女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －補－E－19－0600－4＿改2
提出年月日	2021 年 4 月 22 日

補足－600－4 下位クラス施設の波及的影響の検討について
1．概要 1
2．波及的影響に関する評価方針 2
2.1 基本方針 2
2．2 下位クラス施設の抽出方法 4
2.3 影響評価方法 5
2.4 プラント運転状態による評価対象の考え方 5
3．事象検討 7
3.1 別記 2 に記載された事項に基づく事象検討 7
3.2 地震被害事例に基づく事象の検討 8
3．2．1 被害事例とその要因の整理 8
3．2．2 追加考慮すべき事象の検討 9
3.3 津波，火災及び溢水による影響評価 10
3．4 周辺斜面の崩壊による影響評価 10
3.5 液状化による影響評価 10
4．上位クラス施設の確認 11
5．下位クラス施設の抽出及び影響評価方法 22
5.1 相対変位又は不等沈下による影響 22
5.2 接続部における相互影響 26
5.3 建屋内における施設の損傷，転倒，落下等による影響 35
5.4 建屋外における施設の損傷，転倒，落下等による影響 37
6．下位クラス施設の検討結果 39
6．1 相対変位又は不等沈下による影響検討結果 39
6．1．1 抽出手順 39
6．1．2 下位クラス施設の抽出結果 39
6．1．3 影響評価結果 39
6．2 接続部における相互影響検討結果 47
6．2．1 抽出手順 47
6．2．2 接続部の抽出結果及び影響評価対象の選定結果 47
6．2．3 影響評価結果 47
6.3 建屋内における施設の損傷，転倒，落下等による影響検討結果 68
6．3．1 抽出手順 68
6．3．2 下位クラス施設の抽出結果 68
6．3．3 耐震評価結果 68
6． 4 建屋外における施設の損傷，転倒，落下等による影響検討結果 120
6．4．1 抽出手順 120
6．4．2 下位クラス施設の抽出結果 120
6．4．3 耐震評価結果 120

添付資料 1－1	波及的影響評価に係る現地調査の実施要領
添付資料 1－2	波及的影響評価に係る現地調査記録
添付資料 2－1	原子力発電所における地震被害事例の要因整理
添付資料 2－2	東北地方太平洋沖地震時の女川原子力発電所における地震被害事例の要因整理
添付資料3	周辺斜面の崩壊等による上位クラス施設への影響
添付資料4	上位クラス施設に隣接する下位クラス施設の支持地盤について
添付資料5	設置予定施設及び撤去予定施設に対する波及的影響評価の考え方に ついて
添付資料6	原子炬補機冷却海水系通水機能への下位クラス施設の波及的影響の検討について
添付資料7	防潮堤•防潮壁への下位クラス施設の波及的影響の検討について
添付資料 8	小規模建屋の上位クラス施設への波及的影響の検討について
添付資料9	下位クラス施設の損傷による機械的荷重等の影響について

添付資料 10 燃料チャンネル着脱機の波及的影響評価

参考資料1 下位クラス配管の損傷形態の検討について
参考資料2 設置変更許可時からの相違点について

1．概 要

設計基準対象施設のうち耐震重要度分類Sクラスに属する施設，その間接支持構造物及び屋外重要土木構造物（以下「Sクラス施設等」という。）が下位ク ラス施設の波及的影響によって，その安全機能を損なわないことについて，ま た，重大事故等対処施設のうち常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）及び常設重大事故緩和設備（設計基準拡張）並び にこれらが設置される常設重大事故等対処施設（以下「重要SA施設」という。） が下位クラス施設の波及的影響によって，重大事故等に対処するために必要な機能を損なわないことについて，設計図書類を用いた机上検討及び現地調査
（プラントウォークダウン）による敷地全体を俯瞰した調査•検討を行い，評価を実施する。

ここで，Sクラス施設等と重要 SA施設を合わせて「上位クラス施設」と定義 し，Sクラス施設等の安全機能と重要SA施設の重大事故等に対処するために必要な機能を合わせて「上位クラス施設の機能」と定義する。また，上位クラス施設に対する波及的影響の検討対象とする「下位クラス施設」とは，上位クラ ス施設以外の発電所内にある施設（資機材等を含む）をいう。

2．波及的影響に関する評価方針

2.1 基本方針

波及的影響評価は以下に示す方針に基づき実施する。
（1）「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」の別記 2 （以下「別記 2 」という。）に記載された波及的影響に係る 4 つの事項を基に，検討すべき事象を整理する。ま た，原子力発電所の地震被害情報を基に，別記2の波及的影響に係る 4 つの事項以外に検討すべき事象の有無を確認する。
（2）（1）で整理した検討事項を基に，上位クラス施設に対して波及的影響 を及ぼすおそれのある下位クラス施設を抽出する。
（3）（2）で抽出された下位クラス施設について，配置，設計，運用上の観点から上位クラス施設への影響評価を実施する。

また，波及的影響評価に係る検討フローを第2．1－1図に示す。

＊フロー中の（1）～⑧の数字は第5．1－1図，第5．1－2図，第5．2－8図，第5．3－1 及び第5．4－1図中の（1）～8に対応する。
第2．1－1 図 波及的影響評価に係る検討フロー

2．2下位クラス施設の抽出方法

上位クラス施設に対して波及的影響を及ぼすおそれのある下位クラス施設の抽出は，設計図書類を用いた机上検討及び現地調査（プラントウォーク ダウン）による敷地全体を俯瞰した調査•検討により実施する。
（1）事前準備及び机上検討 I［第2．1－1図（1）（2）］
女川原子力発電所第2号機の屋外配置図，機器配置図等の設計図書類を用いて，建屋外及び建屋内の上位クラス施設を抽出し，その配置状況の情報を整理する。配置状況確認結果を踏まえ，検討事象ごとに，以下に示す考え方を踏まえて波及的影響を及ぼすおそれのある施設を抽出する。
a．検討事象が「建屋内下位クラス施設の損傷等による影響」又は「建屋外下位クラス施設の損傷等による影響」の場合
＞上位クラス施設が大型施設であれば，重量比から仮置物品等の影響 を受けないことから，本項目（1）で調査した設計図書類の情報によっ て波及的影響を及ぼすおそれのある施設を抽出する。
＞上位クラス施設が大型施設ではない場合には，現地調査が困難な場合を除き下記（2）及び（3）に示す情報の補完作業を実施する。
b．検討事象が「相対変位又は不等沈下による影響」又は「上位，下位クラ スの接続部における相互影響」の場合
＞「相対変位又は不等沈下による影響」については，建屋外の大型施設が評価対象となることから，本項目（1）で調査した設計図書類の情報によって波及的影響を及ぼすおそれのある施設を抽出する。
＞「上位，下位クラスの接続部における相互影響」については，系統図等の設計図書類で網羅的に確認が可能であることから，本項目（1） で調査した設計図書類の情報によって波及的影響を及ぼすおそれの ある施設を抽出する。
（2）現地調査（プラントウォークダウン）［第2．1－1図（3）］
机上検討 I で抽出された下位クラス施設の詳細な設置状況又は配置状況を確認すること及び設計図書類では判別出来ない仮設設備又は資機材等が影響防止対策を施工していない状態で上位クラス施設周辺に配置さ れていないことを確認することを目的として，建屋内外の上位クラス施設 を対象として現地調査を実施する。

現地調査の実施要領を添付資料1－1に示す。また，現地調査記録の例を添付資料1－2に示す。

なお，現地調查における確認項目や判断基準についても添付資料1－1 の実施要領に示す。
（3）机上検討 II［第2．1－1図（4）］
現地調査を実施する必要があると判断したものの，現地調査を実施でき ない上位クラス施設については，現地調查と同様の判断基準で机上検討を実施する。
（4）検討対象施設の抽出［第2．1－1図（5）］
上記（1）～（3）において抽出された情報を用いて，上位クラス施設へ地震時に波及的影響を及ぼすおそれのある下位クラス施設を抽出する。

なお，上位クラス施設と下位クラス施設の離隔距離が下位クラス施設の高さを超える場合は，「下位クラス施設の損傷等による影響」，「相対変位又は不等沈下による影響」のいずれの検討事象においても影響がないもの と考えられることから，該当する下位クラス施設は検討対象から除外する。
2.3 影響評価方法［第2．1－1図（6），77，（8）］

波及的影響を及ぼすおそれがあるとして抽出された下位クラス施設につ いては，詳細評価を実施し，上位クラス施設の機能を損なわないことにより， その影響を確認する。

詳細評価において，抽出された下位クラス施設が耐震性を有していること の確認によって上位クラス施設の機能を損なわないことを確認する場合，適用する地震動は上位クラス施設の設計に用いる基準地震動S s とし，上位ク ラス施設への波及的影響が否定できない場合には，影響を防止するための対策を検討し，実施することで評価を完了とする。
2.4 プラント運転状態による評価対象の考え方

プラントの運転状態としては，通常運転時，事故対処時及び定期検查時が あり，各運転状態において要求される上位クラス施設の機能を考慮して波及的影響評価を実施する。

通常運転時は，ほぼ全ての上位クラス施設が供用状態（運転又は待機状態） にあり，下位クラス施設の波及的影響も考慮した上で，基準地震動 S s に対 して安全機能を損なわないことを確認する。また，事故対処時においても，通常運転時と同様である。

定期検查時は，その工程に伴い，上位クラス施設は供用状態から除外され，系統も隔離される。その状態では当該施設の安全機能には期待しないことか ら，波及的影響評価の対象から除外する。また，定期検査時においても補機冷却系統や電源系等，一部の系統は供用状態にあるため，これらの施設につ いては波及的影響評価の対象となる。例として，定期検查時のオペレーショ ンフロアレイダウンエリアの資機材による使用済燃料プール及び開放され た原子炉に対する影響評価は，発電用原子炉設置変更許可申請（東北電原技第5号）に係る審查資料「02－NP－0272 設計基準対象施設について」の「第

16 条 燃料体等の取扱施設及び貯蔵施設について」のうち，「別添資料 1 使用済燃料プールへの重量物落下について」の検討により，影響がないことを確認している。

上記のことから，事故対処時及び定期検査時の評価は，通常運転時におい て要求される上位クラス施設の機能を考慮した波及的影響評価に包含され る。

3．事象検討

3.1 別記 2 に記載された事項に基づく事象検討

別記2に記載された波及的影響に係る 4 つの事項を基に，具体的な検討事象を整理する。
（1）設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位 による影響
（1）地盤の不等沈下による影響
－地盤の不等沈下による下位クラス施設の傾きや倒壊に伴う隣接した上位クラス施設への衝突
（2）建屋間の相対変位による影響
－上位クラス施設と下位クラス施設の建屋間の相対変位による隣接し た上位クラス施設への衝突
（2）上位クラス施設と下位クラス施設との接続部における相互影響
－機器•配管系において接続する下位クラス施設の損傷又は隔離に伴 う上位クラス施設側の系統のプロセス変化

- 下位クラス機器•配管系の損傷に伴う機械的荷重の影響
- 電気計装設備において接続する下位クラス施設の損傷に伴う電気回路及び信号伝送回路を介した悪影響
（3）建屋内における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響
－下位クラス施設の転倒，落下及び倒壊に伴う上位クラス施設への衝突
- 可燃物を内包した下位クラス施設の損傷に伴う火災
- 水•蒸気を内包した下位クラス施設の損傷に伴う溢水
（4）建屋外における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響
（1）施設の損傷，転倒，落下等による影響
－下位クラス施設の転倒，落下及び倒壊に伴う上位クラス施設への衝突
- 可燃物を内包した下位クラス施設の損傷に伴う火災
- 水•蒸気を内包した下位クラス施設の損傷に伴う溢水
（2）周辺斜面の崩壊による影響
－周辺斜面の崩壊による土塊の衝突
3.2 地震被害事例に基づく事象の検討

3．2．1 被害事例とその要因の整理
別記 2 に記載された事項のほかに考慮すべき事項がないかを確認する ため，原子力施設情報公開ライブラリ（NUCIA：ニューシア）から，同公開ライブラリに登録された以下の地震を対象に，原子力発電所の被害情報を抽出した。また，女川原子力発電所の不適合情報から地震による被害情報を抽出した。

これまでの被害事例において，下位クラス施設の破損等による波及的影響を含めて上位クラス施設の安全機能が損なわれる事象は確認され ていないため，被害事例は全て上位クラス施設以外のものとなるが，こ れらの地震被害の発生要因（原因）を整理し，3．1項で検討した波及的影響の具体的な検討事象に加えるべき新たな被害要因がないかを検討 した。

被害事例とその要因を整理した結果を添付資料2－1及び2－2に示す。
（対象とした情報）
（1）添付資料2－1

- 宮城県沖地震（女川原子力発電所：平成17年8月）
- 能登半島地震（志賀原子力発電所：平成19年3月）
- 新潟県中越沖地震（柏崎刈羽原子力発電所：平成19年7月）
- 駿河湾地震（浜岡原子力発電所：平成 21 年 8 月）
- 東北地方太平洋沖地震（東海第二発電所，福島第二原子力発電所：平成23年3月＊1）
＊1 NUCIA最終報告を対象とした（福島第二は一部中間報告を対象）。
（2）添付資料 2－2
－東北地方太平洋沖地震（女川原子力発電所：平成23年3月＊2）
＊2 不適合情報は合計 662 件と多数であるため，これまで当社ホーム ページや NUCIA 等で公表している件名について抜粋して添付資料 2－2に示す。事象検討としては 662 件全件について実施しており下記の I～VIに分類されることを確認している。

添付資料2－1 及び2－2の整理の結果，地震被害の発生要因は以下のI ～VIに分類された。
［地震被害発生要因］
I ：地盤の不等沈下（液状化による影響を含む）による損傷
II：建屋間の相対変位による損傷
III ：地震の揺れによる施設の損傷•転倒•落下等
IV：周辺斜面の崩壊
V：使用済燃料プールのスロッシングによる溢水

VI：その他（地震の摇れによる警報発信等，施設の損傷を伴わない I～ V以外の要因等）

3．2．2 追加考慮すべき事象の検討

上記 I～VIの要因が3．1項で整理した（1）～（4）の検討事項の対象となっ ているかを第3．2－1表に整理した。

第 3．2－1 表に示すとおり，I～Vの要因は（1）～（4）の検討事項に分類さ れており，いずれの検討事項にも分類されなかった要因は，「VI：その他（地震の揺れによる警報発信等，施設の損傷を伴わない I～V以外の要因等）」であつた。

要因VIについては，地震の揺れによる警報発信，機器の誤動作，避圧弁の動作等の要因並びに地震に起因する津波，火災及び溢水による要因 である。このうち警報発信，機器の誤動作，避圧弁の動作等については，施設の損傷を伴わない要因であることから，波及的影響の観点で考慮す べき検討事項には当たらないと判断した。また，津波，火災及び溢水に よる影響については，3．3項に示すとおり別途影響評価を実施している ことから，ここでは検討の対象外とする。

以上のことから，波及的影響評価における検討事項（1）～（4）について，地震による原子力発電所の被害情報から確認された発生要因を踏まえ ても，特に追加すべき事項がないことが確認された。

第 3．2－1 表 地震被害事例の要因と検討事象の整理

番号	波及的影響評価における検討事項		地震被害発生要因
（1）	設置地盤及び地震応答性状の相違等に起因する不等沈下又 は相対変位による影響	地盤の不等沈下による影響	I
		建屋間の相対変位による影響	II
（2）	上位クラス施設と下位クラス施設との接続部における相互影響	接続部における相互影響	II ，III
（3）	建屋内における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響	施設の損傷，転倒，落下等 による影響	III，V
（4）	建屋外における下位クラス施設の損傷，転倒，落下等による上位クラス施設への影響	施設の損傷，転倒，落下等 による影響	I ，III
		周辺斜面の崩壊による影響	IV

3.3 津波，火災及び溢水による影響評価

地震に起因する津波，火災及び溢水による安全機能又は重大事故等に対処 するために必要な機能を有する施設への影響については，それぞれ津波側，火災側及び溢水側の説明書で影響評価を実施する。

津波の影響評価では，必要な津波防護対策（S クラス）を講じることによ り，基準津波に対して施設の安全機能又は重大事故等に対処するために必要 な機能が損なわれるおそれがない設計としている。火災の影響評価では，地震による損傷の有無に関わらず，可燃物を内包している機器•配管系の全て が火災源となることを想定して施設の安全機能又は重大事故等に対処する ために必要な機能への影響評価を実施している。また，溢水の影響評価では，水又は蒸気を内包している下位クラスの機器•配管系について，基準地震動 S s に対する耐震性を確認できないものが溢水源となることを想定して施設の安全機能又は重大事故等に対処するために必要な機能への影響評価を実施することから，地震に起因する津波，火災及び溢水による波及的影響に ついては，これらの影響評価に包絡される。

3．4 周辺斜面の崩壊による影響評価
上位クラス施設については，基準地震動 S s による地震力により周辺斜面 の崩壊の影響がないことが確認された場所に設置する。具体的には「原子力発電所耐震設計技術指針 JEAG4601－1987」，「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術」及び「宅地防災マニュアルの解説」を参考に，個々 の斜面高さを踏まえて対象斜面を抽出する。

上記に基づく対象斜面の抽出とその耐震安全性評価については，「女川原子力発電所第2号炉耐震重要施設及び常設重大事故等対処施設の基礎地盤及 び周辺斜面の安定性評価について」に記載しており，上位クラス施設の機能 に対して影響がないことを確認している。また，上位クラス施設への波及的影響を及ぼすおそれのある下位クラス施設については，周辺斜面の崩壊によ る影響が無いことを確認した。確認方針，状況について添付資料3に示す。
3.5 液状化による影響評価

液状化による影響のらち不等沈下については，検討事項（1）に含まれるが， その他の被害想定として，浮き上がり及び側方流動による影響を確認する。

上位クラス施設への波及的影響を及ぼすおそれのある下位クラス施設に ついては，敷地内の地下水位を適切に反映した上で，基準地震動S s に対し て浮き上がり及び側方流動による変位によって，上位クラス施設への影響が ないことを6．4項で確認する。

4．上位クラス施設の確認
波及的影響評価を実施するに当たつて，防護対象となる上位クラス施設は以下のとおりとする。
（1）設計基準対象施設のうち，耐震Sクラス施設（津波防護施設，浸水防止設備及び津波監視設備を含む。）
（2）（1）の間接支持構造物である建物•構築物
（3）屋外重要土木構造物
（4）重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）及び常設重大事故緩和設備（設計基準拡張）
（5）（4）が設置される常設重大事故等対処施設（間接支持構造物である建物•構築物）

建屋外の上位クラス施設一覧を第4－1表に，建屋内の上位クラス施設一覧を第 4－2 表に示す。表中に記載の整理番号について附番方法は以下のとおりであ る。

例）$\underline{0} \underline{001}$
（1）（2）
（1）：設備の種類を表すアルファベットの分類記号で，以下のとおり設備種別 ごとに設定する。
0•••屋外設備
E•••機器配管系設備
V•••弁
B•••電気盤，制御盤
I•••計測制御設備
（2）：（1）で分類した設備種別ごとに 001 番から順次附番する。

また，表中では原子炉建屋を R／B，制御建屋を C／B と表記する。設置場所に記載している番号は第6．3－1図に示すエリア番号と対応している。

第4－1表 女川 2 号機 建屋外上位クラス施設一覧表（ $1 / 2$ ）

整理 番号	建屋外上位クラス施設	区分
0001	原子炉補機冷却海水ポンプ	Sクラス SA施設
0002	原子炉補機冷却海水系配管	Sクラス SA施設
0003	RSWポンプ吐出逆止弁	Sクラス SA施設
0004	RSWポンプ吐出弁	Sクラス SA施設
0005	RSWポンプ吐出連絡管止め弁	Sクラス SA施設
0006	高圧炉心スプレイ補機冷却海水ポンプ	Sクラス SA施設
0007	高圧炉心スプレイ補機冷却海水系スト レーナ	Sクラス SA施設
0008	高圧炬心スブレイ補機冷却海水系配管	Sクラス SA施設
0009	HPSWポンプ吐出逆止弁	Sクラス SA施設
0010	HPSWポンプ吐出弁	Sクラス SA施設
0011	非常用ガス処理系配管	Sクラス SA施設
0012	原子炬格納容器下部注水系配管	SA施設
0013	原子炬補機代替冷却水系配管	SA施設
0014	原子炉格納容器代替スプレイ泠却系配管	SA施設
0015	可搬型窒素ガス供給系配管	SA施設
0016	燃料プール代替注水系配管	SA施設
0017	原子炬格納容器フィルタベント系配管	SA施設
0018	ガスタービン発電設備燃料移送ポンプ	SA施設
0019	ガスタービン発電設備燃料移送系配管	SA施設
0020	復水貯蔵タンク外部注水入口升	SA施設
0021	復水貯蔵タンク	SA施設
0022	復水貯蔵タンク水位計器架台	SA施設
0023	RSWポンプ出口圧力計器架台	Sクラス
0024	HPSWポンブ出口圧力計器架台	Sクラス
0025	排気筒	Sクラス SA施設
0026	防潮堤	Sクラス

整理 番号	建屋外上位クラス施設	区分
0027	防潮壁	Sクラス
0028	逆流防止設備	Sクラス
0029	水密扉	Sクラス
0030	浸水防止蓋	Sクラス
0031	逆止弁付ファンネル	Sクラス
0032	貫通部止水処置	Sクラス
0033	津波監視カメラ	Sクラス
0034	取水ピット水位計	Sクラス
0035	原子炉建屋	Sクラス 間接支持構造物 SA施設
0036	制御建屋	間接支持構造物
0037	海水ポンプ室	屋外重要土木構造物間接支持構造物 SA施設
0038	軽油タンク室	屋外重要土木構造物間接支持構造物
0039	復水貯蔵タンク基硔	SA施設間接支持構造物
0040	軽油タンク連絡ダクト	屋外重要土木構造物間接支持構造物
0041	排気筒連絡ダクト	屋外重要土木構造物間接支持構造物
0042	原子炉機器冷却海水配管ダクト	屋外重要土木構造物間接支持構造物
0043	緊急用電気品建屋	SA施設間接支持構造物
0044	ガスタービン発電設備軽油タンク室	SA施設間接支持構造物
0045	緊急時対策建屋	SA施設間接支持構造物
0046	取水口	屋外重要土木構造物 SA施設
0047	取水路	屋外重要土木構造物 SA施設
0048	3 号機海水熱交換器建屋	間接支持構造物
0049	無線連絡設備（屋外アンテナ）	SA施設
0050	衛星電話設備（屋外アンテナ）	SA施設
0051	無線通信装置	SA施設
0052	取放水路流路縮小工	Sクラス

第 4－1 表 女川 2 号機 建屋外上位クラス施設一覧表（2／2）

整理 番号	建屋外上位クラス施設	区分
0053	浸水防止壁	Sクラス
0054	揚水井戸	間接支持構造物

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（ $1 / 8$ ）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施毅（機器－配管）	区分	設置建屋	設置場所
E001	燃料集合体	Sクラス	R／B	PCV内
E002	原子炬圧力容器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E003	炬心支持構造物	Sクラス SA施設	R／B	PCV内
E004	原子炬压力容器支持権造物	Sクラス	R／B	PCV内
E005	原子炬圧力容器付属㮔造物	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E006	原子炬圧力容器内部構造物	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E007	使用斎䀆料プール	Sクラス SA施設	R／B	R－301
E008	使用济燃料眝蔵ラック	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－301
E009	制御棒•破椇煤料眝蔵ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	R－301
E010	原子炬再循哝ボンブ	Sクラス	R／B	PCV内
E011	原子炬再循閙系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E012	主蒸気逃がし安全升逃がし升機能用ア キュムレータ	Sクラス SA施設	R／B	PCV内
E013	主蒸気逃がし安全弁自動減圧機能用ア キュムータ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E014		Sクラス	R／B	PCV内
E015		Sクラス	R／B	R－B104
E016	主蒸気系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E017	復水給水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E018	残留熱除去系熱交换器	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－104
E019	残留熱除去系ポンブ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	$\begin{array}{\|c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \\ \hline \end{array}$
E020	残留熱除去系ストレーナ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E021	残留敗除去系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E022	高圧炬心スプレイ系ポンブ	$\begin{array}{\|c\|c\|} \hline \text { Sクラス } \\ \text { SA施設 } \end{array}$	R／B	R－B306
E023	高压炬心スプレイ系ストレーナ	Sクラス SA施設	R／B	PCV内
E024	高压炬心スプレイ系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E025	低圧炬心スプレイ系ポンブ	Sクラス SA施設	R／B	R－B303
E026	低圧炬ふスプレイ系ストレーナ	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	PCV内
E027	低压炬心スプレイ系配管	$\begin{array}{\|c\|} \hline \begin{array}{l} \text { Sクラ } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	－
E028	原子炉陮維時洽却系ポンブ	Sクラス SA施設	R／B	R－B307
E029	原子炬隔離時冷却系ポンプ駆動用タービ ン	Sクラス SA施設	R／B	R－B307
E030	原子炬椭㯙時冾却系配管	Sクラス SA施設	R／B	－
E031	原子炉補機洽却水系熱交换器	$\begin{array}{\|c} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$
E032	原子炬補機洽却水ポンブ	$\begin{array}{\|l\|l\|} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
E033	原子炬補機冷却水サージタンク	Sクラス SA施設	R／B	R－301
E034	原子炬補機洽却水系配管	Sクラス SA施設	R／B	－
E035	原子炉袻機冷却海水系ストレーナ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$
E036	原子炬補機汾却海水系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E037	高圧炬心スプレイ補機洽却水系熱交换器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B310
E038	高圧炬心スブレイ補機洽却水ポンブ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B310
E039	高圧炬心スブレイ補機冾却水サージタン ク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－206
E040	高王炬心スプレイ補機洽却水系配管	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E041	高圧炬心スプレイ補機洽却海水系配管	$\begin{array}{\|c} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	－
E042	原子炬洽却材净化系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－
E043	制澥㭙駩動機構	Sクラス SA施設	R／B	PCV内
E044	水圧制御コニット	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B103, } \\ \text { B106 } \end{gathered}$
E045	制御楮歌動水圧系配管	Sクラス SA施設	R／B	－

