33．可燃性ガス濃度制御系の計算モデル
－VI－2－9－4－4－2－1 管の耐震性についての計算書（可燃性ガス濃度制御系）

設計基準対象施設
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 許容 } \\ \text { 応力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	裕度	$\begin{array}{\|l\|l\|} \hline \text { 代 } \\ \text { 表 } \end{array}$	$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	
1	FCS－001	18	73	211	2． 89	－	18	102	363	3.55	－	18	184	422	2． 29	－	－	－	－
2	FCS－002	801	44	211	4． 79	－	801	75	363	4.84	－	23	148	422	2.85	－	－	－	－
3	FCS－003	7	77	211	2． 74	－	7	123	363	2.95	－	7	252	422	1.67	－	－	－	－
4	FCS－004	28	34	211	6． 20	－	28	52	363	6． 98	－	67	101	300	2.97	－	－	－	－
5	FCS－005	61	46	150	3． 26	－	61	69	371	5． 38	－	61	110	300	2.73	－	－	－	－
6	FCS－006	11	52	75	1． 44	\bigcirc	11	104	163	1． 57	\bigcirc	11	200	150	0.75	\bigcirc	11	0.5717	\bigcirc

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力の許容値は $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。

可燃性ガス濃度制御系概略系統図（その 2）

34．可搬型窒素ガス供給系の計算モデル

－VI－2－9－4－4－4－1 管の耐震性についての計算書（可搬型窒素ガス供給系）

重大事故等対処設備
4． 2.4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

		世䊑	｜	｜	｜	｜
		数 紸紫圑迷	｜	｜	｜	I
		稨进舐	｜	｜	｜	｜
		世耻	｜	｜	｜	\bigcirc
		这	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { + } \end{aligned}$	$\begin{aligned} & \text { io } \\ & 6 \end{aligned}$	$\stackrel{\infty}{\bullet}$
			\％	¢	Nợ	꿍
			$\stackrel{9}{9}$	$\stackrel{\square}{\square}$	N	$\vec{\sim}$
		㴜进腙	烒	－	\exists	아
	令	世䊑	｜	｜	｜	\bigcirc
		笅	$\begin{aligned} & \underset{\sim}{\mathscr{O}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { Ơ } \\ & \text { İ } \end{aligned}$	－
			\％	\％	$\stackrel{\circ}{0}$	\％
			®	$\stackrel{\circ}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{4}$
			$\stackrel{\text { ® }}{\sim}$	N	$\stackrel{\sim}{\sim}$	안
			$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \vdots \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	3 0 i 3 4
	8		－	\sim	∞	＋

ドライウェル 原子炉建屋

(1)
鳥樶図 $A C-014-3 / 3$
枠井みの内容は商柴機密の権点かッら公開できません。

可搬型窒素ガス供給系の計算モデル

－VI－3－3－6－2－8－3－1－2 管の応力計算書（可搬型窒素ガス供給系）

重大事故等対処設備

代表モデルの選定結果及び全モデルの評価結果
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
10°
計算条件及び評価結果を の選定結果及び全モデルの評価結果（重大事故等クラス 2 管であ

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 (MPa)	許容 応力 （ MPa ）	裕度	代表
1	AC－011	134	22	154	7.00	－	134	22	185	8． 40	－
2	AC－012	71	11	154	14.00	－	71	11	185	16． 81	－
3	AC－013	44	12	154	12.83	－	44	12	185	15.41	－
4	AC－014	114	27	154	5． 70	\bigcirc	114	27	185	6． 85	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。
原子炉建屋 ドライウェル

ドライウェル入口配管より
ドライウェル補給用窒素配管より

注記＊ 1 ：原子炉格納容器フィルタベント系
解析モデル上本系統に含める。
＊2 ：解析モデル上
原子炉格納容器調気系に含める。
（1）
枠囲みの内容は商業機密の観点かっら公開てきません。
(1)

35．原子炉格納容器調気系の計算モデル

－VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系）

設計基準対象施設
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	代 表	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	代表
1	AC－001	13	69	201	2.91	\bigcirc	13	107	335	3.13	\bigcirc	34	242	402	1.66	\bigcirc	－	－	－
2	AC－002	15	66	201	3.04	－	221	115	363	3.15	－	33	230	402	1.74	－	－	－	－

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きいIV A S の一次 + 二次応力裕度最小を代表とする。

原子炉格納容器調気系概略系統図（その2）
(1)

