計測入射波,防潮堤位置: 汀線・60cm),青線において Case8 (孤立波,入力波高 15.0cm,防潮堤位置:汀線・60cm) を示す.

図 24 打込み波圧の最大値【単純勾配,長波,計測入射波】

以下では、各ケースにおける防潮堤法尻背面における河床変動高の縦断分布の計算 結果を示す(図 25~図 26 参照). なお、Case11 及び Case12 の流速場の計算結果 においては、図 8~図 9 で示している.また、全ケースの河床変動高の縦断分布につ いて、解析結果においては越流後波が十分収まる時刻の結果を採用し、試験結果にお いては河床変動高中央部における洗掘深の結果を図化した.

II - 154

(3) 直立護岸, 孤立波,入力波高 7.5~17.5cm (Case13~Case22)

図 27は Case13~Case22 における打込み波圧の最大値【直立護岸,孤立波,入力 波高 7.5~17.5cm】を示す. (a)は Case13, 15, 17, 19, 21 (防潮堤位置:汀線 0cm) を示し, (b)は Case14, 16, 18, 20, 22 (防潮堤位置:汀線-60cm)を示す.

以下では,各ケースにおける流速場の計算結果及び防潮堤法尻背面における河床変動高の縦断分布の計算結果を示す(図28~図39参照).なお,全ケースの河床変動高の縦断分布について,解析結果においては越流後波が十分収まる時刻の結果を採用し,試験結果においては河床変動高中央部における洗掘深の結果を図化した.

図 28 及び図 29 は、断面二次元流速スナップショット【直立護岸,孤立波,入力波高 7.5cm】を示す.図 28 は Case13 (防潮堤位置:汀線 0cm)を示し、図 29 は Case14 (防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 29 断面二次元流速スナップショット 【直立護岸,孤立波,汀線-60cm,入力波高 7.5cm】 図 30 及び図 31 は、断面二次元流速スナップショット【直立護岸,孤立波,入力波高 10.0cm】を示す.図 30 は Case15 (防潮堤位置:汀線 0cm)を示し、図 31 は Case16 (防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 30 断面二次元流速スナップショット 【直立護岸, 孤立波, 汀線 0cm, 入力波高 10.0cm】

図 31 断面二次元流速スナップショット 【直立護岸, 孤立波, 汀線-60cm, 入力波高 10.0cm】

図 32 及び図 33 は、断面二次元流速スナップショット【直立護岸,孤立波,入力波高 12.5cm】を示す.図 32 は Case17 (防潮堤位置:汀線 0cm)を示し、図 33 は Case18 (防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 33 断面二次元流速スナップショット 【直立護岸, 孤立波, 汀線・60cm, 入力波高 12.5cm】

図 34 及び図 35 は、断面二次元流速スナップショット【直立護岸,孤立波,入力波高 15.0cm】を示す.図 34 は Case19(防潮堤位置:汀線 0cm)を示し、図 35 は Case20(防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 34 断面二次元流速スナップショット 【直立護岸, 孤立波, 汀線 0cm, 入力波高 15.0cm】

図 35 断面二次元流速スナップショット 【直立護岸, 孤立波, 汀線-60cm, 入力波高 15.0cm】

図 36 及び図 37 は、断面二次元流速スナップショット【直立護岸,孤立波,入力波高 17.5cm】を示す.図 36 は Case21 (防潮堤位置:汀線 0cm)を示し、図 37 は Case22 (防潮堤位置:汀線・60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十分収まる時刻を示す.

図 36 断面二次元流速スナップショット 【直立護岸,孤立波, 汀線 0cm, 入力波高 17.5cm】

図 37 断面二次元流速スナップショット 【直立護岸, 孤立波, 汀線-60cm, 入力波高 17.5cm】

Case13, 15, 17, 19, 21 (防潮堤位置: 汀線 0cm)の河床変動高の縦断分布を図 38, Case14, 16, 18, 20, 22 (防潮堤位置: 汀線-60cm)の河床変動高の縦断分布を図 39 に示す.

II - 161

(4) 直立護岸, 長波, 計測入射波(Case23, Case24)

図 40 は Case23 及び Case24 における打込み波圧の最大値【直立護岸,長波,計 測入射波】を Case19 及び Case20 における打込み波圧の最大値【直立護岸,孤立波, 入力波高 15.0cm】と比較して示す. (a)は赤線において Case23 (長波,計測入射波, 防潮堤位置:汀線 0cm),青線において Case19 (孤立波,入力波高 15.0cm,防潮堤 位置:汀線 0cm)を示し,(b)は赤線において Case24 (長波,計測入射波,防潮堤位 置:汀線-60cm),青線において Case20 (孤立波,入力波高 15.0cm,防潮堤位置: 汀線-60cm),青線において Case20 (孤立波,入力波高 15.0cm,防潮堤位置:

図 40 打込み波圧の最大値 【直立護岸,長波,計測入射波】

以下では、各ケースにおける流速場の計算結果及び防潮堤法尻背面における河床変動高の縦断分布の計算結果を示す(図41~図44参照).なお、全ケースの河床変動高の縦断分布について、解析結果においては越流後波が十分収まる時刻の結果を採用し、試験結果においては河床変動高中央部における洗掘深の結果を図化した.

図 41 及び図 42 は、断面二次元流速スナップショット【直立護岸,長波,計測入射 波】を示す.図 41 は Case23(防潮堤位置:汀線 0cm)を示し、図 42 は Case24(防 潮堤位置:汀線-60cm)を示した図であり、(a)は越流直後、(b)は越流した波が地面に 到着した直後、(c)は洗掘再現用の箱全体に波が行き渡った時刻、(d)は越流後波が十 分収まる時刻を示す.

図 41 断面二次元流速スナップショット 【直立護岸,長波,汀線 0cm,計測入射波】

図 42 断面二次元流速スナップショット 【直立護岸,長波,汀線-60cm,計測入射波】 Case23(直立護岸,長波,汀線0cm,計測入射波)における河床変動高の縦断分布 を Case19(直立護岸,孤立波,汀線0cm,入力波高15.0cm)と比較し図43に,Case24 (直立護岸,長波,汀線-60cm,計測入射波)における河床変動高の縦断分布をCase20 (直立護岸,孤立波,汀線-60cm,入力波高15.0cm)と比較し図44に示す.

II - 164

(5) Case1~Case24 の最大洗掘深

表 3 は孤立波の各ケース(Case1~10, Case13~22)における解析結果の最大洗掘深 をそれぞれ示す. なお,河床変動高中央部における洗掘深の最大値を求め,その値を 最大洗掘深としている.

地形,防潮堤位置	ケース名 (入力波高)	解析結果[m]	
単純勾配, 汀線 0cm	Case1 (7.5cm)	0.00363	
	Case3 (10.0cm)	0.00534	
	Case5 (12.5cm)	0.01200	
	Case7 (15.0cm)	0.02716	
	Case9 (17.5cm)	0.03010	
単純勾配, 汀線-60cm	Case2 (7.5cm)	0.00349	
	Case4 (10.0cm)	0.00562	
	Case6 (12.5cm)	0.01706	
	Case8 (15.0cm)	0.01267	
	Case10 (17.5cm)	0.00982	
	Case13 (7.5cm)	0.00166	
	Case15 (10.0cm)	0.00493	
直立護岸, 汀線 0cm	Case17 (12.5cm)	0.00488	
	Case19 (15.0cm)	0.02391	
	Case21 (17.5cm)	0.02066	
	Case14 (7.5cm)	0.00640	
	Case16 (10.0cm)	0.00396	
直立護岸, 汀線-60cm	Case18 (12.5cm)	0.01749	
	Case20 (15.0cm)	0.01405	
	Case22 (17.5cm)	0.02139	

表 3 孤立波の各ケースの解析結果における最大洗掘深

表4は長波の各ケース(Case11,12,23,24)における解析結果の最大洗掘深を,入力 波高15cmにおいて対応する孤立波のケース(Case7,8,19,20)と比較してそれぞれ示す. なお,河床変動高中央部における洗掘深の最大値を求め,その値を最大洗掘深として いる.