整理	建屋内上位クラス施設（機器•配管）	区分	設置建屋	設置場所
E046	ほう酸水注入系ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－206
E047	ほう酸水注入系拧蔵タンク	Sクラス SA施設	R／B	R－206
E048	ほう酸水注入系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E049	放射性ドレン移送系配管	sクラス	R／B	－
E050	燃料プール洽却浄化系ポンプ	SA施設	R／B	R－105
E051	鿭料プール洽却浄化系熱交撸器	SA施設	R／B	R－105
E052	燃料プール洽却浄化系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E053	换気空調補機常用洽却水系配管	sクラス	R／B	－
E054	換気空澗補機彗常用冾却水系配管	sクラス	$\begin{aligned} & \mathrm{R} / \mathrm{B} \\ & \mathrm{C} / \mathrm{B} \end{aligned}$	－
E055	補給水系配管	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E056	高圧窒素かス供給奚配管	Sクラス SA施設	R／B	－
E057	所内用圧縮空気系配管	sクラス	R／B	－
E058	㖕装用压縮空気系配管	sクラス	R／B	－
E059	サンブリンク配管	Sクラス	R／B	－
E060	高圧窒素ガス供給系窒素ガスボンベラッ 为	sクラス	R／B	$\begin{gathered} \mathrm{R}-110, \\ 111 \end{gathered}$
E061	中央制御室送風機	Sクラス $\mathrm{SA} \text { 施設 }$	C／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$
E062	中央制御室排風機	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	$\begin{gathered} \hline \text { C-B201, } \\ \text { B202 } \\ \hline \end{gathered}$
E063	中央制御室再循潣送風機	Sクラス SA施設	C／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$
E064	中央制御室再循䁵フイルタ装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	C－B201
E065	ドライウェル	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E066	ドライウェルバント開口部	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E067	サプレッションチェンバ	Sクラス SA 施設	R／B	PCV
E068	ボックスサポート	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B302
E069	機器搬出入用ハッチ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E070	逃がし安全弁缎出入口	sクラス SA施設	R／B	PCV
E071	制御枰䭼動機機搬出入口	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E072	所員用エアロック	Sクラス SA施設	R／B	PCV
E073	原子炉格納容器配管貫通部	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV
E074	原子炉格納容器電気配線貫通部	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	PCV
E075	ダウンカマ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E076	バント管	Sクラス SA施設	R／B	PCV
E077	ベント管ベローズ	$\begin{array}{\|c} \text { Sクラス } \\ \text { SA施設 } \end{array}$	R／B	PCV
E078	ベントヘッダ	$\begin{gathered} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{gathered}$	R／B	PCV内
E079	真空破壊装置	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E080	サプレッションチェンバスプレイ管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	PCV内
E081	ドライウェルスブレイ管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
E082	原子炉格納容器スタビライザ	$\begin{array}{\|c} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	PCV内
E083		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
E084	非常用力ス処理系排風幾	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
E085	非常用かス処理系空氧乾㷘装置	Sクラス SA施設	R／B	R－205
E086	非常用かス処理系フィルタ装置	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
E087	非常用力ス处理系配管	$\begin{array}{\|c} \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	－
E088	可燃性カス濃度制御系再結合装置ブロワ	sクラス	R／B	R－206
E089	可燃性力ス濃度制御系再結合装置	sクラス	R／B	R－206
E090	可燃性カス嘖度制御系配管	sクラス	R／B	－

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（2／8）

$\begin{aligned} & \text { 整理 } \end{aligned}$	建屋内上位クラス施設（機器•配管）	区分	設置建屋	設置场所
E091	非常用ディーゼル発電設備非常用ディー ぜル機関	Sクラス SA施設	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$
E092	非常用ディーゼル発電設橵空気だめ	Sクラス SA施設	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$
E093	非常用ディーゼル発電設恠燃料デイタン ク	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－203
E094	非常用ディーゼル発電設備非常用ディー ぜル発電機	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$
E095	非常用ディーゼル発電設備清水膨張タン ク	$\begin{aligned} & \text { Sクラ } \\ & \text { SA施設 } \end{aligned}$	R／B	$\underset{M 203}{\mathrm{R}-\mathrm{M} 201,}$
E096	非常用ディーぜル発電設偳清水加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \\ \hline \end{gathered}$
E097	非常用デイーゼノ発電設儲清水洽却器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \hline \text { R-B108, } \\ \text { B110 } \\ \hline \end{gathered}$
E098	非常用ディーぜル涨電設葓滑滑油加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E099	非常用ディーゼル発電設備清水加熱器ポ ンブ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E100	非常用ディーゼル発電設備润滑油ブライ ミングポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E101	非常用ディーゼル発電設備䀳滑油サンプ タンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-109, } \\ 111 \end{gathered}$
E102	非常用ディーゼル涨電設偁滑滑油洽却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E103	非常用ディーゼル発電設備㵎滑油フィル夕	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
E104	非常用ディーゼル発電設借燃料油フィル夕	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	$\begin{gathered} \mathrm{R}-109, \\ 111 \end{gathered}$
E105	非常用ディーゼル発電設備燃料移送ポン プ	$\begin{aligned} & \text { SYラス } \\ & \text { SA施設 } \end{aligned}$	軽油タンク室	D0－B102
E106	非常用ディーゼル発電設恠燃料移送系配管	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	$\begin{gathered} \text { R/B } \\ \text { 軽油タンク室 } \end{gathered}$	－
E107	高圧炬ふスプレイ系ディーゼル発電設備高圧灯心スブレイ系ディーゼル機関	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E108	高圧炬心スプレイ系ディーゼル発電設備空気だめ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E109	高圧炬心スブレイ系ディーゼル発電設備燃料デイタンク	$\begin{aligned} & \text { sクラ } \\ & \text { SA施設 } \end{aligned}$	R／B	R－203
E110	高圧炬心スブレイ系ディーゼル発電設備高圧炬心スブレイ系ディーゼル発電機	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E111	高圧炬心スブレイ系ディーゼル発電設備清水髫張タンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－M202
E112	高圧炬心スプレイ系ディーゼル発電設備清水加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E113	高圧炬心スプレイ系ディーゼル発電設備清水洽却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E114	高圧炬心スブレイ系ディーゼル発電設備眮滑油加熱器	$\begin{aligned} & \text { sクラ } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E115	高圧炬心スブレイ系ディーゼル発電設備清水加熱器ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E116	高圧炉心スブレイ系ディーゼル発電設備潤滑油プライミングポンブ	Sクラス SA施設	R／B	R－110
E117	高圧炬ふスプレイ系ディーゼル発電設備润滑油洽却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E118	高圧炬心スプレイ系ディーゼル発電設備燃料油フィルタ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－110
E119	高圧炬心スブレイ系ディーゼル発電設僙燃料移送ボンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	軽油タンク室	D0－B102
E120	高圧炬心スブレイ系ディーゼル発電設備発電機軸受閴滑油洽却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
E121	高圧炬心スブレイ系ディーゼル発電設備燃料移送系配管	$\begin{aligned} & \text { Sクララス } \\ & \text { SA施設 } \end{aligned}$	$\begin{aligned} & \text { 軽油タンク } \end{aligned}$	－
E122	㹩油タンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	軽油タンク室	D0－B101
E123	SGTS室空湘機	sクラス	R／B	R－205
E124		Sクラス	R／B	R－206
E125	CAMS室空調機	sクラス	R／B	R－205
E126	FPCポンプ室空詷機	Sクラス	R／B	R－105
E127	LPCSポンプ室空調機	sクラス	R／B	R－B203
E128	HPCSポンプ室空澗機	sクラス	R／B	R－B206
E129	RHRポンプ室空墭機	sクラス	R／B	$\begin{array}{\|c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \\ \hline \end{array}$
E130	D／G室非常用給気ケーシンク	sクラス	R／B	R－303
E131	换気空澗補機非常用洽却水系洽水ポンプ	Sクラス	R／B	R－202
E132	換気空懱補機非常用洽却水系洽涑機	Sクラス	R／B	R－202
E133	原子炬補機（A）宔送風機	Sクラス	R／B	R－203
E134	原子炬補機（A）室給気ヶーシング	sクラス	R／B	R－203
E135	原子炉補機（HPCS）室送風機	sクラス	R／B	R－203

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施設（機器•配管）	区分	設置建屋	設置場所
E136	原子炬補機（HPCS）室排風機	sクラス	R／B	R－203
E137	原子炬補機（HPCS）室給気ケーシンク	sクラス	R／B	R－203
E138	原子炉補機（B）室送風機	Sクラス	R／B	R－203
E139	原子炬補機（B）室給気ケーシンク	sクラス	R／B	R－203
E140	D／G（ A ）室非常用送風機	sクラス	R／B	R－203
E141	$\mathrm{D} / \mathrm{G}(\mathrm{HPCS})$ 室非常用送風機	sクラス	R／B	R－203
E142	$\mathrm{D} / \mathrm{G}(\mathrm{B})$ 室非常用逆風機	sクラス	R／B	R－203
E143	原子炉補機（ A ）室排風機	sクラス	R／B	R－M203
E144	原子炉補機（ ） 室排風機 $^{\text {a }}$	sクラス	R／B	R－M201
E145	RCWポンプ（A）室空敛機	sクラス	R／B	R－B308
E146	RCWポンプ（B）室空敛機	sクラス	R／B	R－B309
E147	中央制御室給気ケーシンク	Sクラス	C／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$
E148	䛨測制御電源室給気ケーシング	sクラス	C／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \end{gathered}$
E149		Sクラス	C／B	C－B201
E150	計澌制狏電源 (A) 室排風機	Sクラス	C／B	C－B201
E151	計測制狏電源（ B ）室送風機	sクラス	C／B	C－B202
E152		sクラス	C／B	C－B202
E153	中央制御室換気空䛛系多クト	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	－
E154	計測制御電源（A）宔换気空澗系ダクト	sクラス	C／B	－
E155	計测制狏電源（B）室換気空調系多クト	sクラス	C／B	－
E156	スキマサージタンク	SA施設	R／B	R－301
E157	高圧代替注水系タービンポンブ	SA施設	R／B	R－B207
E158	高圧代替注水系配管	SA施設	R／B	－
E159	代耆高圧窒素力ス供給系配管	SA施設	R／B	－
E160	復水移送込ンブ	SA施設	R／B	R－B207
E161	$\begin{aligned} & \text { 原子炉格納容器フィルタベント系フィル } \\ & \text { 装装 } \end{aligned}$	SA施設	R／B	R－106
$E 162$	原子炬格納容器フイルタベント系フィル 夕装置出口側圧力開放板	SA施設	R／B	R－106
E163	原子炉格納容器フイルタバント系配管	SA施設	R／B	－
E164	静的能媒式水素再結合装置	SA施設	R／B	R－301
${ }^{\text {E165 }}$	ガスタービン発電設備機関•発電機	SA施設	$\begin{gathered} \text { 緊急用電気品 } \\ \text { 屋 } \end{gathered}$	E－101
E166	カススタービン発電設偳怪油タンク	SA施設	ガスタービン発電設備軽油タンク室	E0－B101
${ }^{16} 167$	ガスタービン発電設備燃料移送系配管	SA施設	ガスタービン発電設備軽油タンク室緊急用電気品建屋	－
E168	カスタービン発電設偙燃料小出槽	SA施設	$\begin{gathered} \text { 緊急用電気品 } \\ \text { 建 } \\ \hline \end{gathered}$	E－101
E169	中央制御室しやへい壁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	c－301
E170	中央制饰室待磁所遮蔽	SA施設	C／B	C－301
E171	中央制御室待避所加圧設備	SA施設	C／B	C－302
E172	緊急時対策所遮蔽	SA施設	緊急時対策建屋	TS－B203
E173	緊急時対策所非常用送風機	SA施設	緊急時対策建屋	TS－102
E174	緊急時対策所非常用フィルタ装置	SA施設	緊急時対策建屋	TS－102
E175		SA施設	緊急時対策建屋	TS－B102
E176	緊急時対策所换気空調系ダクト	SA施設	緊急時対策建屋	－
E177	緊急時対策所鏗油タンク	SA施設	緊急時対策建屋	TS－106
E178	緊急時対策所燃料移送系配管	SA施設	緊急時対策建屋	－
E179	代替陮噮洽却ポンフ	SA施設	R／B	R－B301
E180	原子炬建屋プローアウトパネル	SA施設	R／B	R－302

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（3／8）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施設（機器•配管）	区分	設置建屋	設置場所
E181	原子炬建屋プローアウトパネル閉止装置	SA 施設	R／B	R－302
E182	直流駆動低圧注水系ポンブ	SA施設	R／B	R－B310
E183	直流駆動低圧注水系配管	SA施設	R／B	－
E184	遠隔手動升操作設備	SA施設	R／B	$\begin{gathered} \text { R-111, } \\ \text { B109 } \end{gathered}$
E185	緊急時対策所非常用給排気配管	SA施設	緊急時対策建屋	－
E186	原子炬棟換気空調系ダクト （二次格納施設バウンダリ）	Sクラス	R／B	－
E187	燃料プール代替注水系配管	SA施設	R／B	－
E188	燃料プールスプレイ系配管	SA施設	R／B	－
E189	原子炬補機代替冾却水系配管	SA施設	R／B	－
E190	原子炬格納容器下部注水系配管	SA施設	R／B	－
E191	原子炬格納容器代替スブレイ洽却系配管	SA施設	R／B	－
E192	代替循澴洽却系配管	SA施設	R／B	－
E193	可搬型空素ガス供給系配管	SA施設	R／B	－

整理号	建屋内上位クラス施陪（弁）	区分	設置建屋	設置場所
V001	主蒸気逃がして安全弃	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
v002	主蒸気第一隔髉并	sクラス	R／B	PCV内
v003	主蒸気第二隔雎尣	sクラス	R／B	R－B104
v004		sクラス	R／B	PCV内
v005	主蒸気ドレンライン第二限荿亣	sクラス	R／B	R－B104
vo06	原子炉給水逆止弁	sクラス	R／B	R－B104
v007		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B104
V008		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
v009	SLCタンク出口弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－206
v010	SLC注入電動弁	Sクラス SA施設	R／B	R－206
v011	RHRポンプS／（吸込弁	Sクラス SA施設	R／B	$\begin{array}{\|c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$
V012	RHRポンプ吐出逆止弁	Sクラス SA施設	R／B	$\begin{array}{c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$
V013	RHR熱交换器バイパス弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－104
V014		Sクラス SA施設	R／B	$\underset{\substack{\text { R-MB102 }}}{ }$
v015	RHR LPCI 注入柕験可能逆止弁	Sクラス SA施設	R／B	PCV内
V016	RHR熱交换器出口升	sクラス SA施設	R／B	R－104
V017	RHR格納容器スブレイ流量讕整弃	Sクラス SA施設	R／B	R－105， 107
V018		$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－105， 107
V019		Sクラス SA施設	R／B	R－MB201
vo20	RHR 停止時冷却吸込第一埛皿尣	Sクラス SA施設	R／B	PCV内
v021	RHR停止時洽却吸込第二筬䧹尣	Sクラス SA施設	R／B	R－MB201
V022	RHRポンプ停止時洽却吸込弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B304, } \\ \text { B305 } \end{gathered}$
vo23	RHR停止時冾却注入䧩能弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
v024	RHR停止時冷却試検可能逆止弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
v025	RHRヘッドスプレイ注入啊雎尣	sクラス	R／B	R－105
v026	RHRヘッドスブレイ注入逆止升	sクラス	R／B	PCV内
v027	RHRポンプミニマムフロー甤止弁	sクラス	R／B	$\begin{array}{c\|} \hline \text { R-B304, } \\ \text { B305, B307 } \end{array}$
V028	RHRポンプミニマムフロー弁	Sクラス SA施設	R／B	R－MB201
v029	LPCSポンプS／吸达弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B303
v030	LPCSポンプ吐出逆止弁	Sクラス SA施設	R／B	R－B303
v031	LPCS注入㞺睢弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB103
v032	LPCS注入ライン試験可能通止弁	Sクラス SA施設	R／B	PCV内
v033	LPCSポンプミニマムフロー逆止弁	Sクラス	R／B	R－B303
v034	LPCSポンプミニマムフロー弁	sクラス	R／B	R－MB201
v035	HPCSポンブCST吸达弁	Sクラス SA施設	R／B	R－B306
v036	HPCSポンプCST吸込逆止弃	Sクラス SA施設	R／B	R－B306
v037		$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB103
v038	HPCS注入ライン試験可能逆止弁	Sクラス SA施設	R／B	PCV内
v039	HPCSポンプ $\mathrm{S} /$ 吸达弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B306
v040	HPCSポンプS／C吸込逆止弁	Sクラス SA施設	R／B	R－B306
v041	HPCSポンプCST侧ミニマムフロー第一弁	sクラス	R／B	R－MB201
V042	HPCSポンプS／C侧ミニマムフロー弁	sクラス	R／B	R－MB201
V043	RCICポンプCST吸达弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307
V044	RCICポンブCST吸达逆止弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307
v045	RCIC注入弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201

第4－2表 女川 2 号機 建屋内上位クラス施設一覧表（4／8）

整理	建屋内上位クラス施設（弁）	区分	設置建屋	設置场所
v046	RCIC注入ライン識酫可能逆止弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
V047	RCICポンブS／C吸込升	sクラス	R／B	R－B307
V048	RCICポンプS／C吸达逆止弁	sクラス	R／B	R－B307
v049		Sクラス SA施設	R／B	PCV内
v050		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－105
v051	RCICタービン止め弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307
v052	RCICタービン排気ライン逆止弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B202
v053	RCICタービン排気ライン陑催亣	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B202
V054	RCICポンプミニマムフロー逆止弁	Sクラス	R／B	R－B307
v055	RCICポンプミニマムフロー弁	sクラス	R／B	R－B202
v056	RCIC洽却水ライン止め升	Sクラス	R／B	R－B307
V057	RCIC洽却水ライン圧力罵整弁	Sクラス	R／B	R－B307
v058	RCIC真空ポンプ吐出ライン逆止弁	sクラス	R／B	R－B202
v059		Sクラス	R／B	R－B202
v060	CUWスロライン第一谝雖弁	Sクラス	R／B	PCV内
v061	CUWスロライン第二隃離弁	sクラス	R／B	R－MB201
V062	CUW注入ライン逆止升	sクラス	R／B	R－MB201
V063	FPC鴙料プール再循睘逆止并	Sクラス SA施設	R／B	R－105
V064	FPC鿭料プール注入逆止弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－301
v065	D／W LCWサンプ第一陑墭弁	sクラス	R／B	PCV内
v066	D／W LCWサンプ第二陑瀊弁	sクラス	R／B	R－MB201
v067	D／W HCWサンブ第一陑衄交	sクラス	R／B	PCV内
v068	D／W HCWサンプ第二陑瀊弁	sクラス	R／B	R－MB201
V069	FPMUUW然料ナール注入弁	sクラス	R／B	R－106
v070		sクラス	R／B	R－B105
v071		Sクラス	R／B	PCV内
V072		sクラス	R／B	R－B105
v073	中央制御室給気汾却コイル温度铖節升	sクラス	R／B	C－B202
v074	HECCY往還差圧調節弁	Sクラス	R／B	R－202
v075	詁測制御電源室給気洽却コイル温度調節 而	sクラス	R／B	$\begin{gathered} \text { C-B201, } \\ \text { B202 } \\ \hline \end{gathered}$
v076	原子炻補機室給気洽却コイル温度調節弁	sクラス	R／B	R－203
v077	RCWポンブ跇出逆止弁	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v078	RCW熱交換器冷却水出口弁	Sクラス SA施設	R／B	R－B308， B309
v079	RCW洽却水供給温度熱交换器镝節升	Sクラス SA施設	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v080	RCW洽却水供給温度調節升後弃	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v081	RCW洽却水供給温度ポンプ調節弁	Sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v082	RHR熱交換器冷却水出口弁	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	R－104
V083	RCWサージタンク非常用補給水弁	Sクラス	R／B	R－301
v084	非常用D／G洽却水出口弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B108, } \\ \text { B110 } \end{gathered}$
v085	RCW常用洽却水緊急しゃ断异	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V086	RCW常用洽却水供給側分㬚升	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v087	RCW常用洽却水戻り側分敞弁	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \\ \hline \end{gathered}$
V088	RCW常用洽却水戻り側逆止并	sクラス	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
v089		Sクラス	R／B	R－MB201
v090		sクラス	R／B	PCV内

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施設（弁）	区分	設置建屋	設置場所
v091		sクラス	R／B	PCV内
vo92		sクラス	R／B	R－MB201
v093	原子炉補機冷却海水系ストレーナ旋回弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B308, } \\ \text { B309 } \end{gathered}$
V094	RSIIストレーナブロー升	sクラス	R／B	$\begin{gathered} \mathrm{R}-\mathrm{B} 308, \\ \text { B309 } \end{gathered}$
v095	HPCWサージタンク非常用補給水升	sクラス	R／B	R－206
v096	HPIN非常用室素かスス昇	sクラス SA施設	R／B	R－110， 111
V097	HPIN常用非常用窒素かス連絡弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－106， 107
v098	非常用カス処理系入口升	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－301
v099	非常用力ス处理系空気喤燥装置入口弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
V100	非常用かス処理系フイルタ装置出口升	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
V_{101}	パージ用空気供給啲滑雉交	sクラス	R／B	R－B103
${ }^{\text {V102 }}$	D／Nパージ用入口隔㒀弁	sクラス	R／B	R－MB201
${ }^{\text {V103 }}$		sクラス	R／B	R－MB201
${ }^{\text {V104 }}$	格納容器外真空逃がし逆止䧀鹤尣	sクラス	R／B	R－MB201
V105		sクラス	R／B	R－MB201
${ }^{\text {V106 }}$		sクラス	R／B	R－MB201
V107		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
${ }^{\text {V108 }}$		sクラス	R／B	R－MB201
V109	パージ用室素力ス供給侀第二帢㦃弁	sクラス	R／B	R－B103
V110		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－107
V111		sクラス	R／B	R－205
V112	ベント用HVAC側限催尣	sクラス	R／B	R－107
V113	S／Cベント用出口谝滴弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	R－MB201
${ }^{\text {V114 }}$		sクラス	R／B	R－107
V115		sクラス	R／B	R－MB201
V116		$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
V117	PCV耐圧強化ベント用連絡配管止め弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
${ }^{\text {V118 }}$		sクラス	R／B	R－106， 107
V119		sクラス	R／B	R－MB201
V120	RCICタービン入口蒸気ドレンライン第一弁	sクラス	R／B	R－B307
V121	RHRヘッドスプレイライン洗浄流量铫節弃	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB101
V122	RHR B系格納容器椧却ライン洗浄流量調整弁	SA施陪	R／B	R－107
${ }^{\text {V123 }}$	原子炉再循澴ポンプ吐出弁	sクラス	R／B	PCV内
V124	RHR詞験用铖整尣	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－MB201
${ }^{\text {V125 }}$	CRR復水入口升	SA施陪	R／B	R－3211
V126	WUWCサンブリング取出止め弁	SA施設	R／B	R－B207
V127	$\begin{aligned} & \text { 復水眝蔵タンク常用, 非常用給水管連絡 } \\ & \text { ライン升 } \end{aligned}$	SA施設	R／B	R－B307
V128	FPMUWポンブ吸达弁	SA施設	R／B	R－B307
V129	復水貯蔵タンク常用，非常用給水管連絡 ライン逆止弁	SA施設	R／B	－
${ }^{\text {V130 }}$	R／B 1F 緊急時阿䉮交	SA施設	R／B	R－104
V131	緊急時原子炉北側外部注水入口升	SA施設	R／B	R－109
V132	T／B 緊急時䧟髉弁	$\mathrm{SA}_{\text {施設 }}$	R／B	R－B207
${ }^{\text {V133 }}$	緊急時原子炉束側外部注水入口弁	SA施設	R／B	R－111
${ }^{\text {V134 }}$		SA施設	R／B	R－206
V135	FCVS窒素供給ライン止め并	SA施設	R／B	－

第4－2表 女川 2 号機 建屋内上位クラス施設一覧表（5／8）

$\begin{aligned} & \text { 䔩理号 } \end{aligned}$	建屋内上位クラス施設（开）	区分	設置建屋	設置場所
V136	FCVS側PSA窒素供給ライン元弁	SA施設	R／B	－
V137	S／C側PSA窒素供給ライン第一陑離弁	SA施設	R／B	R－B202
V138	FPC熱交換器入口升	SA施設	R／B	R－105
V139	FPCろ過脱塩装置バイパス弁	SA施設	R／B	R－M204
V140	FPC 万 過脱塭装置出口弁	SA施設	R／B	R－M204
V141	FPCろ過脱塩装置入口第一弁	SA施設	R／B	R－M204
V142	FPCろ過脱塩装置入口第二弁	SA施設	R／B	R－M204
V143	中央制御室換気空調系ダンパ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	－
V144	HPAC注入升	SA施設	R／B	R－B207
V145	HPACタービン止め弁	SA施設	R／B	R－B207
V146	RCIC蒸気供給ライン分離弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B103
V147	FPC熱交換器洽却水出口升	Sクラス SA 施設	R／B	R－105
V148	HECW泠凁機洽却水圧力調節异	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
V149	RCW代替冷却システム用電動仕切弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－
V150	FCVS排水移送ライン第二隔離弁	SA施設	R／B	－
V151	FCVS排水移送ライン第一隔離弁	SA施設	R／B	－
V152	原子炉格納容器下部注水用復水流量調整弁	SA施設	R／B	R－B103
V153	原子炬格納容器下部注水用復水仕切弁	SA施設	R／B	R－B103
V154	代替制御棒挿入機能用電磁异	SA施設	R／B	$\begin{gathered} \text { R-B103, } \\ \text { B106 } \\ \hline \end{gathered}$
V155	HPAC蒸気供給ライン分離卉	SA施設	R／B	R－B103
V156	代替HPIN室素排気出口升	SA施設	R／B	R－107
V157	代替HPIN第一隔離升	SA施設	R／B	R－107
V158	DCLIポンブ吸込弁	SA施設	R／B	R－B306
V159	DCLI注入流量調整弁	SA施設	R／B	R－B306
V160	R／B BIF 緊急時隔離弁	SA施設	R／B	R－B106
V161	RCW代替冾却水不要負荷分離升	SA施設	R／B	$\begin{gathered} \text { R-MB301, } \\ \text { MB202 } \end{gathered}$
V162	RHR格納容器代替スプレイ注入元弁	SA施設	R／B	R－109， 111
V163	代替循澴椧却ポンブ吸込弁	SA施設	R／B	R－B302
V164	代替看澴洽却ポンプ流量棡整弁	SA 施設	R／B	R－B302
V165	代替看環洽却ポンブバイパス弁	SA施設	R／B	R－B301
V166	RHR MUWC連絡第一弁	SA施設	R／B	R－104
V167	RHR MUWC連絡第二升	SA施設	R／B	R－104