> (1)
$A C-001-5 / 6$
棵井みの内内容は商業機密の観点かっら公開できません。

$$
\pm
$$

重大事故等対処設備
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評侕結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

		世䐆	｜	｜
			｜	｜
		呺星㕷	｜	｜
		世䚀	｜	\bigcirc
		校	$\begin{aligned} & \text { ® } \\ & \text { i } \end{aligned}$	$\stackrel{\sim}{\sim}$
			$\underset{7}{7}$	$\stackrel{\otimes}{\infty}$
		吘	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\sim}{\sim}$
			$\stackrel{\text { \％}}{\substack{1}}$	\％
	$\begin{aligned} & \text { 会 } \\ & \text { 号 } \end{aligned}$	世䐆	｜	\bigcirc
		这	$\begin{aligned} & !8 \\ & \stackrel{8}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\alpha} \\ & \dot{\alpha} \end{aligned}$
			\％	\％
			$\stackrel{\infty}{\sim}$	N
		陑遇堰	$\stackrel{\text { ¢ }}{\substack{7}}$	－
			$\begin{aligned} & \vec{\circ} \\ & \text { i} \end{aligned}$	N O S U
$\stackrel{\circ}{8}$			\checkmark	\sim

原子炉格納容器調気系の計算モデル

－VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）

設計基準対象施設
代表モデルの選定結果及び全モデルの評価結果
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
เค
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（I，II）＊1					供用状態（I，II）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	415	9	102	11.33	－	415	9	122	13.55	－
2	AC－002	28	16	100	6． 25	\bigcirc	28	16	120	7.50	\bigcirc

注記＊1：告示第501号第56条第1号（イ）に基づき計算した一次応力を示す。
＊2：告示第501号第56条第1号（口）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（I，II）＊3					供用状態（I，II）＊1				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 （ MPa ）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	561	42	250	5． 95	－	561	42	270	6． 42	－
2	AC－002	26	109	250	2． 29	\bigcirc	26	109	270	2． 47	\bigcirc

注記＊3：告示第501号第56条第2号（イ）に基づき計算した一次＋二次応力を示す。
＊4：告示第501号第56条第2号（ロ）に基づき計算した一次十二次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（A，B）＊1					供用状態（A，B）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	415	12	154	12．83	－	415	12	185	15.41	－
2	AC－002	28	18	150	8.33	\bigcirc	28	19	180	9． 47	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊ 1				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 （ MPa ）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	561	44	250	5.68	－	561	44	270	6． 13	－
2	AC－002	26	116	250	2.15	\bigcirc	26	116	270	2． 32	\bigcirc

注記＊3 ：設計•建設規格 PPC－3530（1）a に基づき計算した一次＋二次応力を示す。
＊ 4 ：設計•建設規格 PPC－3530（1）b に基づき計算した一次＋二次応力を示す。

原子炉格納容器調気系概略系統図（その2）
6／2－200－3H
枠囲みの内容は商業機密の䍩点から公開できませた。

重大事故等対処設備

代表モデルの選定結果及び全モデルの評価結果
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	$\begin{gathered} \text { 評価 } \\ \text { 点 } \end{gathered}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	167	22	100	4.54	－	167	22	120	5． 45	－
2	AC－002	15	38	100	2.63	\bigcirc	15	38	120	3.15	\bigcirc

注記＊1：告示第501号第56条第1号（イ）に基づき計算した一次応力を示す。
＊2：告示第501号第56条第1号（口）に基づき計算した一次応力を示す。

記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	供用状態（E）＊1					供用状態（E）${ }^{* 2}$				
		一次応力					一次応力				
		$\begin{gathered} \text { 評価 } \\ \text { 点 } \end{gathered}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	167	23	165	7． 17	－	167	23	198	8.60	－
2	AC－002	12	57	150	2.63	\bigcirc	12	57	180	3.15	\bigcirc

