女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-04-0065_改 0
提出年月日	2021年4月23日

VI-3-3-3-2-1-3-1 管の基本板厚計算書(主蒸気系)

2021年4月

東北電力株式会社

1. 管の基本板厚計算書

まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「VI-3-2-9 重大事故等クラス2管の強度計算方法」に基づいて計算 を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

\circ
Ц
3 - 1
-1-3-
3-2.
-3 - 3 - 2 - 1
VI-3-5
\odot
2
0

·評価条件整理表

	評価	クラス	SA-2	SA-2								
1	回等性	区分										
	評価区分		設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格又 は告示	設計・建設規格又 は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格
	施設時の	適用規格	S55告示									
既工認に	413	評価結果 の有無										
	5件	温度 (°C)	315	315	315	262	262	171	171	262	262	171
5 232	SA条件	圧力 (MPa)	10.34	10.34	10. 34	4.71	4.71	1.77	1.77	4.71	4.71	1.77
条件アップするか	件	温度 (°C)	302	302	302	249	249	171	171	249	249	
条件	BB条件	圧力 (MPa)	8.62	8.62	8.62	3. 80	3. 80	1.77	1.77	3. 80	3.80	
	条件	ブップ の有無	有	有	有	俥	有	巣	兼	俥	有	
	č	AC クラス	SA-2	SA-2								
ップするか	Ē	UD クラス	DB-1	DB-1	DB-1	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	
クラスアッ	施設時	機器 クラス	DB-1	DB-1	DB-1	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	
	クラス	アップ の有無	兼	兼	兼	有	有	有	有	有	有	
施設時の	技術基準に 対象マーム	施設の規定があるか	有	有	庘	有	庘	有	有	有	有	
L T	咒 Sr	新設	既設	新設								
	衛No		1	2	ŝ	4	5	9	2	C1	SP1	E1

\circ
Ц
1 - 3 - 1
-2-
3-3
3_0
VI-3-3-3-2-]
0
02

·評価条件整理表

	評価	クラス	SA-2									
			設計・建設規格又 は告示									
	施設時の	適用規格	S55告示									
既工認に	\$173	評価結果 の有無										
	件	温度 (°C)	171	171	171	171	171	171	171	171	171	171
5 23 2	SA条件	圧力 (MPa)	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77
条件アップするか	件	温度 (°C)	171	171	171	171	171	171	171	171	171	171
条件	DB条件	圧力 (MPa)	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77
	条件	アップ の有無	兼	兼	兼	巣	兼	巣	兼	兼	兼	兼
	Č	AA クラス	SA-2									
ップするか	Ē	UD クラス	DB-3									
クラスアッ	施設時	機器 クラス	DB-3									
	クラス	アップ の有無	有	有	有	有	有	有	有	有	有	有
施設時の	技術基準に対象シャル	施設の規定があるか	有	有	有	有	有	有	有	有	有	有
L TE LOOT	黙 Or	新設	既設									
	衛No		E2	E3	E4	E5	E6	E7	E8	E9	E10	E11