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施設（電気盤等）	区分	設置建屋	設置場所
B001	460v制䛫建屋モータコントロールセンタ	Sクラス SA施設	C／B	C－B105
B002	${ }^{125 V}$ 蓄電池	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	$\begin{aligned} & C / B \\ & \mathrm{R} / \mathrm{B} \end{aligned}$	$\begin{gathered} \text { C-B205, B102, } \\ \text { B106, MB101, } \\ \text { R-M202 } \\ \hline \end{gathered}$
B003	125V直流受電パワーセンタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	C－B105
B004	125 V 充電器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	$\begin{aligned} & C / B \\ & \text { R/B } \end{aligned}$	$\begin{aligned} & \text { C-B105 } \\ & \text { R-B109 } \end{aligned}$
B005	${ }^{125 v}$ V直流主母綵盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	$\begin{aligned} & \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \end{aligned}$	$\begin{gathered} \hline \text { C-B105 } \\ \text { R-B109, } 101 \end{gathered}$
B006	${ }^{125 V}$ 直流分電盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	$\begin{aligned} & C / B \\ & \mathrm{R} / \mathrm{B} \end{aligned}$	$\begin{aligned} & \text { C-B105 } \\ & \text { R-B109 } \end{aligned}$
B007	無停電交流電源用静止型無停電電源䧇置	sクラス	C／B	C－B105
B008	交流 120 V 無佇電交流分電艋	sクラス	C／B	C－B105
B009	中央制御室用電源切替艦	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	C－B105
B010	中央制御室 $120 V$ 交流分電艋	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	C－B105
B011	6.9 kV メタタラ	sクラス SA施設	R／B 緊急用電気品 $\substack{\text { 緊急時対策建屋 }}$	$\begin{gathered} \text { R-B107, B109, } \\ 204, \text { E- } \\ \text { B101, TS-104 } \end{gathered}$
B012	460Vパワーセンタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B107, B109, } \\ 204 \\ \hline \end{gathered}$
B013	460V原子炉建屋モータコントロールセン夕	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \hline \text { R-B107, B110, } \\ 110,111,204 \\ \hline \end{gathered}$
B014	125V直流RCICモータコントロールセンタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B102
B015	高压炬心スプレイ系120V交流分電盤2H	Sクラス	R／B	R－B109
B016	原子炬洽却制御盤	sクラス	C／B	c－301
B017	原子炬制御媻	sクラス	C／B	c－301
B018	原子炬補機制御艋	Sクラス	C／B	c－301
B019	原子炬保讙系盤	sクラス	C／B	c－301
B020		sクラス	C／B	c－301
B021	原子炬系プロセス計装盤	sクラス	C／B	c－301
B022	残留熱除去系（A）－低圧炻心スプレイ系盤	sクラス	C／B	c－301
B023	残留熱除去系（B•C）盤	sクラス	C／B	c－301
B024	高圧炬心スプレイ系盤	sクラス	C／B	c－301
B025		Sクラス	C／B	c－301
B026	格納容器第一缡㕍升盤	sクラス	C／B	c－301
B027	格納容器第二附雜升盤	Sクラス	C／B	c－301
B028	自動减压系盤	sクラス	C／B	c－301
B029	FPC•FPMUW•SLC MUWC MUWP制御盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	c－301
B030	トリップチャンネル盤	sクラス	C／B	c－301
B031	FCS－SGTS盤	Sクラス	C／B	c－301
B032	サブレッションプール水温度記睩監視盤	Sクラス	C／B	c－301
B033		Sクラス	C／B	c－301
B034	所内補機制御盤	sクラス	C／B	c－301
B035	タービン発電機制循盤	sクラス	C／B	c－301
B036	所内電源制御媻	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	c－301
B037	非常用换気空验系䲍	Sクラス	C／B	c－301
B038	HPCS 系非常用换気空開系盤	sクラス	C／B	c－301
B039	RCW－RSW盤	sクラス	C／B	c－301
B040	RCICタービン制御獘	Sクラス	C／B	C－B105
B041	漏えい検出系盤	Sクラス	C／B	c－301
B042	㖕算機ハッフア補助りレー盤	sクラス	C／B	c－301
B043	M／C補助継電器媻	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	c－301
B044	AM制御䇥	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	c－301

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（6／8）

整理	建屋内上位クラス施設（電気艋等）	区分	設置建屋	設置場所
B045	中央制御室外原子炉停止装置盤	sクラス	C／B	C－B103
B046	FCS SCR盤	sクラス	R／B	R－B107，B109
${ }^{\text {B047 }}$	中央制御室端子盤	Sクラス	C／B	$\begin{gathered} \mathrm{C}-201,202, \\ 203 \end{gathered}$
B048	非常用デイーゼル発電機制御媻	Sクラス SA施設	R／B	R－109， 111
B049	非常用ディーゼル発電機補機制㵌轞	Sクラス SA施設	R／B	R－109， 111
B050	非常用ディーゼル発電機シリコン整流器	Sクラス SA施設	R／B	R－109， 111
B051	非常用ディーぜル発電機界磁諯整器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－109， 111
B052	非常用ディーゼル発電機自動電圧調整器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－109， 111
${ }^{\text {B053 }}$	非常用ディーゼル発電機 NGR盤	Sクラス SA施設	R／B	R－B107，B109
B054	非常用デイーゼル発電機SCT盤	Sクラス SA施設	R／B	R－B107，B109
B055	非常用デイーゼル発電機PPT艋	sクラス SA施設	R／B	R－B107，B109
B056	非常用ディーぜル発電機 PT－CT艋	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B107，B109
B057	高圧炬心スプレイ系ディーゼル発電機制御盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	R－110
B058	高圧炬心スプレイ系ディーゼル発電機補機制御盤	$\begin{aligned} & \text { SYラ } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
B059	高圧炬心スプレイ系ディーゼル発電機シ リコン整流器盤	Sクラス SA施設	R／B	R－110
B060	高圧炬心スプレイ系ディーゼル発電機界磁譋整器盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－110
B061	高圧炉ふスプレイ系ディーゼル発電機自動電圧調整器盤	Sクラス SA施設	R／B	R－110
B062	高圧炬心スプレイ系ディーゼル発電機 NGR盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	R－B109
B063	高圧炬心スプレイ系ディーゼル発電機 SCT盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B109
B064	高圧炬心スプレイ系ディーゼル発電機 PPT盤	Sクラス SA施設	R／B	R－B109
B065	高圧炬心スブレイ系ディーゼル発電機 PT－CT盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B109
B066	スクラム電磁弁ヒューズ盤	sクラス	R／B	R－B103，B106
B067		Sクラス	R／B	R－B208
B068	換気空調補機非常用洽却水系洽涑機制御盤	sクラス	R／B	R－202
B069	HPCS交流分電艋2H用変圧器	Sクラス	R／B	R－B109
B070	動力変压器	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	繁急時対策建屋	$\begin{array}{\|c} \text { R-B109, 204, } \\ \text { TS-104 } \end{array}$
B071	起動領域モニタ・安全系ブロセス放射線 モニ夕盤	Sクラス SA施設	C／B	c－301
B072	出力領域モ二多盤	Sクラス SA施設	C／B	c－301
B073	出力領域モ二夕補助艋	Sクラス SA施設	C／B	c－301
B074	TIP制御媻	Sクラス	C／B	c－301
B075	格納容器内雰囲気もニ多盤	Sクラス SA施設	C／B	c－301
B076		Sクラス SA施設	R／B	R－B103，B106
B077	安全系プロセス放射線モニタ多重伝送現場盤	Sクラス	R／B	R－B107，B110
B078	RSS盤用変圧器	Sクラス	C／B	C－B105
B079	125 V代替蓄電池	SA施設	C／B	c－204
B080	125 V代替充電罢盤	SA施設	C／B	C－B104
B081	ガスタービン発電機接続盤	SA施設	$\begin{aligned} & \text { 緊急用䨋気品 } \\ & \text { 屋 } \end{aligned}$	E－B101
B082	2501 蓄電池	SA施設	C／B	C－B203
B083	代替原子炬再很睘ポンプトリップ遮断器	SA施設	R／B	R－B208
B084	HPAC制檞媻	SA施設	C／B	c－301
B085	代替注水制御盤	SA施設	C／B	c－301
B086	DCLI制御幋	SA施設	C／B	c－301
B087	フィルタバント系制啲墭	SA施設	C／B	c－301
B088	250 V 充電器艋	SA施設	C／B	C－B204
B089	125V直流電源切替䈭	SA施設	R／B	R－101

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施設（電気䑤等）	区分	設置建屋	設置場所
B090	460 V 原子炬建屋交流電源切替盤	SA 施設	R／B	R－101， 204
B091	250V直流主母線艋	SA施設	C／B	C－B204
B092	緊急用電源切替操作盤	SA 施設	C／B	C－301
B093	ガスタービン発電設備制御盤	SA施設	$\underset{\text { 建屋 }}{\text { 緊気品 }}$	E－101
B094	ガスタービン発電設備然料移送ポンプ接続盤	SA施設	$\underset{\text { 建屋 }}{\text { 緊気品 }}$	E－101
B095	モータコントロールセンタ（緊急時対策所用）	SA 施設	緊急時対策所	TS－104
B096	105 V 交流電源切替盤（緊急時対策所用）	SA 施設	緊急時対策所	TS－104
B097	105 V 交流分電盤（緊急時対策所用）	SA 施設	緊急時対策所	TS－104
B098	120 V 交流分電盤（緊急時対策所用）	SA 施設	緊急時対策所	TS－104
B099	210 V 交流分電盤（緊急時対策所用）	SA 施設	緊急時対策所	TS－104
B100	125v直流主母線盤（緊急時対策所用）	SA 施設	緊急時対策所	TS－104
B101	250V直流受電パワーセンタ	SA 施設	C／B	C－B204
B102	120 V 原子炬建屋交流電源切替盤	SA 施設	C／B	C－B204

第4－2表 女川 2 号機 建屋内上位クラス施設一覧表（7／8）

$\begin{aligned} & \text { 䔩理号 } \end{aligned}$	建屋内上位クラス施設（計装）	区分	設置建屋	設置場所
1001	低压烼心スプレイ系㳯装ラック	Sクラス SA施設	R／B	R－B203
1002	原子炬系（広域水位）計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \mathrm{R}-\mathrm{B} 103, \\ \mathrm{~B} 106 \end{gathered}$
1003	原子炬系（狄域水位）計装ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-105, } 106, \\ 107 \end{gathered}$
1004	ドライウェル圧力計装ラック	Sクラス SA施設	R／B	R－205， 206
1005	ジェットポンブ部装ラック	Sクラス SA施設	R／B	R－B103，B106
1006	高压炬心スプレイ系估装ラック	sクラス SA施設	R／B	R－B206
1007	主蒸気流量咕装ラック	sクラス	R／B	R－B103，B106
1008	RHR－RCICエルボメーダ計装ラック	sクラス	R／B	R－B103，B106
1009	RCICポンブ計器架台	$\begin{aligned} & \text { Sクラスス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307
1010	原子炉烈靃時洽却系タービン新装ラック	Sクラス	R／B	R－B207
1011	残留熱除去系㖕装ラック	Sクラス SA施設	R／B	$\begin{gathered} \text { R-B307, B204, } \\ \text { B207 } \end{gathered}$
1012	RHR C 系計器架台	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B307
1013	RCW系統流量㳯器架台	sクラス SA施設	R／B	R－B308，B309
1014	RCW常用系入口流量竍器架台	sクラス	R／B	R－B308
1015	HPCWポンブ㖕器架台	Sクラス	R／B	R－B310
1016	RCICタービン排気ダイアフラム圧力II系計器架台	sクラス	R／B	R－B207
1017	CRDスクラム排出容器水位計器架台	sクラス	R／B	R－B103， $\mathrm{B106}$
1018	S／C圧力， $\mathrm{S} / \mathrm{C}-\mathrm{R} / \mathrm{B}$ 差圧計器架台	Sクラス	R／B	R－B103，B106
1019	ほう酸水注入系計器架台	Sクラス	R／B	R－206
1020	RCICタービン計器架台	Sクラス	R／B	R－B307
1021	原子炬圧力（SA）	SA施設	R／B	$\begin{gathered} \mathrm{R}-105,106, \\ 107 \end{gathered}$
1022	原子炻水位（SA広带域）	SA施設	R／B	R－B106
1023	原子炉水位（SA然料域）	SA施設	R／B	R－B103
1024	原子炉圧力容器温度	SA施設	R／B	PCV内
1025	サプレッションプール水温度	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	PCV内
1026	サプレッションプール水位	Sクラス	R／B	R－B306
1027	圧力抑制室水位	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	$\begin{gathered} \text { R-B303, } \\ \text { B304, B306 } \end{gathered}$
1028	原子炉建屋外気閏差圧	Sクラス	R／B	R－301， 302
1029	格納容器内雰囲気モニタサンブリング ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
1030	格納容器内雰囲気も二タ校正ラック	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	R－205
1031	格納容器内雰囲気モニタヒータ制御鱉	Sクラス	R／B	R－202， 203
1032	格納容器内雰囲気水素濃度	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－205
1033	格納容器内雰囲気酸素濃度	$\begin{array}{\|c} \hline \begin{array}{c} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ \hline \end{array}$	R／B	R－205
1034	格納容器内雰囲気故射線モ二タ（D／W）	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B103，B105
1035	格納容器内雰囲気故射線モ二夕（S／C）	$\begin{aligned} & \hline \begin{array}{l} \text { Sクラス } \\ \text { SA施設 } \end{array} \\ & \hline \end{aligned}$	R／B	R－B202
1036	解的触媒式水素再結合装置動作監視装置	SA施設	R／B	R－301
1037		sクラス	R／B	R－206
1038	RCWサージタンク水位	Sクラス	R／B	R－301
1039	RCWサージタンク降水管水位	sクラス	R／B	R－206
1040	HPCWサージタンク水位	sクラス	R／B	R－206
1041	HPCWサージタンク降水管水位	sクラス	R／B	R－107
1042	RSWストレーナ差圧	sクラス	R／B	R－B308，B309
1043	SGTSトレイン出口流量	sクラス	R／B	R－301
1044	フィルタ装置チャコールエアフィルタ入口温度	sクラス	R／B	R－205
1045		sクラス	R／B	R－205

整理番号	建屋内上位クラス施設（㖕装）	区分	設置建屋	設置圽所
1046	フィルタ装置チャコールエアフィルタ出口温度	sクラス	R／B	R－205
1047	非常用D／G部装ラック	sクラス	R／B	$\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$
1048	非常用D／G二次洽却水差圧計器架台	sクラス	R／B	R－B108，B110
1049	HPCS D／G㖕装ラック	sクラス	R／B	R－109， 111
1050	燃料デイタンク油面	sクラス	R／B	R－203
1051	オイルパン油面	sクラス	R／B	R－110
1052	D／G室温度	sクラス	R／B	$\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$
1053	D／6速度	sクラス	R／B	$\begin{gathered} \mathrm{R}-109,110, \\ 111 \end{gathered}$
1054	RCW洽却水供給温度	sクラス	R／B	R－B308，B309
1055	FCS入口カス流量	Sクラス	R／B	R－206
1056	FCSブロロスロ圧力	Sクラス	R／B	R－206
1057	FCSブロワ入口流量	Sクラス	R／B	R－206
1058	FCSブロワ入口温度	sクラス	R／B	R－206
1059	FCS加熟管内ガス温度	Sクラス	R／B	R－206
1060	FCS加熱管出口ガス温度	sクラス	R／B	R－206
1061	FCS加熱管表面温度	Sクラス	R／B	R－206
1062	FCS再結合器表面温度	Sクラス	R／B	R－206
1063	FCS洽却器出口カス温度	sクラス	R／B	R－206
1064	HECW洽水往還差圧	sクラス	R／B	R－202
1065	HECW洽水還温度	sクラス	R／B	R－202
1066	HECW洽涑樓洽水出口流量	sクラス	R／B	R－202
1067	原子炉補機室給気温度	sクラス	R／B	R－203
1068	R／B主蒸気管漏えい検出（周囲温度）	Sクラス	R／B	R－B104，M205
1069	R／B主蒸気管漏えい検出（給気温度）	sクラス	R／B	R－B104
1070	R / B 主亚気管漏えい倹出（排気温度）	Sクラス	R／B	R－B104
1071	RHR熱交室漏えい検出（周囲温度）	sクラス	R／B	R－104
1072	RHRポンフ室漏えい検出（周囲温度）	Sクラス	R／B	R－B304，B305
1073	RHRR熱交室漏えい検出（給気温度）	sクラス	R／B	R－104
1074	RHRポンブ室漏えい検出（給気温度）	sクラス	R／B	R－B304，B305
1075	RHR熱交室漏えい検出（排気温度）	Sクラス	R／B	R－104
1076	RHRポンブ室漏えい検出（排気温度）	sクラス	R／B	R－B304，B305
1077	RCIC機器室漏えい検出（周囲温度）	Sクラス	R／B	R－B307
1078	RCIC幾器室漏えい検出（給気温度）	Sクラス	R／B	R－B307
1079	RCIC機器室漏えい検出（排気温度）	sクラス	R／B	R－B307
1080	CUW非再生熱交室漏えい検出（周囲温度）	sクラス	R／B	R－B207
1081	CUW再生熱交室漏えい検出（周囲温度）	sクラス	R／B	R－B207
1082	CUW非再生熱交宔漏えい検出（給気温度）	Sクラス	R／B	R－B207
1083	CUW再生熱交宔漏えい検出（給気温度）	sクラス	R／B	R－B207
1084	CUW非再生熱交室漏えい検出（排気温度）	sクラス	R／B	R－B207
1085	CUW再生熱交宔漏えい検出（排気温度）	Sクラス	R／B	R－B207
1086	㖕測制御電源室給気温度	sクラス	C／B	C－B101
1087	中央制御室還気温度	sクラス	C／B	C－B201
1088	$\begin{array}{\|l\|l} \text { 格納容器内雾囲気モニタプリアンブ収納 } \\ \hline 木 ⿴ 囗 ⿱ 一 一 心 \end{array}$	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	R－B107，B110
1089	高圧代替注水系ポンブ出口流量	SA施設	R／B	R－B207
1090	高圧代替注水系ポンプ出口圧力	SA施毅	R／B	R－B207

第 4－2 表 女川 2 号機 建屋内上位クラス施設一覧表（8／8）

整理番号	建屋内上位クラス施設（計装）	区分	設置建屋	設置場所
1091	残留熟除去系洗浄ライン流量	SA施設	R／B	R－B103， 107
1092	残留熱除去系熱交換器入口温度	SA 施設	R／B	R－104
1093	残留熱除去䒺熱交俱器出口温度	SA施設	R／B	R－104
1094	ほう酸水注入系ポンプ出口圧力	Sクラス	R／B	R－206
1095	原子炉格納容器下部注水流量	SA施設	R／B	R－B103
1096	原子炉格納容器代替スプレイ流量	SA施設	R／B	R－104， 107
1097	ドライウェル温度	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV内
1098	压力抑制室内空気温度	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV内
1099	压力抑制室圧力	SA施設	R／B	R－B106
I100	原子炉格納容器下部水位	SA施設	R／B	PCV内
1101	ドライウェル水位	SA施設	R／B	PCV内
1102	格納容器内水素澧度（D／W）	SA施設	R／B	PCV内
1103	格納容器内水素滞度（S／C）	SA施設	R／B	PCV内
1104	起動钼域モ二夕	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	PCV内
1105	出力領域モニタ	Sクラス SA施設	R／B	PCV内
1106	フィルタ装置入口压力（広带域）	SA施設	R／B	R－109
1107	フィルタ装置出口圧力（広带域）	SA施設	R／B	R－106
1108	フィルタ装置水位（広带域）	SA施設	R／B	R－B105
1109	フィルタ装置水温度	SA施設	R／B	R－106
1110	フィルタ装置出口水素浱度	SA施設	R／B	R－206
1111	フィルタ装置出口放射䌊モ二夕	SA施設	R／B	R－203
1112	残留熱除去系熱交換器冷却水入口流量	SA施設	R／B	R－B103，B106
1113	原子炉建屋内水素濃度	SA施設	R／B	$\begin{gathered} \text { R-B202, B105, } \\ 104,107,301 \\ \hline \end{gathered}$
1114	使用斎燃料プール水位／温度	SA施設	R／B	R－301
1115	使用済燃料プール上部空間放射線モニタ （高線量，低線量）	SA施設	R／B	R－301
1116	使用斎燃料プール監視カメラ	SA施設	R／B	R－302
1117	差压計	SA施設	C／B緊急時対策建屋	$\begin{gathered} \text { C-302 } \\ \text { TS-B203 } \end{gathered}$
1118	安全パラメータ表示システム（SPDS）	SA施設	C／B緊急時対策建屋	$\begin{gathered} \text { C-301 } \\ \text { TS-B202,203 } \end{gathered}$
1119	統合原子力防災ネットワークに接続する通信連絡設備	SA施設	緊急時対策建屋	TS－B203
1120	デー夕伝送設備	SA施設	C／B 緊急時対策建屋	$\begin{gathered} \text { C-301 } \\ \text { TS-B202 } \end{gathered}$
1121	データ表示装置	SA施設	C／B	C－302
1122	代替循閙冷却ポンプ出口流量	SA施設	R／B	R－B301
1123	代替循澴冷却ポンブ出口压力	SA施設	R／B	R－B301
1124	HPIN ADS入口圧力	Sクラス $\mathrm{SA} \text { 施設 }$	R／B	R－106， 107
1125	直流駆動低圧注水系ポンブ出口流量	SA施設	R／B	R－B310
1126	直流陶動低圧注水系ポンプ出口圧力	SA施設	R／B	R－B310
1127	原子炉格納容器下部温度	SA施設	R／B	PCV内
1128	耐圧強化ベント系放射䌊モ二タ	SA施設	R／B	R－201
1129	代替HPIN窒素ガス供給止め弁入口压力	SA施設	R／B	R－110， 111
1130	復水移送ポンプ出口圧力	SA施設	R／B	R－B207
1131	無線連絡設備（固定型）	SA施設	C／B 緊急時対策建屋	$\begin{gathered} \text { C-301, 302, } \\ \text { TS-B203 } \\ \hline \end{gathered}$
1132	衛星電話設備（固定型）	SA施設	C／B 緊急時対策建屋	$\begin{gathered} \text { C-301, 302, } \\ \text { TS-B203 } \end{gathered}$

5．下位クラス施設の抽出及び影響評価方法
3 項で整理した各検討事象を基に，上位クラス施設への波及的影響を及ぼすおそれ のある下位クラス施設の抽出及び評価フローを作成し，当該フローに基づき影響評価 を実施する。
5.1 相対変位又は不等沈下による影響
（1）地盤の不等沈下による影響
第5．1－1 図のフローに従い，上位クラス施設及びそれらの間接支持構造物であ る建物•構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
地盤の不等沈下による下位クラス施設の傾きや倒壊を想定しても，上位クラ ス施設に衝突しない程度の十分な離隔距離をとって配置されていることを確認 し，離隔距離が十分でない下位クラス施設を抽出する。
b．耐震性の確認
a 項で抽出した下位クラス施設について，基準地震動 S s に対して十分な支持性能を持つ岩盤に設置されていることの確認により，不等沈下しないことを確認する。
c．不等沈下に伴う波及的影響の評価
b 項で地盤の不等沈下のおそれが否定できない下位クラス施設については，傾きや倒壊を想定し，これらによる上位クラス施設への影響を確認し，上位ク ラス施設の機能を損なわないことを確認する。
d．対策検討
c項で上位クラス施設の機能を損ならおそれが否定できない下位クラス施設 に対して，基礎地盤の補強や周辺の地盤改良等を行い，不等沈下による下位ク ラス施設の波及的影響を防止する。

＊フロー中の（1），（2），⑤～（8）の数字は第2．1－1図中の（1），（2），（5）～⑧に対応する。

第 5．1－1 図 不等沈下による建屋外上位クラス施設へ影響を及ぼすおそれのある下位クラス施設の抽出及び評価フロー
（2）建屋間の相対変位による影響
第 5．1－2図のフローに従い，上位クラス施設及びそれらの間接支持構造物であ る建物•構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
地震による建屋間の相対変位を想定しても上位クラス施設に衝突しない程度 の十分な離隔距離をとつて配置されていることを確認し，離隔距離が十分でな い下位クラス施設を抽出する。
b．耐震性の確認
a 項で抽出した下位クラス施設について，基準地震動 S s に対して建屋間の相対変位による上位クラス施設への衝突がないことを確認する。
c．相対変位に伴う波及的影響の評価
b 項で衝突のおそれが否定できない下位クラス施設について，衝突部分の接触状況を確認し，建屋全体又は局部評価を実施し，衝突に伴い，上位クラス施設の機能を損ならおそれがないことを確認する。
d．対策検討
c項で上位クラス施設の機能を損ならおそれが否定できない下位クラス施設 に対して，建屋の補強等を行い，建屋間の相対変位等による下位クラス施設の波及的影響を防止する。

＊フロー中の（1），（2），（5）～⑧の数字は第2．1－1図中の（1），（2），（5）～（8）に対応する。

第5．1－2図 相対変位による建屋外上位クラス施設へ影響を及ぼすおそれのある下位クラス施設の抽出及び評価フロー

5． 2 接続部における相互影響

第5．2－8図のフローに従い，上位クラス施設と接続する下位クラス施設を抽出し，波及的影響を検討する。

なお，接続部における相互影響のうち，下位クラス配管破損時の機械的荷重によ る影響及び環境温度への影響については添付資料 9 に示す。

a．接続部の抽出

上位クラス施設と下位クラス施設が接続する箇所を抽出する。ここで，電気設備，計測制御設備，原子炉格納容器貫通部，空気駆動弁（以下「A0 弁」という。）駆動用空気供給配管接続部及び弁グランド部漏えい検出配管接続部については，以下のとおり設計上の配慮がなされているため抽出の対象外とする。
（a）電気設備
受電系統について，上位クラス施設と下位クラス施設は基本的に系統的に分離した設計としているが，第5．2－1， 2 図の受電系統概念図にあるように一部の受電系統においては上位クラス施設と下位クラス施設との接続がある。このた め，上位クラス施設と下位クラス施設と接続するパターンを下記のように整理 した。

第 5．2－1 図 受電系統概念図（パターン1，2）

［パターン 1］

第5．2－1図のパターン 1 に示すように上位クラスの電源盤と下位クラス施設が接続し，上位クラスの電源盤から下位クラス施設に給電する場合，上位 クラスの電源盤と下位クラス施設は遮断器を介して接続されており，下位ク ラス施設の故障が生じた場合においても，上位クラスの電源盤の遮断器が動作することで事故範囲を隔離し，上位クラスの電源盤の機能に影響を与えな い設計としている。