地形,防潮堤位置	ケース名(入力波高)	解析結果[m]	
単純勾配, 汀線 0cm	Case11 (長波,計測入射波)	0.00726	
	Case7 (孤立波, 15.0cm)	0.02716	
单純勾配, 汀線-60cm	Case12 (長波,計測入射波)	0.00217	
	Case8 (孤立波, 15.0cm)	0.01267	
直立護岸, 汀線 0cm	Case23 (長波,計測入射波)	0.00589	
	Case19 (孤立波, 15.0cm)	0.02391	
直立護岸,汀線-60cm	Case24 (長波,計測入射波)	0.00221	
	Case20 (孤立波, 15.0cm)	0.01405	

表 4 長波と孤立波の各ケースの解析結果における最大洗掘深

また,図 45のグラフは,表3に対応した孤立波の各ケース(Case1~10, Case13~22) の最大洗掘深の解析結果を比較して示し,図 46のグラフは,表4に対応した長波の 各ケース(Case11,12,23,24)の最大洗掘深の解析結果を,入力波高15cmにおいて対応 する孤立波のケース(Case7,8,19,20)と比較して示す.

図 46 長波の各ケースにおける最大洗掘深の解析結果の比較

3-8 解析結果のまとめ

3-5 に示した洗掘影響に係る解析結果について、入射波別に結果を整理する.

(1)孤立波

河床変動高の縦断分布の洗掘深については, 汀線 0cm のケースでは解析結果の方が若干大きくなるのに対し, 汀線-60cm のケースでは試験結果の方が若干大きくなる.

また,洗掘地形の縦断分布については,最大洗掘の発生地点が解析より試験の方が, 防潮堤の背後側に位置しており,差異が見られる.

一方,打ち込み波圧の最大値の分布については,試験と解析はほぼ同じ傾向の分布 を示している.ただし,汀線0cm,汀線-60cmともに,ピーク値では解析結果の方が やや過大となるのに対し,防潮堤の背後では試験結果の方がやや過大となる.

(2)長波

河床変動高の縦断分布の洗掘深については, 汀線 0cm 及び汀線-60cm の両ケース とも試験結果の方がやや過大となる.この理由としては, 防潮堤の背後の波力・流量 が試験と比較して弱いためと考えられる.

また,洗掘地形の縦断分布については,最大洗掘の発生地点は試験と解析で概ね一 致しており調和的である.

一方,打ち込み波圧の最大値の分布については,試験と解析はほぼ同じ傾向の分布 であるが,解析結果の方が若干大きくなる. 3-6 に示した洗掘影響に係る解析結果について、入射波別に結果を整理する.

(1) 単純勾配・孤立波の各ケースの比較

河床変動高の縦断分布の洗掘深については, 汀線 0cm のケースでは入力波高が大きくなるのに応じて大きくなるのに対し, 汀線-60cm のケースでは入力波高 15.0cm 以上ではその傾向が見られない.

また,洗掘地形の縦断分布については,汀線 0cm,汀線-60cm ともに,最大洗掘の 発生地点が,入力波高が大きくなるのに応じて,防潮堤の背後側から離れる傾向にな る.

さらに、打ち込み波圧の最大値の分布については、汀線 0cm、汀線-60cm ともに、 ピーク値が、入力波高が大きくなるのに応じて、防潮堤の背後側から離れる傾向にな る.

(2) 直立護岸・孤立波の各ケースの比較

河床変動高の縦断分布の洗掘深については, 汀線 0cm, 汀線-60cm ともに, 概して, 入力波高が大きくなるのに応じて大きくなる傾向がある.ただし, 汀線 0cm のケースでは入力波高 17.5cm, 汀線-60cm のケースでは入力波高 15.0cm 以上ではその傾向が見られない.

また,洗掘地形の縦断分布については,汀線 0cm,汀線-60cm ともに,最大洗掘の 発生地点が,入力波高が大きくなるのに応じて,防潮堤の背後側から離れる傾向にな る.

さらに,打ち込み波圧の最大値の分布については,汀線 0cm,汀線-60cm ともに, ピーク値が,入力波高が大きくなるのに応じて,防潮堤の背後側から離れる傾向にな る.

(1) 長波と孤立波との比較

河床変動高の縦断分布の洗掘深については、単純勾配,直立護岸ともに、長波の方 が孤立波と比較して小さくなる.この理由としては、防潮堤の背後の波力・流量が孤 立波と比較して弱いためと考えられる.

また,洗掘地形の縦断分布については,最大洗掘の発生地点は,単純勾配,直立護 岸ともに,長波の方が孤立波と比較して防潮堤の背後側に位置する.

さらに、打ち込み波圧の最大値の分布については、単純勾配、直立護岸ともに、ピ ーク値は長波の方が孤立波と比較して小さく、また防潮堤の背後側に位置する.

第4章 漂流物・砂移動影響の把握に関する追加検討

4-1 漂流物挙動の把握

4-1-1 シミュレーションの概要

漂流物が防潮堤におよぼす影響の評価手法の検討に資するため、本検討では防潮堤 に津波が入射する際に、漂流物の初期配置によって漂流物の防潮堤に対する衝突挙動 がいかに変化するか検討を行う.

4-1-2 解析条件

解析の概要およびケース数を表 4-1-2-1 に示す. Case1~Case4 の地形は,単純勾 配とし,入力波は孤立波の解析を実施した.防潮堤の高さおよび漂流物の初期配置を 変え,8 ケースの検討を行った.

ケース名	水槽·	防潮堤	入力波種	防潮堤	初期配置(漂流
	地形	位置	類・波高	高さ	物先頭位置)
Case1					50cm
Case2				$15 \mathrm{cm}$	100cm
Case3				(越流)	150cm
Case4	平面水槽·	汀線	孤立波		170cm
Case5	単純勾配	0cm	15.0cm		50cm
Case6				100cm	100cm
Case7				(非越流)	150cm
Case8					170cm

表 4-1-2-1 シミュレーション解析ケース一覧表

1)計算区間

造波境界,直線部,一様勾配斜面,遡上区間を含む一連の水路をモデル化した.横 断方向については計算時間節約のために幅 20cm とした. 汀線-2.0m の地点から沖側 を二次元モデルで計算し,岸側を三次元モデルで計算した.水路の平面図および断面 図を図 4-1-2-1 に示す.

2)計算メッシュ

三次元モデルに関して、水路縦断方向および鉛直方向のメッシュ分割については計 算メッシュサイズをともに 0.5cm に設定した. 横断方向については 2.5cm とした.

三次元計算域の総メッシュ数は縦断方向 600×横断方向 8×鉛直方向

240=1,152,000 である.

2)防潮堤

防潮堤を汀線から沖向きを正として 0cm の位置に設置した.防潮堤の高さは孤立 波が越流する 15cm と越流しない 100cm の2通りの条件で懐石を実施した.

3)入力波

孤立波は波高 15.0cm の入力波高とする条件で解析を実施した.

(4)初期条件

初期条件は静水状態(沖合直線部水深 80cm)とした.

5)漂流物形状

小型船舶型の模型を漂流物とした.小型船舶型の船首部分は台形でモデル化した.漂流物模型図を図 4-1-2-2 に示す. 密度は 459.8kg/m³とした.

5)漂流物初期配置

漂流物初期配置として漂流物先端位置を汀線から 50cm,100cm,150cm,170cm の位 置に置き,4 ケースの解析を行った.

図 4-1-2-1 平面水路の平面図および断面図

図 4-1-2-2 小型船舶型模型図

4-1-3 解析結果の比較

(1)越流ケースの比較

解析ケースの内,津波が防潮堤を越流する Case1 から Case4 の結果を比較した. 漂流物移動軌跡の比較結果を図 4-1-3-1 に,漂流物の重心位置および重心速度時系 列の比較結果を図 4-1-3-2 に示す.4 ケースのうち初期位置が最も汀線から遠い case4(汀線から 170cm に配置)においても漂流物が防潮堤を超えることはなかった.