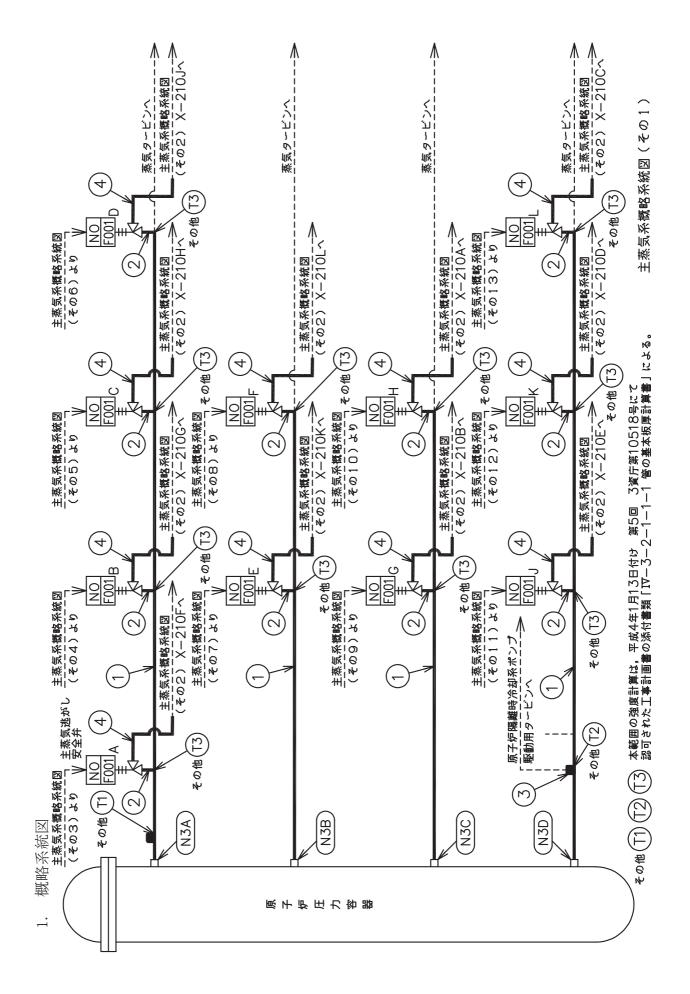
O 2 ③ VI-3-3-3-2-1-3-1 R 0

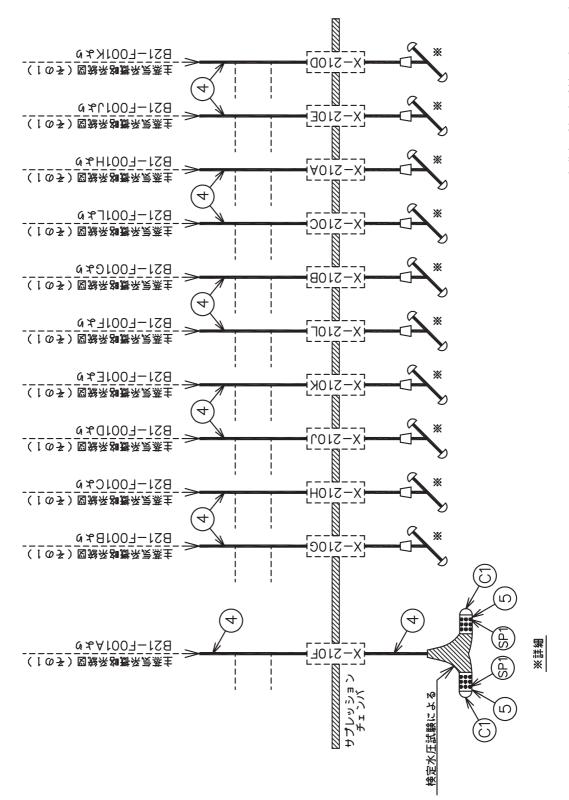
·評価条件整理表

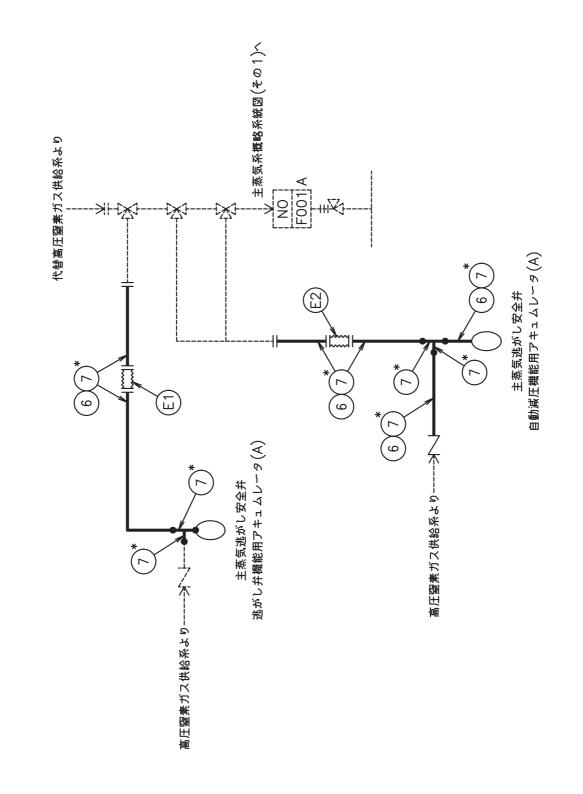
_												1
	評価	クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	
	回等性 評価											
	挈俑区分		設計・建設規格又 は告示	報告報報格	報告報告報	設計・建設規格又 は告示	報告報告報	設計・建設規格又 は告示	躍工蹈	躍工 珀	躍工 भ	
	施設時の	適用規格	S55告示	l	l	S55告示	l	S55告示	S55告示	S55告示	S55告示	
既工認に	413	評価結果 の有無							有*	有*	有 *	いてけ
	ミ件	温度 (°C)	171	171	171	171	171	171	315	315	315	対価結果にしてたけ
< \$2 \$2	SA条件	圧力 (MPa)	1.77	1.77	1.77	1.77	1.77	1.77	10. 34	10. 34	10. 34	評価約
条件アップするか	件	温度 (°C)	171			171		171	302	302	302	とから、
条件	BB条件	圧力 (MPa)	1.77			1.77		1.77	8.62	8.62	8.62	ナゲレンプ
	条件	イッしん しまん 第	兼			巣		巣	有 *	*	有*	かし評価条件に変更けたいことから
	č	AC クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	亚価条件
プするか	E	の の う う ス	DB-3			DB-3		DB-3	DB-1	DB-1	DB-1	
クラスアップするか	施設時	機器 クラス	DB-3			DB-3		DB-3	DB-1	DB-1	DB-1	イなり
	クラス	イップ の生ま	庘			柜		俥	兼	巣	兼	や 実 粘 1
施設時の	技術基準に 対象マ中の	施設の規定があるか	申		l	庘	l	有	有	有	有	既工認においた評価を事権したおの
	思。		既設	新設	新設	既設	新設	既設	既設	既設	既設	モー製
	역No		E12	E13	E14	E15	E16	E17	その他 T1	その色 T2	その色 T3	記 ・ 米

平成4年1月13日付け 第5回 3資庁第10518号にて認可された工事計画書の添付書類「IV-3-2-1-1-1 管の基本板厚計算書」による。

・適用規格の選定

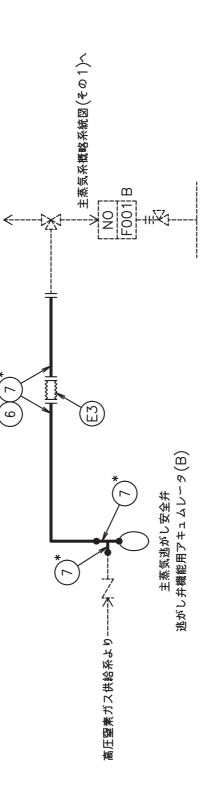

管No.	評価項目	評価区分	判定基準	適用規格
1	管の板厚計算	設計・建設規格 又は告示	同等	設計・建設規格
2	管の板厚計算	設計・建設規格 又は告示	許容値	告示第501号
3	管の板厚計算	設計・建設規格 又は告示	許容値	告示第501号
4	管の板厚計算	設計・建設規格 又は告示	同等	設計・建設規格
5	管の板厚計算	設計・建設規格 又は告示	許容値	告示第501号
6	管の板厚計算	設計・建設規格 又は告示	同等	設計・建設規格
7	管の板厚計算	設計・建設規格 又は告示	同等	設計・建設規格
C1	鏡板の強度計算	設計・建設規格 又は告示	許容値	告示第501号
SP1	管の穴と補強計算	設計・建設規格 又は告示	許容値	告示第501号

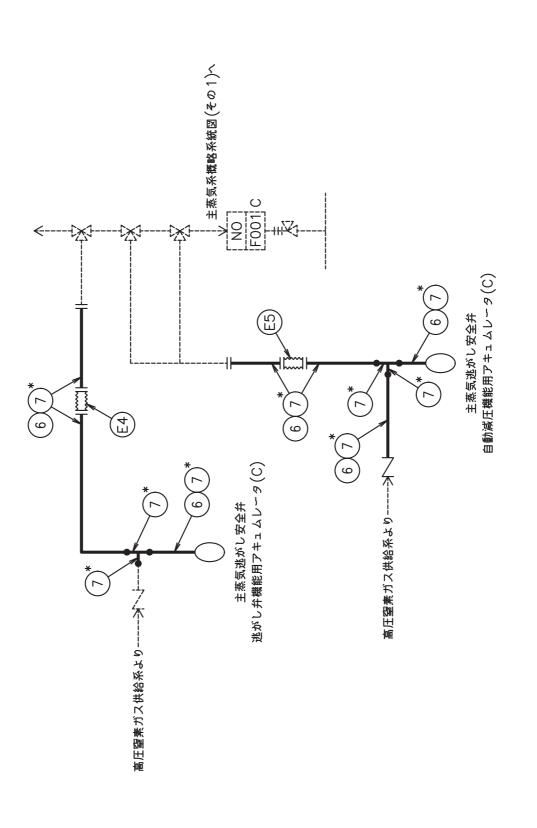

・適用規格の選定


管No.	評価項目	評価区分	判定基準	適用規格
E1	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格
E2	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E3	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E4	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E5	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E6	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E7	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E8	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E9	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E10	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E11	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E12	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E13	伸縮継手の強度計算	設計・建設規格	—	設計・建設規格
E14	伸縮継手の強度計算	設計・建設規格		設計・建設規格
E15	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
E16	伸縮継手の強度計算	設計・建設規格		設計・建設規格
E17	伸縮継手の強度計算	設計・建設規格 又は告示	同等	設計・建設規格

