（1）海水ポンプ室補機ポンプエリアの隔壁（南側）は壁厚が薄くフレームを支持できないため，十分な厚みがある東西側壁にブラケットを取り付け，フレーム支持用の大梁を設置すること とした。また，フレームは非常用海水ポンプのメンテナンス及び門型クレーンの吊上の能力 を考慮して 5 分割すること（フレームを 5 基設置することにより，海水ポンプ室補機ポンブ エリアを覆う構造）とした。
（1）耐震性確保のために実施する海水ポンプ室の補強計画を竜巻防護ネットの設計に反映した。具体的には，東西側壁上部への補強梁設置に伴い，海水ポンプ室東西方向開口幅が狭くなっ たことから，フレーム基数を 5 基から 4 基に見直した。また，南側隔壁の補強を踏まえ，南側隔壁のコーベル上に大梁を設置することとし，東西側壁へのブラケットは設置しないこと とした（図 1 参照）。

海水ポンプ室

竜巻防濩ネット取付け状能

左記に加え，北側隔壁につい てコーベルを設置し，フレー ムゴム支承の裕度を確保す るよう，仕様を変更（大梁ゴ ム支承と同様の寸法と）する こととした。
平万向の固有周期を長周期側に移動させ応答を下げるとともに，壁面へ伝達させる荷重を分散させる効果を期待する。なお，支承の支持機能喪失時における，竜巻防護ネットの落下モ ードの検討を踏まえ，竜巻防護ネットの支持機能を維持するための設計方針として，フレー ムゴム支承は， 2 つのらち 1 つ以上の支承が構造強度上の評価方針を満足することを確認す る。

③ 可動支承は，温度変化によるフレームの伸縮を吸収し，変形による荷重発生を防ぐため，水平変位に追従する機能を有する。
（4）フレームにはストッパーを取り付け，フレームを支持するゴム支承に期待しない場合でも，竜巻防護ネットが落下せず，非常用海水ポンプ等に波及的影響を与えない設計とする。
（2）ゴム支承に期待する効果（機能）については変更ないが，ゴム支承の機能維持の方針につい て，いずれのゴム支承も許容値を超えず構造強度上の評価方針を満足させる方針とした。
（3）（可動支承の機能に変更なし）
（4）いずれの支承部も許容値を満足させる方針とすることとし，構造強度評価においてはストッ パーに対して竜巻防護ネットの支持機能を期待しない方針とした。なお，ストッパーは道路橋示方書の落橋防止構造の考え方を参考に自主的に設置する。

備考

■ゴム支承について，設置許可段階では支承部に大きな反力 が生じるよう保守的な結合条件としていたが，特性試験を踏 まえ実態に即した剛性を設定 することにより，いずれのゴム支承も許容値を満足する設計方針とした。

■ 可動支承の機能に変更はな

 いが，設置許可段階での構造成立性の見通し確認において，可動支承の評価対象部材につい て一部許容値を超える結果と なったことから，部材のサイズ アップや仕様変更を図ること により，いずれの可動支承も許容値を満足する設計方針とし た。■上記のとおり，いずれの支承部も許容値を満足させる方針 としたことに伴いストッパー は自主設備の扱いとした。

設置許可段階における方針及び構造概要

注記＊：衝突解析において，以下を考虑し解析ケースを設定する。

考慮する事項	$\begin{gathered} \text { 基本ケース } \\ \text { における設定 } \\ \hline \end{gathered}$	不確かさケース における設定	
解析モデルにおける ゴム支承の剛性	設計值を設定	$\begin{aligned} & \text { 不確かさ } \\ & \text { ケース (1) } \end{aligned}$	前性のばらつきを考慮 した値を設定
衝突解析における偅突姿勢	短辺衝突	$\begin{aligned} & \text { 不碓かさ } \\ & \text { ケース } \end{aligned}$	長辺衝突による影響を碓認

図3評価フロー（2／2）
図3 評価フロー

備考

■詳細設計段階において，以下 の方針とした
－海水ポンプ室の耐震性確保 のための補強計画を踏まえ，南側隔壁のコーベル上に大梁を設置することとし，東西側壁へのブラケットは設置 しないこととした。
支承部の剛性設定や寸法見直しにより，いずれの支承部 も許容値を満足する設計方針とした。これに伴い，スト ッパーに対しては竜巻防護 ネットの支持機能を期待し ないこととした。ただし，道路橋示方書の落橋防止構造 の考え方を参考に自主的に設置することとした。