［パターン 2］

第5．2－1図のパターン 2 のように上位クラス施設である非常用高圧母線と下位クラス施設が接続し，下位クラス施設から非常用高圧母線に給電する場合，上位クラスの電源盤と下位クラス施設は遮断器を介して接続されており，下位クラス施設の故障が生じた場合には，上位クラスの電源盤の遮断器が動作することにより事故範囲を隔離する。この際，非常用高圧母線が停電する が非常用ディーゼル発電機が自動起動し，非常用高圧母線に給電するため，上位クラス施設である非常用高圧母線が機能喪失しない設計としている。
［パターン3］
パターン 1，2 以外に考えられる上位クラス施設と下位クラス施設が接続 する組合せとして，第5．2－2図のように下位クラスの電源盤から上位クラス施設に給電するパターンが挙げられる。この場合，下位クラスの電源盤の故障により上位クラス施設が機能喪失することとなるが，女川 2 号機において は本パターンのような系統はない。

第5．2－2 図 受電系統概念図（パターン 3 ）

以上より，電気設備については，上位クラス施設に接続する下位クラス施設の故障が上位クラス施設に波及的影響を及ぼすおそれがない設計としてい る。
（b）計測制御設備
計測制御設備について，非常用系（上位クラス施設）と常用系（下位クラス施設）は原則物理的に分離しているが，制御信号及び計装配管の一部に上位ク ラス施設と下位クラス施設との接続部がある。このため，上位クラス施設と下位クラス施設と接続するパターンを下記のように整理した。
i）制御信号
制御信号について，上位クラス施設と下位クラス施設との接続部として下記のパターンが考えられる。

①非常用系（上位クラス）から常用系（下位クラス）に伝送する
（2）常用系（下位クラス）から非常用系（上位クラス）に伝送する

このうち，（2）のパターンについては女川 2 号機において存在しない。
①については，信号伝送における第 5．2－3 図の分離概念図に示すとおり， フォトカプラやリレー回路などの隔離装置を介することにより，電気的に分離されており，常用系（下位クラス）の故障が非常用系（上位クラス）に波及することがない設計としている。

リレー回路を用いた隔離装置の代表例

第 5．2－3 図 信号伝送における分離概念図
ii）計装配管
計装配管について，上位クラス施設と下位クラス施設との接続部として下記のパターンが考えられる。
（1）上位クラスの機器に下位クラスの計器の計装配管が接続されている
（2）下位クラスの機器に上位クラスの計器の計装配管が接続されている
（3）上位クラスの計器の常用時における計測のために，計装用圧縮空気系（下位クラス）が接続されている

このうち，（2）については女川 2 号機において存在しない。①については，上位クラスの計器と下位クラスの計器が接続されているパターンと上位クラ スの機器（原子炉圧力容器）の計測装置として下位クラスの機器が接続され ているパターンがあるため，それぞれパターン（1）－1，（1）－2と分類し，（3）に ついてはパターン（3）と分類して下記のとおり整理した。
［パターン（1）－1］
上位クラスと下位クラスの計装配管が接続部を有している場合，第 5．2－4 図に示すとおり，計装配管の耐震設計は上位クラスの設計に合わせ ているため波及的影響はない。

第 5．2－4 図 計装配管の耐震設計概念図
［パターン（1）－2］
原子炉圧力容器（上位クラス）に接続されている下位クラスの計器につ いては，第 5．2－5 図の原子炉圧力容器からの計装ライン構成概念図に示す とおり，過流量逆止弁の下流側は下位クラスの設計としている。ただし，原子炉圧力容器に接続されている計装配管には，原子炉格納容器内側に流量制限オリフィスを設けるとともに，原子炉格納容器外側には過流量逆止弁を設置しており，万一，下位クラス範囲で配管破断が発生した場合でも，差圧大で瞬時に過流量逆止弁が閉となるため，原子炉冷却材圧力バウンダ リは隔離される。

第 5．2－5 図 原子炉圧力容器からの計装ライン構成概念図
[パターン (3)]

上位クラスの計器の常用時における測定のために，計測用圧縮空気系 （下位クラス）を使用している場合，第 5．2－6図に示すとおり，計装用圧縮空気系の機能喪失時には逆止弁により計測用圧縮空気系との接続を隔離し，上位クラスのアキュムレータにより計測を継続するため，波及的影響はない。

第5．2－6図 計装用圧縮空気系と上位クラスの計器との接続概念図

以上より，計測制御設備については，上位クラス施設に接続する下位クラ ス施設の故障が上位クラス施設に波及的影響を及ぼすおそれがない設計とし ている。
（c）原子炉格納容器貫通部
原子炉格納容器貫通部については，前後の隔離弁を含めて上位クラス施設と して設計されており，接続する下位クラスの配管が破損した場合においても隔離弁の健全性は保たれ，原子炉格納容器バウンダリとしての貫通部の機能に波及的影響を及ぼすおそれがない設計としている。
（d）A0 弁駆動用空気供給配管接続部
上位クラスの配管に設置されるA0弁駆動用の空気供給配管は，上位クラス施設として設計されてはいないが，仮に空気供給配管が破損した場合でも，A0 弁 はフェイルセーフ側に動作するため，上位クラス施設の安全機能は喪失しない ことから，抽出の対象外としている。なお，空気供給配管の供給側で閉塞が発生したとしてもA0弁はフェイルセーフ側に動作しないが，動作要求信号が発生 すれば，三方弁から支障なく排気されることからA0弁の機能に影響を与えない。 また，空気供給配管のA0弁側についてはSクラスのA0弁とあわせて動的機能維持を確認している範囲であるため閉塞しない。

－－－－－Sクラスとして動的機能維持を確認している範囲

第 5．2－7 図 A0 弁概念図
（e）弁グランド部漏えい検出配管接続部
上位クラスの配管に設置される弁のグランド部に接続される弁グランド部漏 えい検出配管については，下位クラス施設であるが，仮に弁グランド部漏えい検出配管が破損した場合でも，上位クラス施設である弁の機能に影響がないこ とから抽出の対象外としている。
b．影響評価対象の選定
a項で抽出された機器，配管系を影響評価対象とする。
ただし，a 項で抽出した接続部のうち，上位クラス施設として設計された弁又 はダンパにより常時隔離されているものは，接続する下位クラスの配管が破損し た場合においても健全性は確保されるため評価対象外とする。

c．影響評価

b 項で抽出した下位クラス施設について，下位クラス施設が損傷した場合の系

統隔離等に伴うプロセス変化により，上位クラス施設の過渡条件が設計の想定範囲内であることを確認する。

なお，下位クラス配管の損傷形態として破損と閉塞が考えられるが，接続部の影響評価においては破損について検討する。閉塞事象は配管が軸直交方向に大き な荷重を受けて折れ曲がり，流路を完全に遮断することで発生するが，地震荷重 は交番荷重であることや材料のシェイクダウンを考慮すると，完全に閉塞が発生 することは考え難い。また，周辺の下位クラス施設の損傷等の影響による閉塞に ついては，周辺に損傷等により影響を及ぼす下位クラス施設がないことを確認し ており検討対象外となる。さらに下位クラス施設が建屋間を渡って敷設されてい る場合には，相対変位や不等沈下による損傷等も考えられるが，女川 2 号機では，建屋間を渡る下位クラス施設については全てバウンダリ弁を介して上位クラス施設と隔離していることから検討対象外となる。したがって，下位クラス配管の損傷形態としては破損を考慮するものである。下位クラス配管の損傷形態の検討 については，参考資料1に詳細を示す。

また，下位クラス施設の損傷に伴う上位クラス施設のプロセス変化とは別に，内部流体の外部への放出に伴ら機械的荷重の発生が想定される。この荷重が上位 クラス施設へ及ぼす影響について検討を行った結果を添付資料9に示す。
d．耐震性の確認
c項で設計の想定範囲を超えるものについて，基準地震動 S s に対して，構造健全性が維持され内部流体の内包機能等の必要な機能を維持できることを確認 する。
e．対策検討
d 項で上位クラス施設の機能を損ならおそれが否定できない下位クラス施設に ついて，基準地震動 S s に対して健全性を維持できる構造への改造，接続部から上位クラス施設の機器，配管側に同じく健全性を維持できる隔離弁の設置等によ り波及的影響を防止する。

[^0]第5．2－8図 上位クラス施設と接続する下位クラス施設の抽出及び評価フロー

5.3 建屋内における施設の損傷，軽倒，落下等による影響

第5．3－1図のフローに従い，建屋内の上位クラス施設の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
下位クラス施設の抽出に当たっては，下位クラス施設の損傷，転倒，落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をとって配置されて いることを確認する。離隔距離が十分でない場合には，落下防止措置等の対策を適切に実施していることを確認する。

また，上述の碓認ができなかった下位クラス施設について，構造上の特徴，上位クラス施設との位置関係，重量等を踏まえて，損傷，転倒，落下等を想定した場合の上位クラス施設への影響を評価し，上位クラス施設の機能を損なうおそれ がないことを確認する。
b．耐震性の確認
a 項で損傷，転倒，落下等を想定した場合に上位クラス施設の機能への影響が否定できない下位クラス施設について，基準地震動 S s に対して，損傷，転倒，落下等が生じないように，構造健全性が維持できることを確認する。
c．対策検討
b 項で構造健全性の維持を確認できなかった下位クラス施設について，基準地震動 S s に対して健全性を維持できるような構造への改造，上位クラス施設と下位クラス施設との間に衝撃に耐えらる緩衝体の設置，下位クラス施設の移設等に より波及的影響を防止する。

＊フロー中の（1）～（8）の数字は第2．1－1図中の（1）～⑧に対応する。

第 5．3－1 図 損傷，転倒，落下等により建屋内上位クラス施設へ影響を及ぼすおそれの ある下位クラス施設の抽出及び評価フロー

5.4 建屋外における施設の損傷，軽倒，落下等による影響

第5．4－1図のフローに従い，建屋外の上位クラス施設の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し，波及的影響の有無を検討する。
a．下位クラス施設の抽出
下位クラス施設の抽出に当たっては，施設の設置地盤及び周辺地盤の液状化 （浮き上がり及び側方流動）による影響を考慮した上で，下位クラス施設の損傷，転倒，落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をとっ て配置されていることを確認する。離隔距離が十分でない場合には，落下防止措置等の対策を適切に実施していることを確認する。

また，上述の確認ができなかった下位クラス施設について，構造上の特徴，上位クラス施設との位置関係，重量等を踏まえて，損傷，転倒，落下等を想定した場合の上位クラス施設への影響を評価し，上位クラス施設の機能を損なうおそれ がないことを確認する。
b．耐震性の確認
a 項で損傷，転倒，落下等を想定した場合に上位クラス施設の機能への影響が否定できない下位クラス施設について，地下水位を適切に設定した上で，基準地震動 S s に対して，損傷，転倒，落下等が生じないように，構造健全性が維持で きることを確認する。
c．対策検討
b 項で構造健全性の維持を確認できなかった下位クラス施設について，基準地震動 S s に対して健全性を維持できるような構造への改造，上位クラス施設と下位クラス施設との間に衝撃に耐えらる緩衝体の設置，下位クラス施設の移設等に より波及的影響を防止する。

＊フロー中の（1）～（3），（5）～（8）の数字は第2．1－1図中の（1）～（3），（5）～⑧に対応する。

第5．4－1図 損傷，転倒，落下等により建屋外上位クラス施設へ影響を及ぼすおそれの ある下位クラス施設の抽出及び評価フロー

6．下位クラス施設の検討結果
5 項で示したフローに基づき，上位クラス施設へ波及的影響を及ぼすおそれのある下位クラス施設を抽出する。

6． 1 相対変位又は不等沈下による影響検討結果
6.1 .1 抽出手順
（1）地盤の不等沈下による影響
机上検討を基に，上位クラス施設に対して，地盤の不等沈下により波及的影響を及ぼすおそれのある下位クラス施設を抽出する。
（2）建屋間の相対変位による影響
机上検討を基に，上位クラス施設に対して，建屋間の相対変位により波及的影響を及ぼすおそれのある下位クラス施設を抽出する。

6．1．2 下位クラス施設の抽出結果
第5．1－1図及び第5．1－2図のフローのaに基づいて，波及的影響を及ぼすお それのある下位クラス施設を抽出した結果を第6．1－1 図，第 6．1－2 図及び第 6．1－1 表に示す。

6．1．3 影響評価結果
6．1．2 で抽出した波及的影響を及ぼすおそれのある下位クラス施設の評価結果を第6．1－2表及び第6．1－3表に示す。

第6．1－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設（ $1 / 3$ ）

整理 番号	建屋外上位クラス施設	区分	波及的影響を及ぼすおそれのある下位クラス施設	波及的影響のおそれ （○：あり，×：なし）		備考
				不等沈下	相対変位	
0001	原子炉補機冷却海水ポンプ	Sクラス SA施設	－	\times	\times	
0002	原子炉補機冷却海水系配管	Sクラス SA施設	－	\times	\times	
0003	RSWポンプ吐出逆止弁	Sクラス SA施設	－	\times	\times	
0004	RSWポンプ吐出弁	Sクラス SA施設	－	\times	\times	
0005	RSWポンプ吐出連絡管止め弁	Sクラス SA施設	－	\times	\times	
0006	高圧炬心スプレイ補機冷却海水ポンプ	Sクラス SA施設	－	\times	\times	
0007	高圧炉心スプレイ補機冷却海水系スト レーナ	Sクラス SA施設	－	\times	\times	
0008	高圧炬心スプレイ補機冷却海水系配管	Sクラス SA施設	－	\times	\times	
0009	HPSWポンプ吐出逆止弁	Sクラス SA施設	－	\times	\times	
0010	HPSWポンプ吐出弁	Sクラス SA施設	－	\times	\times	
0011	非常用ガス処理系配管	Sクラス SA施設	－	\times	\times	
0012	原子炉格納容器下部注水系配管	SA施設	－	\times	\times	
0013	原子炉補機代替冷却水系配管	SA施設	－	\times	\times	
0014	原子炉格納容器代替スプレイ椧却系配管	SA施設	－	\times	\times	
0015	可搬型窒素ガス供給系配管	SA施設	－	\times	\times	
0016	燃料プール代替注水系配管	SA施設	－	\times	\times	
0017	原子炉格納容器フィルタベント系配管	SA施設	－	\times	\times	
0018	ガスタービン発電設備燃料移送ポンプ	SA施設	－	\times	\times	
0019	ガスタービン発電設備燃料移送系配管	SA施設	－	\times	\times	
0020	復水貯蔵タンク外部注水入口弁	SA施設	－	\times	\times	
0021	復水貯蔵タンク	SA施設	－	\times	\times	
0022	復水貯蔵タンク水位計器架台	SA施設	－	\times	\times	
0023	RSWポンプ出口圧力計器架台	Sクラス	－	\times	\times	
0024	HPSWポンプ出口圧力計器架台	Sクラス	－	\times	\times	
0025	排気筒	Sクラス SA施設	－	\times	\times	

第6．1－1 表 女川 2 号機 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設（2／3）

$\begin{aligned} & \text { 䔩理 } \\ & \text { 番号 } \end{aligned}$	建屋外上位クラス施設	区分	波及的影響を及ぼすおそれのある下位クラス施設	波及的影響のおそれ(○:あり, ×: なし)		備考
				不等沈下	相対変位	
0026	防潮堤	Sクラス	－	\times	\times	
0027	防潮壁	Sクラス	タービン建屋	\bigcirc	\times	
0028	逆流防止設備	Sクラス	タービン建屋	\bigcirc	\times	
0029	水密扉	Sクラス	－	\times	\times	
0030	浸水防止蕢	Sクラス	－	\times	\times	
0031	逆止升付ファンネル	Sクラス	－	\times	\times	
0032	貫通部止水処置	Sクラス	タービン建屋	\bigcirc	\times	
0033	津波監視カメラ	Sクラス	－	\times	\times	
0034	取水ピット水位計	Sクラス	－	\times	\times	
0035	原子炬建屋	Sクラス間接支持構造物 SA施設	タービン建屋	\bigcirc	\bigcirc	
			制御建屋	\times	\bigcirc	
0036	制御建屋	間接支持構造物	タービン建屋	\bigcirc	\bigcirc	
			補助ボイラー建屋	\bigcirc	\bigcirc	
			第1号機制御建屋	\bigcirc	\bigcirc	
0037	海水ポンプ室	屋外重要土木構造物間接支持構造物 SA施設	－	\times	\times	
0038	軽油タンク室	屋外重要土木構造物間接支持構造物	－	\times	\times	
0039	復水貯蔵タンク基砋	SA施設間接支持構造物	－	\times	\times	
0040	軽油タンク連絡ダクト	屋外重要土木構造物間接支持構造物	－	\times	\times	
0041	排気筒連絡ダクト	屋外重要土木構造物間接支持構造物	－	\times	\times	
0042	原子炉機器冷却海水配管ダクト	屋外重要土木構造物間接支持構造物	－	\times	\times	
0043	緊急用電気品建屋	SA施設間接支持構造物	－－	\times	\times	
0044	ガスタービン発電設備軽油タンク室	SA 施設間接支持構造物	－	\times	\times	
0045	緊急時対策建屋	SA施設間接支持構造物	－	\times	\times	
0046	取水口	屋外重要土木構造物 SA施設	－	\times	\times	
0047	取水路	屋外重要土木構造物 SA施設	－	\times	\times	
0048	第3号機海水熱交換器建屋	間接支持構造物	－	\times	\times	

第6．1－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（相対変位又は不等沈下）を及ぼすおそれのある下位クラス施設（3／3）

$\begin{aligned} & \text { 䔩理号 } \end{aligned}$	建屋外上位クラス施設	区分	波及的影響を及ぼすおそれのある下位クラス施設	波及的影響のおそれ （○：あり，×：なし）		備考
				不等沈下	相対変位	
0049	無線連絡設備（屋外アンテナ）	SA 施設	－	\times	\times	
0050	衛星電話設備（屋外アンテナ）	SA施設	－	\times	\times	
0051	無線通信装置	SA 施設	－	\times	\times	
0052	取放水路流路縮小工	Sクラス	－	\times	\times	
0053	浸水防止壁	Sクラス	－	\times	\times	
0054	揚水井戸	間接支持構造物	－	\times	\times	
0055	第3号機補機冷却海水系放水ピット	間接支持構造物	－	\times	\times	
0056	第3号機海水ポンプ室	間接支持構造物	－	\times	\times	
0057	貯留堰	Sクラス SA施設	－	\times	\times	
0058	衛星通信装置	SA施設	－	\times	\times	
0059	復水貯蔵タンク水位	Sクラス	－	\times	\times	

第6．1－2表 女川 2 号機 建屋外施設の評価結果（地盤の不等沈下による影響）

建屋外上位クラス 施設	波及的影響を及ぼすおそれのある 下位クラス施設	評価結果	備考
防潮壁	タービン建屋	タービン建屋はマンメイドロック（以下「MMR」という。） を介して岩盤に支持されており，不等沈下は生じない。	本資料 添付資料4参照
逆流防止設備	タービン建屋	タービン建屋はMMRを介して岩盤に支持されており，不等沈下は生じない。	本資料 添付資料4参照
貫通部止水処置	タービン建屋	タービン建屋はMMRを介して岩盤に支持されており，不等沈下は生じない。	本資料 添付資料4参照
原子炉建屋	タービン建屋	タービン建屋はMMRを介して原子炉建屋と連続した岩盤 に支持されており，不等沈下は生じない。	本資料 添付資料4参照
制御建屋	タービン建屋	タービン建屋はMMRを介して制御建屋と連続した岩盤に支持されており，不等沈下は生じない。	本資料 添付資料4参照
	補助ボイラー建屋	補助ボイラー建屋はMMRを介して制御建屋と連続した岩盤に支持されており，不等沈下は生じない。	本資料 添付資料4参照
	第1号機制御建屋	第1号機制御建屋はMMRを介して制御建屋と連続した岩盤に支持されており，不等沈下は生じない。	本資料 添付資料 4 参照

第6．1－3表 女川 2 号機 建屋外施設の評価結果（相対変位による影響）

建屋外上位クラス 施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価結果	備考
原子炉建屋	タービン建屋	基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。	$\begin{aligned} & \text { VI-2-11-2-3「タービ } \\ & \text { ン建屋の耐震性につ } \\ & \text { いての計算書」参照 } \end{aligned}$
	制御建屋＊${ }^{*}$	基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。	VI－2－2－4「制御建屋の 耐震性についての計 算書」参照
制御建屋＊2	タービン建屋	基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。	$\begin{aligned} & \hline \text { VI-2-11-2-3「タービ } \\ & \text { ン建屋の耐震性につ } \\ & \text { いての計算書」参照 } \\ & \hline \end{aligned}$
	補助ボイラー建屋	基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。	$\begin{gathered} \hline \text { VI-2-11-2-4「補助ボ } \\ \text { イラー建屋の耐震性 } \\ \text { についての計算書」参 } \\ \text { 照 } \end{gathered}$
	第1号機制御建屋	基準地震動 S s に対する地震応答解析により，接触しないこ とを確認した。	$\begin{gathered} \text { VI-2-11-2-5「第1号 } \\ \text { 機制御建屋の耐震性 } \\ \text { について計計算書」参 } \\ \text { 照 } \end{gathered}$

[^1]
6．2 接続部における相互影響検討結果

6．2．1 抽出手順
机上検討を基に，上位クラス施設と接続する下位クラス施設のうち，下位ク ラス施設の損傷又は隔離によるプロセス変化により，上位クラス施設に影響を及ぼすおそれがある下位クラス施設を抽出する。なお，S クラス施設等と重要 SA 施設との接続部は，第6．2－1図の接続部例に示すとおり上位クラス同士の接続であることから，上位クラス施設と下位クラス施設との接続部として抽出し ない。

接続部については，系統図等により網羅的に確認が可能であり，プラント建設時及び改造工事の際は，施工に伴う確認，系統図作成時における現場確認，使用前検査，試運転等から接続部が設計図書どおりであることを確認している ことから，接続部の波及的影響については，机上検討により評価対象の抽出が可能である。

第6．2－1図 S クラス施設等と重要 SA 施設の接続部例

6．2．2 接続部の抽出結果及び影響評価対象の選定結果
第5．2－8図のフローのa及びbに基づいて抽出された評価対象接続部につい て整理したものを第6．2－1表に示す。

6．2．3 影響評価結果
6．2．2 項で抽出した上位クラス施設と下位クラス施設との接続部について，第5．2－8図のフローのcに基づいて影響評価を行った結果を第6．2－2表に示す。

影響評価を行った結果，上位クラス施設と接続する下位クラス施設が損傷す ることによって，上位クラスの機能に影響を及ぼすおそれがないことを確認し た。

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（1／9）

整理 番号	建屋外上位クラス施設（機器•配管）	区分	設置場所	下位クラスとの 接続＊1 （有 $: ~$ ，無 ：\times ）	評価対象	接続配管等	備考
0001	原子炉補機泠却海水ポンプ	Sクラス SA施設	屋外	\bigcirc	\bigcirc	グランドドレンライン	
0002	原子炉補機冷却海水系配管	Sクラス SA施設	屋外	\bigcirc	\times	ろ過水系ライン	逆止弁を介して接続され ている
					\times	鉄イオン供給ライン	逆止弁を介して接続され ている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
0003	RSWポンプ吐出逆止弁	Sクラス SA施設	屋外	\times	－		
0004	RSWポンプ吐出弁	Sクラス SA施設	屋外	\times	－		
0005	RSWポンプ吐出連絡管止め弁	Sクラス SA施設	屋外	\times	－		
0006	高圧炉心スプレイ補機泠却海水ポンプ	Sクラス SA施設	屋外	\bigcirc	\bigcirc	グランドドレンライン	
0007	高圧炉心スプレイ補機冷却海水系スト レーナ	Sクラス SA施設	屋外	\times	－		
0008	高圧炬心スプレイ補機冷却海水系配管	Sクラス SA施設	屋外	\bigcirc	\times	ろ過水系ライン	逆止弁を介して接続され ている
					\times	$\begin{aligned} & \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
0009	HPSWポンプ吐出逆止弁	Sクラス SA施設	屋外	\times	－		
0010	HPSWポンプ吐出弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	屋外	\times	－		
0011	非常用ガス処理系配管	Sクラス SA施設	屋外	\times	－		
0012	補給水系配管	SA施設	屋外	\times	－		
0013	原子炉補機冷却水系配管	Sクラス SA施設	屋外	\times	－		
0014	残留熱除去系配管	Sクラス SA施設	屋外	\times	－		
0015	原子炉格納容器調気系配管	Sクラス SA施設	屋外	\times	－		
0016	燃料プール冷却浄化系配管	SA施設	屋外	\times	－		
0017	原子炉格納容器フィルタベント系配管	SA施設	屋外	\times	－		
0018	ガスタービン発電設備燃料移送ポンプ	SA施設	屋外	\times	－		
0019	ガスタービン発電設備燃料移送系配管	SA施設	屋外	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	タイライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
0020	復水貯蔵タンク外部注水入口弁	SA施設	屋外	\times	－		
0021	復水貯蔵タンク	SA施設	屋外	\bigcirc	\bigcirc	オーバーフローライン	
					\bigcirc	復水補給水戻りライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている

第 6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（2／9）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : } 0 \text {, 無: } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E001	燃料集合体	Sクラス	R／B	\times	－		
E002	原子炉圧力容器	Sクラス SA施設	R／B	\times	－		
E003	炬心支持構造物	Sクラス SA施設	R／B	\times	－		
E004	原子炉圧力容器支持構造物	Sクラス	R／B	\times	－		
E005	原子炉圧力容器付属構造物	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E006	原子炉圧力容器内部構造物	Sクラス SA施設	R／B	\times	－		
E007	使用斎燃料プール	Sクラス SA施設	R／B	\times	－		
E008	使用済燃料貯蔵ラック	Sクラス SA施設	R／B	\times	－		
E009	制御棒•破損燃料貯蔵ラック	Sクラス SA施設	R／B	\times	－		
E010	原子炉再循環ポンプ	Sクラス	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \hline \text { シールキャビティ圧力制 } \\ & \text { 御流量ライン } \\ & \hline \end{aligned}$	
					\times	$\begin{aligned} & \text { シールキャビティパージ } \\ & \text { 水ライン } \end{aligned}$	逆止弁を介して接続され ている
E011	原子炉再循環系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	試料採取系ライン	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続 されている
E012	主蒸気逃がし安全弁逃がし弁機能用ア キュムレータ	Sクラス SA施設	R／B	\times	－		
E013	主蒸気逃がし安全弁自動減压機能用ア キュムレータ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E014	主蒸気第一隔離弃用アキュムレータ	Sクラス	R／B	\times	－		
E015	主蒸気第二隔離弁用アキュムレータ	Sクラス	R／B	\times	－		
E016	主蒸気系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	主蒸気ライン	
					\bigcirc	主蒸気ドレンライン	
					\times	テストライン	通常閉の弁を介して接続 されている
					\times	RPVベントライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	RPVフランジ漏えい検出 ライン	通常閉の弁を介して接続 されている
E017	復水給水系配管	Sクラス SA施設	R／B	\bigcirc	\times	復水給水系ライン	$\begin{aligned} & \hline \text { 逆止弁を介して接続され } \\ & \text { ている } \\ & \hline \end{aligned}$
					\times	ドレンライン	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の开を介して接続 されている
E018	残留熱除去系熱交換器	Sクラス SA施設	R／B	\times	－		
E019	残留熱除去系ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	ペデスタルドレンライン	
					\bigcirc	$\begin{aligned} & \hline \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
E020	残留熱除去系ストレーナ	Sクラス SA施設	R／B	\times	－		
E021	残留熱除去系配管	Sクラス SA施設	R／B	\bigcirc	\times	復水補給水系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	燃料プール椧却浄化系ラ イン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	廃莗物処理系ライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	試料採取系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	$\begin{aligned} & \text { 事故後サンプリングライ } \\ & \text { 而 } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	復水貯蔵タンクライン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	テストライン	通常閉の弁を介して接続 されている
E022	高圧炉心スプレイ系ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	ペデスタルドレンライン	
					\bigcirc	$\begin{array}{\|l} \hline \text { メカニカルシールリーク } \\ \text { ドレンライン } \end{array}$	
E023	高圧炉心スプレイ系ストレーナ	Sクラス SA施設	R／B	\times	－		

第 6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（3／9）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	```下位クラスとの 接続*1 (有: ○, 無: ×)```	評価対象	接続配管等	備考
E024	高圧炉心スプレイ系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { 復水貯蔵タンク戻りライ } \\ & \hline \end{aligned}$	通常閉の弁を介して接続 されている
					\times	燃料プール補給水テスト ライン	通常閉の弁を介して接続 されている
					\bigcirc	燃料プール補給水ライン	
					\times	復水補給水系ライン	逆止弁を介して接続され ている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続 されている
E025	低圧炬心スプレイ系ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	ペデスタルドレンライン	
					\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
E026	低圧炉ふスプレイ系ストレーナ	Sクラス SA施設	R／B	\times	－		
E027	低圧炬心スプレイ系配管	Sクラス SA施設	R／B	\bigcirc	\times	復水貯蔵タンクライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	復水補給水系ライン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続 されている
E028	原子炬隔離時冷却系ポンプ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\bigcirc	\bigcirc	ブラケットドレンライン	
E029	原子炬隔離時冷却系ポンプ駆動用ター ビン	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E030	原子炉隔離時冷却系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	主復水器ライン	
					\times	復水補給水系ライン	通常閉の弁を介して接続 されている
					\times	復水貯蔵タンク戻りライ	通常閉の弁を介して接続 されている
					\times	建屋内開放ライン	$\begin{aligned} & \hline \text { ラプチヤディスクを介し } \\ & \text { て接続されている } \\ & \hline \end{aligned}$
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \hline \text { 通常閉の弁または安全弁 } \\ & \text { (通常閉)を介しで接続 } \\ & \text { されている } \end{aligned}$
					\times	テストライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E031	原子炬補機冷却水系熱交換器	Sクラス SA施設	R／B	\times	－		
E032	原子炬補機冷却水ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
					\bigcirc	$\begin{aligned} & \text { ベアリングブラケットド } \\ & \text { レンライン } \end{aligned}$	
E033	原子炉補機泠却水サージタンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	補給水ライン	
					\times	燃料プール補給水系ライ ン	通常閉の弁を介して接続 されている
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている
E034	原子炬補機冷却水系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	常用系ライン	
					\bigcirc	燃料プール補給水ポンプ軸受冷却ライン	
					\times	燃料プール補給水系ライ ン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁または安全弁 （通常閉）を介して接続 されている
					\times	試料採取系ライン	通常閉の弁を介して接続 されている
E035	原子炉補機冷却海水系ストレーナ	Sクラス SA施設	R／B	\times	－		
E036	原子炬補機冷却海水系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	試料採取系ライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E037	高圧灲心スプレイ補機冷却水系熱交換器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E038	高圧炬心スプレイ補機冷却水ポンブ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
					\bigcirc	$\begin{array}{\|l\|l\|} \hline \text { ベアリングブラケットド } \\ \text { レンライン } \end{array}$	

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（4／9）

整理 番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有: } 0 \text {, 無: }: \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E039	高圧炉心スプレイ補機泠却水サージタシク	Sクラス SA施設	R／B	\bigcirc	\times	補給水ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	燃料プール補給水系ライ	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E040	高圧炬心スプレイ補機冷却水系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	防食剤添加タンクライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E041	高圧炉心スプレイ補機冷却海水系配管	Sクラス SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	試料採取系ライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E042	原子炉冷却材浄化系配管	Sクラス SA施設	R／B	\bigcirc	\times	万過脱塩装置ライン	逆止弁を介して接続され ている
					\times	ドレンライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E043	制御棒駆動機構	Sクラス SA施設	R／B	\times	－		
E044	水圧制御ユニット	Sクラス SA施設	R／B	\bigcirc	\times	制御棒駆動水圧系ライン	$\begin{aligned} & \text { 通常閉の弁および逆止弁 } \\ & \text { を介して接続されている } \\ & \hline \end{aligned}$
E045	制御棒駆動水圧系配管	Sクラス SA施設	R／B	\bigcirc	\times	ベントライン	通常閉の弁を介して接続 されている
E046	ほう酸水注入系ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { グランドパッキンリーク } \\ & \text { ドレンライン } \end{aligned}$	
E047	ほう酸水注入系貯蔵タンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	補給水ライン	
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	サンプリングライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E048	ほう酸水注入系配管	Sクラス SA施設	R／B	\bigcirc	\times	補給水ライン	通常閉の弁および逆止弁 を介して接続されている
					\times	補給水ライン（バイパ ス）	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	テストタンクライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	テストライン	通常閉の弁を介して接続 されている
E049	放射性ドレン移送系配管	Sクラス	R／B	\times	－		
E050	燃料プール泠却浄化系ポンプ	SA施設	R／B	\bigcirc	\bigcirc	ブラケットドレンライン	
E051	燃料プール泠却浄化系熱交換器	SA施設	R／B	\times	－		
E052	燃料プール冷却浄化系配管	Sクラス SA施設	R／B	\bigcirc	\times	燃料プール補給水系ライ	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	残留熱除去系戻りライン	通常閉の弁を介して接続 されている
					\times	原子炉ウェル注水ライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	原子炉ウェル戻りライン	逆止弁を介して接続され ている
					\times	万過脱塩装置ライン	$\begin{array}{\|l} \hline \text { 通常閉の弁を介して接続 } \\ \text { されている } \\ \hline \end{array}$
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E053	換気空調補機常用冷却水系配管	Sクラス	R／B	\times	－		
E054	換気空調補機非常用冷却水系配管	Sクラス	$\begin{aligned} & \mathrm{R} / \mathrm{B} \\ & \mathrm{C} / \mathrm{B} \end{aligned}$	\bigcirc	\times	冷媒回収ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	防食剤添加タンクライン	通常閉の弁を介して接続 されている

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（5／9）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : } 0 \text {, 無: } \times \text {) } \\ \hline \end{gathered}$	評偠対象	接続配管等	備考
E055	補給水系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	制御棒駆動水圧系給水ラ イン	
					\times	3過水系ライン	通常閉の弁および逆止弁 を介して接続されている
					\times	タービン建屋供給ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \end{aligned}$
					\times	ECCS系封水ライン	通常閉の弁および逆止弁 を介して接続されている
					\times	除染用給水ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\times	プール／原子炉ウェル水張りライン	通常閉の弁を介して接続 されている
					\times	スキマサージタンク補給水	通常閉の弁を介して接続 されている
					\times	純水補給水系ライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\bigcirc	試料採取系ライン	
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E056	高圧窒素がス供給系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	常用系ライン	
					\times	安全弁排気ライン	安全弁 (通常閉) を介し て接続されている
E057	所内用圧縮空気系配管	Sクラス	R／B	\times	－		
E058	計装用圧縮空気系配管	Sクラス	R／B	\times	－		
E059	サンプリング配管	Sクラス	R／B	\times	－		
E060	高圧窒素ガス供給系窒素ガスボンベ ラック	Sクラス	R／B	\times	－		
E061	中央制御室送風機	Sクラス SA施設	C／B	\times	－		
E062	中央制御室排風機	Sクラス SA施設	C／B	\times	－		
E063	中央制御室再循環送風機	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	C／B	\times	－		
E064	中央制御室再循環フィルタ装置	Sクラス SA施設	C／B	\times	－		
E065	ドライウェル	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E066	ドライウェルベント開口部	Sクラス SA施設	R／B	\times	－		
E067	サブレッションチェンバ	Sクラス SA施設	R／B	\times	－		
E068	ボックスサポート	Sクラス SA施設	R／B	\times	－		
E069	機器搬出入用ハッチ	Sクラス SA施設	R／B	\times	－		
E070	逃がし安全弁搬出入口	Sクラス SA施設	R／B	\times	－		
E071	制御棒駆動機構搬出入口	Sクラス SA施設	R／B	\times	－		
E072	所員用エアロック	Sクラス SA施設	R／B	\times	－		
E073	原子炬格納容器配管貫通部	Sクラス SA施設	R／B	\times	－		
E074	原子炉格納容器電気配線貫通部	Sクラス SA施設	R／B	\times	－		
E075	ダウンカマ	Sクラス SA施設	R／B	\times	－		
E076	ベント管	Sクラス SA施設	R／B	\times	－		
E077	ベント管ベローズ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E078	ベントヘッダ	Sクラス SA施設	R／B	\times	－		
E079	真空破壊装置	Sクラス SA施設	R／B	\times	－		
E080	サプレッションチェンバスプレイ管	Sクラス SA施設	R／B	\times	－		
E081	ドライウェルスプレイ管	Sクラス SA施設	R／B	\times	－		
E082	原子炉格納容器スタビライザ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E083	原子炉格納容器調気系配管	Sクラス SA施設	R／B	\bigcirc	\bigcirc	室素ガス供給ライン	
					\times	建屋空調系ライン	通常閉の弁を介して接続 されている
					\times	パージ用窒素供給ライン	通常閉の弁を介して接続 されている
					\times	$\begin{array}{\|l} \hline \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ \hline \end{array}$	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続

第6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（6／9）

整理 番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : O, 無: } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E084	非常用ガス処理系排風機	Sクラス SA施設	R／B	\times	－		
E085	非常用ガス処理系空気乾燥装置	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\bigcirc	\times	ドレンライン	逆止弁を介して接続され ている
E086	非常用ガス処理系フィルタ装置	Sクラス SA施設	R／B	\times	－		
E087	非常用ガス処理系配管	Sクラス SA施設	R／B	\bigcirc	\times	ドレンライン	通常閉の弁を介して接続 されている
E088	可燃性ガス濃度制御系再結合装置ブロ ワ	Sクラス	R／B	\times	－		
E089	可燃性ガス濃度制御系再結合装置	Sクラス	R／B	\times	－		
E090	可燃性ガス濃度制御系配管	Sクラス	R／B	\bigcirc	\times	復水補給水系ライン	通常閉の弁を介して接続 されている
					\times	ドレンライン	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続 されている
E091	非常用ディーゼル発電設備ディーゼル機関	Sクラス SA施設	R／B	\bigcirc	\bigcirc	吸気ライン	
					\bigcirc	排気ライン	
					\bigcirc	燃料油ドレンライン	
					\bigcirc	ミスト管	
					\bigcirc	泪滑油ドレンライン	
					\bigcirc	吸気ドレンライン	
					\bigcirc	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { 機関付清水ポンプシール } \\ \text { リークードレンライン } \end{array}\right. \\ & \hline \end{aligned}$	
					\times	冷却水ベントライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E092	非常用ディーゼル発電設備空気だめ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E093	非常用ディーゼル発電設備燃料デイタ ンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	燃料油ドレンユニットラ イン	
					\bigcirc	オーバーフローライン	
					\times	ドレンライン	$\begin{aligned} & \hline \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
					\bigcirc	ミスト管	
E094	$\begin{array}{\|l\|} \hline \text { 非常用ディーゼル発電設備ディーゼル } \\ \text { 発電機 } \end{array}$	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E095	非常用ディーゼル発電設備清水膨張夕 ンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	補給水ライン	
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている
E096	非常用ディーゼル発電設備清水加熱器	Sクラス SA施設	R／B	\times	－		
E097	非常用ディーゼル発電設備清水泠却器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E098	非常用ディーゼル発電設備潤滑油加熱器	Sクラス SA施設	R／B	\times	－		
E099	非常用ディーゼル発電設備清水加熱器 ポンブ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\bigcirc	\bigcirc	$\begin{array}{\|l\|} \hline \text { メカニカルシールリーク } \\ \text { ドレンライン } \\ \hline \end{array}$	
E100	非常用ディーゼル発電設備泪滑油プラ イミングポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\bigcirc	\bigcirc	オイルパンドレンライン	
E101	非常用ディーゼル発電設備潤滑油サン プタンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	給油ライン	
					\bigcirc	ミスト管	
					\times	ドレンライン	通常閉の弁を介して接続 されている
E102	非常用ディーゼル発電設備潤滑油泠却器	Sクラス SA施設	R／B	\times	－		
E103	非常用ディーゼル発電設備泪滑油フィ ルタ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	ドレンライン	
E104	非常用ディーゼル発電設備燃料油フィ ルタ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E105	非常用ディーゼル発電設備燃料移送ポ ンプ	Sクラス SA施設	軽油タンク室	\times	－		
E106	非常用ディーゼル発電設備燃料移送系配管	Sクラス SA施設	R／B 軽油タンク室	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	タイライン	通常閉の弁を介して接続 されている

第6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（7／9）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : }{ }^{*} \text {, 無: } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E107	高圧炉心スブレイ系ディーゼル発電設備ディーゼル機関	Sクラス SA施設	R／B	\bigcirc	\bigcirc	吸気ライン	
					\bigcirc	排気ライン	
					\bigcirc	泪滑油補給ライン	
					\times	眭滑油ドレンライン	通常閉の弁を介して接続 されている
					\bigcirc	燃料油ドレンライン	
					\bigcirc	ミスト管	
					\bigcirc	吸気ドレンライン	
					\bigcirc	機関付清水ポンプシール リークドレンライン	
					\times	冷却水ベントライン	通常閉の弁を介して接続 されている
E108	高圧炉心スプレイ系ディーゼル発電設備空気だめ	Sクラス SA施設	R／B	\times	－		
E109	高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	燃料油ドレンユニットラ イン	
					\bigcirc	オーバーフローライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている
					\bigcirc	ミスト管	
E110	高圧炉心スプレイ系ディーゼル発電設備ディーゼル発電機	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E111	高圧炉心スプレイ系ディーゼル発電設備清水膨張タンク	Sクラス SA施設	R／B	\bigcirc	\bigcirc	補給水ライン	
					\bigcirc	オーバーフローライン	
					\bigcirc	大気開放ライン	
					\times	ドレンライン	通常閉の弁を介して接続 されている
E112	高圧炉心スプレイ系ディーゼル発電設備清水加熱器	Sクラス SA施設	R／B	\times	－		
E113	高圧炉心スプレイ系ディーゼル発電設備清水冷却器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E114	高圧炉心スプレイ系ディーゼル発電設備潤滑油加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E115	高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	$\begin{array}{\|l\|} \hline \text { メカニカルシールリーク } \\ \text { ドレンライン } \\ \hline \end{array}$	
E116	高圧炉心スブレイ系ディーゼル発電設備潤滑油プライミングポンプ	Sクラス SA施設	R／B	\bigcirc	\bigcirc	オイルパンドレンライン	
E117	高圧炉心スプレイ系ディーゼル発電設備潤滑油冷却器	Sクラス SA施設	R／B	\times	－		
E118	高圧炉心スプレイ系ディーゼル発電設備燃料油フィルタ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	\times	－		
E119	高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンブ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	軽油タンク室	\times	－		
E120	高圧炉心スプレイ系ディーゼル発電設備発電機軸受潤滑油冷却器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	\times	－		
E121	高圧炉心スブレイ系ディーゼル発電設備燃料移送系配管	Sクラス SA施設	$\begin{gathered} \text { R/B } \\ \text { 軽油タンク室 } \end{gathered}$	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	タイライン	$\begin{aligned} & \text { 通常閉の弁を介して接続 } \\ & \text { されている } \\ & \hline \end{aligned}$
E122	軽油タンク	Sクラス SA施設	軽油タンク室	\bigcirc	\bigcirc	給油ライン	
					\bigcirc	ミスト管	
					\bigcirc	軽油タンク戻りライン	
E123	SGTS室空調機	Sクラス	R／B	\times	－		
E124	FCS室空調機	Sクラス	R／B	\times	－		
E125	CAMS室空調機	Sクラス	R／B	\times	－		
E126	FPCポンプ室空調機	Sクラス	R／B	\times	－		
E127	LPCSポンプ室空調機	Sクラス	R／B	\times	－		
E128	HPCSポンプ室空調機	Sクラス	R／B	\times	－		
E129	RHRポンプ室空調機	Sクラス	R／B	\times	－		
E130	D／G室非常用給気ケーシング	Sクラス	R／B	\times	－		
E131	$\begin{array}{\|l\|} \hline \text { 換気空調補機非常用冷却水系冷水ポン } \\ \hline \end{array}$	Sクラス	R／B	\times	－		

第6．2－1 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（8／9）

整理 番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : ○, 無: } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E132	換気空調補機非常用泠却水系冷涑機	Sクラス	R／B	\times	－		
E133	原子炉補機（ A ）室送風機	Sクラス	R／B	\times	－		
E134	原子炉補機（A）室給気ケーシング	Sクラス	R／B	\times	－		
E135	原子炉補機（HPCS）室送風機	Sクラス	R／B	\times	－		
E136	原子炉補機（HPCS）室排風機	Sクラス	R／B	\times	－		
E137	原子炉補機（HPCS）室給気ケーシング	Sクラス	R／B	\times	－		
E138	原子炉補機（B）室送風機	Sクラス	R／B	\times	－		
E139	原子炉補機（B）室給気ケーシング	Sクラス	R／B	\times	－		
E140	D／G（A）室非常用送風機	Sクラス	R／B	\times	－		
E141	D／G（HPCS）室非常用送風機	Sクラス	R／B	\times	－		
E142	D／G（B）室非常用送風機	Sクラス	R／B	\times	－		
E143	原子炉補機（ A ）室排風機	Sクラス	R／B	\times	－		
E144	原子炉補機（ B ）室排風機	Sクラス	R／B	\times	－		
E145	RCWポンプ（A）室空調機	Sクラス	R／B	\times	－		
E146	RCWポンプ（B）室空調機	Sクラス	R／B	\times	－		
E147	中央制御室給気ケーシング	Sクラス	C／B	\times	－		
E148	計測制御電源室給気ケーシング	Sクラス	C／B	\times	－		
E149	計測制御電源（A）室送風機	Sクラス	C／B	\times	－		
E150	計測制御電源（A）室排風機	Sクラス	C／B	\times	－		
E151	計測制御電源（B）室送風機	Sクラス	C／B	\times	－		
E152	計測制御電源（B）室排風機	Sクラス	C／B	\times	－		
E153	中央制御室換気空調系ダクト	Sクラス SA施設	C／B	\bigcirc	\times	ドレンライン	通常閉の弁を介して接続 されている
E154	計測制御電源（A）室換気空調系ダクト	Sクラス	C／B	\bigcirc	\times	ドレンライン	通常閉の弁を介して接続 されている
E155	計測制御電源（B）室換気空調系ダクト	Sクラス	C／B	\bigcirc	\times	ドレンライン	通常閉の弁を介して接続 されている
E156	スキマサージタンク	SA施設	R／B	\times	－		
E157	高圧代替注水系ポンプ	SA施設	R／B	\times	－		
E158	高圧代替注水系配管	SA施設	R／B	\bigcirc	\times	蒸気ドレンライン	逆止弁を介して接続され ている
					\bigcirc	主復水器ライン（蒸気）	
					\times	主復水器ライン（水）	通常閉の弁を介して接続 されている
					\times	建屋内開放ライン	ラプチャディスクを介し て接続されている
					\bigcirc	燃料プール補給水系ライ	
					\times	$\begin{array}{\|l\|} \hline \text { ドレンライン, ベントラ } \\ \text { イン } \end{array}$	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続 されている
E159	代替高圧窒素ガス供給系配管	SA施設	R／B	\bigcirc	\times	テストライン	通常閉の弁を介して接続 されている
E160	復水移送ポンプ	SA施設	R／B	\bigcirc	\bigcirc	グランドドレンライン	
E161	原子炉格納容器フィルタベント系フィ ルタ装置	SA施設	R／B	\bigcirc	\times	ドレンライン	通常閉の弁を介して接続 されている
E162	原子炉格納容器フィルタベント系フィ ルタ装置出口側圧力開放板	SA施設	R／B	\times	－		
E163	原子炉格納容器フィルタベント系配管	SA施設	R／B	\bigcirc	\times	格納容器調気系補給用窒素供給ライン	通常閉の弁を介して接続 されている
					\times	純水補給水系ライン	逆止弁を介して接続され ている
					\times	$\begin{array}{\|l\|} \hline \text { ドレンライン, ベントラ } \\ \text { イン } \end{array}$	通常閉の弁を介して接続 されている
E164	静的触媒式水素再結合装置	SA施設	R／B	\times	－		
E165	ガスタービン発電機	SA施設	緊急用電気品建屋	\times	－		

第6．2－1表 女川 2 号機 上位クラス施設と下位クラス施設との接続部一覧表（9／9）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置場所	$\begin{gathered} \text { 下位クラスとの } \\ \text { 接続*1 } \\ \text { (有 : ○, 無: } \times \text {) } \\ \hline \end{gathered}$	評価対象	接続配管等	備考
E166	ガスタービン発電設備軽油タンク	SA施設	ガスタービン発電設備軽油タンク室	\bigcirc	\bigcirc	給油ライン	
					\bigcirc	ミスト管	
					\bigcirc	軽油タンク戻りライン	
E167	ガスタービン発電設備燃料移送系配管	SA施設	ガスタービン発電設備軽油タンク室緊急用電気品建屋	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	軽油タンク戻りライン	通常閉の弁を介して接続 されている
E168	ガスタービン発電設備燃料小出槽	SA施設	緊急用電気品建屋	\times	－		
E169	中央制御室しやへい壁	Sクラス SA施設	C／B	\times	－		
E170	中央制御室待避所遮蔽	SA施設	C／B	\times	－		
E171	中央制御室待避所加圧設備	SA施設	C／B	\times	－		
E172	緊急時対策所遮蔽	SA施設	緊急時対策建屋	\times	－		
E173	緊急時対策所非常用送風機	SA施設	緊急時対策建屋	\times	－		
E174	緊急時対策所非常用フィルタ装置	SA施設	緊急時対策建屋	\times	－		
E175	緊急時対策所加圧設備	SA施設	緊急時対策建屋	\times	－		
E176	緊急時対策所換気空調系ダクト	SA施設	緊急時対策建屋	\times	－		
E177	緊急時対策所軽油タンク	SA施設	緊急時対策建屋	\bigcirc	\times	給油ライン	通常閉の弁を介して接続 されている
					\bigcirc	ミスト管	
E178	緊急時対策所燃料移送系配管	SA施設	緊急時対策建屋	\times	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E179	代替循環冷却ポンプ	SA施設	R／B	\bigcirc	\bigcirc	ブラケットドレンライン	
					\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \end{aligned}$	
E180	原子炉建屋ブローアウトパネル	SA施設	R／B	\times	－		
E181	原子炬建屋ブローアウトパネル閉止装置	SA施設	R／B	\times	－		
E182	直流駆動低圧注水系ポンプ	SA施設	R／B	\bigcirc	\bigcirc	$\begin{aligned} & \text { メカニカルシールリーク } \\ & \text { ドレンライン } \\ & \hline \end{aligned}$	
E183	直流駆動低圧注水系配管	SA施設	R／B	\bigcirc	\times	純水補給水系ライン	通常閉の弁を介して接続 されている
					\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E184	遠隔手動弁操作設備	SA施設	R／B	\times	－		
E185	緊急時対策所非常用給排気配管	SA施設	緊急時対策建屋	\times	－		
E186	原子炉棟換気空調系ダクト （二次格納施設バウンダリ）	Sクラス	R／B	\bigcirc	\bigcirc	換気空調系ダクト	
E187	燃料プール代替注水系配管	SA施設	R／B	\bigcirc	\times	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array}\right. \\ \hline \end{array}$	通常閉の弁を介して接続 されている
E188	燃料プールスプレイ系配管	SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E189	原子炉補機代替冷却水系配管	SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E190	原子炉格納容器下部注水系配管	SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E191	原子炉格納容器代替スブレイ泠却系配管	SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \hline \begin{array}{l} \text { ドレンライン, ベントラ } \\ \text { イン } \end{array} \\ & \hline \end{aligned}$	通常閉の弁を介して接続 されている
E192	代替循環冷却系配管	SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, ベントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
E193	可搬型窒素ガス供給系配管	SA施設	R／B	\bigcirc	\times	$\begin{aligned} & \text { ドレンライン, バントラ } \\ & \text { イン } \end{aligned}$	通常閉の弁を介して接続 されている
					\times	テストライン	通常閉の弁を介して接続 されている

＊ 1 Sクラス施設等と重要 SA 施設との接続部は上位クラス同士であるため，上位クラス施設と下位クラス施設との接続部として抽出しない。
第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果 $(1 / 11)$