図 4-1-3-1 漂流物の移動軌跡

 $(Case1 \sim Case4)$

図 4-1-3-2 漂流物重心位置 x 座標, z 座標および重心速度 Vx,Vz の時間変化【上段: 重心 X 座標,中上段:重心 Z 座標,中下段:速度 Vx,下段:速度 Vz】

(2)case1(初期位置汀線 50cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-3 に示す. また図 4-1-3-4 に断面二次元圧力スナップショットを,図 4-1-3-5 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-3 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】 【初期位置汀線 50cm】

図 4-1-3-4 鉛直断面二次元圧力スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】

【初期位置汀線 50cm】

図 4-1-3-5 鉛直断面二次元流速スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】

【初期位置汀線 50cm】

(3)case2(初期位置汀線 100cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-6 に示す. また図 4-1-3-7 に断面二次元圧力スナップショットを,図 4-1-3-8 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-6 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】 【初期位置汀線 100cm】

図 4-1-3-7 鉛直断面二次元圧力スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】 【初期位置汀線 100cm】

図 4-1-3-8 鉛直断面二次元流速スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】

【初期位置汀線 100cm】

(4)case3(初期位置汀線 150cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-9 に示す. また図 4-1-3-10 に断面 二次元圧力スナップショットを,図 4-1-3-11 に断面二次元流速スナップショットを 示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-9 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm, 小型船舶型, 一様勾配, 防潮堤位置汀線 0cm, 防潮堤高さ 15cm】

【初期位置汀線 150cm】

図 4-1-3-10 鉛直断面二次元圧力スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】

【初期位置汀線 150cm】

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】

【初期位置汀線 150cm】

(5)case4(初期位置汀線 170cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-12 に示す. また図 4-1-3-13 に断面 二次元圧力スナップショットを,図 4-1-3-14 に断面二次元流速スナップショットを 示す.断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-12 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】 【初期位置汀線 170cm】

図 4-1-3-13 鉛直断面二次元圧力スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】

【初期位置汀線 170cm】

図 4-1-3-14 鉛直断面二次元流速スナップショット

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 15cm】

【初期位置汀線 170cm】

(6)非越流ケースの比較

解析ケースの内,津波が防潮堤を越流しない Case5 から Case8 の結果を比較した. 漂流物移動軌跡の比較結果を図 4-1-3-15 に,漂流物の重心位置および重心速度時 系列の比較結果を図 4-1-3-16 に示す.4 ケースとも漂流物が防潮堤に衝突すること はなかった.

図 4-1-3-15 漂流物の移動軌跡

 $(Case5 \sim Case8)$

図 4-1-3-16 漂流物重心位置 x 座標, z 座標および重心速度 Vx,Vz の時間変化 【上段:重心 X 座標,中上段:重心 Z 座標,中下段:速度 Vx,下段:速度 Vz】

(7)case5(初期位置汀線 50cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-17 に示す. また図 4-1-3-18 に断面 二次元圧力スナップショットを,図 4-1-3-19 に断面二次元流速スナップショットを 示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-17 漂流物および水面位置三次元鳥瞰図

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 50cm】

図 4-1-3-18 鉛直断面二次元圧力スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 50cm】

図 4-1-3-19 鉛直断面二次元流速スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 50cm】

(8)case6(初期位置汀線 100cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-20 に示す. また図 4-1-3-21 に断面 二次元圧力スナップショットを,図 4-1-3-22 に断面二次元流速スナップショットを 示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-20 漂流物および水面位置三次元鳥瞰図

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 100cm】

図 4-1-3-21 鉛直断面二次元圧力スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 100cm】

図 4-1-3-21 鉛直断面二次元流速スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 100cm】

(9)case7(初期位置汀線 150cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-22 に示す. また図 4-1-3-23 に断面 二次元圧力スナップショットを,図 4-1-3-24 に断面二次元流速スナップショットを 示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-22 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 100cm】 【初期位置汀線 150cm】

図 4-1-3-23 鉛直断面二次元圧力スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 150cm】

図 4-1-3-24 鉛直断面二次元流速スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 150cm】

(10)case8(初期位置汀線 170cm)

漂流物および水面位置三次元鳥瞰図を図 4-1-3-25 に示す. また図 4-1-3-26 に断面 二次元圧力スナップショットを,図 4-1-3-27 に断面二次元流速スナップショットを 示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-1-3-25 漂流物および水面位置三次元鳥瞰図

【孤立波 15cm,小型船舶型,一様勾配,防潮堤位置汀線 0cm,防潮堤高さ 100cm】 【初期位置汀線 170cm】

図 4-1-3-26 鉛直断面二次元圧力スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 170cm】

図 4-1-3-27 鉛直断面二次元流速スナップショット

【孤立波15cm,小型船舶型,一様勾配,防潮堤位置汀線0cm,防潮堤高さ100cm】

【初期位置汀線 170cm】

4-2 砂移動による影響の把握

4-2-1 シミュレーションの概要

砂移動が防潮堤におよぼす影響の評価手法の検討に資するため、本検討では津波が 遡上し、陸にある砂丘のような土塊に衝突・越流する際に、津波によって土塊がまと まって移動し、防潮堤に作用する場合を想定した土塊移動解析と津波によって土塊が 侵食される河床変動解析の二通りの解析を実施する.

4-2-2 解析条件

解析の概要およびケース数を表 4-2-2-1 に示す. Case1~Case8 の地形は,洗掘解 析と同様の水槽において単純勾配とし,入力波は孤立波の解析を実施した. 土塊移動 解析は,土塊の形状・密度および入力波高を変化させた場合の土塊の挙動および防潮 堤に衝突する際の速度,圧力の解析を行った.

ケース	解析手法	水槽・	防潮堤	入力波	土塊形状·	土塊密度	入力波高
名		地形	位置	種類	位置	(kg/m ³)	(cm)
Case1					巨士 心 .	固定	15.0
Case2					文 万 が 始 ・ G0 em	2650	7.5
Case3	土塊移動 解析				{ J /bk⁻00CIII	2650	15.0
Case4					ム形。	固定	15.0
Case5		平面水槽・	汀線	孤立述	百形• 江绾-60am	2650	7.5
Case6		単純勾配	-110cm	1/1/ <u>1/ </u> 1/X	{] 脉 ⁻ oucm	2650	15.0
Case7	河床変動				長方形・	2650	7.5
					汀線-60cm		
Case	解析				台形・	2650	7.5
Caseo					汀線-60cm		

表 4-2-2-1 シミュレーション解析ケース一覧表

1)計算メッシュ

計算メッシュは、試験水槽の形状を適切に表現できるように作成した.水路縦断方向のメッシュ分割について、遡上時の津波の変形・伝播過程を詳細に検討できるように、計算メッシュサイズを 1cm に設定した.横断方向のメッシュ分割について、津波の横断方向の変化が少ない事を勘案し、模型サイズの幅 4m に対し、計算メッシュサイズを 0.8m に設定した.

鉛直方向のメッシュ分割について,解析対象となる津波波形の形状を表現するために,計算メッシュサイズを1cmに設定した.

2)防潮堤

防潮堤を汀線から沖向きを正として-110cmの位置に設置した.

3)入力波

孤立波は波高 7.5cm および 15.0cm の入力波高とする条件で解析を実施した.

4)土塊形状·位置(土塊移動解析)

土塊形状は長方形および台形の二通りの形状とした.土塊の天端高は7.0cm とした. 土塊の形状を図 4-2-2-1 に示す.奥行方向には幅1m とした.設置位置として津波が 汀線からある程度遡上する状況を想定し,汀線から沖向きを正として土塊の重心を汀 線-60cmの位置に設置した.

5)土塊密度

土塊の密度について,一般的な砂礫の密度である 2650kg/m³ を設定した.長方形 形状,台形形状ともに質量は 48.23kg で同じである.土塊を動かさない固定設定の計 算も行い,比較を行った.

図 4-2-2-1 長方形形状および台形形状模型図

4-2-3 解析結果の比較:土塊移動解析

(1)計算結果比較

土塊の重心位置および重心速度時系列の比較結果を図 4-2-3-1, 図 4-2-3-2 にま とめた.土塊形状による差,入射波高による差の検討を行った.

また土塊の移動速度から算出した衝突力の比較結果を図 4-2-3-3 にまとめた. 衝 突力は漂流物衝突力にならい,目安として以下に示す式で算出した.

衝突力 F = MV/Dt

M:土塊の質量(N)

V:土塊の移動速度(m/s)

Dt: 0.00158s *

※「平成 28 年度原子力施設等防災対策等委託費(耐津波設計・フラジリティ評価手法の整備に係 る防潮堤水理試験(漂流物影響,洗掘影響))事業 調査報告書」の漂流物試験結果より.

防潮堤に働く力の時間変化は図 4-2-3-4 にまとめた. 土塊の両脇から回り込む流体により,土塊の衝突前から力が働いている. 長方形形状については土塊の運動に伴い衝突前の時点においても土塊と防潮堤の間の流体が圧縮されることで固定土塊の場合と比較して防潮堤に働く力は大きくなる. 土塊衝突直後に計算が停止するため土塊の衝突力自体については今後よく検討する必要がある. 台形形状については土塊が運動する場合と固定されている場合とで差が見られらかった.

なお異なるケースの比較を行う場合,波高により土塊に津波が作用する時間が大きく異なるため,それぞれのケースの土塊重心 X 座標が初めて 0.6 を超える時間を 0 として比較を行った.

土塊衝突力の目安として運動量から算出した土塊の衝突力最大値を確認し,表 4-2-3-1に整理した.