設置許可段階における方針及び構造概要	詳細設計への反映事項	備考
⑦ 可動支承について，設置許可段階における構造成立性の見通し確認において，可動支承近傍 へ飛来物が衝突した場合，許容値を超える結果となったため，詳細設計段階では，可動支承 のサイズアップやボルトの仕様変更等の対応を行らことで，許容値を満足させる方針とする ことを説明した。 3－8 図4 可動支承の構成部品図	（7）可動支承について，サイズアップやボルトの仕様変更等の対応を行い，許容値を満足させる方針とした（図4参照）。 B－B A部 詳細図 図4 可動支承の構成部品図	可動支承の構造について，以下の設計進渉を反映した。 －可動支承は，温度変化による フレームの伸縮を吸収し，変形による荷重発生を防ぐた め，水平変位に追従すること を目的に設置するものであ るが，強度向上の観点から大型化するよう，可動支承の寸法やボルトの本数を変更し た。 －レール取り付けボルトの設置方向を水平方向から鉛直方向に変更すると共に，ボル トサイズをM30からM39にし た。 －ベースプレートの材質を SM490からSM570に，ソール プレートの材質をSS400か らSM490に，エンドプレート の材質をSS400からSM570に それぞれ変更した。

（9）主な仕様に関して，表2～表4に示す。

総質量		約500ton
全体形状		約 29 m （東西方向）×約 24 m （南北方向）高さ 約 1 m
ネット（金網部）	構成	主ネット $\times 2$ 枚＋補助ネット $\times 1$ 枚
	寸法	線径：$\phi 4 \mathrm{~mm}$ 目合い寸法：主ネット 50 mm ，補助ネット 40 mm
	主要材料	硬鋼線材，亜鉛めっき鋼線
フレーム	数量	5 組
	寸法	長さ×幅×高さ：約 $23 \mathrm{~m} \times 4.3 \mathrm{~m} \times 1 \mathrm{~m}$
	主要材料	SM490A，SM400A，SS400
大梁	寸法	長さ×幅×高さ：約 $26 \mathrm{~m} \times 1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$
	主要材料	SM520B，SM490A
ゴム支承	仕様	水平力分散型
	数量	大梁用： 4 個（ 2 組（ 2 個／組）） 隔壁用： 10 個（ 5 組（ 2 個／組））
可動支承	数量	隔壁用： 10 個（5 組（2 個／組））
防護板	材料	SM400A，SS400
耐震クラス	－	C

（9）主な仕様に関して，表2～表4に示す。

総質量		約 358ton
全体形状		約 26 m （東西方向）\times 約 23 m （南北方向）高さ 約 1 m
ネット（金網部）	構成	主金網 $\times 2$ 枚 + 補助金網 $\times 1$ 枚 なお，金網はワイヤロープにて 4 辺支持す る。
	寸法	線径：$\phi 4 \mathrm{~mm}$ 目合い寸法：主ネット 50 mm ，補助ネット 40 mm
	主要材料	硬鋼線材，亜鉛めっき鋼線
フレーム	数量	4 組
	寸法	長さ \times 幅 \times 高さ 主桁 $:$ 約 $23 \mathrm{~m} \times 0.6 \mathrm{~m} \times 1.0 \mathrm{~m}$ 横補強材 $:$ 約 $5.4 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $5.4 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $4.3 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $4.3 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.4 \mathrm{~m}$ ブレース $:$ 約 $5.9 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $5.9 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $6.8 \mathrm{~m} \times 0.4 \mathrm{~m} \times 0.4 \mathrm{~m}$ 約 $6.8 \mathrm{~m} \times 0.2 \mathrm{~m} \times 0.4 \mathrm{~m}$
	主要材料	SM490A，SM400A，SS400
大梁	寸法	長さ×幅×高さ：約 $25 \mathrm{~m} \times 1.6 \mathrm{~m} \times 1.3 \mathrm{~m}$
	主要材料	SM490A
ゴム支承	仕様	水平力分散型
	数量	大梁用： 4 個（ 2 組（ 2 個／組）） フレーム用：8個（4組（2個／組））
可動支承	数量	8 個（4 組（2個／組））
防護板	材料	SM400A
耐震クラス	－	C（S s）＊
記＊：耐震クラスはC クラスであるが，ネットの下部に S クラスの設備 （RSW ポンプ等）が設置されているため波及的影響防止の観点で基準地震動 S s に対して十分な構造強度を有することを確認する。		

■海水ポンプ室の耐震性確保 のための補強計画（東西側壁上部への補強梁設置，南側隔壁の補強）を踏まえ，フレーム基数 を 5 基から 4 基に見直した。
■ 大梁等の各部材について，設計進捗を踏まえ，断面サイズ及 び材料を変更した。