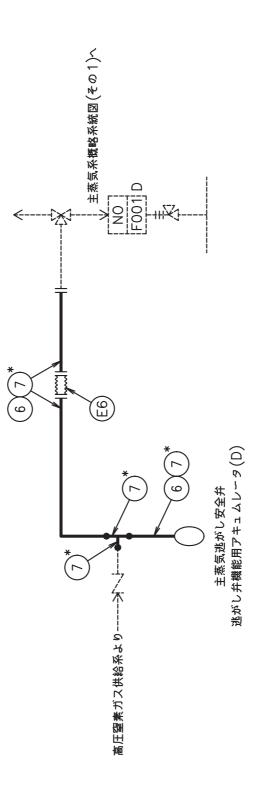
1.	概略系統図	1
2.	管の強度計算書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
3.	鏡板の強度計算書・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
4.	管の穴と補強計算書・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
5.	伸縮継手の強度計算書・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22

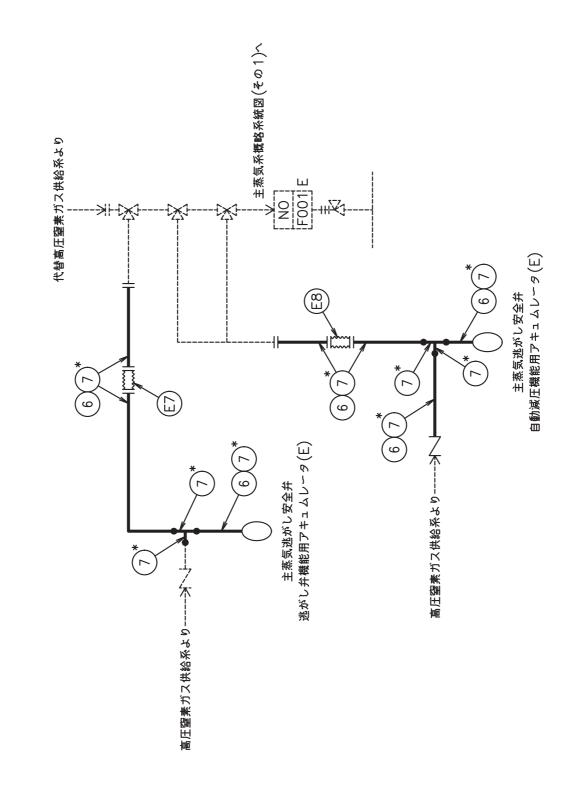
目次



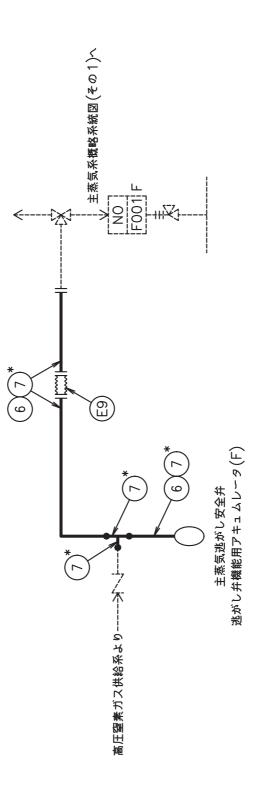


注記*:管継手 主蒸気系概略系統図(その3)

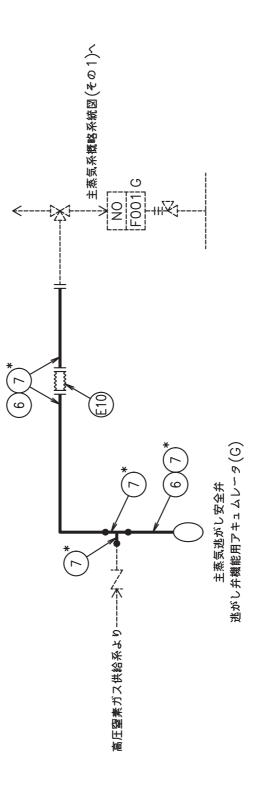

注記*:管継手 主蒸気系概略系統図(その4)



注記***:管継手** 主蒸気系概略系統図(その5) O 2 ③ VI-3-3-3-2-1-3-1 R 0

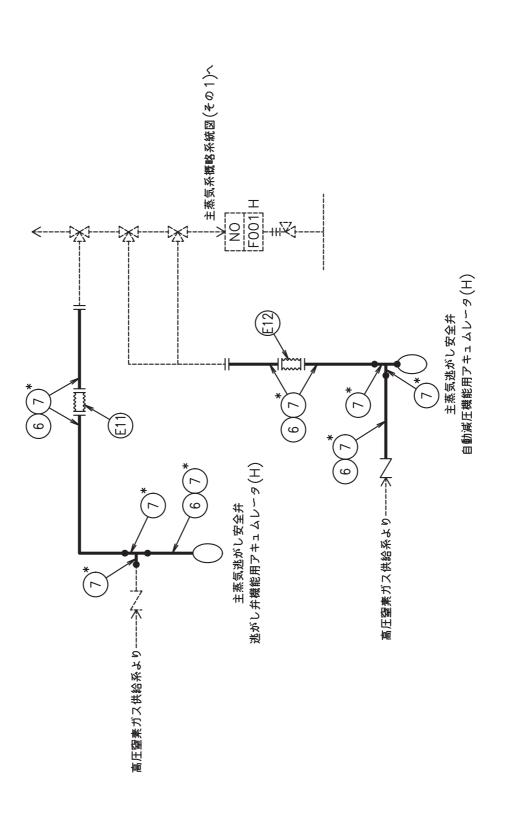


注記***:管継手** 主蒸気系概略系統図(その6)

