本資料のうち,枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-04-0088_改 0
提出年月日	2021年4月23日

VI-3-3-3-4-6-1-2 管の応力計算書 (代替水源移送系)

2021年4月

東北電力株式会社

まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「VI-3-2-9 重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

O 2 (5) VI-3-3-3-4-6-1-2 R 0

・評価条件整理表

		i				
	評価 クラス		SA-2	SA-2	SA-2	SA-2
同丝州	が生ました。	区分				
	評価区分		設計・建設規格	設計・建設規格	設計・建設規格 又は告示	設計・建設規格 又は告示
	施設時の 適田相核				S55告示	S55告示
既工認	における 誕価結単	の有無				
	件	温度 (°C)	66	66	66	66
トるか	SA条件	圧力 (MPa)	静水頭	1.37	静水頭	静水頭
w Jog	汽件	温度 (°C)			66	66
条件アップするか	DB条件	圧力 (MPa)			静水頭	静水頭
	条件	アッフ の有無			箑	漅
۲Ŷ	SA	クラス	SA-2	SA-2	SA-2	SA-2
1745	DB	クラス クラ			DB-3	DB-3
クラスアップするか	施設時	機器 クラス			DB-3	DB-3
6	クラス	アッフ の有無		_	丿	丿
施設時の は総世権 は	文言金十で対象でする	施設の規定 があるか			有	有
山三山		新設	新設	新設	既設	既設
	応力計算 モデルNo			KMUWC-103 新設		KMUWC-163 既設

重大事故等対処設備

1. 概要	1
2. 概略系統図及び鳥瞰図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.1 概略系統図	2
2.2 鳥瞰図	4
3. 計算条件	6
3.1 設計条件	6
3.2 材料及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
4. 評価結果	11
5. 代表モデルの選定結果及び全モデルの評価結果 ・・・・・・・・・・・・・・・・・・・	13

1. 概要

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「VI-3-2-9 重大事故等クラス2管の強度計算方法」に基づき、 管の応力計算を実施した結果を示したものである。

評価結果の記載方法は、以下に示すとおりである。

(1) 管

工事計画記載範囲の管のうち,各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また,全2モデルのうち,各応力区分における最大応力評価点の許容値 /発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図,計算条件 及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結 果を5.に記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
000-000	鳥瞰図番号
$\mathbf{\Theta}$	アンカ

O2 ⑤ VI-3-3-3-4-6-1-2(重) R0

代替水源移送系概略系統図

2.2 鳥瞰図

記号	内容
	工事計画記載範囲の管のうち、本計算書記載範囲の管
•	質点
	アンカ
A C	レストレイント (矢印は斜め拘束の場合の全体座標系における拘束方向成分を 示す。)

鳥瞰図記号凡例

枠囲みの内容は商業機密の観点から公開できません。

鳥瞰図 KMUWC-163

- 3. 計算条件
- 3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し、管名称と対応する評価点番号を示す。

鳥 瞰 図 KMUWC-163

管名称	最高使用圧力 (MPa)	最高使用温度 (℃)	外径 (mm)	厚さ (mm)	材料
1	静水頭	66	165.2	7.1	SUS304TP

設計条件

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

鳥 瞰 図 KMUWC-163

管名称					対	応	す	る		評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	

配管の質量(付加質量含む)

評価点の質量を下表に示す。

評価点	質量(kg)								
1		4		7		10		13	
2	1	5		8		11	1	14	
3		6		9		12			

支持点及び貫通部ばね定数

鳥 瞰 図 KMUWC-163

支持点部のばね定数を下表に示す。

		mm)		回転ばね定数(N・mm	-,,
Х	Y	Z	Х	Y	Z
	X	XY	X Y Z	X Y Z X	X Y Z X Y

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 (℃)	許容応力 (MPa) Sh
SUS304TP	66	126

告示第501号に規定の応力計算に用いる許容応力

材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 (℃)	許容応力 (MPa) Sh
SUS304TP	66	126

設計・建設規格に規定の応力計算に用いる許容応力

4. 評価結果

下表に示すとおり最大応力はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管告示第501号第56条による評価結果

			次応. (MF	一次応力評価 (MPa)
鳥瞰図	最大応力 評価点	最大応力 区分*	計算応力	許容応力
			S p r m(1)	S h
			Sprm(2)	1.2 • S h
KMUWC –	14	Sprm(1)	22	126
163	14	Sprm(2)	22	151

* : S b r m(1), S p r m(2)はそれぞれ, 告示第501号第56条第1号(イ), (ロ)に基づき計算した 一次応力を示す。 注記

評価結果

下表に示すとおり最大応力はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管設計・建設規格 Bbc-3200による評価結果

			— 次応 (MF	ー次応力評価 (MPa)
鳥瞰図	最大応力 評 価 点	最大応力 区分*	計算応力	許容応力
			$\operatorname{Sprm}(1)$	1. 5 • S h
			5 p r m(2)	I. 8•5 h
KMUWC –	14	Sprm(1)	23	189
163	14	Sprm(2)	23	226

 *: Sprm(1), Sprm(2)はそれぞれ,設計・建設規格 PPC-3520(1), (2)に基づき計算した 一次応力を示す。 注記

5. 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類ごとに裕度が最小のモデルを選定して鳥瞰図、計算条件及び評価結果を 記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

		代表			\bigcirc
r) *2 J		裕度	15.10	6.86	
運転状態(V) 一次応力	彖堤	応力	(MPa)	151	151
	計算	応力	(MPa)	10	22
	.Ⅲ/ 业 ≦	۲ ۲	Ę	112	14
		0			
[裕度	12.60	5.72	
運転状態(V); 一次応力	参捐	応力	(MPa)	126	126
	計算	応力	(MPa)	10	22
	112	14			
	KMUWC-103	KMUWC-163			
	1	2			
	一次応力 一次応力	一次応力 一次応力 計算 許容 計算	一次応力 一次応力 一次応力 配管モデル 評価 計算 許容 計算 許容 正 応力 応力 裕度 代表 一	配管モデル 計算 許容 一次応力 配管モデル 評価 計算 許容 計算 許容 1 売 応力 応力 裕度 代表 一点 応力 裕度 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	配管モデル 計算 許容 二次応力 二次応力 配管モデル 評価 計算 許容 許算 許容 1

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

注記*1:告示第501号第56条第1号(イ)に基づき計算した一次応力を示す。

*2:告示第501号第56条第1号(ロ)に基づき計算した一次応力を示す。

		代表				0
供用状態(E)* ²		裕度			20.54	226 9.82
	一次応力	許容	応力	(MPa)	226	226
	Ι	計算	応力	(MPa)	11	23
		計 油			110	14
			0			
供用状態 (E) *1 一か 広力	[裕度			17.18	189 8.21
	一次応力	許容	応力	(MPa)	189	189
供用	I	計算	応力	(MPa)	11	23
				Ę	110	14
配管モデル					KMUWC-103	KMUWC-163
No.					1	2

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。

*2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。