ケース名	衝突力最大值[N]
Case2	28322
Case3	35040
Case5	28602
Case6	43475

表 4-2-3-1 計算結果一覧

図 4-2-3-1 土塊重心位置 x 座標,重心速度 Vx の時間変化【上段:重心の波高による比較(長方形),中上段:重心の波高による比較(台形),中下段:速度の波高による比較(台形)】

図 4-2-3-2 土塊重心位置 x 座標,重心速度 Vx の時間変化【上段:重心の形状による比較(波高 7.5cm),中上段:重心の形状による比較(波高 15cm),中下段:速度の形状による比較(波高 15cm)】

図 4-2-3-3 土塊衝突力の時間変化【上段:波高による比較(長方形),中上段:波高 による比較(台形),中下段:形状による比較(波高 7.5cm),下段:形状による比較(波 高 15cm)】

図 4-2-3-4 防潮堤に働く力の時間変化【上段:長方形形状比較,下段:台形形状比較】

(2) Case1, Case2 および Case3 (四角形,入力波高 7.5cm, 15.0cm)

土塊および水面位置三次元鳥瞰図を図 4-2-3-4 に示す. また図 4-2-3-5 に断面二次 元圧力スナップショットを,図 4-2-3-6 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-2-3-4 漂流物および水面位置三次元鳥瞰図

【case1(四角形,固定設定,密度2650kg/m】

図 4-2-3-5 鉛直断面二次元圧力スナップショット

【case1(四角形,固定設定,密度2650kg/m】

図 4-2-3-6 鉛直断面二次元流速スナップショット

【case1(四角形,固定設定,密度2650kg/m】

土塊および水面位置三次元鳥瞰図を図 4-2-3-7 に示す. また図 4-2-3-8 に断面二次 元圧力スナップショットを,図 4-2-3-9 に断面二次元流速スナップショットを示す. 断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-2-3-7 漂流物および水面位置三次元鳥瞰図

【case2(四角形, 波高 7.5cm, 密度 2650kg/m】

図 4-2-3-8 鉛直断面二次元圧力スナップショット

【case2(四角形, 波高 7.5cm, 密度 2650kg/m】

図 4-2-3-9 鉛直断面二次元流速スナップショット

【case2(四角形, 波高 7.5cm, 密度 2650kg/m】

土塊および水面位置三次元鳥瞰図を図 4-2-3-10 に示す.また図 4-2-3-11 に断面二 次元圧力スナップショットを,図 4-2-3-12 に断面二次元流速スナップショットを示 す.断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-2-3-10 漂流物および水面位置三次元鳥瞰図

【case3(四角形, 波高 15cm, 密度 2650kg/m】

図 4-2-3-11 鉛直断面二次元圧力スナップショット

【case3(四角形, 波高 15cm, 密度 2650kg/m】

図 4-2-3-12 鉛直断面二次元流速スナップショット

【case3(四角形, 波高 15cm, 密度 2650kg/m】

土塊および水面位置三次元鳥瞰図を図 4-2-3-13 に示す.また図 4-2-3-14 に断面二 次元圧力スナップショットを,図 4-2-3-15 に断面二次元流速スナップショットを示 す.断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-2-3-13 漂流物および水面位置三次元鳥瞰図

【case4(台形, 固定設定, 2650kg/m³)】

Case5 および Case6 (台形形状) (2) Case4, T= 7.9123 XZ plain y= 1.60(j=5) presurre max=4000.000000 T= 8.3622 XZ plain y= 1.60(j=5) presurre max=4000.000000 .000e+003 4.000e+003 2,950e+003 2.950e+003 1.900e+003 1.900e+003 .500e+002 8.500e+002 2.000e+002 2.000e+002 T= 8.0623 XZ plain y= 1.60(j=5) presurre max=4000.000000 T= 8.5621 XZ plain y= 1.60(j=5) presurre max=4000.000000 4.000e+003 4.000e+003 2.950e+003 2,950e+003 1.900e+003 1.900e+003 500e+002 8.500e+002 -2.000e+002 2 000++003 T= 8.1622 XZ plain y= 1.60(j=5) presurre max=4000.000000 T= 8.7620 XZ plain y= 1.60(j=5) presurre max=4000.000000 4.000e+003 4,000e+003 2,950e+003 2.950e+003 \$ 1.900e+003 1.900e+003 8,500+002 8.500#+002 2.000e+002 2,000e+002

図 4-2-3-14 鉛直断面二次元圧力スナップショット

【case4(台形, 固定設定, 2650kg/m³)】

図 4-2-3-15 鉛直断面二次元流速スナップショット

【case4(台形, 固定設定, 2650kg/m³)】

土塊および水面位置三次元鳥瞰図を図 4-2-3-16 に示す.また図 4-2-3-17 に断面二次元圧力スナップショットを,図 4-2-3-18 に断面二次元流速スナップショットを示す.断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-2-3-6 漂流物および水面位置三次元鳥瞰図

【case5(台形, 波形 7.5cm, 2650kg/m³)】

図 4-2-3-17 鉛直断面二次元圧力スナップショット

【case5(台形, 波高 7.5cm, 2650kg/m³)】

図 4-2-3-18 鉛直断面二次元流速スナップショット

【case5(台形, 波形 7.5cm, 2650kg/m³)】

土塊および水面位置三次元鳥瞰図を図 4-2-3-19 に示す.また図 4-2-3-20 に断面二次元圧力スナップショットを,図 4-2-3-21 に断面二次元流速スナップショットを示す.断面二次元流速スナップショットには合わせて流速ベクトルも図示する.

図 4-2-3-19 漂流物および水面位置三次元鳥瞰図

図 4-2-3-20 鉛直断面二次元圧力スナップショット

【case6(台形, 波形 15cm, 2650kg/m³)】

図 4-2-3-21 鉛直断面二次元流速スナップショット

【case6(台形, 波形 15cm, 2650kg/m³)】

4-2-4 解析結果の比較:河床変動解析

(1) Case7 (四角形,入力波高 15cm)

図 4-2-4-1 に断面二次元流速のスナップショットを示すとともに,図 4-2-4-2 に河 床高の縦断分布を示す.

図 4-2-4-1 断面二次元流速スナップショット【波形 15cm, 汀線-60cm, 計測入射波】

【四角形,波形 15cm】

(2) Case8 (台形,入力波高 15cm)

図 4-2-4-3 に断面二次元流速のスナップショットを示すとともに,図 4-2-4-4 に河 床高の縦断分布を示す.

図 4-2-4-3 断面二次元流速スナップショット

【長波, 汀線-60cm, 計測入射波】

4-3 解析結果のまとめ

(1) 4-1 で示した漂流物挙動について

漂流物の初期位置による漂流挙動の変化について検討を行った.

漂流物を汀線から最も遠く配置した場合(case4),漂流物は防潮堤を超えず,初期位置がより近い場合(case1,case2)には漂流物は防潮堤を超えることが分かった.

今後の課題として,入射波形,漂流物形状,防潮堤前面の地形による差異について 検討する必要がある.

(2)4-2-3 で示した土塊移動解析について

防潮堤前面に配置された土塊が津波によって押し流されると仮定した時の移動挙 動について解析を行った.

長方形状,台形形状の場合ともに津波によって押し流された土塊が防潮堤に衝突することが分かった.波高7.5cm,波高15cmの場合ともに台形形状の方が長方形形状より移動速度の立ち上がりが速い.これは2つの形状の質量を同じにするために,台形形状の方が底辺の幅が長く,より早い時間に津波に接するためであると考えられる.

入射波高 7.5cm の場合,長方形形状,台形形状ともに衝突力(=衝突直前の速度)は ほぼ同じであったが,入射波高 15cm の場合,台形形状の方が衝突力(=衝突直前の速 度)は大きくなることが分かった.台形形状の場合は入射した津波が土塊側面をかけ あがるのに対し,長方形形状の場合,土塊と衝突した津波は土塊によってせき止めら れ上方に大きく打ち上げられることになる.この差異は入射波高が大きい 15cm の場 合に顕著であり,長方形形状の場合に水平方向の運動エネルギーを減じていると考え られる.

今後の課題として,入射波,土塊形状・初期配置による挙動の差異を検討すること が必要である.また実際の土塊を考えた場合,土塊形状が変形することなく一体とし て運動するという仮定が妥当であるとしても静止摩擦,動摩擦の影響は大きいと考え られる.

