本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-20-0113_改 0
提出年月日	2021年4月23日

VI-3-3-6-2-8-3-1-2 管の応力計算書(可搬型窒素ガス供給系)

2021年4月

東北電力株式会社

まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI-3-2-9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

: 評価 クラス			SA-2	SA-2	SA-2	SA-2	SA-2
同等性 評価 区分							
	評価区分		設計・建設規格	設計・建設規格	設計・建設規格	設計・建設規格	設計・建設規格
	施設時の適田超数	JB 713 A死11年					
既工認	における調価発用	の有無					
	SA条件	温度 (°C)	99	99	99	99	200
-543	SA€	压力 (MPa)	854 (kPa)	854 (kPa)	854 (kPa)	854 (kPa)	854 (kPa)
条件アップするか	DB条件	温度 (°C)					
条件ア	DBÁ	压力 (MPa)					
	***	アップ の有無					
+ (ر	SA	クラス	SA-2	SA-2	SA-2	SA-2	SA-2
79421	DB	クラス クラン					
クラスアップするか	施設時	機器クラス					
	イン スランス 大						
施設時の 技術基準に 対象とする 施設の規定 があるか							
北雪江	NEX Or	新設	新設	新設	新設	新設	新設
	応力計算エディング	L / / V IVO.	AC-011 新設	AC-012 新設	AC-013 新設	AC-014	AC_014

重大事故等対処設備

目次

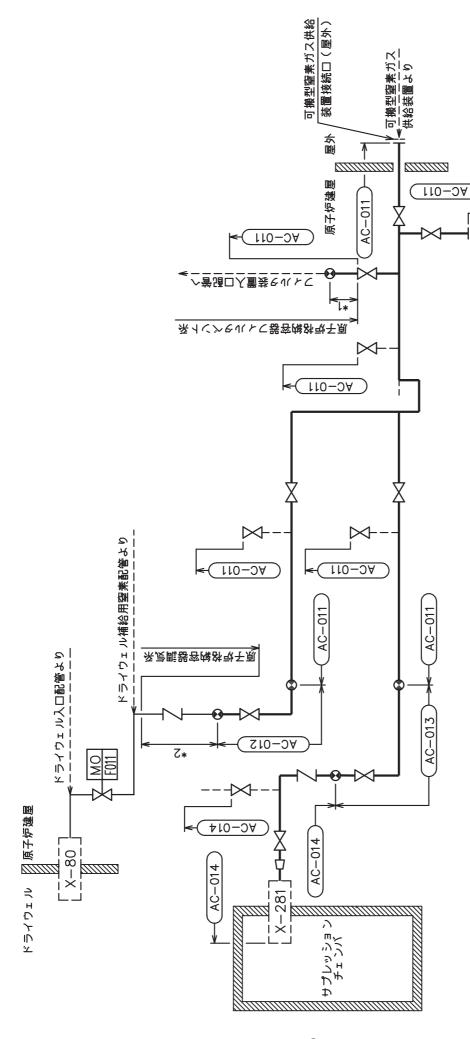
1.	概要	1
2.	概略系統図及び鳥瞰図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2	2.1 概略系統図	2
2	2.2 鳥瞰図 ·····	4
3.	計算条件	8
3	3.1 設計条件	8
3	3.2 材料及び許容応力	16
4.	評価結果 ·····	17
5.	代表モデルの選定結果及び全モデルの評価結果	18

1. 概要

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「VI-3-2-9 重大事故等クラス2管の強度計算方法」に基づき、管の応力計算を実施した結果を示したものである。

評価結果の記載方法は、以下に示すとおりである。

(1) 管


工事計画記載範囲の管のうち、各応力区分における最大応力評価点の評価結果を解析モデル単位に記載する。また、全4モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5.に記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
000-000	鳥瞰図番号
•	アンカ

*1:原子炉格納容器フィルタベント系解析モデル上本系統に含める。 出計

可搬型窒素ガス供給 装置接続□(屋内)

*2:解析モデル上 原子炉格納容器調気系に含める。

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
	工事計画記載範囲の管のうち、本計算書記載範囲の管
申請範囲外	工事計画記載範囲外の管
•	質点
•	アンカ
	レストレイント (矢印は斜め拘束の場合の全体座標系における拘束方向成分を 示す。スナッバについても同様とする。)
H.	スナッバ

		鳥瞰図 AC-014-1/3 kmmみの内容は商業機率の細占から公開できません.

		鳥瞰図 AC-014-2/3
		高勝 図

			鳥瞰図 AC-014-3/3

3. 計算条件

3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し、管名称と対応する評価点番号を示す。

鳥 瞰 図 AC-014

管名称	最高使用圧力 (MPa)	最高使用温度 (℃)	外径 (mm)	厚さ (mm)	材料
1	854kPa (0.854MPa)	66	60.5	5. 5	STS410
2	854kPa (0.854MPa)	200	60.5	5. 5	STS410
3	854kPa (0.854MPa)	200	34. 0	4.5	STS410
4	854kPa (0.854MPa)	200	34. 0	3. 4	SUS316LTP

設計条件

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

鳥 瞰 図 AC-014

管名称					対	応	す	-	る	評	価	点				
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	
	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	
	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	
	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	
	143															
2	107	108	109	110	111	112	114	115	116	117	118	119	120	121	122	
	123	124	125	142												
3	125	126	127	128	129											
4	129	130	131	132												