注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

36．原子炉格納容器フィルタベント系の計算モデル

－VI－2－9－4－6－1－1 管の耐震性についての計算書（原子炉格納容器フィルタベント系）

重大事故等対処設備
4． 2.4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	許容応力状態 VAS												
		一次応力					一次＋二次応力					疲労評価		
		評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労 累積 係数	代
1	FCVS－001	31	114	363	3.18	－	31	218	414	1． 89	－	－	－	－
2	FCVS－002	73	127	363	2.85	－	70	226	414	1． 83	－	－	－	－
3	FCVS－003	10	136	366	2.69	\bigcirc	1	302	240	0．79	\bigcirc	1	0． 3849	\bigcirc
4	FCVS－004	3	132	366	2． 77	－	3	274	240	0.87	－	3	0.3833	－
5	KFCVS－101	37	113	363	3.21	－	35	204	414	2.02	－	－	－	－
6	KFCVS－105	59	70	366	5.22	－	84	213	240	1． 12	－	－	－	－
7	KFCVS－106	6	76	413	5.43	－	60	234	318	1． 35	－	－	－	－
8	KFCVS－108	10	41	366	8.92	－	1	90	240	2.66	－	－	－	－
9	KFCVS－109	8	93	366	3.93	－	8	171	240	1． 40	－	－	－	－
10	KFCVS－111	11	91	366	4． 02	－	11	163	240	1． 47	－	－	－	－

$$
\begin{array}{|c|c|}
\hline \text { 鳥瞰図 } & \text { FCVS-003-1/3 } \\
\hline \text { 枠囲みの内容は商業機密の観点から公開できません。 } \\
\hline
\end{array}
$$

原子炉格納容器フィルタベント系の計算モデル
－VI－3－3－6－2－10－1－3－2 管の応力計算書（原子炉格納容器フィルタベント系）

重大事故等対処設備
5．代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥㒈図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （ MPa ）	裕度	代表	評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表
1	FCVS－001	10	21	154	7． 33	－	10	22	185	8． 40	－
2	FCVS－002	73	95	154	1． 62	\bigcirc	73	96	185	1． 92	\bigcirc
3	FCVS－003	22	43	160	3.72	－	22	44	192	4.36	－
4	FCVS－004	3	50	160	3.20	－	3	51	192	3． 76	－
5	KFCVS－101	37	18	154	8.55	－	37	19	185	9． 73	－
6	KFCVS－105	41	16	162	10． 12	－	41	17	194	11． 41	－
7	KFCVS－106	11	19	162	8.52	－	11	20	194	9． 70	－
8	KFCVS－108	1	16	160	10.00	－	1	17	192	11.29	－
9	KFCVS－109	1	18	160	8.88	－	1	19	192	10.10	－
10	KFCVS－111	55	13	160	12．30	－	55	14	192	13．71	－

[^0]＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

鷍樶図 KFCVS－105－2／3
枠囲みの内容は商業機密の败点から公開てきません。

37．非常用ディーゼル発電設備の計算モデル
－VI－2－10－1－2－1－6 非常用ディーゼル発電設備 管の耐震性についての計算書

設計基準対象施設
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 偠 点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	裕度	代表	評 価 点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	DGD0－A001	29	44	231	5． 25	－	29	76	366	4． 81	－	29	149	462	3.10	－	－	－	－
2	DGD0－A002	12	29	231	7.96	－	12	38	366	9． 63	－	12	45	462	10． 26	－	－	－	－
3	DGD0－A003	12	29	231	7． 96	－	12	38	366	9． 63	－	12	45	462	10． 26	－	－	－	－
4	DGD0－A004	12	19	231	12.15	－	12	23	366	15.91	－	36	33	398	12.06	－	－	－	－
5	DGD0－A005	65	30	199	6.63	－	65	46	324	7.04	－	190	386	462	1.19	－	－	－	－
6	DGD0－A006	6	6	199	33.16	－	6	6	324	54.00	－	6	2	398	199.00	－	－	－	－
7	DGD0－A007	1	5	199	39.80	－	1	5	324	64.80	－	1	2	398	199.00	－	－	－	－
8	DGD0－A008	83	49	199	4． 06	－	83	85	324	3.81	－	83	163	398	2.44	－	－	－	－

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。
代表モデルの選定結果及び全モデルの評価結果（クラス2以下の管）

No．	配管モデル	許容応力状態III ${ }_{\text {A }} \mathrm{S}$					許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 偠 点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	代 表	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	代表	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	代表
9	DGD0－A009	21	28	199	7． 10	－	21	37	324	8.75	－	7	160	398	2． 48	－	－	－	－
10	DGD0－A010	34	66	199	3.01	－	34	115	324	2.81	－	76	285	398	1． 39	－	－	－	－
11	DGD0－A011	13	24	199	8． 29	－	13	35	324	9.25	－	12	88	398	4． 52	－	－	－	－
12	DGD0－B001	9	23	231	10． 04	－	1	32	366	11.43	－	1	44	462	10.50	－	－	－	－
13	DGD0－B002	1	24	231	9． 62	－	1	33	366	11.09	－	1	47	462	9． 82	－	－	－	－
14	DGD0－B003	9	24	231	9． 62	－	31	33	366	11.09	－	31	58	462	7.96	－	－	－	－
15	DGD0－B004	40	17	199	11.70	－	40	21	324	15.42	－	40	37	398	10． 75	－	－	－	－
16	DGD0－B005	6	6	199	33． 16	－	6	6	324	54.00	－	6	2	398	199.0	－	－	－	－
17	DGD0－B006	1	5	199	39． 80	－	1	5	324	64.80	－	1	2	398	199.0	－	－	－	－