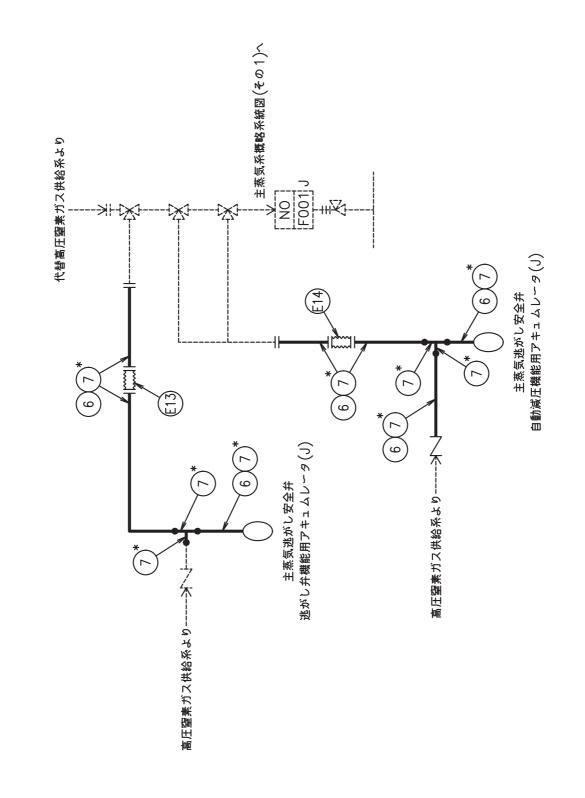


注記*:管継手 主蒸気糸概略系統図(その7)

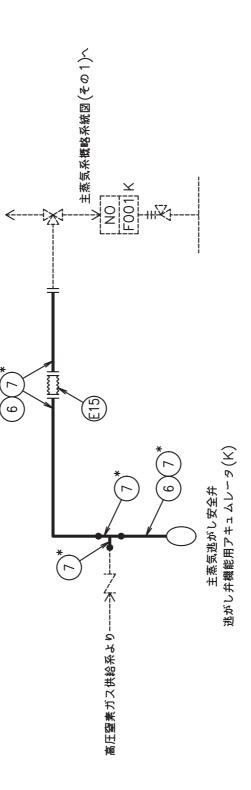
O 2 ③ VI-3-3-3-2-1-3-1 R 0

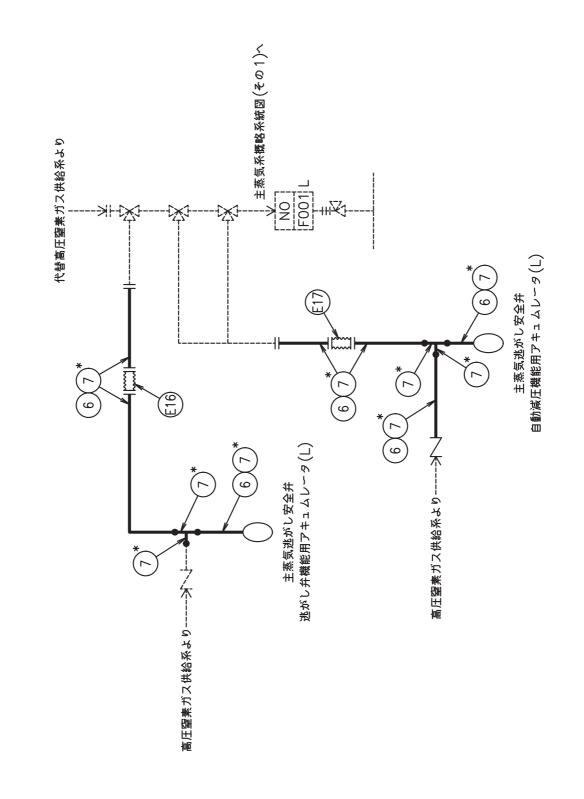


注記***:管継手** 主蒸気条概略系統図(その8) O 2 ③ VI-3-3-3-2-1-3-1 R 0



注記***:管継手** 主蒸気条概略系統図(その9)




注記***:管継手** 主蒸気系概略系統図(その10)

注記*:管継手 主蒸気系概略系統図(その11)

注記***:管継手** 主蒸気系**概略**系統図 (その12)

注記*:管継手 主蒸気系概略系統図(その13)

2. 管の強度計算書(重大事故等クラス2管)

設計・建設規格 PPB-3411 及び PPB-3561 準用

	最高使用圧力	最高使用	外 径	公称厚さ	村	料 優	製	7				漢		事故時圧力	許容圧力
NO.	Ч	温 度	D_{o}						Q	t s	t *		t r	P_{E}	P_{aE}
	(MPa)	(°C)	(mm)	(mm)		袋	法	ス (MPa)		(mm)	(mm)	ħ	(mm)	(MPa)	(MPa)
1	8.62	302	609.60	31.00	STS49		S	1 138	12.5%	27.12	18.58	Υ	18.58	10.34	17.24
					(STS480)	(0)									
3	見古住田に去し、トレミは合う	1 H		そう用回く			-	-							

*:最高使用圧力Pにより計算した必要厚さ。

評価: $t_s \ge t_r$, $P_E \le P_{aE}$, よって十分である。

管の強度計算書 (重大事故等クラス2管)

NO. P $\frac{1}{m}$ $\frac{E}{(m)}$ D _o $\frac{1}{m}$ $\frac{1}{2}$ 1		最高使用圧力	最高使用	孙 径	公称厚さ	材	料製	7	7				讏		事故時圧力	許容圧力
(MPa) (°C) (mn) (mn) (mn) (mn) 8.62 302 228.60 33.00 SFVC2B S 1 122 12.5% 28.87 8.62 302 114.30 11.10 SFVC2B S 1 122 12.5% 28.87 8.62 302 114.30 11.10 SFVC2B S 1 122 12.5% 9.71	NO.	Ь		D_{o}				11 /		S	t s	t *		t r	${\rm P}_{\rm E}$	$P_{a\;E}$
8.62 302 228.60 33.00 SFVC2B S 1 122 12.5% 28.87 8.62 302 114.30 11.10 SFVC2B S 1 122 12.5% 28.87		(MPa)	(°C)	(mm)	(mm)		法				(mm)	(mm)	ħ	(mm)	(MPa)	(MPa)
8.62 302 114.30 11.10 SFVC2B S 1 122 12.5% 9.71	7	8.62	302	228.60	33.00	SFVC2B	S		122	12.5%	28.87	7.86	А	7.86	10.34	17.24
8.62 302 114.30 11.10 SFVC2B S 1 122 12.5% 9.71																
	ŝ	8.62	302	114.30	11.10	SFVC2B	S		122	12.5%	9. 71	3.93	A	3.93	10. 34	17.24
								$\left \right $]			

*:最高使用圧力Pにより計算した必要厚さ。

評価: $t_s \ge t_r$, $P_E \le P_{aE}$, よって十分である。

管の強度計算書(重大事故等クラス2管)