配管の質量(付加質量含む)

鳥 瞰 図 AC-014

評価点の質量を下表に示す。

評価点	質量(kg)								
1		27		53		79		108	
2	1	28		54		80		109	1 I
3	1	29		55		81		110	1 I
4	1	30		56		82		111	1 I
5	1	31		57		83		115	1 I
6	1	32		58		84		116	1 I
7	1	33		59		85		117	l I
8	1	34		60		86		118	l I
9	1	35		61		87		119	l 1
10		36		62		88		120	
11		37		63		89		121	
12		38		64		90		122	
13]	39		65		91		123	
14		40		66		92		124	l 1
15]	41		67		93		125	l 1
16		42		68		94		126	l 1
17		43		69		95		127	l 1
18		44		70		96		128	l 1
19		45		71		97		129	l 1
20		46		72		98		130	l 1
21		47		73		99		131	
22		48		74		100		132	I
23		49		75		101		142	
24		50		76		102		143	
25		51		77		103			
26		52		78		104			

鳥 瞰 図 AC-014

弁部の質量を下表に示す。

弁1 弁2

評価点	質量(kg)	評価点	質量(kg)
105		112	
106		113	
107		114	
		135	
		136	

鳥 瞰 図 AC-014

弁部の寸法を下表に示す。

弁NO.	評価点	外径(mm)	厚さ(mm)	長さ(mm)
弁1	106			
弁2	113			

支持点及び貫通部ばね定数

鳥 瞰 図 AC-014

支持点部のばね定数を下表に示す。

支持点番号	台里	油方向ばね定数(N/	mm)	谷 押回り 四	囙転ばね定数(N・	mm/rad)
	X	Y	Z	X	Y	Z
1						
8						
** 8 **						
10						
** 10 **						
12						
** 12 **						
17						
** 17 **						
24						
** 24 **						
31						
** 31 **						
33						
** 33 **						
0.5						
35						
** 35 **						
44						
44						
46						
48						
50						
53						
62						
** 62 **						
6.4						
64						
** 64 **						
66						
66 ** 66 **						
ጥጥ UU ጥጥ						

支持点及び貫通部ばね定数

鳥 瞰 図 AC-014

支持点部のばね定数を下表に示す。

支持点番号	各車	 軸方向ばね定数(N	/mm)	各軸回り回	回転ばね定数(N・	mm/rad)
	X	Y	Z	X	Y	Z
** 69 **						
76						
** 76 **						
78						
** 78 **						
80						
** 80 **						
82						
** 82 **						
** 89 **						
92						
** 92 **						
94						
** 94 **						
** 96 **						
111						
115						
120						
** 120 **						
122						
** 122 **						
** 133 * *						
ŀ						
ł						
ł						
İ						

支持点及び貫通部ばね定数

鳥 瞰 図 AC-014

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数(N/mm)			各軸回り回転ばね定数(N・mm/rad)			
	X	Y	Z	X	Y	Z	
136							
142							
143							

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計・建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度	許容応力 (MPa) Sh
STS410	66	103
STS410	200	103
SUS316LTP	200	107

4. 評価結果

下表に示すとおり最大応力はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管設計・建設規格 PPC-3500による評価結果

				一次応力評価 (MPa)
鳥瞰図	最大応力 評 価 点	最大応力 区分*	計算応力	許容応力
			S p r m(1)	1. 5 · S h
			Sprm(2)	1.8 · Sh
7 - 0 - 0	114	Sprm(1)	27	154
AC - 0 1 4	114	Sprm(2)	27	185

*:Sprm(1), Sprm(2)はそれぞれ,設計・建設規格 PPC-3520(1), (2)に基づき計算した 一次応力を示す。 注記

5. 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類ごとに裕度が最小のモデルを選定して鳥瞰図、計算条件及び評価結果を 記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

		代表					0
供用状態 (E) *2 一次応力		裕度		8. 40	16.81	15.41	6.85
一次応力	許容	京力	(MPa)	185	185	185	185
'	計算	京力	(MPa)	22	11	12	27
	≭/ 坕듷	<u>†</u> 4	Ę	134	71	44	114
		代表					0
供用状態(E) *1 一次応力	游 更			7.00	14.00	12, 83	5.70
	許容	京力	(MPa)	154	154	154	154
	計算	成力	(MPa)	22	11	12	27
	≭/ 坕듷		Ę	134	7.1	44	114
配管モデル			AC-011	AC-012	AC-013	AC-014	
No.			1	2	3	4	
	一次応力 一次応力 一次応力	一次応力 配管モデル 計算 許容 計算 計算	配管モデル 計算	配管モデル 計算 所容 点 (MPa) (MPa) </td <td>配管モデル 計算 許容 代表 代表 所面 計算 所容 点 (MPa) (MPa)</td> <td>配管モデル 計算 許容 代表 代表 計算 /td> <td>配管モデル 計算 許容 代表 代表 計算 /td>	配管モデル 計算 許容 代表 代表 所面 計算 所容 点 (MPa) (MPa)	配管モデル 計算 許容 代表 代表 計算	配管モデル 計算 許容 代表 代表 計算

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。

*2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。