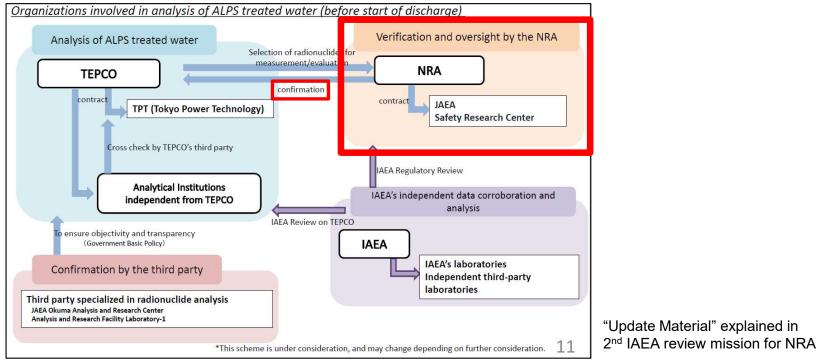


Meeting Material 4–3 of 107th Committee on Oversight and Evaluation of Specified Nuclear Facilities Tentative Translation by NRA

Analysis result of ALPS treated water


14th April 2023

JAEA Nuclear Safety Research Center (NSRC)

Purpose

- The NRA is inspecting TEPCO's organizational framework for analyzing "nuclides to be measured and evaluated" and their quality assurance activities, and checking whether they are following the approved Implementation Plan.
- Also, considering the statement in the Governmental Policy "monitoring with objectivity and transparency", the NRA confirms the validity of TEPCO's analysis by conducting independent monitoring.
- > JAEA NSRC analyzed radionuclides in ALPS treated water under the contract from the NRA.

Compare the analytical results (radionuclide concentration) by JAEA NSRC and TEPCO with consideration of uncertainty ranges, for supporting the overall oversight by the NRA.

Sampling

Observation by IAEA review team of the sampling of ALPS treated water at the TEPCO Fukushima Daiichi Nuclear Power Station (March 24)

g <Reference material> March 25, 2022 Tokyo Electric Power Company Holdings, Inc. Fukushima Daiichi D&D Engineering Company

On March 24, the IAEA review team in Japan visited the Fukushima Daiichi Nuclear Power Station and observed the sampling of ALPS treated water from the measurement/confirmation facility.
 This is the second time that the IAEA has observed sampling this year (1st time: February).
 A portion of the sampled water shall be analyzed at an IAEA research facility in order to verify TEPCO's analysis method and results.

Observing sampling

Sampling ALPS treated water

Photographed by TEPCO Holdings, Inc. on March 24, 2022

Received at the hot laboratory of JAEA on 12th October 2022

TEPCO's news release material:

https://www.tepco.co.jp/en/hd/decommission/information/newsrelease/reference/pdf/2022/reference_20220325_01-e.pdf

Target nuclides

Analyzed 13 radionuclides contracted from NRA

•Nuclides mainly detected in ALPS treated water (to compare with TEPCO's result) :

Co-60, Sr-90, Ru-106, Sb125, I-129, Cs-134, Cs-137, H-3, C-14, Tc-99

•Nuclides rarely detected in ALPS treated water (confirmation of existence) :

CI-36, Fe-55, Se-79

1. Overview

TEPCO

For the 35 nuclides of the nuclides to be measured/assessed and monitored, the analytical results at the ALPS inlet (FY 2021) and ALPS outlet (K4, J1-C, J1-G) are reported based on the results of checking the sum of the ratios to regulatory concentrations limits in the classification in the table below. Note that in the calculation of the regulatory concentration limit ratio of α-nuclides, the total-α value is divided by 4 Bq/L, which is the lowest regulatory concentration limit among the α-nuclides selected.

Classification Nuclides mainly detected in ALPS treated water								ALPS outlet	
					Specific nuclides	ALPS inlet	K-4	J1-C	J1-G
			d in A	ALPS treated	7 major nuclides including radioactive equilibrium Y-90, Te- 125 m) C-14, Tc-99	1.7E+03	2.7E-01	1.6E-01	5.8E-02
	α			U-234, U-238, Np-237, Pu-238, Pu- 239, Pu-240, Am-241, Cm-244	5.4E+00 →1.0E+00	8.2E-04 →1.6E-04	4.2E-02 →8.1E-03	3.7E-02 →7.0E-3	
Nuclides rarely detected in ALPS treated water	Other than a nuclides	Subject to removal by ALPS (other than the above)			Mn-54, Ni-63, Cd-113m, Ce-144, Pm-147, Sm-151, Eu-154, Eu-155, Pu-241	2.2E+00	1.4E-03	1.3E-02	1.2E-02
		Other than α nuclides Other than those subject to removal		rge number of surements	CI-36, Se-79 Nb-94	5.0E-02	1.2E-02	1.2E-02	1.2E-02
			umber of rements	[1] Countable for gross β or Ge	Ba-133	8.7E-03	1.5E-03 →1.8E-05	1.4E-03 →1.4E-04	1.4E-03 →1.3E-04
			Small number measurement	[2] Not countable for gross β and Ge	Fe-55, Nb-93m, Mo-93	2.1E-02	9.3E-03	6.8E-03	6.8E-03

