Regulating Nuclear Power in an Active Earth

Allison Macfarlane
George Washington University
May 21, 2015
Nuclear Regulation Authority, Tokyo Japan
Successful Nuclear Power

- Nuclear power needs public support in democracies
- First Ingredient is a credible, independent regulator
- Second ingredient is set of strong, enforceable regulations
Importance of Independent Regulator

- No political or industry influence
- Well-funded
- Adequate technical expertise
- Full support of central government
- Real enforcement powers to shut down facilities
- No independent regulator: country at great risk in terms of economics and public health
Credible Regulator Essential

- No credible regulator – no public trust – no public support for nuclear power
- Public support lost when
 - Regulator is not *open* and *transparent*
 - Open – engages with public, industry, all interested parties
 - Transparent – makes all decisions in public and all documents available
Natural Hazards in Regulation of Operating Nuclear Reactors

- Earthquakes
- Volcanoes
- Floods
- Wind
 - Tornadoes
 - Typhoons
- Drought
- Heat/Cold
- Snow/Ice
- [Asteroids]
Floods

- Storm surge
 - Coastal
 - River/lake
- Tsunami
- River flooding
 - Storm event
 - Spring snow melt
- Seiche
- Dam break

Ft Calhoun Nuclear Power Plant, Nebraska, US, June, 2011
Wind

- Wind-generated missiles from tornados and typhoons
- Wind damage to structures

Tornado (water spout) photo from Maryland’s Calvert Cliffs nuclear power Plant, US
Extreme Temperatures

- **Heat**
 - Loss of heat sink
 - Millstone unit 2, 2012

- **Cold**
 - Ice blocking water intake
 - Ice plug Millstone, 1996

- **Snow/Ice**
 - Strength of roofs/other structures
 - Chernobyl roof collapse in 2013

Collapsed portion of Chernobyl sarcophagus roof
Earth Systems and Regulation of the “Back End” of the Fuel Cycle

Similar considerations to operating reactors:
- Spent fuel pools
- Dry cask storage
- Reprocessing facilities

Additional considerations
- Repository
Deep Geologic Repositories

- Siting Considerations (from IAEA, 2003)
 - Long-term tectonic stability
 - Seismic issues – less shaking at depth than on surface
 - Mizunami experience
- Excavatable rock
Deep Geologic Repositories

- Low-groundwater content and flow
- Stable geochemistry at depth
 - reducing environment
 - equilibrium between rock and water
- Also need
 - Deep site to avoid erosion
 - No potential for human intrusion
Earth Systems and Regulation of the “Back End” of the Fuel Cycle

- Accident aftermath – Fukushima
- Groundwater infiltration
- Groundwater contamination
- Coastal contamination
- Seawater/seabed contamination
- Land contamination
How to regulate for natural hazards

- Periodically review state of geologic knowledge
- US NRC currently requiring reactors to reevaluate seismic and flooding hazard
- US NRC considering requiring periodic reevaluations of these hazards
- US NRC considering reevaluating other natural hazards
Considerations for Natural Hazards for Future Regulations

- Complex phenomena in complex systems
- Can be difficult or impossible to predict with accuracy in time and magnitude of events
- Propensity to normalize periods of quiet
- Risks can be severe
 - Fukushima example
Geologic Knowledge Changes over Time

- Learn more over time
- Plate tectonic theory
 - Accepted in 1970s, after many plants built in US
- Examples
 - Seismology post–Sumatra earthquake
 - Tsunami risk in Japan
Considerations for Future Regulations

 степени использования Пробудькинских рисико-оценок

- Могут предоставить некоторые
 волшебные
- Увеличивают низкую
 вероятность, высокую
 последствия событий
 (Фукусима)
- Предполагают периодичность
 событий, которые могут не
 существовать
- Выход только насколько
 хорошо ввод
- US NRC использует
 сейсмические
 ПРА, но не
 затопление
 ПРА (еще)

Результаты ПРА для U.S. Energy Department’ s Yucca Mountain assessment
The Path Forward

- Grow trust in the regulator by making clear the independence of the regulator
- Treat natural hazards openly and transparently
- Use most current state of knowledge to establish regulations
- Use both probabilistic and deterministic methods
- Be mindful of uncertainty in data and its consequences for our understanding of events
- Err on the side of precaution
- Periodically revisit regulations based on new understanding of hazards
In conclusion: Credibility is key for trust