設計・建設規格 PPC-3411 準用

NO. P (MPa) 4 4.71 6 1.77	頭	度 (°C) 262	D。										k	
		C) 52					IV	S	μ	Q	t s	t		t r
		32	(mm)	(mm)		逬	К	(MPa)			(mm)	(mm)	ħ	(mm)
			267.40	15.10	STS42	S	2	103	1.00	12.5%	13.21	6.01	Α	6.01
					STS410									
		171	60.50	3.90	SUS304TP	S	2	113	1.00	0.50mm	3.40	0.47	A	0.47
7 1.77		171	60.50	6.10	SUS304	S	0	113	1.00			0.47	Α	0.47

評価:ts≧ tr,よって十分である。

管の強度計算書(重大事故等クラス2管)

告示第501号第58条第1項 準用

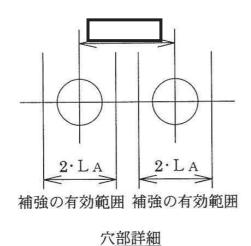
	最高使用圧力	最高使用	外径	公称厚さ	材料	輿	4						薻	
N O.	Ъ	温 度	D_{o}				Γ	S	μ	Q	t s	t		t r
	(MPa)	(°C)	(mm)	(mm)		沃		(MPa)			(mm)	(mm)	K	(mm)
5	4.71	262	323.90	17.50	SCS16A	S	2	68	1.00			8.40	A	8.40
三田/ 1/11	+ /	, لہ	トットレンシャス	N										

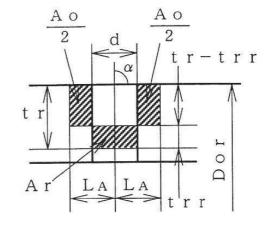
評価:ts≧ tr, よって十分である。

枠囲みの内容は商業機密の観点から公開できません。

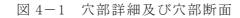
3. 鏡板の強度計算書(重大事故等クラス2管)

告示第501号第58条第2項 準用

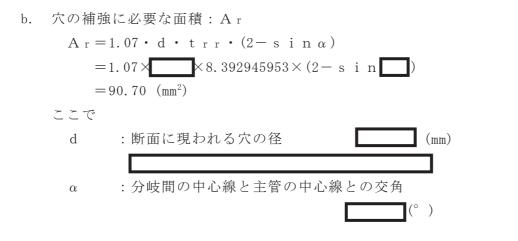

萆	t c t	(mm) = = (mm)	C 7.72	D 8.40
	Q			
	μ		1.00	1.00
	К		1.00	
	$2 \cdot h$	(mm)		
	D	(mm)		
	r	(mm)		_
	Я	(mm)		
	S	(MPa)	89	89
材料			SCS16A	SCS16A
公称厚さ		(mm)	17.50	17.50
外径	D。	(mm)	323.90	323.90
形式			半だ円形	フランジ部
最高使用	道 庚	(°C)	262	
最高使用圧力	Ь	(MPa)	4.71	
	ΝΟ.		C1	


評価:t。≧ t,よって十分である。

枠囲みの内容は商業機密の観点から公開できません。


4. 管の穴と補強計算書(重大事故等クラス2管)

NO. SP1


穴部断面

(1) 告示第501号第60条第2項第1号により、穴の補強計算を行う。
 a. 主管の計算上必要な厚さ:trr

trr=	$= \frac{P \cdot D \circ r}{2 \cdot S r \cdot \eta + 0.8 \cdot P}$		
=	$= \frac{4.71 \times 323.90}{2.00 \times 10^{-0.0} \times 10$		
=	$2 \times 89 \times 1.00 + 0.8 \times 4.71$ = 8.40 mm		
ここで			
Р	:最高使用圧力(内圧)	4.71	(MPa)
	最高使用温度	262	(°C)
D o r	: 主管の外径	323.90	(mm)
S r	: 主管の材料の許容引張応力	89	(MPa)
	主管材料	SCS16A	
η	:長手継手の効率	1.00	

枠囲みの内容は商業機密の観点から公開できません。

c. 穴の補強に有効な面積の総和:Ao
Ao =
$$(\eta \cdot t r - F \cdot t r r) \cdot (2 \cdot L_A - d)$$

= $(1.00 \times 1.00 \times 8.392945953) \times (2 \times 1.00 \times 1$

ここで

tro	: 主管の公称厚さ	17.50 (mm)
Q r	: 主管の厚さの負の許容差	(mm)
t r	: 主管の最小厚さ	(mm)
	t r = t r o $-$ Q r	

F :告示第501号第60条第2項第1号ロ(イ)の図により求めた値

1.00

LA : 補強に有効な範囲 (次の2つの式より計算したいずれか大きい方の値) LA= d = _____mm LA= d / 2+ t r + t b = ____mm

d. 評価

Ao>Ar, よって穴の補強は十分である。

枠囲みの内容は商業機密の観点から公開できません。

(2) 告示第501号第60条第2項第4号により、大穴の補強の要否の判定を行う。
 a. 大穴の補強を要しない限界径:dfrD

d f r D =
$$\frac{D \circ r - 2 \cdot t r}{2}$$

= $\frac{323.90 - 2 \times 16.90}{2}$

=145.05 (mm)

b. 評価

 $d \leq d f r D$, よって大穴の補強計算は必要ない。 以上より十分である。 O 2 ③ VI-3-3-3-2-1-3-1 R 0

5. 伸縮継手の強度計算書(重大事故等クラス2管)

設計・建設規格 PPC-3416 準用

	D		0. 1571	0.3207	0.1344	0.3624	0.3624	0. 1313	0. 2250	0. 2250	0.1009
			0.1	0.3	0.1	0.3	0.3	0.1	0.2	0.2	0.1
	$^{\rm r}$	$ imes 10^3$	0. 50	0. 50	0. 50	0.50	0.50	0. 50	0. 50	0. 50	0.50
	Ζ	$ imes 10^3$	3. 18	1. 55	3. 72	1. 37	1.37	3.80	2. 22	2. 22	4. 95
継手部応力	Ũ	(MPa)	1101	1350	1053	1398	1398	1046	1220	1220	970
鯶		ħ	А	Α	A	Υ	V	A	А	A	А
	U		Т				Ч		-		1
	u										
	Ч	(mm)									
		_									
	q	(mm)									
全伸縮量		(mm) (mm)									
全伸縮量	ŷ	-	1.00	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
縦弾性係数 全伸縮量	tδ	(mm)	184300 1.00	184300 0.40	184300 0.40	184300 0.40	184300 0.40	184300 0.40	184300 0.40	184300 0.40	184300 0.40
	tδ	(mn) (mn)									
高使用 材 料 縦弾性係数	E t ô	(mn) (mn)	184300	184300	184300	184300	184300	184300	184300	184300	184300
高使用 材 料 縦弾性係数		(MPa) (mm) (mm)	SUS304 184300								

 mm_{o}

注2:E2~E9の外径は, 注1:E1の外径は,

mm

O 2 ③ VI-3-3-3-2-1-3-1 R 0

伸縮継手の強度計算書(重大事故等クラス2管)