(3)4-2-4 で示した河床変動解析について

土塊形状が四角形の場合と台形の場合で、津波が衝突した際の挙動が異なる.四角 形の場合は津波が土塊前面に直角に衝突することにより打ち上げられた後、土塊に落 下するのに対し、台形の場合は津波が土塊前面の法面を滑らかに遡上する.このよう な衝突後の流れの違いによって、主に洗掘を受ける個所が異なり、四角形の場合は打 ちあがった津波が衝突する天端付近で洗掘が生じるのに対し、台形の場合は土塊前面 の法面で洗掘が生じる.今後は、土塊の形状や衝突する津波の形状によって、洗掘が どのように変わるかを水理試験等によって明らかにするとともに、試験結果を用いて 土砂移動・河床変動解析のパラメータを調整することにより、解析モデルの適用性を 確認していくことが必要と考えられる. また,津波が土塊を乗り越えて防潮堤に衝突する際,土塊と防潮堤の前面の領域に 空気塊の領域が形成されるが,本モデルでは空気塊の質量保存が考慮されている為, 津波がこの空気塊の領域に侵入し難くなった結果,防潮堤の前面での洗掘は殆ど起こ らない結果となった.実現象では土塊を越波した波による循環渦が発生し,防潮堤前 面でも洗掘が発生すると考えられる.今後,空気塊が砕波の合間から抜け出ることに より,土塊と防潮堤前面での流れが発達していく現象を表現可能な三次元の河床変動 解析モデルを導入することによって,より実現象に近い洗掘現象を再現できる可能性 がある.

第5章 漂流物衝突力に関する既往評価式の比較検討

第3章においてまとめた既往衝突力評価式をもとに以下の3ケースについて漂流 物衝突力の比較検討を行う.

(a)丸太の衝突力

計算条件:丸太の長さ 8.53m, 直径 0.35m, 質量 450kg, 流速 13.3m/s 円柱縦向きに衝突する.

(b)コンテナの衝突力

計算条件:コンテナの長さ12.2m, 幅2.44m, 高さ2.59m,

質量 30ton, 流速 2.4m/s

(c)小型船舶の衝突力

計算条件:船舶の長さ15m,幅4.5m,高さ3m,質量15ton,流速3m/s

表 5-1 丸太衝突力比較検討							
評価式	衝突力	計算パラメータ	評価式の特徴・適用条件				
①水谷式							
②池野式	828kN	付加質量係数 2.0	(評価式の特徴)模型実験結果の次元解析から評価.				
			(適用条件)水上設置時については水中設置の直立壁に衝突する状況を想定. 陸上設置時については遡上				
			津波により押し流され直立壁に衝突する状況を想定.				
			被衝突構造物材について記述なし.				
③松冨式	541kN	防潮堤に対する衝突を想定し開	(評価式の特徴)衝突時の局所的な変形を考慮し力を評価している.実スケール実験で検証.				
	(段波)	度を0と設定.	(適用条件)水上設置については段波(津波本体)により漂流し直立護岸に想定する状況を想定.				
	1190kN	湿潤時の木材の圧縮強度として	陸上設置についてはサージ(遡上部における津波先端部の流れ)に乗り直立壁に衝突する状況を想定.				
	(サージ)	200kgf/cm ² を用いる.	被衝突構造物材として鋼板を想定.				
④有川式	1595kN	丸太のポアソン比 0.3, ヤング率	(評価式の特徴)衝突時の局所的な変形を考慮し力を評価している.実スケール実験で検証.				
		10*10 ⁹ N/m	(適用条件)被衝突構造物としてコンクリート板を想定.				
		コンクリートのポアソン比 0.2,	陸上設置の丸太が津波により押し流され衝突する状況を想定.				
		ヤング率 20*10ºN/m					
5 FEMA	568kN	有効軸剛性 2.4*10 ⁶ N/m	(評価式の特徴)衝突時の局所的な変形を考慮し力を評価している.				
式		付加質量係数 0	(適用条件)水上設置の漂流物が水中に設置された鋼板に衝突する状況を想定.				
⑥道路橋	6kN		(他式との相違点)他の評価式と異なり衝突1秒前からの減速過程において働く力を示している.				
示方式			(適用条件)水上設置の漂流物が橋脚のような構造物に衝突する.				
⑦京都大	3172kN	衝突時間 dt=0.01	(評価式の特徴)模型実験結果をもとに力積の関係から衝突力を評価。衝突時間として 0.01 秒を想定.				
学防災研	(防潮堤位置:汀線)	実験係数 C は防潮堤位置による.	(適用条件)水上設置の漂流物が防潮堤に衝突する状況を想定.				
究所平石	898kN	C=5.3(防潮堤が汀線にある場合)	入射波・防潮堤位置により実験係数を変える.				
式	(防潮堤位置:汀線よ	C=1.5(防潮堤が汀線より陸側に					
	り陸側)	ある場合)					

表 5-2 コンテナ衝突力比較検討							
評価式	衝突力	計算パラメータ	評価式の特徴・適用条件				
①水谷式	7382kN	衝突時間として 0.01 秒を用いる.	評価式の特徴)模型実験結果から衝突力を評価. 衝突時間として 0.01 秒を想定.				
			(適用条件)陸上設置のコンテナを想定.				
			入射波として規則波(長波)・孤立波を想定.				
			コンテナに対し垂直に津波が入射しコンテナを越流しない状況を想定.				
②池野式	478kN	加質量係数 2.0	(評価式の特徴)模型実験結果の次元解析から衝突力を評価.				
			(適用条件)水上設置時は水中設置の直立壁に衝突する状況を想定.				
			陸上設置時は遡上津波により押し流され直立壁に衝突する状況を想定.				
			被衝突構造物材について記述なし.				
③松冨式							
④有川式	6752kN	コンクリートのポアソン比 0.2, ヤング率	(評価式の特徴)衝突時の局所的な変形を考慮し力を評価している.実スケール実験で検証.				
		20*10 ⁹ N/m	(適用条件)被衝突構造物としてコンクリート板を想定.				
		鋼板のヤング率はコンクリートに比べ大きく	陸上設置のコンテナが津波により押し流される状況を想定.				
		無視できるとした.					
5 FEMA	4585kN	有効軸剛性 60*106N/m	(評価式の特徴)衝突時の局所的な変形を考慮し力を評価している.				
式		付加質量係数 0.2	(適用条件)水上設置の漂流物が水中に設置された鋼板に衝突する状況を想定.				
⑥道路橋	71kN		(他式との相違点)他の評価式と異なり衝突1秒前からの減速過程において働く力を示している.				
示方式			(適用条件)水上設置の漂流物が橋脚のような構造物に衝突する.				
⑦京都大	36000kN	実験係数は目安として小型船舶・流木の実験	(評価式の特徴)模型実験結果をもとに力積の関係から衝突力を評価。衝突時間として 0.01 秒を想				
学防災研		結果から大きめに 5.0 をとった.	定.				
究所平石		衝突時間 dt=0.01	(適用条件)水上設置の漂流物が防潮堤に衝突する状況を想定.				
式							

表 5-3 小型船舶衝突力比較検討							
評価式	衝突力	計算パラメータ	評価式の特徴・適用条件				
①水谷式	4622kN	衝突時間として 0.01 秒を用いる.	(評価式の特徴)模型実験結果から衝突力を評価. 衝突時間として 0.01 秒を想定.				
			(適用条件)陸上設置の漂流物を想定.				
			津波が漂流物に垂直に入射し越流しない状況を想定.				
②池野式	122kN	付加質量係数 2.0	(評価式の特徴)模型実験結果の次元解析から衝突力を評価.				
			(適用条件)水上設置時は水中設置の直立壁に衝突する状況を想定.				
			陸上設置時は遡上津波により押し流され直立壁に衝突する状況を想定.				
			被衝突構造物材について記述なし.				
③松冨式							
④有川式	5083kN	コンクリートのポアソン比 0.2, ヤング率	(評価式の特徴)衝突時の局所的な変形を考慮し力を評価.実スケール実験で検証.				
		20*10 ⁹ N/m	(適用条件)被衝突構造物としてコンクリート板を想定.				
		鋼板のヤング率はコンクリートに比べ大	陸上設置の漂流物が津波により押し流される状況を想定				
		きいので無視できるとした.					
⑤FEMA 式	船舶の有効軸剛性が不明のため評価せず						
⑥道路橋示方	44kN		(他式との相違点)他の評価式と異なり衝突1秒前からの減速過程において働く力を示				
式			している.				
			(適用条件)水上設置の漂流物が橋脚のような構造物に衝突する.				
⑦京都大学防	18000kN	衝突時間 0.01 秒とした.	(評価式の特徴)模型実験結果をもとに力積の関係から衝突力を評価。衝突時間として				
災研究所平石	(防潮堤位置:汀線・孤立波)	実験係数 C は防潮堤位置・入射波による.	0.01 秒を想定.				
式	4500kN	C=4(防潮堤が汀線にある場合・孤立波)	(適用条件)水上設置の漂流物が防潮堤に衝突する状況を想定.				
	(防潮堤位置:汀線・長波)	C=1(防潮堤が汀線にある場合・長波)	入射波・防潮堤位置により実験係数を変える.				
	10800kN	C=2.4(防潮堤が汀線より陸側にある場					
	(防潮堤位置:汀線より陸側)	合・入射波は孤立波または長波)					

第6章 解析結果のまとめと今後の課題

(1) 解析結果のまとめ

実施した各解析について,以下に整理する.