建屋外上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
原子炉補機冷却海水ポンプ	グランドドレンライン【 C 】	グランドドレンラインとは，ポンプのグランド部（軸封部）から排出 される少量の海水を排水するための，小口径のドレンラインであり， ポンプのバウンダリと直接接続しているものではない。したがって， グランドドレンラインが破損した場合でも，グランド部から排出する ごく少量の海水が，破損した部分から漏出するだけであり，グランド部を含む上位クラス機能（ポンプ機能）に直接影響を及ぼさないため，上位クラス施設へ影響を与えない。	－
高圧炉心スプレイ補機冷却海水ポンプ	グランドドレンライン【 C 】	原子炉補機冷却海水ポンプと同様に，グランドドレンラインが破損し た場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラ ス施設へ影響を与えない。	－
復水貯蔵タンク	オーバーフローライン【C】	オーバーフローラインは復水貯蔵タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	復水補給水戻りライン【C】	復水補給水戻りラインは復水貯蔵タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
原子炬再循環ポンプ	シールキャビティ圧力制御流量ライ ン【B】	原子炉再循環ポンプは地震スクラム後には動作機能要求がなく，原子炉冷却材圧力バウンダリとしての機能のみが要求される。シールキャ ビティ圧力制御流量ラインが破損した場合でも，原子炉冷却材圧力バ ウンダリに影響を与えない。	－

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（2／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
主蒸気系配管	主蒸気ライン【 B 】	主蒸気第二隔離弁の下流側で地震によって主蒸気系配管が破断した場合，破断口から冷却材が外部に流出する。しかし，冷却材の流出流量 は原子炉圧力容器ノズルに設置されている流量制限器により，破断し た配管の本数に係わらず定格主蒸気流量の 200% に制限される。その際 に，主蒸気流量大信号発生により主蒸気隔離弁が 5 秒で全閉し流出が停止する。流出流量 200% による事故解析は，設置許可の安全解析にお いて実施されており，水位低下によって炉心が露出しないことを確認 しているため，地震時に原子炉格納容器外で主蒸気系配管が破断した場合でもその影響が防止される設計となっている。	－
	主蒸気ドレンライン【B】	主蒸気ドレンライン第二隔離升は主蒸気隔離弁の信号による同弁閉動作のインターロックを設置しているため，地震スクラム時には同弁で下位クラス側と隔離されることから，上位クラスの系統機能へ影響を与えない。	－
残留熱除去系ポンプ	ペデスタルドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
高圧炬心スプレイ系ポンプ	ペデスタルドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（3／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
高圧炉心スプレイ系配管	燃料プール補給水ライン【B】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
低圧炬心スプレイ系ポンプ	ペデスタルドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ペデスタルドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
原子炉隔離時冷却系ポンプ	ブラケットドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
原子炉隔離時冷却系配管	主復水器ライン【 ${ }^{\text {a }}$ 】	RCIC 系統運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラスの系統機能へ影響を及ぼさない。	－
原子炉補機冷却水ポンプ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { ベアリングブラケットドレンライン } \\ & \text { 【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，ベアリングブラケットドレンラ インが損傷した場合でも，上位クラス機能に直接影響を及ぼさないた め，上位クラス施設へ影響を与えない。	－

第6．2－2 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（4／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
原子炬補機冷却水サージタンク	補給水ライン【C】	補給水ラインは原子炬補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能 に影響を与えない。	－
	オーバーフローライン【C】	オーバーフローラインは原子炉補機冷却水サージタンクの通常水位よ り上部に接続しており，損傷した場合でも，上位クラス施設（タンク） の機能に影響を与えない。	－
	大気開放ライン【C】	大気開放ラインは原子炬補機冷却水サージタンクの通常水位より上部 に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
原子炉補機冷却水系配管	常用系ライン【C】	下位クラスの損傷により系統水位が低下すると，系統水位低のインタ ーロックによって隔離弁が閉動作し，下位クラス側と隔離されるため上位クラスの系統機能へ影響を及ぼさない。	－
	燃料プール補給水ポンプ軸受泠却ラ イン【В】	小口径配管のため，損傷しても影響は軽微であることから，上位クラ ス施設（原子灲補機冷却水系配管）への影響はない。	－
高圧炉心スプレイ補機冷却水ポンプ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { ベアリングブラケットドレンライン } \\ & \text { 【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，ベアリングブラケットドレンラ インが損傷した場合でも，上位クラス機能に直接影響を及ぼさないた め，上位クラス施設へ影響を与えない。	－
高圧炬心スプレイ補機冷却水サージタンク	オーバーフローライン【C】	オーバーフローラインは高圧灲心スプレイ補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	大気開放ライン【C】	大気開放ラインは高圧灯心スプレイ補機冷却水サージタンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タ ンク）の機能に影響を与えない。	－

第6．2－2 表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（5／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
ほう酸水注入系ポンプ	$\begin{aligned} & \text { グランドパッキンリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，グランドパッキンリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
ほう酸水注入系貯蔵タンク	補給水ライン【C】	補給水ラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続 しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	オーバーフローライン【 C 】	オーバーフローラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	大気開放ライン【C】	大気開放ラインはほう酸水注入系貯蔵タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
燃料プール冷却浄化系ポンプ	ブラケットドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
復水補給水系配管	制御棒駆動水圧系給水ライン【 $\mathrm{B}^{\text {¢ }}$ 】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
	試料採取系ライン【C】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
高圧窒素ガス供給系配管	常用系ライン【C】	下位クラスの損傷により常用系の圧力が低下すると，インターロック によって隔離弁が閉動作し下位クラス側と隔離されるため上位クラス の系統機能へ影響を及ぼさない。	－
原子炉格納容器調気系配管	窒素ガス供給ライン【C】	下位クラスの損傷が発生した場合には，隔離弁を閉操作し隔離するこ とから，上位クラスの系統機能へ影響を及ぼさない。	－

第6．2－2表 女川2号機 上位クラス施設と下位クラス施設との接続部の評価結果（6／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
非常用ディーゼル発電設備非常用ディーゼル機関	吸気ライン【C】	当該配管が損傷した場合でもディーゼル機関への吸気は継続すること から，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	排気ライン【C】	当該配管が損傷した場合でもディーゼル機関の排気は継続することか ら，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	燃料油ドレンライン【く】	原子炉補機冷却海水ポンプと同様に，燃料油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	潤滑油ドレンライン【く】	原子炉補機冷却海水ポンプと同様に，潤滑油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	吸気ドレンライン【C】	原子炉補機冷却海水ポンプと同様に，吸気ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
	機関付清水ポンプシールリークドレ ンライン【C】	原子炉補機冷却海水ポンプと同様に，機関付清水ポンプシールリーク ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼ さないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（7／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【 】：耐震クラス	評価結果	備考
非常用ディーゼル発電設備燃料デイタンク	燃料油ドレンユニットライン【C】	燃料油ドレンユニットラインは燃料デイタンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能 に影響を与えない。	－
	オーバーフローライン【 C 】	オーバーフローラインは燃料デイタンクの通常油面より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。	－
非常用ディーゼル発電設備清水膨張タンク	補給水ライン【C】	補給水ラインは清水膨張タンクの通常水位より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。	－
	オーバーフローライン【く】	オーバーフローラインは清水膨張タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	大気開放ライン【C】	大気開放ラインは清水膨張タンクの通常水位より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。	－
非常用ディーゼル発電設備清水加熱器ポン プ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設の機能に影響を与えない。	－
非常用ディーゼル発電設備泪滑油プライミ ングポンプ	オイルパンドレンライン【C】	原子炉補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。	－

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（8／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
非常用ディーゼル発電設備潤滑油サンプタ ンク	給油ライン【C】	給油ラインは潤滑油サンプタンクの通常油面より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。	－
発電用ディーゼル発電設備潤滑油フィルタ	ドレンライン【C】	原子炉補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。	－
高圧炉心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル機関	吸気ライン【C】	当該配管が損傷した場合でもディーゼル機関への吸気は継続すること から，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	排気ライン【C】	当該配管が損傷した場合でもディーゼル機関の排気は継続することか ら，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	潤滑油補給ライン【C】	当該配管が損傷した場合でも，機関付潤滑油ポンプによってオイルパ ンからディーゼル機関へ潤滑油が補給されるため，下位クラス施設の損傷が上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	燃料油ドレンライン【く】	原子炉補機冷却海水ポンプと同様に，燃料油ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（ディーゼル機関）の機能に影響を与えない。	－
	吸気ドレンライン【C】	原子炉補機冷却海水ポンプと同様に，吸気ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（9／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
高圧烼心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル機関	機関付清水ポンプシールリークドレ ンライン【C】	原子炬補機冷却海水ポンプと同様に，機関付清水ポンプシールリーク ドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼ さないため，上位クラス施設（ディーゼル機関）へ影響を与えない。	－
高圧炉心スプレイ系ディーゼル発電設備燃料デイタンク	燃料油ドレンユニットライン【C】	燃料ドレンユニットラインは燃料デイタンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	オーバーフローライン【C】	オーバーフローラインは燃料デイタンクの通常油面より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	ミスト管【C】	ミスト管が損傷してもオイルミストの排出機能を損なうことはないた め，上位クラス施設（タンク）の機能に影響を与えない。	－
高圧炉心スプレイ系ディーゼル発電設備清水膨張タンク	補給水ライン【C】	```補給水ラインは清水膨張タンクの通常水位より上部に接続しており, 損傷した場合でも, 上位クラス施設(タンク) の機能に影響を与えな い。```	－
	オーバーフローライン【C】	オーバーフローラインは清水膨張タンクの通常水位より上部に接続し ており，損傷した場合でも，上位クラス施設（タンク）の機能に影響 を与えない。	－
	大気開放ライン【C】	大気開放ラインは清水膨張タンクの通常水位より上部に接続してお り，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与 えない。	－
高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設（ポンプ）へ影響を与えない。	－
高圧炉心スプレイ系ディーゼル発電設備潤滑油プライミングポンプ	オイルパンドレンライン【C】	原子炬補機冷却海水ポンプと同様に，オイルパンのドレンラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさないため，上位 クラス施設の機能に影響を与えない。	－

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（10／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【】：耐震クラス	評価結果	備考
軽油タンク	給油ライン【C】	給油ラインは軽油タンクの通常油面より上部に接続しており，損傷し た場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	ミスト管【C】	ミスト管は軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	燃料油戻りライン【C】	燃料油戻りラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。	－
原子炉棟換気空調系ダクト （二次格納施設バウンダリ）	換気空調系ダクト【C】	下位クラスの換気空調系ダクトが損傷した場合でも，隔離弁により二次格納施設が隔離されるため，バウンダリ機能に影響を与えない。	－
高圧代替注水系配管	主復水器ライン（蒸気）【 B 】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
	燃料プール補給水系ライン【B】	SA 運用時に当該配管の隔離弁を閉操作し隔離することから，上位クラ スの系統機能へ影響を及ぼさない。	－
復水移送ポンプ	グランドドレンライン【B】	原子炉補機冷却海水ポンプと同様に，グランドドレンラインが損傷し た場合でも，上位クラス機能に直接影響を及ぼさないため，上位クラ ス施設へ影響を与えない。	－
ガスタービン発電設備軽油タンク	給油ライン【C】	給油ラインは軽油タンクの通常油面より上部に接続しており，損傷し た場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	ミスト管【C】	ミスト管は軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
	燃料油戻りライン【C】	燃料油戻りラインは軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えな い。	－

第6．2－2表 女川 2 号機 上位クラス施設と下位クラス施設との接続部の評価結果（11／11）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス接続配管等【 】：耐震クラス	評価結果	備考
緊急時対策所軽油タンク	ミスト管【C】	ミスト管は軽油タンクの通常油面より上部に接続しており，損傷した場合でも，上位クラス施設（タンク）の機能に影響を与えない。	－
代替循環冷却ポンプ	ブラケットドレンライン【C】	原子炉補機冷却海水ポンプと同様に，ブラケットドレンラインが損傷 した場合でも，上位クラス機能に直接影響を及ぼさないため，上位ク ラス施設へ影響を与えない。	－
	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炬補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－
直流駆動低圧注水系ポンプ	$\begin{aligned} & \text { メカニカルシールリークドレンライ } \\ & \text { ン【C】 } \end{aligned}$	原子炉補機冷却海水ポンプと同様に，メカニカルシールリークドレン ラインが損傷した場合でも，上位クラス機能に直接影響を及ぼさない ため，上位クラス施設へ影響を与えない。	－

6． 3 建屋内における施設の損傷，転倒，落下等による影響検討結果

6．3．1 抽出手順
机上検討及び現地調査を基に，建屋内上位クラス施設に対して，損傷，転倒，落下等により影響を及ぼすおそれのある下位クラス施設を抽出する。

建屋内上位クラス施設の配置図を第6．3－1図に示す（配置図上のエリア番号 は第 4－2 表の設置場所に該当する）。原子炉建屋クレーンの位置関係概要図を第 6．3－2 図に，燃料交換機の位置関係概要図を第6．3－3 図に，制御棒貯蔵ハンガ，制御棒貯蔵ラック及び燃料チャンネル着脱機の位置関係概要図を第6．3－4 図に，原子炉ウェルカバー及び原子炉しやへい壁の位置関係概要図を第6．3－5 図に示 す。

6．3．2 下位クラス施設の抽出結果
第5．3－1図のフローの a に基づいて，上位クラス施設に波及的影響を及ぼす おそれのある下位クラス施設を抽出した結果を第6．3－1表に示す。

6．3．3 耐震評価結果

6．3．2 項で抽出した建屋内下位クラス施設の評価結果について，第6．3－2 表 に示す。

PPN

(2)

(1)

$\stackrel{3}{6}$

	䟚

8

PPN

女川 2 号機 原子炉建屋クレーン位置関係概要図
第6．3－2 図
${ }^{\circ}$

第6．3－3 図 女川 2 号機 燃料交換機位置関係概要図
$\stackrel{8}{0}$
$\square<$

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（1／18）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{array}{\|c\|} \hline \text { 波及的影響のおそれ } \\ (\text { (: 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \end{array}$	備考
E001	燃料集合体	Sクラス	R／B	－	\times	＊ 1
E002	原子炬圧力容器	Sクラス SA施設	R／B	原子炉しやへい壁	\bigcirc	＊2
E003	炬心支持構造物	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	＊ 1
E004	原子炉圧力容器支持構造物	Sクラス	R／B	－	\times	＊3
E005	原子炉圧力容器付属構造物	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	＊3
E006	原子炉圧力容器内部構造物	Sクラス SA施設	R／B	－	\times	＊ 1
E007	使用済燃料プール	Sクラス SA施設	R／B	原子炉建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
E008	使用済燃料貯蔵ラック	Sクラス SA施設	R／B	原子炉建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
				制御棒貯蔵ハンガ	\bigcirc	＊ 4
				制御棒貯蔵ラック	\bigcirc	＊ 4
				燃料チャンネル着脱機	\bigcirc	＊ 4
E009	制御棒•破損燃料貯蔵ラック	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	原子炉建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
E010	原子炉再循環ポンプ	Sクラス	R／B	－	\times	
E011	原子炉再循環系配管	Sクラス SA施設	R／B	－	\times	
E012	主蒸気逃がし安全弁逃がし弁機能用ア キュムータ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E013	主蒸気逃がし安全弁自動減圧機能用ア キュムレータ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E014	主蒸気第一隔離弁用アキュムレータ	Sクラス	R／B	－	\times	
E015	主蒸気第二隔離弁用アキュムレータ	Sクラス	R／B	－	\times	
E016	主蒸気系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E017	復水給水系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E018	残留熱除去系熱交換器	Sクラス SA施設	R／B	－	\times	
E019	残留熱除去系ポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E020	残留熱除去系ストレーナ	Sクラス SA施設	R／B	－	\times	
E021	残留熱除去系配管	Sクラス SA施設	R／B	－	\times	
E022	高圧炉心スプレイ系ポンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E023	高圧炉心スプレイ系ストレーナ	Sクラス SA施設	R／B	－	\times	
E024	高圧炉心スプレイ系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E025	低圧炉心スプレイ系ポンプ	Sクラス SA施設	R／B	－	\times	
E026	低圧炉心スプレイ系ストレーナ	Sクラス SA施設	R／B	－	\times	
E027	低圧炉心スプレイ系配管	Sクラス SA施設	R／B	－	\times	
E028	原子炉隔離時冷却系ポンプ	Sクラス SA施設	R／B	－	\times	
E029	原子炬隔離時冷却系ポンプ駆動用タービ	Sクラス SA施設	R／B	－	\times	
E030	原子炉隔離時冷却系配管	Sクラス SA施設	R／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（2／18）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，$\times:$ 無） 損傷•転倒•落下	備考
E031	原子炉補機冷却水系熱交換器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E032	原子炉補機冷却水ポンプ	Sクラス SA施設	R／B	－	\times	
E033	原子炬補機冷却水サージタンク	Sクラス SA施設	R／B	－	\times	
E034	原子炉補機冷却水系配管	Sクラス SA施設	R／B	－	\times	
E035	原子炬補機冷却海水系ストレーナ	Sクラス SA施設	R／B	－	\times	
E036	原子炉補機冷却海水系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E037	高圧炉心スプレイ補機冷却水系熱交換器	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E038	高圧炉心スプレイ補機冷却水ポンプ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E039	高圧炉心スプレイ補機冷却水サージタン ク	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E040	高圧炉心スプレイ補機冷却水系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E041	高圧炉心スプレイ補機冷却海水系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E042	原子炉泠却材浄化系配管	Sクラス SA施設	R／B	－	\times	
E043	制御棒駆動機構	Sクラス SA施設	R／B	－	\times	
E044	水圧制御ユニット	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E045	制御棒駆動水圧系配管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E046	ほら酸水注入系ポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E047	ほら酸水注入系貯蔵タンク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E048	ほう酸水注入系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E049	放射性ドレン移送系配管	Sクラス	R／B	－	\times	
E050	燃料プール泠却浄化系ポンプ	SA施設	R／B	－	\times	
E051	燃料プール泠却浄化系熱交換器	SA施設	R／B	－	\times	
E052	燃料プール	Sクラス	R／B	原子炉建屋クレーン	\bigcirc	
E052		SA施設	R／B	燃料交換機	\bigcirc	
E053	換気空調補機常用泠却水系配管	Sクラス	R／B	－	\times	
E054	換気空調補機非常用泠却水系配管	Sクラス	$\begin{aligned} & \hline \text { R/B } \\ & C / B \end{aligned}$	－	\times	
E055	補給水系配管	Sクラス SA施設	R／B	－	\times	
E056	高圧窒素ガス供給系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E057	所内用圧縮空気系配管	Sクラス	R／B	－	\times	
E058	計装用圧縮空気系配管	Sクラス	R／B	－	\times	
E059	サンプリング配管	Sクラス	R／B	－	\times	
E060	高圧窒素ガス供給系窒素ガスボンベラッ	Sクラス	R／B	－	\times	
E061	中央制御室送風機	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	－	\times	
E062	中央制御室排風機	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	－	\times	
E063	中央制御室再循環送風機	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	C／B	－	\times	
E064	中央制御室再循環フィルタ装置	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	C／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（3／18）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \\ \hline \end{gathered}$	備考
E065	ドライウェル	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	原子炉ウェルカバー	\bigcirc	＊2
E066	ドライウェルベント開口部	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E067	サプレッションチェンバ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E068	ボックスサポート	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
E069	機器搬出入用ハッチ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
E070	逃がし安全弁搬出入口	Sクラス SA施設	R／B	－	\times	
E071	制御棒駆動機構搬出入口	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E072	所員用エアロック	Sクラス SA施設	R／B	－	\times	
E073	原子炉格納容器配管貫通部	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E074	原子炬格納容器電気配線貫通部	Sクラス SA施設	R／B	－	\times	
E075	ダウンカマ	Sクラス SA施設	R／B	－	\times	
E076	ベント管	Sクラス SA施設	R／B	－	\times	
E077	ベント管ベローズ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E078	ベントヘッダ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E079	真空破壊装置	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E080	サプレッションチェンバスプレイ管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E081	ドライウェルスプレイ管	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E082	原子炉格納容器スタビライザ	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E083	原子炉格納容器調気系配管	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E084	非常用ガス処理系排風機	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E085	非常用ガス処理系空気乾燥装置	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E086	非常用ガス処理系フィルタ装置	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E087	非常用ガス処理系配管	Sクラス SA施設	R／B	－	\times	
E088	可燃性ガス濃度制御系再結合装置ブロワ	Sクラス	R／B	－	\times	
E089	可燃性ガス濃度制御系再結合装置	Sクラス	R／B	－	\times	
E090	可燃性ガス濃度制御系配管	Sクラス	R／B	－	\times	
E091	非常用ディーゼル発電設備非常用ディー ゼル機関	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E092	非常用ディーゼル発電設備空気だめ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E093	非常用ディーゼル発電設備燃料デイタン	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E094	非常用ディーゼル発電設備非常用ディー ゼル発電機	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E095	非常用ディーゼル発電設備清水膨張タン ク	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E096	非常用ディーゼル発電設備清水加熱器	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E097	非常用ディーゼル発電設備清水泠却器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E098	非常用ディーゼル発電設備潤滑油加熱器	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
E099	非常用ディーゼル発電設備清水加熱器ポ ンプ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E100	非常用ディーゼル発電設備潤滑油プライ ミングポンプ	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（4／18）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times \text { : 無) } \\ \hline \text { 損傷•転倒•落下 } \\ \hline \end{gathered}$	備考
E101	非常用ディーゼル発電設備潤滑油サンプ タンク	Sクラス SA施設	R／B	－	\times	
E102	非常用ディーゼル発電設備潤滑油泠却器	Sクラス SA施設	R／B	－	\times	
E103	韭常用ディーゼル発電設備潤滑油フィル	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E104	非常用ディーゼル発電設備燃料油フィル夕	Sクラス SA施設	R／B	－	\times	
E105	非常用ディーゼル発電設備燃料移送ポン プ	Sクラス SA施設	軽油タンク室	－	\times	
E106	非常用ディーゼル発電設備燃料移送系配管	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R} / \mathrm{B} \\ \text { 軽油タンク室 } \\ \hline \end{gathered}$	－	\times	
E107	高圧炉心スプレイ系ディーゼル発電設備高圧灲心スプレイ系ディーゼル機関	Sクラス SA施設	R／B	－	\times	
E108	高圧炉心スプレイ系ディーゼル発電設備空気だめ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E109	高圧灲心スプレイ系ディーゼル発電設備燃料デイタンク	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E110	高圧灲心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル発電機	Sクラス SA施設	R／B	－	\times	
E111	高圧炉心スプレイ系ディーゼル発電設備清水膨張タンク	Sクラス SA施設	R／B	－	\times	
E112	高圧灲心スプレイ系ディーゼル発電設備清水加熱器	Sクラス SA施設	R／B	－	\times	
E113	高圧炉心スプレイ系ディーゼル発電設備清水冷却器	Sクラス SA施設	R／B	－	\times	
E114	高圧炉心スプレイ系ディーゼル発電設備 潤滑油加熱器	Sクラス SA施設	R／B	－	\times	
E115	高圧炉心スプレイ系ディーゼル発電設備清水加熱器ポンプ	Sクラス SA施設	R／B	－	\times	
E116	高圧炉心スプレイ系ディーゼル発電設備潤滑油プライミングポンプ	Sクラス SA施設	R／B	－	\times	
E117	高圧炉心スプレイ系ディーゼル発電設備潤滑油椧却器	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
E118	高圧炉心スプレイ系ディーゼル発電設備燃料油フィルタ	Sクラス SA施設	R／B	－	\times	
E119	高圧灲心スプレイ系ディーゼル発電設備燃料移送ポンプ	Sクラス SA施設	軽油タンク室	－	\times	
E120	高圧灲心スプレイ系ディーゼル発電設備発電機軸受潤滑油泠却器	Sクラス SA施設	R／B	－	\times	
E121	高圧灲心スプレイ系ディーゼル発電設備燃料移送系配管	Sクラス SA施設	$\begin{gathered} \mathrm{R} / \mathrm{B} \\ \text { 軽油タンク室 } \\ \hline \end{gathered}$	－	\times	
E122	軽油タンク	Sクラス SA施設	軽油タンク室	－	\times	
E123	SGTS室空調機	Sクラス	R／B	－	\times	
E124	FCS室空調機	Sクラス	R／B	－	\times	
E125	CAMS室空調機	Sクラス	R／B	－	\times	
E126	FPCポンプ室空調機	Sクラス	R／B	－	\times	
E127	LPCSポンプ室空調機	Sクラス	R／B	－	\times	
E128	HPCSポンプ室空調機	Sクラス	R／B	－	\times	
E129	RHRポンプ室空調機	Sクラス	R／B	－	\times	
E130	D／G室非常用給気ケーシング	Sクラス	R／B	－	\times	
E131	換気空調補機非常用椧却水系泠水ポンプ	Sクラス	R／B	－	\times	
E132	換気空調補機非常用泠却水系泠涑機	Sクラス	R／B	－	\times	
E133	原子炬補機（ A ）室送風機	Sクラス	R／B	－	\times	
E134	原子炉補機（A）室給気ケーシング	Sクラス	R／B	－	\times	
E135	原子炬補機（HPCS）室送風機	Sクラス	R／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（5／18）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\left.\begin{array}{\|c}\text { 波及的影響のおそれ } \\ (○: \text { 有，} \times: \text { 無）}\end{array}\right]$	備考
E136	原子炬補機（HPCS）室排風機	Sクラス	R／B	－	\times	
E137	原子炉補機（HPCS）室給気ケーシング	Sクラス	R／B	－	\times	
E138	原子炉補機（B）室送風機	Sクラス	R／B	－	\times	
E139	原子炉補機（B）室給気ケーシング	Sクラス	R／B	－	\times	
E140	D／G（A）室非常用送風機	Sクラス	R／B	－	\times	
E141	D／G（HPCS）室非常用送風機	Sクラス	R／B	－	\times	
E142	D／G（B）室非常用送風機	Sクラス	R／B	－	\times	
E143	原子炉補機（ A ）室排風機	Sクラス	R／B	－	\times	
E144	原子炉補機（B）室排風機	Sクラス	R／B	－	\times	
E145	RCWポンプ（A）室空調機	Sクラス	R／B	－	\times	
E146	RCWポンプ（B）室空調機	Sクラス	R／B	－	\times	
E147	中央制御室給気ケーシング	Sクラス	C／B	－	\times	
E148	計測制御電源室給気ケーシング	Sクラス	C／B	－	\times	
E149	計測制御電源（A）室送風機	Sクラス	C／B	－	\times	
E150	計測制御電源（A）室排風機	Sクラス	C／B	－	\times	
E151	計測制御電源（B）室送風機	Sクラス	C／B	－	\times	
E152	計測制御電源（B）室排風機	Sクラス	C／B	－	\times	
E153	中央制御室換気空調系ダクト	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	－	\times	
E154	計測制御電源（A）室換気空調系ダクト	Sクラス	C／B	－	\times	
E155	計測制御電源（B）室換気空調系ダクト	Sクラス	C／B	－	\times	
E156	スキマサージタンク	SA施設	R／B	原子炉建屋クレーン	\bigcirc	＊5
E157	高圧代替注水系タービンポンプ	SA施設	R／B	－	\times	
E158	高圧代替注水系配管	SA施設	R／B	－	\times	
E159	代替高圧窒素ガス供給系配管	SA施設	R／B	－	\times	
E160	復水移送ポンプ	SA施設	R／B	－	\times	
E161	原子炉格納容器フィルタベント系フィル夕装置	SA施設	R／B	－	\times	
E162	$\begin{aligned} & \text { 原子炉格納容器フィルタベント系フィル } \\ & \text { 夕装置出口側圧力開放板 } \end{aligned}$	SA施設	R／B	－	\times	
E163	原子炉格納容器フィルタベント系配管	SA施設	R／B	－	\times	
E164	静的触媒式水素再結合装置	SA施設	R／B	原子炉建屋クレーン	\bigcirc	
E165	ガスタービン発電機	SA施設	緊急用電気品建屋	－	\times	
E166	ガスタービン発電設備軽油タンク	SA施設	ガスタービン発電設備軽油タンク室	－	\times	
E167	ガスタービン発電設備燃料移送系配管	SA施設	ガスタービン発電設備軽油タンク室緊急用電気品建屋	－	\times	
E168	ガスタービン発電設備燃料小出槽	SA施設	緊急用電気品建屋	－	\times	
E169	中央制御室しやへい壁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	－	\times	