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力裕度最小を代表とする。
代表モデルの選定結果及び全モデルの評価結果（クラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	代表	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	代表	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \\ & \hline \end{aligned}$	代表
18	DGD0－B007	1	39	199	5.10	－	1	56	324	5． 78	－	9	138	398	2． 88	－	－	－	－
19	DGD0－B008	15	59	199	3.37	－	19	94	324	3． 44	－	77	439	398	0.90	\bigcirc	61	0.4004	\bigcirc
20	DGD0－B009	47	81	199	2.45	\bigcirc	47	125	324	2． 59	\bigcirc	47	217	398	1． 83	－	－	－	－
21	DGD0－B010	18	32	199	6.21	－	18	43	324	7． 53	－	18	79	398	5． 03	－	－	－	－

注記＊： $\mathrm{II}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力裕度最小を代表とする。

非常用ディーゼル発電設備摡略系統図（その3）

重大事故等対処設備
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労累積係数	代 表
1	DGD0－A001	29	76	366	4.81	－	29	149	462	3.10	－	－	－	－
2	DGD0－A002	46	66	366	5.54	－	46	129	462	3． 58	－	－	－	－
3	DGD0－A003	40	51	366	7． 17	－	40	90	462	5． 13	－	－	－	－
4	DGD0－A004	12	23	366	15.91	－	36	33	398	12.06	－	－	－	－
5	DGD0－A005	65	46	324	7.04	－	190	386	462	1． 19	－	－	－	－
6	DGD0－A006	6	6	324	54.00	－	6	2	398	199.00	－	－	－	－
7	DGD0－A007	1	5	324	64.80	－	1	2	398	199.00	－	－	－	－
8	DGDO－A008	83	85	324	3.81	－	83	163	398	2． 44	－	－	－	－

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

	歯省沙紫	出䊉	｜	｜	｜	｜	｜	｜	｜	｜	｜
			｜	｜	｜	｜	｜	｜	｜	I	｜
			｜	｜	｜	｜	｜	｜	｜	｜	｜
		出䉼	｜	｜	｜	｜	｜	｜	｜	｜	｜
		誌	$\begin{aligned} & \stackrel{\infty}{\stackrel{+}{i}} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\underset{\sim}{\circ}}{-}$	$\begin{aligned} & \text { N } \\ & \text { ¢ } \end{aligned}$	$\stackrel{+}{\infty}+$	$\stackrel{\infty}{\stackrel{\infty}{i}}$	$\begin{aligned} & \text { ®. } \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \dot{\circ} \end{aligned}$	\circ $\stackrel{\text { O }}{ }$ $\stackrel{\text { O }}{\sim}$	
			$\underset{\sim}{\infty}$	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\circ}$	N	N	N	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\sim}$
			$\stackrel{\square}{0}$	$\stackrel{\llcorner }{\sim}$	∞	8	8	측	－	\sim	\sim
			\sim	$\stackrel{\sim}{2}$	\sim	\cdots	\％）	$\stackrel{9}{7}$	아	\bullet	－
	原	世 标	｜	｜	｜	｜	｜	｜	｜	｜	｜
		遃	$\begin{aligned} & \stackrel{\text { 上 }}{\stackrel{1}{\infty}} \end{aligned}$	$\begin{aligned} & \vec{\infty} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{1}{N} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \approx \\ & 0 \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \mathfrak{O} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ̈ } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \text { +1 } \end{aligned}$	∞ +
			ホ	ざ	ત	\％	\％	$\stackrel{\otimes}{0}$	太	ત্ণ	ત
			¢	$\stackrel{\llcorner }{\square}$	$\stackrel{\square}{\circ}$	\％	$\stackrel{\rightharpoonup}{1}$	$\stackrel{1}{6}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	\bigcirc	\llcorner
			$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\text { ® }}{ }$	$\stackrel{\square}{\sim}$	$\stackrel{\circ}{8}$	®	$\stackrel{\text { ¢ }}{+}$	O	\bigcirc	\checkmark
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0.6 \end{aligned}$		$\begin{aligned} & \text { Bे } \\ & \text { O} \\ & 0 \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { O} \\ & \text { O} \\ & \text { Ò } \end{aligned}$		$\begin{aligned} & \text { O甘 } \\ & \text { oे } \\ & \text { oे } \\ & \text { ồ } \end{aligned}$	$\begin{aligned} & \text { Lo } \\ & \text { O} \\ & 0 \\ & 6 \\ & \hline 0 \end{aligned}$	\％ ¢ ¢ O O－
$\stackrel{\circ}{2}$			∞	\bigcirc	\exists	\sim	$\stackrel{\square}{\sim}$	\pm	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\bullet}$	\approx