*For J1-C and J1-G, the analysis and evaluation results for CI-36, Se-79, Ba-133, Fe-55, Nb-93 m, and Mo-93 are not available, and the results from the additional ALPS outlet are used.

The Japanese version shall prevail.

Meeting Material 1-1-2 of 3rd Technical Meeting on Specified Nuclear Facility

4

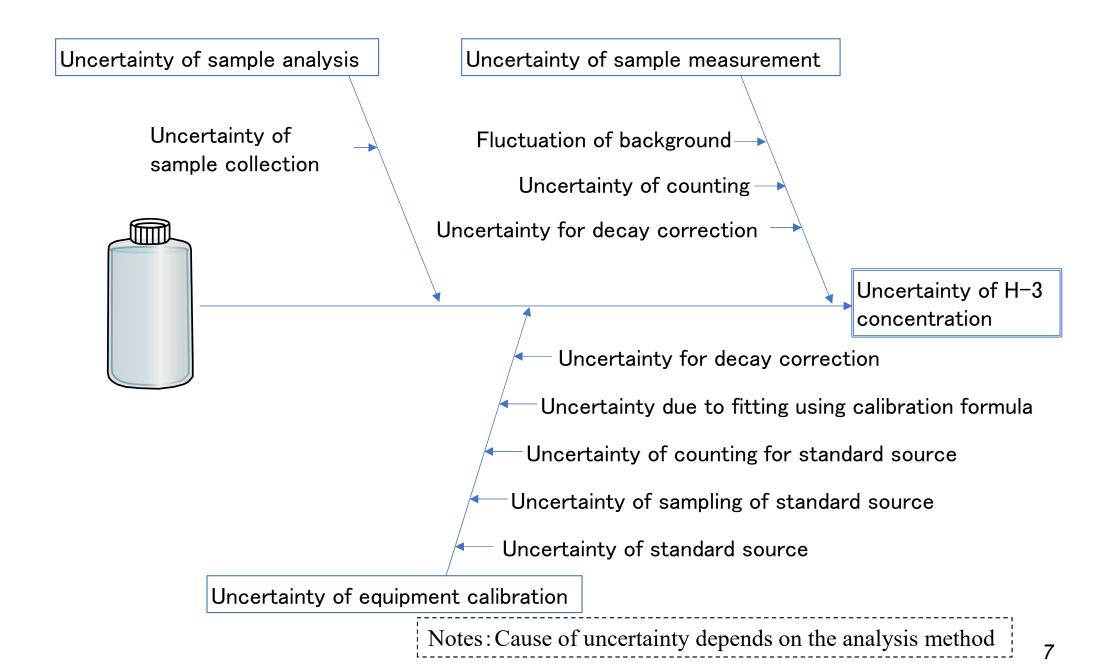
Analytical methods (1/2)

Nuclides	Principal radiation emitted	Analytical equipment	Analytical method (pretreatment)	Basis for Analytical Method
Co-60	βγ	Ge	without pretreatment	The Series of Environmental Radioactivity Measuring Methods (SERMM) No.7
Sr-90	β	LSC	Sr was purified by using Sr resin. β -Ray was measured after reaching radioactive equilibrium between ⁹⁰ Sr and ⁹⁰ Y.	JAEA-Technology 2009-051
Ru-106	β	Ge (Measure Rh-106)	without pretreatment	SERMM No.7
Sb-125	βγ	Ge	without pretreatment	SERMM No.7
I-129	βγ	ICP-MS	I was purified with Anion-SR	SERMM No.32
Cs-134	βγ	Ge	without pretreatment	SERMM No.7
Cs-137	βγ	Ge	without pretreatment	SERMM No.7

Ge: Ge Semiconductor Detector

LSC: Liquid Scintillation Counter

ICP-MS: Inductively Coupled Plasma Mass Spectrometry


Analytical methods (2/2)