(1)通過波検定解析のまとめと適用範囲

水位時系列波形の数値計算結果と水理模型試験結果との比較について,沖合から砕波 帯前面にかけての計算水位は水理模型試験における観測水位を高い精度で再現して おり,精度としては十分であると考えられる.汀線付近の砕波帯周辺では,計算水位 と観測水位に相違が見られる.この理由は,以下のように考えられる.

・試験は数値計算のような完全な理想条件で行うことができず、水路床の軽微な凹凸や造波のごく僅かな違いによって、砕波時および砕波後の流動に数値計算との条件上の差異が生じる。

・数値計算では,詳細な計算格子を用いたとしても,砕波時の乱れの影響もあり,砕 波後の複雑な流れの挙動を完全には再現することはできない.

上記を踏まえ,孤立波,長波ともに沖合から汀線付近で砕波するまでの水位変化の検討に適用可能である.また,砕波後の波の挙動については実現象を完全に再現することは困難である為,適用には注意が必要である.

(2) 漂流物解析のまとめと適用範囲

汀線 0cm のケースについては、単純勾配の地形では解析で得られた漂流物速度が 試験結果と概ね近い値となっていることから、ある程度漂流物の移動を再現できてお

り,漂流物の移動速度から衝突力を算出・評価できる可能性があると考えられる. 直立護岸のケース,汀線-60cmのケースについては漂流物が防潮堤の上を越えてい く,または防潮堤に達する前に反射波によりさえぎられる状態となった為,衝突に対 する評価はできない.

上記を踏まえ,孤立波ケースのように砕波していない波が単純勾配の地形において 汀線位置にある防潮堤に達する場合は本漂流物解析が適用可能であると考えられる が,直立護岸のケース,防潮堤が汀線から陸側に離れたケースについては適用できな い.また長波のように汀線手前で砕波するようなケースにおいても適用できない.

(3) 洗掘解析のまとめと適用範囲

打ち込み波圧については,解析結果の最大波圧の発生位置および波圧のオーダーは 試験結果と概ね一致しており,地面に衝突するまでの現象の再現性は高いことが確認 された.

洗掘地形の縦断分布について,最大洗掘は試験と解析で概ね近い傾向が得られ,波 高を変えた場合の数値実験により,波高が高く越波量が多い程,最大洗掘地点が遠く なる結果が得られた.しかし,最大洗掘箇所については,試験と解析で異なる結果が 得られた.解析では越波後の落水地点近傍で最大洗掘箇所が表れるのに対し,試験で は落水地点より沖側の,防潮堤と落水地点の間の領域で最大洗掘箇所が表れる結果と なった.この差異は,越波後の防潮堤背面に向かう流れによって発生する循環渦の再 現性の違いによるものであると考えられる.今後,解析手法の工夫により,防潮堤背 面での循環渦の再現性を向上させることができれば,洗掘現象の再現精度が向上する 可能性がある.

上記を踏まえて,洗掘解析の適用範囲については,防潮堤背面に向かう循環渦が再 現できない現状では落水地点より沖側の洗掘坑は適用できないが,最大洗掘のオーダ ーにおいては試験結果と調和的であることから,適用可能であると示唆される.また, 孤立波ケースのように砕波していない波が防潮堤を越流した場合は適用可能性が高 いが,長波ケースのように防潮堤に到達するかなり手前で砕波した場合は適用可能性 が極めて低いと考えられる. (2) 今後の課題

(1) 漂流物解析の精度向上

今回, 漂流物の形状を正確に反映させた漂流物解析を行うことにより, 実現象にある程度近い漂流物の挙動および衝突現象を再現することができた.しかし, 試験では 波に対して漂流物が正面から接触するように, 漂流物を水面で静止させる為のサポー ターを用いていることや, 圧力を計測する為の治具を防潮堤壁面に設置していること により, 厳密には, 試験と解析で完全に一致した条件で比較を行えていない.

このことを勘案し、上述の条件を解析で考慮することにより、漂流物の挙動の再現性が向上する可能性がある.

また計算プログラムの安定性を向上させることにより砕波のような複雑な水面変 形をするケースでも漂流物解析が可能になると考えられる.水理試験では,計測上の 困難さから砕波時の漂流物と波の相互作用や防潮堤との衝突過程を未だ十分に把握 できていない.今後,構築したシミュレーションコードを利用して数値解析を行うこ とにより,水理試験では把握することが困難な津波による漂流物の流送過程や詳細な 衝突過程を調べることが可能になると考えられる.

本検討では、水理試験と同様に比重の軽い物体についてシミュレーションを行った が、今後はケーソンの滑動等、比重の重い物体についてシミュレーションを行うこと により、津波による影響を検討する必要がある.

(2) 洗掘解析の精度向上

洗掘坑は,防潮堤を越波した波の地面への潮突後に発生する防潮堤背面での循環渦 によって形成されることから,最大洗掘箇所は落水地点とは一致しないことが洗掘試 験結果の整理結果より明らかとなっている.つまり,落水後の洗掘深と最大洗掘箇所 は越流後の循環渦が再現されるか否かに大きく影響されると考えられる.本解析では 水によって遮蔽された空気塊の領域の質量保存を考慮しているが,洗掘解析を断面二 次元で行っていた為,防潮堤を越波した波と防潮堤により形成される空気塊の領域に 水が浸入し難くなり,実際の循環渦が十分に再現されなかったと考えられる.実際の 現象は,越波する際に波が変形し,部分的に引きちぎれて空気が抜ける形で防潮堤背 面に向かう循環流が発達していく.

このことを勘案すると、より現実に近い解析を行う為には、槽横断方向にも計算メ ッシュを分割し、完全三次元での河床変動解析を行うことにより、防潮堤背面に向か う循環渦を再現することによって洗掘現象の再現性が向上する可能性がある(流動場 の再現性を向上させることで河床変動現象の再現性を向上させる).

付録 A 漂流物解析モデルの概要

本検討では、米山らによって開発された三次元流動場において相互に影響を及ぼし ながら移動・回転する現象を予測評価できる三次元流体・剛体連成解析手法(米山ら、 2009)を津波漂流物の挙動に適用し、漂流物の挙動を予測・評価する.この手法は、 並進3自由度および回転3自由度を考慮した漂流物の複雑な挙動が解析可能な三次元 数値解析手法であり、水理実験結果との比較によってその妥当性が検証されている.

解析手法について,水面挙動の予測にVOF法(Hirt ら,1981),境界形状の取り 扱いに FAVOR法(Hirt ら,1985)を用いた非圧縮流体解析手法を用いた.漂流物 を移動する境界として扱い,その位置および姿勢は FAVOR 法に基づいて各計算セル の空隙率 y^{*},開口率 y^{*}₁により流体解析に認識される(図 1-1-1参照).また,漂流 物の移動は,空隙率 y^{*},開口率 y^{*}₁の時間変化として連続方程式を介して流体運動に 反映される.これと同時に,重力および流体解析により求められた圧力と粘性力を外 力として,剛体運動の基礎方程式より漂流物が移動する(図 1-1-2参照).なお,本 研究の解析手法では,平面を組み合わせた表面形状を持つ漂流物を取り扱うことがで きる.

	空セル Y ^v = 0.8 F=0.0	空セル $\gamma^{\nu} = 0.5$ F = 0.0	<u>空セル</u> Y ^v = 0.4 F= 0.0	空セル ? ^v = 0.6 F = 0.0	
-	水面セル	物体セル	物体セル	水面セル	
-	$\dot{\gamma}^* = 0.5$ F = 0.6	Y = 0.0 F = 0.0	Y = 0.0 F = 0.0	$\gamma = 0.4$ F = 0.6	
	内部セル Y ^v = 0.7 F = 1.0	内部セル $\gamma^{\nu} = 0.1$ F = 1.0	内部セル Y ^v ー 0.2 _F1 . 0-	内部セル ? ^v ー 0.5 F=1.0	

図 1-1-1 漂流物の取り扱い

1

図 1-1-2 漂流物に作用する外力

(1) 流体の基礎方程式

流体運動の基礎方程式を以下に示す.