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（6／18）

整理番号	建屋内上位クラス施設（機器•配管）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，\times ：無） 損傷•転倒•落下	備考
E170	中央制御室待避所遮蔽	SA施設	C／B	－	\times	
E171	中央制御室待避所加圧設備	SA施設	C／B	－	\times	
E172	緊急時対策所遮蔽	SA施設	緊急時対策建屋	－	\times	
E173	緊急時対策所非常用送風機	SA施設	緊急時対策建屋	－	\times	
E174	緊急時対策所非常用フィルタ装置	SA施設	緊急時対策建屋	－	\times	
E175	緊急時対策所加圧設備	SA施設	緊急時対策建屋	－	\times	
E176	緊急時対策所換気空調系ダクト	SA施設	緊急時対策建屋	－	\times	
E177	緊急時対策所軽油タンク	SA施設	緊急時対策建屋	－	\times	
E178	緊急時対策所燃料移送系配管	SA施設	緊急時対策建屋	－	\times	
E179	代替循環冷却ポンプ	SA施設	R／B	－	\times	
E180	原子炉建屋ブローアウトパネル	SA施設	R／B	－	\times	
E181	原子炉建屋ブローアウトパネル閉止装置	SA施設	R／B	－	\times	
E182	直流駆動低圧注水系ポンプ	SA施設	R／B	－	\times	
E183	直流駆動低圧注水系配管	SA施設	R／B	－	\times	
E184	遠隔手動弁操作設備	SA施設	R／B	－	\times	
E185	緊急時対策所非常用給排気配管	SA施設	緊急時対策建屋	－	\times	
E186	$\begin{array}{\|c} \hline \text { 原子炉棟換気空調系ダクト } \\ \text { (二次格納施設バウンダリ) } \\ \hline \end{array}$	Sクラス	R／B	－	\times	
E187	燃料プール代替注水系配管	SA施設	R／B	－	\times	
E188	燃料プールスプレイ系配管	SA施設	R／B	－	\times	
E189	原子炉補機代替冷却水系配管	SA施設	R／B	－	\times	
E190	原子炉格納容器下部注水系配管	SA施設	R／B	－	\times	
E191	原子炉格納容器代替スプレイ冷却系配管	SA施設	R／B	－	\times	
E192	代替循環冷却系配管	SA施設	R／B	－	\times	
E193	可搬型窒素ガス供給系配管	SA施設	R／B	－	\times	

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（7／18）

整理番号	建屋内上位クラス施設（弁）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{array}{\|c\|} \hline \text { 波及的影響のおそれ } \\ (\text { ○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \\ \hline \end{array}$	備考
V001	主蒸気逃がし安全弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V002	主蒸気第一隔離弁	Sクラス	R／B	－	\times	
V003	主蒸気第二隔離弁	Sクラス	R／B	－	\times	
V004	主蒸気ドレンライン第一隔離弁	Sクラス	R／B	－	\times	
V005	主蒸気ドレンライン第二隔離弁	Sクラス	R／B	－	\times	
V006	原子炉給水逆止弁	Sクラス	R／B	－	\times	
V007	FDW第二隔離弁	Sクラス SA施設	R／B	－	\times	
V008	FDW第一隔離弁	Sクラス SA施設	R／B	－	\times	
V009	SLCタンク出口弁	Sクラス SA施設	R／B	－	\times	
V010	SLC注入電動弁	Sクラス SA施設	R／B	－	\times	
V011	RHRポンプS／C吸込开	Sクラス SA施設	R／B	－	\times	
V012	RHRポンプ吐出逆止弁	Sクラス SA施設	R／B	－	\times	
V013	RHR熱交換器バイパス升	Sクラス SA施設	R／B	－	\times	
V014	RHR LPCI注入隔離弁	Sクラス SA施設	R／B	－	\times	
V015	RHR LPCI注入試験可能逆止弁	Sクラス SA施設	R／B	－	\times	
V016	RHR熱交換器出口弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V017	RHR格納容器スプレイ流量調節弁	Sクラス SA施設	R／B	－	\times	
V018	RHR格納容器スプレイ隔離弁	Sクラス SA施設	R／B	－	\times	
V019	RHR S／Cスプレイ隔離弁	Sクラス SA施設	R／B	－	\times	
V020	RHR停止時冷却吸込第一隔離弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V021	RHR停止時冷却吸込第二隔離弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V022	RHRポンプ停止時冷却吸込弁	Sクラス SA施設	R／B	－	\times	
V023	RHR停止時冷却注入隔離弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V024	RHR停止時冷却試験可能逆止弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V025	RHRヘッドスプレイ注入隔離弁	Sクラス	R／B	－	\times	
V026	RHRヘッドスプレイ注入逆止弁	Sクラス	R／B	－	\times	＊3
V027	RHRポンプミニマムフロー逆止弁	Sクラス	R／B	－	\times	
V028	RHRポンプミニマムフロー弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V029	LPCSポンプS／C吸込弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V030	LPCSポンプ吐出逆止弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V031	LPCS注入隔離弁	Sクラス SA施設	R／B	－	\times	
V032	LPCS注入ライン試験可能逆止弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V033	LPCSポンプミニマムフロー逆止弁	Sクラス	R／B	－	\times	
V034	LPCSポンプミニマムフロー弁	Sクラス	R／B	－	\times	
V035	HPCSポンプCST吸込弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（8／18）

整理 番号	建屋内上位クラス施設（弁）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{array}{\|c} \hline \text { 波及的影響のおそれ } \\ \left(\begin{array}{c} \text { (○: 有, } \times \text { : 無) } \end{array}\right. \\ \hline \text { 損傷•転倒•落下 } \end{array}$	備考
V036	HPCSポンプCST吸込逆止升	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V037	HPCS注入隔離弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
V038	HPCS注入ライン試験可能逆止弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
V039	HPCSポンプS／C吸込弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V040	HPCSポンプS／C吸込逆止弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V041	HPCSポンプCST側ミニマムフロー第一弁	Sクラス	R／B	－	\times	
V042	HPCSポンプS／C側ミニマムフロー弁	Sクラス	R／B	－	\times	
V043	RCICポンプCST吸込弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V044	RCICポンプCST吸込逆止升	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V045	RCIC注入弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V046	RCIC注入ライン試験可能逆止弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V047	RCICポンプS／C吸込弁	Sクラス	R／B	－	\times	
V048	RCICポンプS／C吸込逆止弁	Sクラス	R／B	－	\times	
V049	RCICタービン入口蒸気ライン第一隔離升	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V050	RCICタービン入口蒸気ライン第二隔離升	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V051	RCICタービン止め升	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V052	RCICタービン排気ライン逆止弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V053	RCICタービン排気ライン隔離弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V054	RCICポンプミニマムフロー逆止弁	Sクラス	R／B	－	\times	
V055	RCICポンプミニマムフロー弁	Sクラス	R／B	－	\times	
V056	RCIC冷却水ライン止め弁	Sクラス	R／B	－	\times	
V057	RCIC泠却水ライン圧力調整弁	Sクラス	R／B	－	\times	
V058	RCIC真空ポンプ吐出ライン逆止弁	Sクラス	R／B	－	\times	
V059	RCIC真空ポンプ吐出ライン隔離弁	Sクラス	R／B	－	\times	
V060	CUW入ロライン第一隔離弁	Sクラス	R／B	－	\times	
V061	CUW入ロライン第二隔離弁	Sクラス	R／B	－	\times	
V062	CUW注入ライン逆止弁	Sクラス	R／B	－	\times	
V063	FPC燃料プール再循環逆止弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
		Sクラス		原子炬建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
V065	D／W LCWサンプ第一隔離弁	Sクラス	R／B	－	\times	
V066	D／W LCWサンプ第二隔離弁	Sクラス	R／B	－	\times	
V067	D／W HCWサンプ第一隔離弁	Sクラス	R／B	－	\times	
V068	D／W HCWサンプ第二隔離弁	Sクラス	R／B	－	\times	
V069	FPMUW燃料プール注入弁	Sクラス	R／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（9／18）

整理番号	建屋内上位クラス施設（弁）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
V070	HNCW供給ライン第二隔離弁	Sクラス	R／B	－	\times	
V071	HNCW戻りライン第一隔離弁	Sクラス	R／B	－	\times	
V072	HNCW戻りライン第二隔離弁	Sクラス	R／B	－	\times	
V073	中央制御室給気冷却コイル温度調節弁	Sクラス	R／B	－	\times	
V074	HECW往還差圧調節弁	Sクラス	R／B	－	\times	
V075	計測制御電源室給気泠却コイル温度調節弁	Sクラス	R／B	－	\times	
V076	原子炉補機室給気冷却コイル温度調節弁	Sクラス	R／B	－	\times	
V077	RCWポンプ吐出逆止弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V078	RCW熱交換器冷却水出口升	Sクラス SA施設	R／B	－	\times	
V079	RCW泠却水供給温度熱交換器調節弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V080	RCW冷却水供給温度調節弁後弁	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V081	RCW冷却水供給温度ポンプ調節弁	Sクラス	R／B	－	\times	
V082	RHR熱交換器泠却水出口升	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V083	RCWサージタンク非常用補給水弁	Sクラス	R／B	－	\times	
V084	非常用D／G冷却水出口弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V085	RCW常用冷却水緊急しや断弁	Sクラス	R／B	－	\times	
V086	RCW常用泠却水供給側分離弁	Sクラス	R／B	－	\times	
V087	RCW 常用泠却水戻り側分離弁	Sクラス	R／B	－	\times	
V088	RCW常用泠却水戻り側逆止弁	Sクラス	R／B	－	\times	
V089	RCW供給側第二隔離弁	Sクラス	R／B	－	\times	
V090	RCW供給側第一隔離逆止弁	Sクラス	R／B	－	\times	
V091	RCW戻り側第一隔離弁	Sクラス	R／B	－	\times	
V092	RCW戻り側第二隔離弁	Sクラス	R／B	－	\times	
V093	原子炉補機冷却海水系ストレーナ旋回弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
V094	RSWストレーナブロー弁	Sクラス	R／B	－	\times	
V095	HPCWサージタンク非常用補給水弁	Sクラス	R／B	－	\times	
V096	HPIN非常用窒素ガス入口弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V097	HPIN常用非常用窒素ガス連絡弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V098	非常用ガス処理系入口弁	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V099	非常用ガス処理系空気乾燥装置入口弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V100	非常用ガス処理系フィルタ装置出口弁	Sクラス SA施設	R／B	－	\times	
V101	パージ用空気供給側隔離弁	Sクラス	R／B	－	\times	
V102	D／Wパージ用入口隔離弁	Sクラス	R／B	－	\times	
V103	S／Cパージ用入口隔離弁	Sクラス	R／B	－	\times	
V104	格納容器外真空逃がし逆止隔離弁	Sクラス	R／B	－	\times	

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（10／18）

整理番号	建屋内上位クラス施設（弁）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\text { (○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
V105	格納容器外真空逃がし隔離弁	Sクラス	R／B	－	\times	
V106	補給用窒素ガス供給側第二隔離弁	Sクラス	R／B	－	\times	
V107	D／W補給用窒素ガス供給用第一隔離弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
V108	S／C補給用室素ガス供給用第一隔離弁	Sクラス	R／B	－	\times	
V109	パージ用窒素ガス供給側第二隔離弁	Sクラス	R／B	－	\times	
V110	D／Wベント用出口隔離弁	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
V111	ベント用SGTS側隔離弁	Sクラス	R／B	－	\times	
V112	ベント用HVAC側隔離弁	Sクラス	R／B	－	\times	
V113	S／Cベント用出口隔離升	Sクラス SA施設	R／B	－	\times	
V114	D／Wバント用出口隔離弁バイパス弁	Sクラス	R／B	－	\times	
V115	S／Cベント用出口隔離弁バイパス弁	Sクラス	R／B	－	\times	
V116	PCV耐圧強化ベント用連絡配管隔離弁	Sクラス SA施設	R／B	－	\times	
V117	PCV耐圧強化ベント用連絡配管止め弁	Sクラス SA施設	R／B	－	\times	
V118	FCS入口隔離弁	Sクラス	R／B	－	\times	
V119	FCS出口隔離弁	Sクラス	R／B	－	\times	
V120	RCICタービン入口蒸気ドレンライン第一弁	Sクラス	R／B	－	\times	
V121	RHRヘッドスプレイライン洗浄流量調節弁	Sクラス SA施設	R／B	－	\times	
V122	RHR B系格納容器冷却ライン洗浄流量調節 弁	SA施設	R／B	－	\times	
V123	原子炉再循環ポンプ吐出弁	Sクラス	R／B	－	\times	
V124	RHR試験用調整弁	Sクラス SA施設	R／B	－	\times	
V125	CRD復水入口弁	SA施設	R／B	－	\times	
V126	MUWCサンプリング取出止め弁	SA施設	R／B	－	\times	
V127	復水貯蔵タンク常用，非常用給水管連絡 ライン止め弁	SA施設	R／B	－	\times	
V128	FPMUWポンプ吸込弁	SA施設	R／B	－	\times	
V129	復水貯蔵タンク常用，非常用給水管連絡 ライン逆止弁	SA施設	R／B	－	\times	
V130	R／B 1F 緊急時隔離弁	SA施設	R／B	－	\times	
V131	緊急時原子炉北側外部注水入口弁	SA施設	R／B	－	\times	
V132	T／B 緊急時隔離弁	SA施設	R／B	－	\times	
V133	緊急時原子炬東側外部注水入口弁	SA施設	R／B	－	\times	
V134	FCVSベントライン隔離弁	SA施設	R／B	－	\times	
V135	FCVS窒素供給ライン止め弁	SA施設	R／B	－	\times	
V136	FCVS側PSA窒素供給ライン元弁	SA施設	R／B	－	\times	
V137	S／C側PSA窒素供給ライン第一隔離弁	SA施設	R／B	－	\times	
V138	FPC熱交換器入口弁	SA施設	R／B	－	\times	
V139	FPCろ過脱塩装置バイパス弁	SA施設	R／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼす おそれのある下位クラス施設（11／18）

整理 番号	建屋内上位クラス施設（弁）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，\times ：無） 損傷•転倒•落下	備考
V140	FPCろ過脱塩装置出口弁	SA施設	R／B	－	\times	
V141	FPCろ過脱塩装置入口第一弁	SA施設	R／B	－	\times	
V142	FPCろ過脱塩装置入口第二弁	SA施設	R／B	－	\times	
V143	中央制御室換気空調系ダンパ	Sクラス SA施設	C／B	－	\times	
V144	HPAC注入弁	SA施設	R／B	－	\times	
V145	HPACタービン止め弁	SA施設	R／B	－	\times	
V146	RCIC蒸気供給ライン分離弁	Sクラス SA施設	R／B	－	\times	
V147	FPC熱交換器冷却水出口弁	Sクラス SA施設	R／B	－	\times	
V148	HECW冷凍機冷却水圧力調節弁	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
V149	RCW代替冷却システム用電動仕切弁	Sクラス SA施設	R／B	－	\times	
V150	FCVS排水移送ライン第二隔離弁	SA施設	R／B	－	\times	
V151	FCVS排水移送ライン第一隔離弁	SA施設	R／B	－	\times	
V152	原子炉格納容器下部注水用復水流量調整弁	SA施設	R／B	－	\times	
V153	原子炉格納容器下部注水用復水仕切弁	SA施設	R／B	－	\times	
V154	代替制御棒挿入機能用電磁弁	SA施設	R／B	－	\times	
V155	HPAC蒸気供給ライン分離弁	SA施設	R／B	－	\times	
V156	代替HPIN窒素排気出口弁	SA施設	R／B	－	\times	
V157	代替HPIN第一隔離弁	SA施設	R／B	－	\times	
V158	DCLIポンプ吸込弁	SA施設	R／B	－	\times	
V159	DCLI注入流量調整弁	SA施設	R／B	－	\times	
V160	R／B B1F 緊急時隔離弁	SA施設	R／B	－	\times	
V161	RCW代替冷却水不要負荷分離弁	SA施設	R／B	－	\times	
V162	RHR格納容器代替スプレイ注入元弁	SA施設	R／B	－	\times	
V163	代替循環冷却ポンプ吸込弁	SA施設	R／B	－	\times	
V164	代替循環冷却ポンプ流量調整弁	SA施設	R／B	－	\times	
V165	代替循環冷却ポンプバイパス弁	SA施設	R／B	－	\times	
V166	RHR MUWC連絡第一弁	SA施設	R／B	－	\times	
V167	RHR MUWC連絡第二弁	SA施設	R／B	－	\times	

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（12／18）

整理番号	建屋内上位クラス施設（電気盤等）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\mathrm{O}: \text { 有, } \times: \text { 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
B001	460V制御建屋モータコントロールセンタ	Sクラス SA施設	C／B	－	\times	
B002	125V蓄電池	Sクラス SA施設	$\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	－	\times	
B003	125V直流受電パワーセンタ	Sクラス SA施設	C／B	－	\times	
B004	125V充電器盤	Sクラス SA施設	$\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	－	\times	
B005	125 V 直流主母線盤	Sクラス SA施設	$\begin{aligned} & \hline \mathrm{C} / \mathrm{B} \\ & \mathrm{R} / \mathrm{B} \\ & \hline \end{aligned}$	－	\times	
B006	125V直流分電盤	Sクラス SA施設	$\begin{aligned} & \hline C / B \\ & R / B \end{aligned}$	－	\times	
B007	無停電交流電源用静止型無停電電源装置	Sクラス	C／B	－	\times	
B008	交流 120 V 無停電交流分電盤	Sクラス	C／B	－	\times	
B009	中央制御室用電源切替盤	Sクラス SA施設	C／B	－	\times	
B010	中央制御室120V交流分電盤	Sクラス SA施設	C／B	－	\times	
B011	6． 9 kV メタクラ	Sクラス SA施設	$\begin{gathered} \mathrm{R} / \mathrm{B} \\ \hline \text { 緊急用電気品 } \\ \text { 緊急時対策建屋 } \\ \hline \end{gathered}$	－	\times	
B012	460Vパワーセンタ	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
B013	$\begin{array}{\|l} \text { 460V原子炉建屋モータコントロールセン } \\ \text { 夕 } \end{array}$	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
B014	125V直流RCICモータコントロールセンタ	Sクラス SA施設	R／B	－	\times	
B015	高圧炉心スプレイ系120V交流分電盤2H	Sクラス	R／B	－	\times	
B016	原子炉冷却制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B017	原子炬制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B018	原子炉補機制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B019	原子炉保護系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B020	原子炉保護系試験盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B021	原子炉系プロセス計装盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B022	残留熱除去系（A）•低圧炉心スプレイ系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B023	残留熱除去系（ $\mathrm{B} \cdot \mathrm{C}$ ）盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B024	高圧炉心スプレイ系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B025	原子炉隔離時冷却系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B026	格納容器第一隔離弃盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B027	格納容器第二隔離升盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B028	自動減圧系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B029	FPC•FPMUW•SLC•MUWC•MUWP•FW制御盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	C／B	中央制御室天井照明	\bigcirc	
B030	トリップチャンネル盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B031	FCS－SGTS盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B032	サプレッションプール水温度記録監視盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B033	格納容器計装配管隔離弁盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B034	所内補機制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B035	タービン発電機制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（13／18）

整理番号	建屋内上位クラス施設（電気盤等）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ $\frac{(\bigcirc: \text { 有, } \times: \text { 無) }}{\text { 損傷•転倒•落下 }}$	備考
B036	所内電源制御盤	$\begin{aligned} & \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	C／B	中央制御室天井照明	\bigcirc	
B037	非常用換気空調系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B038	HPCS系非常用換気空調系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B039	RCW•RSW盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B040	RCICタービン制御盤	Sクラス	C／B	－	\times	
B041	漏えい検出系盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B042	計算機バッファ補助リレー盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B043	M／C補助継電器盤	Sクラス SA施設	C／B	中央制御室天井照明	\bigcirc	
B044	AM制御盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	中央制御室天井照明	\bigcirc	
B045	中央制御室外原子炉停止装置盤	Sクラス	C／B	耐火隔壁	\bigcirc	
B046	FCS SCR盤	Sクラス	R／B	－	\times	
B047	中央制御室端子盤	Sクラス	C／B	－	\times	
B048	非常用ディーゼル発電機制御盤	Sクラス SA施設	R／B	－	\times	
B049	非常用ディーゼル発電機補機制御盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
B050	非常用ディーゼル発電機シリコン整流器盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B051	非常用ディーゼル発電機界磁調整器盤	Sクラス SA施設	R／B	－	\times	
B052	非常用ディーゼル発電機自動電圧調整器盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \end{gathered}$	R／B	－	\times	
B053	非常用ディーゼル発電機 NGR盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B054	非常用ディーゼル発電機 SCT盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B055	非常用ディーゼル発電機 PPT盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B056	非常用ディーゼル発電機 PT－CT盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B057	高圧灲心スプレイ系ディーゼル発電機制御盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B058	高圧炉心スプレイ系ディーゼル発電機補機制御盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B059	高圧炉心スプレイ系ディーゼル発電機シ リコン整流器盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B060	高圧灲心スプレイ系ディーゼル発電機界磁調整器盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B061	高圧炉心スプレイ系ディーゼル発電機自動電圧調整器盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B062	高圧炉心スプレイ系ディーゼル発電機 NGR盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B063	高圧炉心スプレイ系ディーゼル発電機 SCT盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B064	高圧炉心スプレイ系ディーゼル発電機 PPT盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B065	高圧炉心スプレイ系ディーゼル発電機 PT－CT盤	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
B066	スクラム電磁弁ヒューズ盤	Sクラス	R／B	－	\times	
B067	PLRポンプ停止検出用不足電圧継電器盤	Sクラス	R／B	－	\times	
B068	換気空調補機非常用泠却水系泠涷機制御盤	Sクラス	R／B	－	\times	
B069	HPCS交流分電盤2H用変圧器	Sクラス	R／B	－	\times	
B070	動力変圧器	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	

第6．3－1表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（14／18）

整理 番号	建屋内上位クラス施設（電気盤等）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，\times ：無）損傷•転倒•落下	備考
B071	起動領域モニタ・安全系プロセス放射線 モニタ盤	Sクラス SA施設	C／B	中央制御室天井照明	\bigcirc	
B072	出力領域モニタ盤	Sクラス SA施設	C／B	中央制御室天井照明	\bigcirc	
B073	出力領域モニタ補助盤	Sクラス SA施設	C／B	中央制御室天井照明	\bigcirc	
B074	TIP制御盤	Sクラス	C／B	中央制御室天井照明	\bigcirc	
B075	格納容器内雰囲気モニタ盤	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	C／B	中央制御室天井照明	\bigcirc	
B076	SRNM前置増幅器盤	Sクラス SA施設	R／B	－	\times	
B077	安全系プロセス放射線モニタ多重伝送現場盤	Sクラス	R／B	－	\times	
B078	RSS盤用変圧器	Sクラス	C／B	－	\times	
B079	125V代替蓄電池	SA施設	C／B	－	\times	
B080	125V代替充電器盤	SA施設	C／B	－	\times	
B081	ガスタービン発電機接続盤	SA施設	緊急用電気品建屋	－	\times	
B082	250V蓄電池	SA施設	C／B	－	\times	
B083	代替原子炉再循環ポンプトリップ遮断器	SA施設	C／B	－	\times	
B084	HPAC制御盤	SA施設	C／B	中央制御室天井照明	\bigcirc	
B085	代替注水制御盤	SA施設	C／B	中央制御室天井照明	\bigcirc	
B086	DCLI制御盤	SA施設	C／B	中央制御室天井照明	\bigcirc	
B087	フィルタベント系制御盤	SA施設	C／B	中央制御室天井照明	\bigcirc	
B088	250 V 充電器盤	SA施設	C／B	－	\times	
B089	125 V 直流電源切替盤	SA施設	R／B	－	\times	
B090	460V原子炉建屋交流電源切替盤	SA施設	R／B	－	\times	
B091	250V直流主母線盤	SA施設	C／B	－	\times	
B092	緊急用電源切替操作盤	SA施設	C／B	中央制御室天井照明	\bigcirc	
B093	ガスタービン発電設備制御盤	SA施設	緊急用電気品建屋	－	\times	
B094	ガスタービン発電設備燃料移送ポンプ接続盤	SA施設	緊急用電気品建屋	－	\times	
B095	モータコントロールセンタ（緊急時対策所用）	SA施設	緊急時対策所	－	\times	
B096	105V交流電源切替盤（緊急時対策所用）	SA施設	緊急時対策所	－	\times	
B097	105V交流分電盤（緊急時対策所用）	SA施設	緊急時対策所	－	\times	
B098	120V交流分電盤（緊急時対策所用）	SA施設	緊急時対策所	－	\times	
B099	210V交流分電盤（緊急時対策所用）	SA施設	緊急時対策所	－	\times	
B100	125V直流主母線盤（緊急時対策所用）	SA施設	緊急時対策所	－	\times	
B101	250V直流受電パワーセンタ	SA施設	C／B	－	\times	
B102	120 V 原子炉建屋交流電源切替盤	SA施設	C／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（15／18）