設計・建設規格 PPC-3416 準用

		最高使用圧力	最高使用	材	縦弾性係数		全伸縮量					薻	継手部応力			
	°.				Ц	t	δ	q	Ч	n	U		Q	Z	$_{\rm r}$	D
1.77 171 SIS304 184300 0.40 0.40 0.40 0.40 0.46 0.70 0.46 0.50 1.77 171 SIS304 184300 0.40 14300 0.40 1<		(MPa)	()		(MPa)	(mm)	(mm)	(mm)	(mm)			ħ	(MPa)	$ imes 10^3$	$ imes 10^3$	
1.77 171 171 SIS304 184300 0.40 1.77 171 SIS304 184300 0.40 1.77 171 SIS304 184300 0.40 1.77 171 SIS304 184300 1.00 1.77 171 SIS304 184300 0.40 1.77	0	1.77	171	SUS304	184300	0.40					1	A	985	4. 70	0.50	0.1064
1.77 171 171 SUS304 184300 0.40 1.77 171 SUS304 184300 1.00 4.45 0.50 1.77 171 SUS304 184300 1.00 1.02 3.38 0.50 1.77 171 SUS304 184300 1.00 1.00 4.45 0.50 1.77 171 SUS304 184300 1.00 1.00 4.45 0.50 1.77 171 SUS304 184300 0.40 1.00 1.02 3.72 0.50 1.77 171 SUS304 184300 0.40 1.00 1.05 1.05 1.05 1.77 171 SUS304 184300 0.40 1.05 3.72 0.50 1.05 1.77 171 SUS304 184300 0.40 1.05 3.72 0.50 1.05 1.77 171 SUS304 184300 1.00 1.05 0.50 1.05 1.05 1.05 <		1.77	171	SUS304	184300	0.40					-	V	1000	4. 45	0.50	0.1122
1.77 171 171 171 171 184300 1.00 1.77 171 171 171 184300 1.00 1.77 171 171 171 1.03 0.50 1.77 171 171 184300 1.00 1.77 171 171 184300 0.40 1.77 171 171 184300 0.40 1.77 171 171 184300 0.40 1.77 171 171 184300 0.40 1.77 171 171 171 171 171 1.77 171 171 171 184300 0.40 1.77 171 171 184300 1.00 1.77 171 171 171 1.16 2.45 0.50 1.77 171 171 184300 0.40 1.60 0.50 1.60 1.77 171 171 171 1.17 1.17	2	1.77	171	SUS304	184300	0.40						A	1000	4. 45	0.50	0.1122
1.77 171 171 171 171 171 171 171 171 171 171 171 111 $8US304$ 184300 0.40 1.77 171 171 $8US304$ 184300 0.40 1.00 1.00 1.053 3.72 0.50 1.77 171 171 171 $8US304$ 184300 0.40 1.00 1.00 1.053 2.45 0.50 1.77 171 171 $8US304$ 184300 0.40 1.00 1.07 1.67 0.50	3	1.77	171	SUS304	184300	1.00					-1	А	1082	3. 38	0.50	0.1478
1.77 171 171 171 171 171 171 171 171 171 171 171 184300 1.00 1.77 171 171 171 184300 1.00 1.77 171 171 184300 1.00 1.77 171 171 1186 2.45 0.50 1.77 171 171 SUS304 184300 0.40	4	1.77	171	SUS304	184300	1.00					1	А	1517	1. 03	0.50	0.4823
1.77 171 171 SUS304 184300 1.00 1.77 171 SUS304 184300 0.40 1.77 171 SUS304 184300 0.40	ы	1.77	171	SUS304	184300	0.40					-1	А	1053	3. 72	0.50	0.1344
1.77 171 SUS304 184300 0.40 1322 1.67 0.50	9	1.77	171	SUS304	184300	1.00						A	1186	2. 45	0.50	0.2038
	2	1.77	171	SUS304	184300	0.40						Α	1322	1.67	0.50	0.2980

枠囲みの内容は商業機密の観点から公開できません。

 mm_{o}

注1:E10,E11,E12,E15,E17の外径は,

 mm_{o}

注2:E13,E14,E16の外径は,

2. 主蒸気逃がし安全弁排気管T-クエンチャラムズヘッドの強度計算書

1. 根	紙要1
2. 浿	定方法及び測定条件1
3. 浿	」定箇所1
4. 浿	」定器3
5. 詐	ば験結果のまとめ
(1)	主ひずみの算出
(2)	主応力の算出3
(3)	検定圧力の算出4
6. 浿	」定圧力5
(1)	検定水圧試験(浜岡第3号機の試験結果)5
(2)	検定水圧試験(試験結果に基づく線形補完結果)5
7. 半	」定基準5
(1)	判定基準(設計基準対象施設)5
(2)	判定基準(重大事故等対処設備)5
8. 彭	2計仕様の比較6
9. Т	`-クエンチャラムズヘッド検定水圧試験結果6
(1)	測定結果(設計基準対象施設)6
(2)	計算結果(重大事故等対処設備)6
(3)	検定圧力の算出7
(4)	結果7
10. ま	とめ9
(添付	†第1図)
Т	`-クエンチャラムズヘッド測定箇所図10
	十第2図)
Т	`-クエンチャラムズヘッド形状・寸法図11

目次

1. 概要

主蒸気逃がし安全弁排気管T-クエンチャラムズヘッドは,発電用原子力設備に 関する構造等の技術基準(昭和55年通産省告示第501号)に定める第4種管の 構造の規格第64条の規定に基づき,準用する第55条ただし書きの規定により検 定水圧試験を実施している。

なお、本検定水圧試験は、女川第2号機と同一設計である浜岡第3号機におい て既に実施されており、本計算書ではその試験方法、判定基準、試験結果及び重 大事故等対処設備としての強度評価について示すものである。

女川第2号機は、既に実施された試験の結果をもって検定水圧試験にかえるものとする。

また,既工認(平成4年1月13日付け 第5回 3資庁第10518号にて認可された工 事計画書の添付書類「IV-4-3 主蒸気逃がし安全弁排気管Tクエンチャラムズへ ッドの強度計算書」)の結果を用いることから,既工認の結果は当時の記載単位を 併記する。