Nuclides	Principal radiation emitted	Analytical equipment		Basis for Analytical Method
H-3	β	LSC	Sample solution was purified by distillation, and then, mixed with scintillator.	SERMM No.9
C-14	β	LSC	1.5 M HNO ₃ was added into sample solution and N ₂ gas was insufflated to the solution to evaporate CO_2 . CO_2 was tapped by absorbent and absorbent was mixed with scintillator.	JAEA-Technology 2009-051
Tc-99	β	ICP-MS	Tc was separated by TEVA resin	S. Uchida et al., ^{*1} and K. Tagami ^{*2}
CI-36	β	GFC	CI was separated by AgCI precipitation. After dissolution of AgCI, I was eliminated by SDB-XD Disk. Finally, CI was recovered by AgCI precipitation.	JAEA-Technology 2009-051
Fe-55	EC	Ge	Fe was recovered by coprecipitation of iron hydroxide and calcium oxalate.	H. Ichige et al., ^{*3}
Se-79	β	LSC	Cs was eliminated by AMP. Co, Ni, Ca, Sr and Ra were eliminated by carbonate precipitation. Al, Y, Th, U were eliminated by iron hydroxide precipitation, and Tc was eliminated TEVA resin. Se in the treated sample solution was precipitated by reduction. Precipitated Se was dissolved by HNO ₃ and the solution was neutralize with NaOH and finally mixed with scintillator	JAEA-Technology 2009-051

*1:S. Uchida et al., (1998) Hoken-butsuri, 1998, vol. 33, No. 1, p. 35-39 *2:K. Tagami (2003) Housha-Kagaku-news, 2003, No.8, p. 3-8 *3:H. Ichige et al., (2010) *RADIOISOTOPES*, 2010, 59, p.367-378

Example of Uncertainty (H-3)

Example of evaluation of uncertainty (H-3)

Cause of uncertainty	Relative standard uncertainty*1	Value (%)					
Uncertainty of sample analysis							
 Uncertainty of sample collection 	μ_{1}	0.618					
Uncertainty of equipment calibration							
 Uncertainty of standard source 	μ_{2}	2.550					
 Uncertainty of sampling of standard source 	μ_{3}	1.020					
 Uncertainty of counting for standard source 	μ_{4}	0.854					
 Uncertainty due to fitting using calibration formula 	μ 5	0.654					
 Uncertainty for decay correction 	μ $_{6}$	0.004					
Uncertainty of sample measurement							
 Fluctuation of background 	μ_7	2.438					
 Uncertainty of counting 	μ_{8}	0.432					
 Uncertainty for decay correction 	μ $_{9}$	0.007					

- •Combined standard uncertainty = $\sqrt{\mu_1^2 + \cdots + \mu_9^2} = 3.9$ (%)
- Relative expanded uncertainty^{*2}=

(Combined standard uncertainty) $\times 2 = 7.8$ (%) Value of uncertainty is different by each analysis. Also, if the concentration is very small, uncertainty becomes large

*1: [Relative standard uncertainty (%)] = [standard uncertainty] \div [analysis result] × 100

* 2: It shows about 95% confidence interval, based on "Guide to the expression of uncertainty in Measurement(1995)".

Comparison of analytical result(*E*n number)

Evaluated analytical results by using En number shown in B.3 of ISO/IEC17043: 2010(JIS Q 17043:2011), with consideration of uncertainty in analytical results

 \rightarrow If the absolute value of *E*n number exceed 1 (|En|>1), the cause of discrepancy will be investigated.

$$En = \frac{X_{TEPCO} - X_{JAEA}}{\sqrt{U_{TEPCO}^2 + U_{JAEA}^2}}$$

 X_{TEPCO} : Measured value (radionuclide concentration) by TEPCO X_{JAEA} : Measured value (radionuclide concentration) by JAEA NSRC U_{TEPCO} : Uncertainty of TEPCO's value U_{JAEA} : Uncertainty of JAEA NSRC's value

Analysis result(1/2)