·連続方程式

 $\frac{\partial \gamma^{v}}{\partial t} + \frac{\partial \gamma_{j}^{a} \overline{u}_{j}}{\partial x_{j}} = 0$ (1) ・ 運動方程式 (Reynolds 方程式) (i=1,2,3) $\frac{\partial \overline{u}_{i}}{\partial t} + \frac{\gamma_{j}^{a} \overline{u}_{j}}{\gamma^{v}} \frac{\partial \overline{u}_{i}}{\partial x_{j}} = g_{i} - \frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\nu \frac{\partial \overline{u}_{i}}{\partial x_{j}} - \overline{u_{i}' u_{j}'} \right)$ (2) ・ 流体体積の移流方程式

 $\frac{\partial \gamma^v F}{\partial t} + \frac{\partial \gamma_j^a F \overline{u}_j}{\partial x_j} = 0.$ (3)

以上の方程式を直交座標系上で離散化して SIMPLE 法(Patankar ら, 1972) に 基づいて解析した.各物理量の定義点は,流速のみを計算セルの境界面中央,その他 の物理量を計算セルの中央で定義するスタッガード配置とし,離散化は時間について 前進差分,移流項は三次精度風上差分,その他は中央差分とした.また,式(3)は VOF 法に基づいて離散化し,移流はドナアクセプタ法により行った.これに関して, 流体体積を保存するためのいくつかの工夫を行った(米山, 1998).

(2) 剛体運動の基礎方程式

剛体運動は流体計算で用いる全体座標系の他に剛体の重心を原点とした慣性主軸 座標系を設定し解析する(図 1-1-3 参照).また,以下では各計算セル内に含まれる 漂流物の一部をセグメントと呼び, セグメントの表面のうち, 漂流物表面と一致する 面を漂流物面 Asegとする(図 1-1-4 参照). 剛体運動の基礎方程式を以下に示す.

・漂流物重心の運動方程式

・漂流物重心まわりの回転運動の運動方程式

$$\mathcal{I}\frac{d\boldsymbol{\omega}}{dt} + \boldsymbol{\omega} \times \mathcal{I}\boldsymbol{\omega} = \sum_{k} \left\{ \widetilde{\boldsymbol{r}}_{\boldsymbol{s}_{k}} \times \left(\boldsymbol{F}_{k}^{pr} + \boldsymbol{F}_{k}^{vis} \right) \right\}$$
(5)

ここで、mは漂流物の質量、 v_g は漂流物重心の速度ベクトル、 F_k^r および F_k^r はセグ メントの漂流物面 A_{seg} が受ける圧力を積分した流体力ベクトル、粘性力ベクトルであ る.また、 ω は慣性主軸座標系を基準とした角速度ベクトル、Iは漂流物の慣性モー メントからなる慣性テンソル、 r_{sk} は慣性主軸座標系での漂流物面 A_{seg} の重心位置ベ クトルである.

図 1-1-3 座標軸と漂流物回転軸

図 1-1-4 セグメントの一例

(3) 漂流物が受ける流体力の計算法

剛体の運動方程式を解く際に必要になる流体力の計算法について以下に述べる. a) 圧力 **F**^{br}

あるセグメントの漂流物面 A_{seg}(面積 S,法線ベクトル n)が受ける圧力 F^{pr}の計算には,図 1-1-5 に示すように,計算セルの圧力値 Pを,r_c(圧力定義点=計算セル

の中心点)~rs(漂流物面の重心)間で静水圧分布を仮定して補正した値 Porを用い

る. Ppr は次式となる.

漂流物面 Aseg の重心に圧力 Porが作用するとして、この面にかかる力 For は次式で 求められる.

 $\boldsymbol{F}^{pr} = P^{pr}S\left(-\boldsymbol{n}\right).$ (7)

ただし,図1-1-5(b)のように漂流物面が水面セルに接する場合には,漂流物面のうちの水面下にある部分の面積と重心位置を用いる.

- (a) 流体内部の場合
- (b) 水面を含む場合

図 1-1-5 圧力の評価方法

図 1-1-6 粘性力の評価方法

b)粘性力 F^{vis}

位置 $r(=(xyz)^{T})$ における流速ベクトルを U(r)とすると, Uの漂流物面 A_{seg} (面積 S, 法線ベクトル) に平行な成分 U_{p} は, 次式で表される.

点 r_{s} におけるせん断応力 τ (r_{s})は,漂流物面 A_{seg} に垂直表向きの座標軸を η とする と,次式で求められる.

 $\tau(\mathbf{r}_{\rm s}) = \mu \frac{\partial U_{\rm p}}{\partial \eta} \bigg|_{\mathbf{r}=\mathbf{r}_{\rm s}}....(9)$

ここで、 μ は流体の粘性係数である. 漂流物面 A_{seg} に作用する粘性力 F^{vis} は次式となる.

(4) 衝突時の計算方法

漂流物の移動回転計算により次計算ステップ($t + \Delta t$)での漂流物の一部が壁面等 の内部に含まれることが見込まれる場合, Δt の間に, 漂流物が壁面等に衝突したと見 なし, 以下のように計算した.

i) 剛体の運動方程式を用いた収束計算により,対象壁面に接触した時刻($t+\Delta t_{col}$; ここで $0<\Delta t_{col} <\Delta t$)と衝突時の漂流物の重心位置,重心移動速度 v'_g ,姿勢および角 加速度 ω '等を求める.

ii) 剛体の衝突に関するラグランジュの衝撃運動方程式およびニュートンの仮定(鶴井, 1986)より,反発係数 eを用いて導かれる次式から接触後の重心移動速度 v"gおよび角加速度ω"を求める.

 $\boldsymbol{v}''_{g} = \boldsymbol{v}'_{g} + \frac{J}{m} \boldsymbol{n}_{col} \tag{11}$

ここに, **r**_{col}は衝突点の慣性主軸座標系における位置ベクトル, **n**_{col}は対象壁面の法線ベクトル, **J**は衝撃力(スカラー)であり次式で表せる.

iii) \mathbf{v}_{g}^{n} および $\boldsymbol{\omega}^{n}$ を初速として、時間ステップの残りの時間 $\Delta t \cdot \Delta t_{col}$ の間、漂流物 を移動回転させて Δt 秒後の漂流物の位置および姿勢とする.なお、 $F^{pr} \geq F^{vis}$ は衝突 前後で不変とした.

(5) 解析のながれ

解析のながれの概略を以下に示す.

i) 時刻 tにおいて、すべての物理量が既知とする.

ii) 時刻 $t + \Delta t$ における乱流量を計算.

iii) 時刻 $t + \Delta t$ における漂流物の重心位置および回転角を計算.必要に応じて衝 突時の処理を行う.

iv) 時刻 $t + \Delta t$ における流速の推定値u^{**}を計算.

v) u^{*}*を用いて連続方程式の誤差 D を計算し, 誤差許容値 D_{max} より小さければ流 速を真値として次に進み,大きければ圧力の修正を行い iv) に戻る.

vi) 流速の境界条件を更新する.

vii) 時刻 $t + \Delta t$ における F^{n+1} を計算し,水面形状を更新する.

viii) 圧力の境界条件を更新し, ii) に戻る.

付録 B 洗掘影響の把握解析

本検討で用いた河床変動モデルの概要を以下に示す.河川・海岸への適用を考え, 土砂の分級過程および河床の粗粒化や,細粒化現象を表現できるように,混合砂礫モ デルを導入し,粒径毎に流砂量を計算する.

流砂の移動については、掃流砂、浮遊砂、Wash load を考慮する.浮遊砂・Wash load については、浮上・沈降および非定常の3次元移流拡散方程式を解く非平衡モデルとする.

掃流砂量については式(1)に示す芦田・道上式 %により評価する.

$$\frac{q_{bk}}{\sqrt{sgd_k^3}} = 17P_{bk} \times \tau_{*ek}^{3/2} (1 - \frac{\tau_{*ck}}{\tau_{*k}}) (1 - \sqrt{\frac{\tau_{*ck}}{\tau_{*k}}} \quad . \quad . \quad . \quad (1)$$

ここに、『:河床材料の水中比重(=1.65), 『:重力加速度,

添字 k :粒径階, d_{m} :河床材料の平均粒径, P_{bk} :河床表層の粒径階 d_{k} の含有率, τ_{*k} , τ_{*ek} , τ_{*ck} : 粒径階 d_{k} に対する無次元掃流力と無次元有効掃流力, 無次元限界掃流力 である.