- 2. 測定方法及び測定条件
 - (1) あらかじめ最も弱いと推定した箇所に選定した数個の点に抵抗線ひずみ計を 張りつける。
 - (2) 測定方法は三軸直角型抵抗線ひずみ計を用い,アクティブダミー法で測定を行う。
 - (3) 測定条件は下記とする。
 - イ. 加圧水 (水圧): 3.80 MPa (最高使用圧力 3.80 MPa (38.7 kg/cm²))
 - 口.温度 :常温
 - (4) 測定するひずみの値はデジタルプリンタにて記録する。
- 3. 測定箇所

添付第1図に測定箇所を,表3-1に測定箇所の選定理由を示す。

表 3-1 測定箇所の選定理由

測定箇所	選定理由	備	考
А	ボトム部で最も弱いと推定される点	外	面
В	ボトム部に近い点で補強ガセットのつけ根 部	外	面
С	ボトム部に近い点で補強ガセットのつけ根 部 のレジューサ側の点	外	面
D	ラムズヘッド部のほぼ中央の点	外	面
E	エルボの側面部のほぼ中央の点	外	面
F	エルボの小半径部のほぼ中央の点	外	面
G	レジューサのほぼ中央の点	外	面
a	ボトム部で最も弱いと推定される点	内	面
b	ボトム部に近い点で補強ガセットのつけ根 部	内	面
с	ボトム部に近い点で補強ガセットのつけ根 部のレジューサ側の点	内	面
d	ラムズヘッド部のほぼ中央の点	内	面
g	レジューサのほぼ中央の点	内	面

- 測定器 デジタルストレインインディケータ スイッチボックス ストレインゲージ
- 5. 試験結果のまとめ
- (1) 主ひずみの算出

$$\varepsilon_1 = \frac{1}{2}(\varepsilon_a + \varepsilon_c) + \frac{1}{\sqrt{2}}\sqrt{(\varepsilon_a - \varepsilon_b)^2 + (\varepsilon_b - \varepsilon_c)^2}$$

$$\varepsilon_{2} = \frac{1}{2}(\varepsilon_{a} + \varepsilon_{c}) - \frac{1}{\sqrt{2}}\sqrt{(\varepsilon_{a} - \varepsilon_{b})^{2} + (\varepsilon_{b} - \varepsilon_{c})^{2}}$$

ここに
$$\varepsilon_1$$
, ε_2 : 主ひずみ
 ε_a , ε_b , ε_c : 測定した a, b, c 方向のひずみの読み
但し a, c 方向が直交するものとする。

(2) 主応力の算出

$$\sigma_{1} = \frac{E}{1 - v^{2}} (\varepsilon_{1} + v\varepsilon_{2}) \qquad (MPa \ (kg/cm^{2}))$$
$$\sigma_{2} = \frac{E}{1 - v^{2}} (\varepsilon_{2} + v\varepsilon_{1}) \qquad (MPa \ (kg/cm^{2}))$$

ここに
$$\sigma_1$$
 : 主ひずみ ϵ_1 方向の主応力
 σ_2 : 主ひずみ ϵ_2 方向の主応力
 ν : ポアソン比=0.3
 E : 縦弾性係数= 1.95×10^5 (MPa)
(縦弾性係数= 1.99×10^4 (kg/mm²))
(使用材料 : SCS16A)

(3) 検定圧力の算出

告示501号第55条第1項第2号により検定圧力を計算するものと する。

a. 設計基準対象施設

$$P = \frac{P_0 \cdot S}{\sigma_0}$$

P : 検定圧力 (MPa (kg/cm²))

- P_0 :予定する最高使用圧力に相当する圧力 (MPa (kg/cm²))
- σ_0 :上の方法でひずみを応力に換算して求めた値のうち絶対値が最大の 応力 (MPa (kg/mm²))
- S :使用温度における材料の許容引張応力 (MPa (kg/cm²)) $P_0 = 3.80$ MPa (38.7 kg/cm²) S = 89.2 MPa (9.1 kg/mm²) (告示501号別表第6備考3の(ロ)
 - による。)

b. 重大事故等対処設備

$$P = \frac{P_E \cdot S_E}{\sigma_E}$$

P : 検定圧力 (MPa)

- P_E:重大事故等時の使用圧力に相当する圧力(MPa)
- σ_{E} :上の方法でひずみを応力に換算して求めた値のうち絶対値が最大の 応力 (MPa)
- S_E:使用温度における材料の許容引張応力(MPa)

$$P_E = 4.71$$
 MPa

 $S_E = 89.2$ MPa (告示501号別表第6備考3の(ロ)による。)

- 6. 測定圧力
 - (1) 検定水圧試験(浜岡第3号機の試験結果) 測定圧力は表6-1に示す0.00 MPa (0.0kg/cm²) から3.80 MPa (38.7kg/cm²) まで。
 - (2) 検定水圧試験(試験結果に基づく線形補完結果)算出圧力は表6-1に示す3.92 MPaから4.71 MPaまで。

表 6-1 測定圧力及び算出圧力

圧力 (MPa)	0.0	0.49	0.98	1.47	1.96	2.45	2.94	3.43	3.80
圧力 (kg/cm ²)	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	38.7
備考									

(表 6-1 続き)

圧力 (MPa)	3.92	4.41	4.71
圧力 (kg/cm²)	40.0	45.0	48.0
備考			SA 時 条件

7. 判定基準

- (1) 判定基準(設計基準対象施設)
 最高使用圧力(3.80 MPa(38.7 kg/cm²))が検定圧力以下であること。
- (2) 判定基準(重大事故等対処設備)重大事故等時の使用時の圧力(4.71 MPa)が検定圧力以下であること。

8. 設計仕様の比較

女川第2号機及び浜岡第3号機のT-クエンチャラムズヘッドの仕様を表 8-1 に示す。また、女川第2号機の重大事故等時の使用時の圧力及び温度を表 8-2 に 示す。

表 8-1 設計仕様の比較

設計仕様 プラント名称	最高使 用圧力 (MPa)	最高使 用温度 (℃)	外径 (mm)	厚さ (mm)	材 料	製法
女川第2号機	3.80 (38.7 kg/cm²)	249	267. 4 323. 9 323. 9	15.1 17.5 17.5	SCS16A	継目無 (一 体) (鋳 造)
浜 岡 第 3 号 機	同上	同上	同上	同上	同上	同上

表 8-2 重大事故等時の使用時の圧力及び温度

重大事故等時の使用時の圧力	重大事故等時の使用時の温度
(MPa)	(℃)
4.71	262

添付第2図にT-クエンチャラムズヘッドの形状・寸法を示す。

- 9. T-クエンチャラムズヘッド検定水圧試験結果
- (1) 測定結果(設計基準対象施設)

