

 エリア内の地下水位を一定の範囲に保持できる設計とする。
赤字：詳細設計を踏まえた変更箇所
2021年4月20日
02 －他－F－24－0002＿改 2
備考
水位計は信頼性向上を
図るため，各掦水井戸目るため，各揚水井戸
こ複数設置する方針と に複数設置する方針と
した。 $+1$
各エリアの揚水井戸 2
系統に電源盤 A 系及び
 る設計とした。

設置変更許可段階における方針及び構造概要	詳細設計への反映事項	備考
（6）地下水位低下設備は，重要安全施設への影響に鑑み，原子炉施設の安全機能の重要度分類を踏ま えて，高い信頼性を確保する設計とするものの，それでもなお，動作不能が発生した場合を想定 し，可搬型設備及び予備品を配備する。 可搬型設備及び予備品は外部事象の影響を受けない場所に保管する。	（6）地下水位低下設備は，地震時及び地震後を含む，原子力発電所の供用期間の全ての状態におい て機能維持が可能な設計としたものの，それでもなお，機能喪失が発生した場合を想定し，復旧措置に必要な資機材として予備品及び可搬ポンプユニットを配備する設計とした。 復旧措置に必要な資機材については外部事象の影響を受けないように保管する設計とした。	可搬ポンプユニット は，高台の堅固な地盤 に配備し，外部事象を考慮し分散配置する。
（7）予備品は，揚水ポンプ，制御盤の構成部品及び水位計等をサイトとして一式配備する。	⑦ 予備品は，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアにおける全ての地下水位低下設備の機能喪失を考慮し，復旧措置にあたり機器の交換が必要な場合に備え，各 エリアを1系統復旧できる個数を配備する設計とした。 －揚水ポンプ ：各エリア 1 個（計 2 個） - 制御盤の構成部品：各系統1セット（計 2 セット） - 水位計 ：各エリア 3 個（計 6 個）	地下水位低下設備設置エリアに対する配備数を具体化した。
（8）可搬型設備は，揚水ポンプ及び発電機等より構成し，対象エリアごとに 1 セット配備する。	（8）可搬型設備をユニット化し，名称も可搬ポンプユニットとした。可搬ポンプユニットは，原子炉建屋•制御建屋エリア及び第3号機海水熱交換器建屋エリアにおける全ての地下水位低下設備の機能喪失を考慮し，排水機能の維持を可能とするため各エリアに 1 個（計 2 個）配備する設計とした。	復旧措置の時間効率化のため，ユニットし たが設備構成に変更 はない。
（9）可搬型設備による機動的な対応による復旧を行うための手順を定める。 工認設計段階での浸透流解析結果より求めたX時間（設計用地下水位到達までの時間）までに可搬型設備による水位低下措置を開始する。	（9）地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材の配備，手順書及び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備として保安規定に定めた上で，具体的な実施要領を社内規定に定 める。 地下水位低下設備の機能喪失時には，可搬ポンプユニットによる対応を速やかに開始し，浸透流解析から得られた設計用揚圧力に到達する原子炉建屋の時間余裕である約 25 時間（X1），第 3 号機海水熱交換器建屋の時間余裕約 67 時間（X2）までに水位低下措置を完了する。	詳細設計の結果，水位低下措置の完了時間 を設定したが，揚水井戸内の機器が故障し た場合に，復旧措置を開始する方針に変更 はない。 設計用地下水位と設計用揚圧力について地下水位上昇による揚圧力上昇に伴う影響が最も早く生じる ことから，時間余裕評価において着目する指標として「設計用揚圧力」と記載を適正化 した。

備考
LCO 逸脱時に要求され
る措置について具体
化したが，機器故障時
の復旧措置を速やか
に行い，機能喪失時に
原子炉を停止し可搬
ポンプユニットによ
る排水を実施する方
針に変更はない。