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

		世 标	｜	\bigcirc	｜	｜
			｜	H O ¢	｜	I
			｜	$\bar{\square}$	｜	｜
		世 脂	｜	\bigcirc	｜	｜
		等	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{\circ} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { of } \\ & \text { if } \end{aligned}$
			$\underset{\sim}{\infty}$	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\circ}$
			$\stackrel{\infty}{\sim}$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\sim}{\mathrm{N}}$	®
			0	\therefore	־	$\stackrel{\infty}{\sim}$
	昼	世 展	｜	｜	\bigcirc	｜
		込	$\stackrel{\infty}{\stackrel{\infty}{\stackrel{0}{0}}}$	$\underset{\infty}{\underset{\sim}{*}}$	$\begin{aligned} & \text { os } \\ & \text { io } \end{aligned}$	$\stackrel{0}{\circ}$
			ત্ત゙	ત্ঠ	さ	㦘
			$\stackrel{\circ}{\circ}$	あ	$\stackrel{\text { ®® }}{\sim}$	$\stackrel{\text { \％}}{\sim}$
		烱进屿	\checkmark	\bigcirc	\％	$\stackrel{\infty}{\sim}$
			$\begin{aligned} & \text { ō } \\ & \text { oे } \\ & \text { oे } \\ & \text { 人े } \end{aligned}$			0 0 0 O ¢ ¢
$\dot{8}$			$\stackrel{\infty}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\text { 가 }}{ }$	$\vec{\sim}$

非常用ディーゼル発電設備摡咯系統図（その1）

非常用ディーゼル発電設備摡略系統図（その3）

38．高圧炉心スプレイ系ディーゼル発電設備の計算モデル
－VI－2－10－1－2－2－6 高圧炉心スプレイ系ディーゼル発電設備 管の耐震性についての計算書

設計基準対象施設
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件
及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 価 点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	代表	評 価 点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	DGD0－H001	22	66	231	3.50	－	22	111	366	3.29	－	22	218	462	2.11	－	－	－	－
2	DGD0－H002	6	6	199	33.16	－	6	6	324	54.00	－	6	2	398	199.00	－	－	－	－
3	DGD0－H003	1	5	199	39.80	－	1	5	324	64.80	－	1	2	398	199． 00	－	－	－	－
4	DGD0－H004	1	24	199	8． 29	－	1	34	324	9.52	－	1	54	398	7.37	－	－	－	－
5	DGD0－H005	20	30	199	6.63	－	20	39	324	8.30	－	7	224	398	1． 77	－	－	－	－
6	DGD0－H006	34	64	199	3． 10	\bigcirc	34	113	324	2.86	\bigcirc	77	380	398	1.04	\bigcirc	－	－	－
7	DGD0－H007	15	32	199	6． 21	－	15	46	324	7.04	－	15	128	398	3.10	－	－	－	－

注記 $*: ~ \mathrm{II}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。

高圧炉心スプレイ系ディーゼル発電設備概峈系統図（その1）

重大事故等対処設備
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評 偠 点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	DGD0－H001	22	111	366	3.29	－	22	218	462	2． 11	－	－	－	－
2	DGD0－H002	6	6	324	54.00	－	6	2	398	199.00	－	－	－	－
3	DGD0－H003	1	5	324	64.80	－	1	2	398	199.00	－	－	－	－
4	DGD0－H004	1	34	324	9.52	－	1	54	398	7． 37	－	－	－	－
5	DGD0－H005	20	39	324	8.30	－	7	224	398	1． 77	－	－	－	－
6	DGD0－H006	34	113	324	2.86	\bigcirc	77	380	398	1.04	\bigcirc	－	－	－
7	DGD0－H007	15	46	324	7.04	－	15	128	398	3． 10	－	－	－	－