> Nuclides which were <u>not</u> detected in the analysis of JAEA

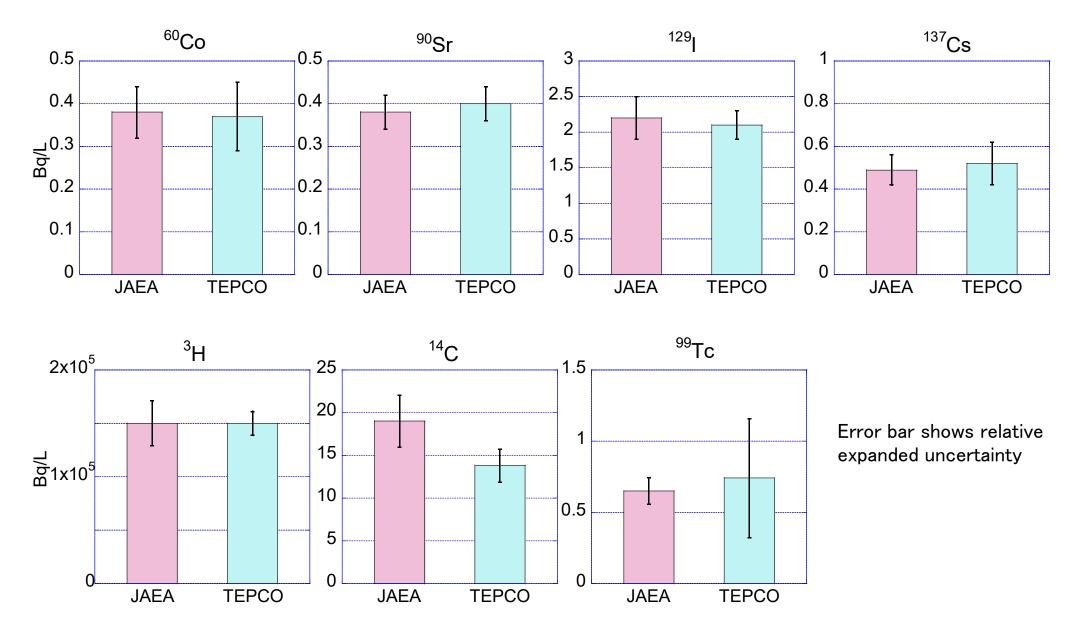
Nuclid	es	JAEA (Bq/L)	TEPCO* (Bq/L)	Concentration limit (Bq/L)	
To be	Ru-106	<0.66	<0.415	100	
Compared	Sb-125	<0.18	0.150 ± 0.0749	800	
	Cs-134	<0.066	<0.0573	60	
Confirmation	CI-36	<1.5	_	900	
of existence	Fe-55	<0.36		2,000	
	Se-79	<0.77		200	

Any detection limit is lower than 1/100 of regulatory concentration limit
Abundance of CI-36, Fe-55, Se-79 were lower than detection limit

^{* :} materials of hearings from the operators on 22nd February 2023 https://www2.nra.go.jp/data/000421817.pdf (only in Japanese)

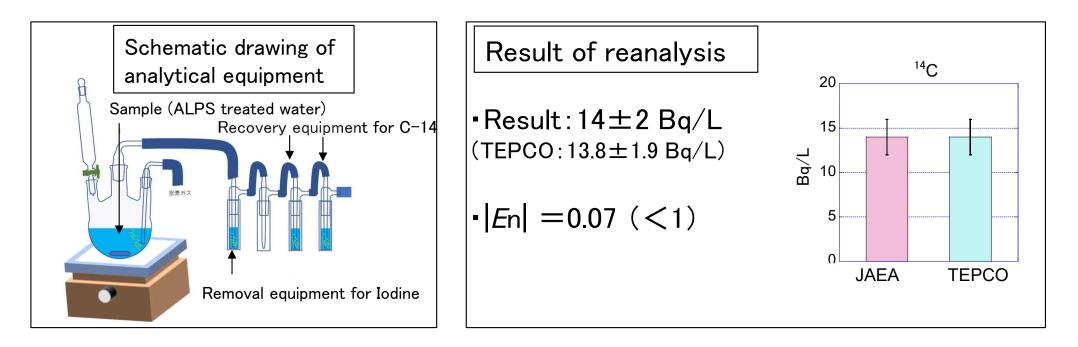
Analysis result(2/2)

Nuclides which were detected in the analysis of JAEA


Nucl	ides	JAEA (Bq/L)	TEPCO [*] (Bq/L)	Concentration limit (Bq/L)	<i>E</i> n
	Co-60	0.38 ± 0.06	0.373 ± 0.0745	200	0.11
	Sr-90	0.38 ± 0.04	0.399 ± 0.0383	30	0.39
- .	I-129	2.2 ± 0.3	2.13 ± 0.162	9	0.21
To be Compared	Cs-137	0.49 ± 0.07	0.517 ± 0.100	90	0.21
Compared	H-3	(1.5±0.2)E+05	(1.46±0.102)E+05	60,000	0.0072
	C-14	19 ± 3	13.8 ± 1.90	2,000	1.5
	Tc-99	0.65 ± 0.09	0.735 ± 0.412	1,000	0.2

• The values of $|E_n|$ were below 1, except for C-14.

* : materials of hearings from the operators on 22nd February 2023 https://www2.nra.go.jp/data/000421817.pdf (only in Japanese)


Analysis result(2/2)

Discussion: Analysis of C-14

- The discrepancy in the measured concentrations of C-14 between JAEA NSRC and TEPCO would be induced by volatile I-129 in ALPS treated water which exists at concentration of 2.2Bq/L.
- →Reanalysis was performed by adding removal equipment for iodine (silver nitrate solution).