ひずみの測定結果及び主ひずみ,主応力の計算結果を表 9-1 に,測定箇所を添 付第1回に示す。

(2) 計算結果(重大事故等対処設備)

ひずみの線形補完結果及び主ひずみ,主応力の計算結果を表 9-2 に,測定箇所 は(1)の最大値の測定箇所とする。

- (3) 検定圧力の算出
 - a. 設計基準対象施設

$$P = \frac{P_0 \cdot S}{\sigma_0} = \frac{3.80 \times 89.2}{52.4} = 6.47 \text{ MPa}$$

 $(=\frac{38.7 \times 9.1}{5.34} = 65.95 \text{ kg/cm}^2)$
 $\sigma_0 : 最高使用圧力 (P_0 = 38.7 \text{ kg/cm}^2) 時の表 9-1 に示す最大値 5.34 kg/mm^2 (b 点) である。$

b. 重大事故等対処設備

$$P = \frac{P_E \cdot S_E}{\sigma_E} = \frac{4.71 \times 89.2}{64.8} = 6.49 \text{ MPa}$$

 $\sigma_E : 重大事故等時の圧力 (P_E = 4.71 \text{ MPa}) 時の表 9-2 に示す 最大値 64.8 MPa (b点) である。$

(4) 結果

a. 設計基準対象施設

P (6.47 MPa (65.95 kg/cm²)) > P_0 (3.80 MPa (38.7 kg/cm²)) となり検定圧 力以下である。

- b. 重大事故等対処設備
 - P (6.49MPa) $> P_E$ (4.71MPa) となり検定圧力*以下である。
 - *:検定圧力に基づく重大事故等時の使用時のひずみを線形補完して算出し た圧力。

	ひずみの測定結果×10-6			主ひずみ×10 ⁻⁶		主応力〔kg/mm²〕	
計測 箇所	ε _a	ε_b	ε _c	ε_1	ε_2	σ_1	σ_2
А	54	93	0	98.31	-44. 31	1.86	-0.32
В	0	40	96	96.66	-0.66	2.11	0.62
С	-1	56	110	110.02	-1.02	2.40	0.70
D	105	100	64	110.20	58.80	2.80	2.01
E	31	88	85	98.36	17.64	2.27	1.03
F	68	22	-33	68.20	-33.20	1.27	-0.28
G	90	57	21	90.03	20.97	2.11	1.05
а	-64	108	256	256.45	-64.45	5.19	0.27
b	-84	110	269	269.87	-84. 87	5.34	-0.09
С	-39	87	160	163.47	-42.47	3. 30	0.14
d	-10	22	20	27.67	-17.67	0.49	-0.20
g	66	50	29	66.17	28.83	1.64	1.06

表 9-1 検定水圧試験の測定結果(設計基準対象施設)

表 9-2 検定水圧試験に基づく計算結果(重大事故等対処設備)

	ひずみ(の測定結果	$\times 10^{-6}$	主ひずみ×10 ⁻⁶		主応力〔MPa〕	
評価 箇所	ε _a	ε_b	ε _c	ε_1	ε_2	σ_1	σ_2
b*	-103	135	332	332.96	-103.96	64.8	-0.9

*:表 9-1 の 3.80 MPa (38.7 kg/cm²) 加圧時の測定結果に示す最大値の測定 箇所 (b)。 10. まとめ

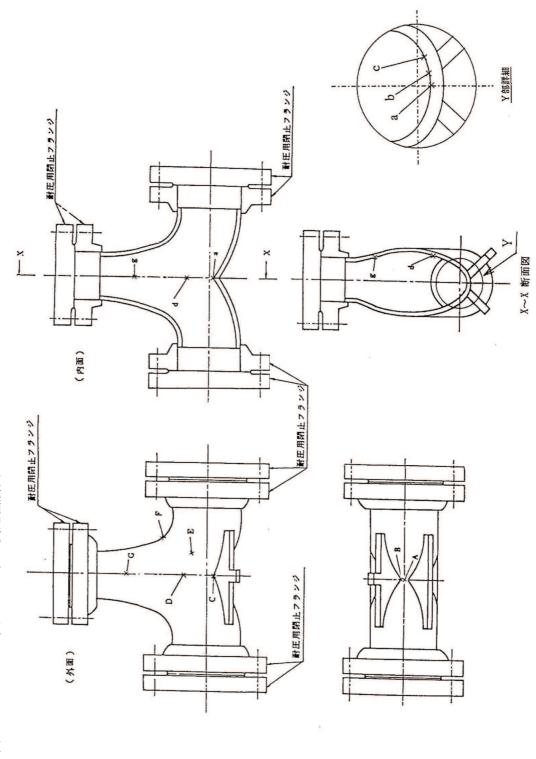
前項の結果より,女川第2号機の設計基準対象施設として最高使用圧力(3.80 MPa(38.7 kg/cm²))に基づき検定圧力の算出を行う。

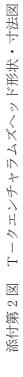
また,重大事故等対処設備として重大事故等時の使用時の圧力(4.71 MPa)に 基づき検定圧力の算出を行う。

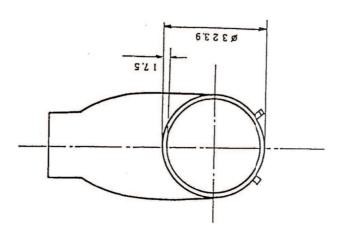
(1) 設計基準対象施設

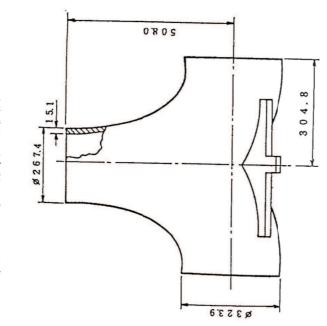
$$P = \frac{P_0 \cdot S}{\sigma_0}$$

= $\frac{3.80 \times 89.2}{52.4}$ = 6.47 MPa
(= $\frac{38.7 \times 9.1}{5.34}$ = 65.95 kg/cm²)


(2) 重大事故等対処設備


$$P = \frac{P_E \cdot S_E}{\sigma_E}$$
$$= \frac{4.71 \times 89.2}{64.8}$$
$$= 6.49 \text{ MPa}$$


この結果より女川第2号機の最高使用圧力(3.80MPa(38.7kg/cm²))は検定圧力(6.47MPa(65.95kg/cm²))以下となる。


また,重大事故等時の使用時の圧力(4.71MPa)は検定圧力(6.49MPa)以下となる。