高圧炉心スプレイ系ディーゼル発雪設備概略系統図（その1）

39．ガスタービン発電設備の計算モデル

－VI－2－10－1－2－3－5 ガスタービン発電設備 管の耐震性についての計算書

重大事故等対処設備
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算応力 （ MPa ）	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算応力 （MPa）	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	GTG－001	159	124	368	2.96	\bigcirc	159	241	478	1.98	\bigcirc	－	－	－
2	GTG－002	37	118	368	3.11	－	37	226	478	2.11	－	－	－	－
3	GTG－003	19	46	368	8.00	－	19	79	478	6.05	－	－	－	－
4	GTG－004	24	35	368	10.51	－	24	52	478	9.19	－	－	－	－
5	GTG－005	29	70	368	5.25	－	21	126	478	3.79	－	－	－	－
6	GTG－010	12	14	368	26.28	－	12	12	478	39．83	－	－	－	－
7	GTG－011	12	14	368	26.28	－	12	12	478	39．83	－	－	－	－
8	GTG－012	28	60	368	6.13	－	27	147	478	3.25	－	－	－	－

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ (\mathrm{MPa}) \end{gathered}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
9	GTG－012－01	7	56	368	6.57	－	7	82	478	5.82	－	－	－	－
10	GTG－012－02	1	19	368	19.36	－	1	24	478	19． 91	－	－	－	－
11	GTG－014	8	41	368	8.97	－	8	77	478	6.20	－	－	－	－
12	GTG－014－01	7	56	368	6.57	－	7	82	478	5.82	－	－	－	－
13	GTG－014－02	1	14	368	26.28	－	1	16	478	29． 87	－	－	－	－

40．緊急時対策所ディーゼル発電設備の計算モデル
－VI－2－10－1－2－4－2 緊急時対策所ディーゼル発電設備 管の耐震性についての計算書

重大事故等対処設備
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評 価 点	計算応力 （MPa）	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{gathered} \text { 計算応力 } \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ (\mathrm{MPa}) \end{gathered}$	裕度	代表	評 価 点	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	TSCD02	79	84	368	4． 38	\bigcirc	43	154	478	3.10	－	－	－	－
2	TSCD02Y	2	95	453	4． 76	－	2	140	396	2． 82	\bigcirc	－	－	－

41．取水ピット水位計の計算モデル

－VI－2－10－2－13－2 取水ピット水位計の耐震性についての計算書

設計基準対象施設
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
クラス2以下の管

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	許容 応力 （MPa）	裕度	代表	評 価 点	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	代表
1	RSWIA－1	18	127	188	1.48	\bigcirc	20	241	376	1.56	－＊1	－	－	－
2	RSWIA－2	9	124	188	1.51	－	20	241	376	1.56	○＊1	－	－	－

注記＊1：RSWIA－1とRSWIA－2は裕度が同じであるが，端数処理前の数値を比較し，RSWIA－2を代表としている。

42．地下水位低下設備の計算モデル

－VI－2－13－7 地下水位低下設備配管の耐震性についての計算書

設計基準対象施設
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類毎に裕度最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{IV}_{4} \mathrm{~S}$												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算 応力 （MPa）	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	代	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労 累積 係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	DE－001A	624	77	333	4． 32	－	510	227	430	1． 89	\bigcirc	－	－	－
2	DE－001B	512	56	333	5． 94	－	509	176	430	2.44	－	－	－	－
3	DE－002A	627	77	333	4． 32	\bigcirc	508	149	430	2.88	－	－	－	－
4	DE－002B	512	56	333	5.94	－	507	171	430	2.51	－	－	－	－
5	DE－003A	624	77	333	4． 32	－	510	227	430	1． 89	－	－	－	－
6	DE－003B	512	56	333	5.94	－	509	176	430	2.44	－	－	－	－
7	DE－004A	627	77	333	4． 32	－	508	149	430	2.88	－	－	－	－
8	DE－004B	512	56	333	5.94	－	507	171	430	2.51	－	－	－	－

枠囲みの内容は商業機密の観点から公開できません。
\square
\square

\square
\square
\square
枠囲みの内容は商業機密の観点から公開できません。

\square
\square
\square
\square

\square

\square
\square
枠囲みの内容は商業機密の観点から公開できません。
\square

[^0]: 注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。