 τ_{*et} を算定する為の有効摩擦速度 u_{*e} は次の式(2)で与えられる.

$$u_{*_{e}} = \frac{u}{6.0 + 5.75 \log_{10} \frac{R}{D_{m} (1 + 2\tau_{*_{m}})}} \cdot \cdot \cdot (2)$$

浮遊砂については、浮上・沈降過程および非定常の3次元移流拡散方程式を解く非平衡モデルとする、浮遊砂の浮上量 E_{st} は、次の式(3)で与えられる。

$$E_{sk} = W_{sk}C_{ek} \quad \cdot \quad \cdot \quad (3)$$

ここに, W_{sk} : 粒径階 d_k に対する沈降速度, C_{ek} : 粒径階 d_k に対する浮遊砂の平衡基準面濃度である.

粒径毎の沈降速度^Wsk は次式の Rubey 式によって与えられる.

$$W_{sk} = \sqrt{sgd_k} \left(\sqrt{\frac{2}{3} + \frac{36\nu^2}{sgd_k^3}} - \sqrt{\frac{36\nu^2}{sgd_k^3}} \right) \cdot \cdot \cdot \cdot (4)$$

ここに、V:水の動粘性係数である.

また,平衡基準面濃度については,式(5)に示す芦田・道上式¹⁰⁾による平衡基準面濃 度式により評価する.

$$C_{ek} = P_{bk} k_0 \left\{ \frac{g(\xi_0)}{\xi_0} - G(\xi_0) \right\} \quad . \quad . \quad (5)$$

ただし, $g(\xi_0)_{,G}(\xi_0)_$

$$g(\xi_0) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}{\xi_0}^2\right)$$
$$G(\xi_0) = \frac{1}{\sqrt{2\pi}} \int_{\xi_0}^{\infty} \exp\left(-\frac{1}{2}{\xi}^2\right) d\xi$$

ここに, k_0 :比例定数 (=0.025) , ξ_0 : W_{sk}/σ_P , ξ : W_P/σ_P , W_P : 砂礫の鉛直方向の変動速度, σ_P : W_P の標準偏差 (=0.75^{u_*})

河床高の変化については,各粒径毎,流砂形態毎に求められた流砂量を用いて式(6) に示す流砂の連続式により計算する.

$$\frac{\partial z_b}{\partial t} = \frac{-1}{(1-\lambda)} \sum_{k} \left\{ \frac{\partial q_{bxk}}{\partial x} + \frac{\partial q_{byk}}{\partial y} + (E_{sk} - D_{sk}) \right\} \quad . \quad . \quad . \quad (6)$$

ここに,^{*z_b*}:河床高, *q_{bxk}*: *x*方向の粒径階 *k*の単位幅掃流砂量,

*q*_{byk}: y方向の粒径階 kの単位幅掃流砂量,

 E_{sk}, D_{sk} : 粒径階の浮遊砂の浮上量と沈降量である.

河床材料変化については,侵食と堆積が繰り返される場合には,河床材料は複雑な多 層構造となる.このような場合に,河床表面に限らず河床の深さ方向における粒度分 布の時間変化を計算する必要がある.そこで本研究では,混合層の概念に遷移層と堆 積層の概念を導入し,粒度分布の鉛直方向の変化を考慮した芦田・江頭・劉らの多層 モデル¹¹⁾を用いる.

図 I-1 河床材料の粒度分布変化モデル模式図

図 I-1 に示すように,河床をある基準面^{Z_0}から河床面^{Z_h}まで鉛直に多数の層に区分 する. 最上層は交換層(mixed layer)で,その厚さは^{E_n}である. そのすぐ下の層は遷 移層 (transition layer)で,厚さは^{E_i}である. その他の下層領域は堆積層 (deposited layer) と呼ばれ,厚さは全て^{E_d}である. 上記の変数を用いて,河床の構成は次式で 表される.

 $z_b = E_m + E_t + N_b \times E_d + z_o$

ここに、 N_b は堆積層の総数である。 E_d は常に一定値とするが、 E_t は河床変動に伴い変化し、次式に示すような制限を受ける。 $0 < E_t \leq E_d$

河床表層における河床材料の各粒径階の含有率の変化は次の式(7)により評価する.

 $\overline{\frac{\partial P_{bk}}{\partial t} - \frac{1}{E_m} \frac{\partial z_b}{\partial t} + \frac{1}{E_m} \frac{\partial z_b}{\partial t} (\eta P_{bk} + (1 - \eta) P_{bko}) = 0} \quad . \quad . \quad . \quad (7)$

ここに、 λ :河床材料の空隙率、 P_{bk} :交換層の粒径階 D_k の含有率、 P_{bk0} :交換層の下 層における粒径階 D_k の含有率、 E_m は交換層の厚さである.また、 η は係数で、侵食 のとき $\eta=0$ 、堆積のとき $\eta=1$ である.

河床に土砂が堆積していく場合,堆積高が設定している河床材料層厚を上回った時点 で遷移層の粒度分布を堆積層第1層目に繰り下げる処理を行う.逆に河床が侵食され る場合,侵食高が河床材料層厚を上回った時点で堆積層第1層の粒度分布を遷移層に 繰り上げる処理を行う.このような処理により,河床の深さ方向の粒度分布の変化を 計算・記憶していく.図I-2に堆積過程,図I-3に侵食過程の模式図を示す.

$1 \Delta z_b > 0$ (Deposition):

 $(\textcircled{1}-2): E_t^n + \Delta z_b \triangleright E_d$

- $P_{bk}^{n+1} = (1 \frac{\Delta z_b}{E_m}) P_{bk}^n + \frac{\Delta z_{bk}}{E_m}$ $E_t^{n+1} = \begin{cases} E_t^n + \Delta z_b & E_t^n + \Delta z_b \le E_d \\ E_t^n + \Delta z_b E_d & E_t^n + \Delta z_b > E_d \end{cases}$
- $P_{tk}^{n+1} = \begin{cases} \frac{E_{t}^{n}}{E_{t}^{n+1}} P_{tk}^{n} + \frac{\Delta z_{b}}{E_{t}^{n+1}} P_{bk}^{n} & E_{t}^{n} + \Delta z_{b} \leq E_{d} \\ P_{bk}^{n} & E_{t}^{n} + \Delta z_{b} > E_{d} \end{cases}$

$$N_b^{n+1} = \begin{cases} N_b^n & E_t^n + \Delta z_b \le E_d \\ N_b^n + 1 & E_t^n + \Delta z_b > E_d \end{cases}$$

$$P_{N_{b}k}^{n+1} = \begin{cases} P_{N_{b}k}^{n} & E_{t}^{n} + \Delta z_{b} \leq E_{a} \\ \frac{E_{t}^{n}}{E_{d}} P_{tk}^{n} + (1 - \frac{E_{t}^{n}}{E_{d}}) P_{bk}^{n} & E_{t}^{n} + \Delta z_{b} > E_{a} \end{cases}$$

図 I-2 堆積過程の粒度分布計算方法および模式図

 $\textcircled{(2-2)}: E_t^{\ n} \!\!+\!\! \Delta z_b \!\!\leq \!\! 0$

$$P_{bk}^{n+1} = \begin{cases} P_{bk}^{n} - \frac{\Delta z_{b}}{E_{m}} P_{tk}^{n} + \frac{\Delta z_{bk}}{E_{m}} & E_{t}^{n} + \Delta z_{b} > 0\\ P_{bk}^{n} + \frac{E_{t}^{n}}{E_{m}} P_{tk}^{n} - \frac{E_{t}^{n} + \Delta z_{b}}{E_{m}} P_{N_{b}k}^{n} + \frac{\Delta z_{bk}}{E_{m}} & E_{t}^{n} + \Delta z_{b} \le 0\\ E_{t}^{n+1} = \begin{cases} E_{t}^{n} + \Delta z_{b} & E_{t}^{n} + \Delta z_{b} \\ E_{d} + E_{t}^{n} + \Delta z_{b} & E_{t}^{n} + \Delta z_{b} \le 0 \end{cases}$$

$$P_{tk}^{n+1} = \begin{cases} P_{tk}^{n} & E_{t}^{n} + \Delta z_{b} > 0\\ P_{N_{b}k}^{n} & E_{t}^{n} + \Delta z_{b} \le 0 \end{cases}$$

$$N_b^{n+1} = \begin{cases} N_b^n & E_t^n + \Delta z_b > 0\\ N_b^n - 1 & E_t^n + \Delta z_b \le 0 \end{cases}$$

$$P_{N_{b}k}^{n+1} = \begin{cases} P_{N_{b}k}^{n} & E_{t}^{n} + \Delta z_{b} > 0\\ P_{(N_{b}-1)k}^{n} & E_{t}^{n} + \Delta z_{b} < 0 \end{cases}$$

図 I-3 侵食過程の粒度分布計算方法および模式図