整理 番号	建屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ \text { (○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
1001	低圧炬心スプレイ系計装ラック	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1002	原子炉系（広域水位）計装ラック	Sクラス SA施設	R／B	耐火隔壁	\bigcirc	
1003	原子炉系（狭域水位）計装ラック	Sクラス SA施設	R／B	耐火隔壁	\bigcirc	
1004	ドライウェル圧力計装ラック	Sクラス SA施設	R／B	－	\times	
1005	ジェットポンプ計装ラック	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	－	\times	
1006	高圧炬心スプレイ系計装ラック	Sクラス SA施設	R／B	－	\times	
1007	主蒸気流量計装ラック	Sクラス	R／B	－	\times	
1008	RHR－RCICエルボメータ計装ラック	Sクラス	R／B	－	\times	
1009	RCICポンプ計器架台	Sクラス SA施設	R／B	－	\times	
1010	原子炉隔離時冷却系タービン計装ラック	Sクラス	R／B	－	\times	
1011	残留熱除去系計装ラック	Sクラス SA施設	R／B	耐火隔壁	\bigcirc	
1012	RHR C 系計器架台	Sクラス SA施設	R／B	－	\times	
1013	RCW系統流量計器架台	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \end{aligned}$	R／B	－	\times	
1014	RCW常用系入口流量計器架台	Sクラス	R／B	－	\times	
1015	HPCWポンプ計器架台	Sクラス	R／B	－	\times	
1016	RCICタービン排気ダイアフラム圧力 II 系計器架台	Sクラス	R／B	－	\times	
1017	CRDスクラム排出容器水位計器架台	Sクラス	R／B	－	\times	
1018	S／C圧力， $\mathrm{S} / \mathrm{C}-\mathrm{R} / \mathrm{B}$ 差圧計器架台	Sクラス	R／B	耐火隔壁	\bigcirc	
1019	ほう酸水注入系計器架台	Sクラス	R／B	－	\times	
1020	RCICタービン計器架台	Sクラス	R／B	－	\times	
1021	原子炉圧力（SA）	SA施設	R／B	－	\times	
1022	原子师水位（SA広帯域）	SA施設	R／B	－	\times	
1023	原子炉水位（SA燃料域）	SA施設	R／B	－	\times	
1024	原子炉圧力容器温度	SA施設	R／B	－	\times	
1025	サプレッションプール水温度	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
1026	サプレッションプール水位	Sクラス	R／B	－	\times	
1027	圧力抑制室水位	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	R／B	耐火隔壁	\bigcirc	
1028	原子炉建屋外気間差圧	Sクラス	R／B	－	\times	
1029	格納容器内雰囲気モニタサンプリング ラック	Sクラス SA施設	R／B	－	\times	
1030	格納容器内雰囲気モニタ校正ラック	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
1031	格納容器内雰囲気モニタヒータ制御盤	Sクラス	R／B	－	\times	
1032	格納容器内雰囲気水素濃度	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
1033	格納容器内雰囲気酸素濃度	Sクラス SA施設	R／B	－	\times	
1034	格納容器内雰囲気放射線モニタ（D／W）	Sクラス SA施設	R／B	－	\times	
1035	格納容器内雰囲気放射線モニタ（S／C）	Sクラス SA施設	R／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（16／18）

$\begin{aligned} & \text { 整理 } \\ & \text { 番号 } \end{aligned}$	建屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	波及的影響のおそれ （○：有，$\times:$ 無）	備考
1036	静的触媒式水素再結合装置動作監視装置	SA施設	R／B	原子炬建屋クレーン	\bigcirc	
1037	SLCポンプ潤滑油圧力	Sクラス	R／B	－	\times	
1038	RCWサージタンク水位	Sクラス	R／B	耐火隔壁	\bigcirc	
1039	RCWサージタンク降水管水位	Sクラス	R／B	－	\times	
1040	HPCWサージタンク水位	Sクラス	R／B	－	\times	
1041	HPCWサージタンク降水管水位	Sクラス	R／B	－	\times	
1042	RSWストレーナ差圧	Sクラス	R／B	－	\times	
1043	SGTSトレイン出口流量	Sクラス	R／B	－	\times	
1044	フィルタ装置チャコールエアフィルタ入口温度	Sクラス	R／B	－	\times	
1045	フィルタ装置チャコールエアフィルタ温度	Sクラス	R／B	－	\times	
1046	フィルタ装置チャコールエアフィルタ出口温度	Sクラス	R／B	－	\times	
1047	非常用D／G計装ラック	Sクラス	R／B	－	\times	
1048	非常用D／G二次泠却水差圧計器架台	Sクラス	R／B	－	\times	
1049	HPCS D／G計装ラック	Sクラス	R／B	－	\times	
1050	燃料デイタンク油面	Sクラス	R／B	－	\times	
1051	オイルパン油面	Sクラス	R／B	－	\times	
1052	D／G室温度	Sクラス	R／B	－	\times	
1053	D／G速度	Sクラス	R／B	－	\times	
1054	RCW冷却水供給温度	Sクラス	R／B	－	\times	
1055	FCS入口ガス流量	Sクラス	R／B	－	\times	
1056	FCSブロワ入口圧力	Sクラス	R／B	－	\times	
1057	FCSブロワ入口流量	Sクラス	R／B	－	\times	
1058	FCSブロワ入口温度	Sクラス	R／B	－	\times	
1059	FCS加熱管内ガス温度	Sクラス	R／B	－	\times	
1060	FCS加熱管出口ガス温度	Sクラス	R／B	－	\times	
1061	FCS加熱管表面温度	Sクラス	R／B	－	\times	
1062	FCS再結合器表面温度	Sクラス	R／B	－	\times	
1063	FCS冷却器出口ガス温度	Sクラス	R／B	－	\times	
1064	HECW泠水往還差圧	Sクラス	R／B	－	\times	
1065	HECW冷水還温度	Sクラス	R／B	－	\times	
1066	HECW冷谏機冷水出口流量	Sクラス	R／B	－	\times	
1067	原子炉補機室給気温度	Sクラス	R／B	－	\times	
1068	R／B主蒸気管漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1069	R／B主蒸気管漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1070	R／B主蒸気管漏えい検出（排気温度）	Sクラス	R／B	－	\times	

第6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（17／18）

整理番号	建屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{C} \text { : 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
1071	RHR熱交室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1072	RHRポンプ室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1073	RHR熱交室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1074	RHRポンプ室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
I075	RHR熱交室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1076	RHRポンプ室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1077	RCIC機器室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1078	RCIC機器室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1079	RCIC機器室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1080	CUW非再生熱交室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1081	CUW再生熱交室漏えい検出（周囲温度）	Sクラス	R／B	－	\times	
1082	CUW非再生熱交室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1083	CUW再生熱交室漏えい検出（給気温度）	Sクラス	R／B	－	\times	
1084	CUW非再生熱交室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1085	CUW再生熱交室漏えい検出（排気温度）	Sクラス	R／B	－	\times	
1086	計測制御電源室給気温度	Sクラス	C／B	－	\times	
1087	中央制御室還気温度	Sクラス	C／B	－	\times	
1088	格納容器内雾囲気モニタプリアンプ収納箱	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
1089	高圧代替注水系ポンプ出口流量	SA施設	R／B	－	\times	
1090	高圧代替注水系ポンプ出口圧力	SA施設	R／B	－	\times	
1091	残留熱除去系洗浄ライン流量	SA施設	R／B	－	\times	
1092	残留熱除去系熱交換器入口温度	SA施設	R／B	－	\times	
1093	残留熱除去系熱交換器出口温度	SA施設	R／B	－	\times	
1094	ほう酸水注入系ポンプ出口圧力	Sクラス	R／B	$\begin{aligned} & \text { ほう酸水注入系テスト } \\ & \text { タンク } \end{aligned}$	\bigcirc	
1095	原子炉格納容器下部注水流量	SA施設	R／B	－	\times	
1096	原子炉格納容器代替スプレイ流量	SA施設	R／B	－	\times	
1097	ドライウェル温度	Sクラス SA施設	R／B	－	\times	
1098	圧力抑制室内空気温度	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
1099	圧力抑制室圧力	SA施設	R／B	－	\times	
I100	原子炉格納容器下部水位	SA施設	R／B	CRD自動交換機	\bigcirc	
I101	ドライウェル水位	SA施設	R／B	－	\times	
I102	格納容器内水素濃度（D／W）	SA施設	R／B	－	\times	
I103	格納容器内水素濃度（S／C）	SA施設	R／B	－	\times	
I104	起動領域モニタ	$\begin{gathered} \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	＊ 1
I105	出力領域モニタ	Sクラス SA施設	R／B	－	\times	＊ 1

第 6．3－1 表 女川 2 号機 建屋内上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼ すおそれのある下位クラス施設（18／18）

整理番号	建屋内上位クラス施設（計装）	区分	設置建屋	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{C}: \text { 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
I106	フィルタ装置入口圧力（広帯域）	SA施設	R／B	－	\times	
I107	フィルタ装置出口圧力（広帯域）	SA施設	R／B	－	\times	
I108	フィルタ装置水位（広帯域）	SA施設	R／B	－	\times	
I109	フィルタ装置水温度	SA施設	R／B	－	\times	
I110	フィルタ装置出口水素濃度	SA施設	R／B	－	\times	
I111	フィルタ装置出口放射線モニタ	SA施設	R／B	－	\times	
I112	残留熱除去系熱交換器冷却水入口流量	SA施設	R／B	－	\times	
I113	原子炉建屋内水素濃度	SA施設	R／B	原子炉建屋クレーン	\bigcirc	
				原子炉建屋クレーン	\bigcirc	
				燃料交換機	\bigcirc	
I115	使用済燃料プール上部空間放射線モニタ （高線量，低線量）	SA施設	R／B	原子炬建屋クレーン	\bigcirc	
1116	使用済燃料プール監視カメラ	SA施設	R／B	原子炉建屋クレーン	\bigcirc	
			C／B	中央制御室天井照明	\bigcirc	
			緊急時対策建屋	－	\times	
			C／B	中央制御室天井照明	\bigcirc	
			緊急時対策建屋	－	\times	
I119	統合原子力防災ネットワークに接続する通信連絡設備	SA施設	緊急時対策建屋	－－	\times	
			C／B	中央制御室天井照明	\bigcirc	
			緊急時対策建屋	－	\times	
I121	データ表示装置	SA施設	C／B	中央制御室天井照明	\bigcirc	
I122	代替循環冷却ポンプ出口流量	SA施設	R／B	－	\times	
I123	代替循環冷却ポンプ出口圧力	SA施設	R／B	－	\times	
I124	HPIN ADS入口圧力	$\begin{gathered} \hline \text { Sクラス } \\ \text { SA施設 } \\ \hline \end{gathered}$	R／B	－	\times	
I125	直流駆動低圧注水系ポンプ出口流量	SA施設	R／B	－	\times	
I126	直流駆動低圧注水系ポンプ出口圧力	SA施設	R／B	－	\times	
1127	原子炉格納容器下部温度	SA施設	R／B	CRD自動交換機	\bigcirc	
1128	耐圧強化ベント系放射線モニタ	SA施設	R／B	－	\times	
I129	代替HPIN窒素ガス供給止め弁入口圧力	SA施設	R／B	－	\times	
I130	復水移送ポンプ出口圧力	SA施設	R／B	－	\times	
I131	無線連絡設備（固定型）	SA施設	C／B	中央制御室天井照明	\bigcirc	
			緊急時対策建屋	－	\times	
I132	衛星電話設備（固定型）	SA施設	C／B	中央制御室天井照明	\bigcirc	
			緊急時対策建屋	－	\times	

＊ 1 機器の内部に設置された内部構造物のため机上検討のみ
＊2 大型施設のため小型の仮置物品や照明等の影響を受けないため机上検討のみ
＊3 狭暗部に設置される施設のため机上検討のみ
＊4 プール内に設置された施設のため机上検討のみ
＊5 地下に設置される又はコンクリート埋設施設のため机上検討のみ
第6．3－2表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（ $1 / 6$ ）

建屋内上位クラス施設	波及的影響を及ぼすおそれのあ る下位クラス施設	評価結果	備考
原子炬圧力容器	原子炉しやへい壁	基準地震動 S s に対する構造健全性評価に より，原子炬しゃへい壁が損傷及び転倒し ないことを確認した。	「VI－2－11－2－10 原子炉しやへい壁の耐震性についての計算書」参照
使用済燃料プール 使用済燃料貯蔵ラック 制御棒•破損燃料貯蔵ラック 燃料プール泠却浄化系配管 スキマサージタンク 静的触媒式水素再結合装置 FPC 燃料プール注入逆止弁 静的触媒式水素再結合装置動作監視装置 原子炉建屋内水素濃度使用済燃料プール水位／温度使用済燃料プール上部空間放射線モニタ（高線量，低線量）使用済燃料プール監視カメラ	原子炉建屋クレーン	基準地震動 S s に対する構造健全性評価に より，原子炉建屋クレーンが転倒及び落下 しないことを確認した。	「VI－2－11－2－8 原子炉建屋クレ ーンの耐震性についての計算書」及び「補足－600－28 原子炉建屋ク レーンの耐震性についての計算書 に関する補足説明資料」参照

第6．3－2表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（2／6）

建屋内上位クラス施設	波及的影響を及ぼすおそれのあ る下位クラス施設	評価結果	備考
使用済燃料プール使用済燃料貯蔵ラック制御棒•破損燃料貯蔵ラック燃料プール泠却浄化系配管 スキマサージタンク FPC 燃料プール注入逆止弁使用済燃料プール水位／温度	燃料交換機	基準地震動 S s に対する構造健全性評価に より，燃料交換機が転倒及び落下しないこ とを確認した。	「VI－2－11－2－9 燃料交換機の耐震性についての計算書」及び「補足－600－29 燃料交換機の耐震性 についての計算書に関する補足説明資料」参照
使用済燃料貯蔵ラック	制御棒貯蔵ハンガ	基準地震動 S s に対する構造健全性評価に より，制御棒貯蔵ハンガが転倒しないこと を確認した。	「VI－2－11－2－14 制御棒貯蔵ハン がの耐震性についての計算書」及 び「補足－600－31 制御棒貯蔵ハン がの耐震性についての計算書に関 する補足説明資料」参照
	制御棒貯蔵ラック	基準地震動 S s に対する構造健全性評価に より，制御棒貯蔵ラックが転倒しないこと を確認した。	VI－2－11－2－13「制御棒貯蔵ラック の耐震性についての計算書」及び「補足－600－30 制御棒貯蔵ラッ クの耐震性についての計算書に関 する補足説明資料」参照
	燃料チャンネル着脱機	燃料チャンネル着脱機が損傷及び転倒した場合でも衝突によって使用済燃料貯蔵ラッ クの構造健全性に影響を及ぼさないことを確認した。	添付資料 10 （追而）

第6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（3／6）

建屋内上位クラス施設	波及的影響を及ぼすおそれのあ る下位クラス施設	評価結果	備考
ドライウェル	原子炉ウェルカバー	基準地震動 S s に対する構造健全性評価に より，原子炬ウェルカバーが落下しないこ とを確認した。	「VI－2－11－2－11 原子炉ウェルカ バーの耐震性についての計算書」参照
原子炉冷却制御盤 原子炉制御盤 原子炉補機制御盤 原子炉保護系盤 原子炉保護系試験盤 原子炉系プロセス計装盤 残留熱除去系（A）•低圧炉心ス プレイ系盤 残留熱除去系（B•C）盤 高圧炉心スプレイ系盤 原子炉隔離時冷却系盤 格納容器第一隔離弁盤 格納容器第二隔離弁盤 自動減圧系盤 FPC \cdot FPMUW $\cdot \mathrm{SLC} \cdot \mathrm{MUWC} \cdot \mathrm{MUWP} \cdot \mathrm{FW}$制御盤 トリップチャンネル盤 FCS•SGTS 盤	中央制御室天井照明	基準地震動 S s による構造健全性評価によ り，中央制御室天井照明が落下しないこと を確認した。なお，耐震性の確認において は，天井部材だけではなく天井内部の排煙 ダクトなどの波及的影響を及ぼすおそれの ある設備も含めて中央制御室天井照明とし て耐震性を確認した。	「VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書」参照

第 6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（4／6）

建屋内上位クラス施設	波及的影響を及ぼすおそれのあ る下位クラス施設	評価結果	備考
サプレッションプール水温度記録監視盤 格納容器計装配管隔離弁盤所内補機制御盤 タービン発電機制御盤 所内電源制御盤 非常用換気空調系盤 HPCS 系非常用換気空調系盤 RCW•RSW 盤 漏えい検出系盤 計算機バッファ補助リレー盤 M / C 補助継電器盤 AM制御盤 起動領域モニタ・安全系プロセ ス放射線モニタ盤 出力領域モニタ盤 出力領域モニタ補助盤 TIP 制御盤 格納容器内雰囲気モニタ盤 HPAC 制御盤 代替注水制御盤 DCLI 制御盤	中央制御室天井照明	基準地震動 S s による構造健全性評価によ り，中央制御室天井照明が落下しないこと を確認した。なお，耐震性の確認において は，天井部材だけではなく天井内部の排煙 ダクトなどの波及的影響を及ぼすおそれの ある設備も含めて中央制御室天井照明とし て耐震性を確認した。	「VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書」 参照

第 6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（5／6）

建屋内上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価結果	備考
フィルタベント系制御盤 緊急用電源切替操作盤 差圧計 安全パラメータ表示システム （SPDS） データ伝送設備 データ表示装置 無線連絡設備（固定型） 衛星電話設備（固定型）	中央制御室天井照明	基準地震動 S s による構造健全性評価によ り，中央制御室天井照明が落下しないこと を確認した。なお，耐震性の確認において は，天井部材だけではなく天井内部の排煙 ダクトなどの波及的影響を及ぼすおそれの ある設備も含めて中央制御室天井照明とし て耐震性を確認した。	「VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書」 参照
ほう酸水注入系ポンプ出口圧力	ほう酸水注入系テストタンク	基準地震動 S s による構造健全性評価によ り，ほう酸水注入系テストタンクが損傷及 び転倒しないことを確認した。	「VI－2－11－2－6 ほう酸水注入系 テストタンクの耐震性についての計算書」参照
中央制御室外原子炉停止装置盤原子炉系（広域水位）計装ラック原子炉系（狭域水位）計装ラック残留熱除去系計装ラック S / C 圧力，$S / C-R / B$ 差圧計器架台圧力抑制室水位 RCW サージタンク水位	耐火隔壁	基準地震動 S s による構造健全性評価によ り，耐火隔壁が損傷及び転倒しないことを確認した。	「VI－2－11－2－12 耐火隔壁の耐震性についての計算書」参照

第 6．3－2 表 女川 2 号機 建屋内施設の損傷，転倒，落下等の影響に対する評価結果（6／6）

建屋内上位クラス施設	波及的影響を及ぼすおそれのあ る下位クラス施設	評価結果	備考
原子炉格納容器下部水位原子炉格納容器下部温度	CRD 自動交換機	基準地震動 S s に対する構造健全性評価に より，CRD 自動交換機が転倒及び落下しな いことを確認した。	「VI－2－11－2－22 CRD 自動交換機 の耐震性についての計算書」及び「補足－600－37 CRD 自動交換機の耐震性についての計算書に関する補足説明資料」参照

6． 4 建屋外における施設の損傷，転倒，落下等による影響検討結果

6．4．1 抽出手順
机上検討及び現地調査を基に，建屋外上位クラス施設及び建屋外上位クラス施設の間接支持構造物である建物•構築物に対して，損傷，転倒，落下等によ り影響を及ぼすおそれのある下位クラス施設を抽出する。

6．4．2 下位クラス施設の抽出結果
第5．4－1図のフローのaに基づいて，波及的影響を及ぼすおそれのある下位 クラス施設を抽出した結果を第6．4－1図，第6．4－2図，第6．4－3図及び第6．4－1表に示す。

なお，液状化による影響のうち側方流動については，0．P．＋ 14.8 m 盤では地表面が傾斜していないことから，上位クラス施設へ影響を及ぼさない。また，高台側には下位クラス施設が存在せず，海側の下位クラス施設は前面護岸を除き，液状化対象層に接していない（岩盤やセメント改良土に囲まれている）ため，上位クラス施設へ影響を及ぼさない。前面護岸については，次項6．4．3におい て，評価結果を示す。その他の液状化の影響として浮き上がりについては，設計用地下水位を設定した評価結果を示す。

6．4．3 耐震評価結果
6．4．2 項で抽出した建屋外下位クラス施設の評価結果について，第6．4－2 表 に示す。

第6．4－2 図 女川 2 号機 損傷，転倒，落下等に係る建屋外上位クラス施設配置図（高台側）
枠囲みの内容は防護上の観点から公開できません。

第6．4－3 図 女川 2 号機 損傷，転倒，落下等に係る建屋外上位クラス施設配置図（海水ポンプ室）

第6．4－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼすおそれのある下位クラス施設（ $1 / 3$ ）

整理番号	建屋外上位クラス施設	区分	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ \text { (○: 有, ×: 無) } \\ \hline \text { 損傷•転倒•落下 } \end{gathered}$	備考
0001	原子炬補機冷却海水ポンプ	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0002	原子炉補機冷却海水系配管	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0003	RSWポンプ吐出逆止弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0004	RSWポンプ吐出弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0005	RSWポンプ吐出連絡管止め弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0006	高圧炉心スプレイ補機冷却海水ポンプ	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0007	高圧炉心スプレイ補機冷却海水系ストレーナ	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0008	高圧炉心スプレイ補機冷却海水系配管	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0009	HPSWポンプ吐出逆止弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0010	HPSWポンプ吐出弁	Sクラス SA施設	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0011	非常用がス処理系配管	Sクラス SA施設	－	\times	
0012	原子炉格納容器下部注水系配管	SA施設	－	\times	
0013	原子炉補機代替泠却水系配管	SA施設	－	\times	
0014	原子炉格納容器代替スプレイ椧却系配管	SA施設	－	\times	
0015	可搬型窒素ガス供給系配管	SA施設	－	\times	
0016	燃料プール代替注水系配管	SA施設	－	\times	
0017	原子炉格納容器フィルタベント系配管	SA施設	－	\times	
0018	ガスタービン発電設備燃料移送ポンプ	SA施設	－	\times	
0019	ガスタービン発電設備燃料移送系配管	SA施設	－	\times	
0020	復水貯蔵タンク外部注水入口弁	SA施設	－	\times	
0021	復水貯蔵タンク	SA施設	－	\times	
0022	復水貯蔵タンク水位計器架台	SA施設	－	\times	
0023	RSWポンプ出口圧力計器架台	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	

第6．4－1 表 女川 2 号機 建屋外上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼすおそれのある下位クラス施設（2／3）

整理番号	建屋外上位クラス施設	区分	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \text { 波及的影響のおそれ } \\ (\text { (○: 有, ×: 無) } \end{gathered}$	備考
0024	HPSWポンプ出口圧力計器架台	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0025	排気筒	Sクラス SA施設	第1号機排気筒	\bigcirc	
0026	防潮堤	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			第1号機取水路	\bigcirc	
			放水路	\bigcirc	
			第3号機取水路	\bigcirc	
			第3号機放水路	\bigcirc	
			北側排水路	\bigcirc	
			南側排水路	\bigcirc	
				\bigcirc	
0027	防潮壁	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			放水路	\bigcirc	
			第3号機放水路	\bigcirc	
			タービン建屋	\bigcirc	
			第3号機ガスボンべ庫	\bigcirc	
			第3号機除塵装置電源室	\bigcirc	
0028	逆流防止設備	Sクラス	タービン建屋	\bigcirc	
0029	水密扉	Sクラス	－	\times	
0030	浸水防止蓋	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
0031	逆止弁付ファンネル	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0032	貫通部止水処置	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
			タービン建屋	\bigcirc	
0033	津波監視カメラ	Sクラス	－	\times	
0034	取水ピット水位計	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
			竜巻防護ネット	\bigcirc	
0035	原子炉建屋	Sクラス 間接支持構造物 SA施設	タービン建屋	\bigcirc	
0036	制御建屋	間接支持構造物	タービン建屋	\bigcirc	
			補助ボイラー建屋	\bigcirc	
			第1号機制御建屋	\bigcirc	
0037	海水ポンプ室	屋外重要土木構造物間接支持構造物 SA施設	－	\times	

第6．4－1表 女川 2 号機 建屋外上位クラス施設へ波及的影響（損傷，転倒，落下等）を及ぼすおそれのある下位クラス施設（3／3）

整理 番号	建屋外上位クラス施設	区分	波及的影響を及ぼすおそれ のある下位クラス施設	$\begin{gathered} \hline \text { 波及的影響のおそれ } \\ (\mathrm{O} \text { : 有, } \times \text { : 無) } \end{gathered}$	備考
0038	軽油タンク室	屋外重要土木構造物間接支持構造物	－	\times	＊ 1
0039	復水貯蔵タンク基礎	SA施設間接支持構造物	－	\times	＊ 1
0040	軽油タンク連絡ダクト	屋外重要土木構造物間接文持構造物	－	\times	＊ 1
0041	排気筒連絡ダクト	屋外重要土木構造物間接支持構造物	－	\times	＊ 1
0042	原子炉機器冷却海水配管ダクト	屋外重要土木構造物間接支持構造物	－	\times	＊ 1
0043	緊急用電気品建屋	SA施設間接支持構造物	－	\times	
0044	ガスタービン発電設備軽油タンク室	SA施設間接支持構造物	－	\times	
0045	緊急時対策建屋	SA施設間接支持構造物	－	\times	
0046	取水口	屋外重要土木構造物 SA施設	前面護岸	\bigcirc	＊ 1
0047	取水路	屋外重要土木構造物 SA施設	－	\times	＊ 1
0048	第3号機海水熱交換器建屋	間接支持構造物	－	\times	
0049	無線連絡設備（屋外アンテナ）	SA施設	－	\times	
0050	衛星電話設備（屋外アンテナ）	SA施設	－	\times	
0051	無線通信装置	SA施設	－	\times	
0052	取放水路流路縮小工	Sクラス	－	\times	
0053	浸水防止壁	Sクラス	海水ポンプ室門型クレーン	\bigcirc	
0054	揚水井戸	間接支持構造物	－	\times	
0055	第3号機補機冷却海水系放水ピット	間接支持構造物	－	\times	
0056	第3号機海水ポンプ室	間接支持構造物	－	\times	
0057	貯留堰	$\begin{aligned} & \hline \text { Sクラス } \\ & \text { SA施設 } \\ & \hline \end{aligned}$	前面護岸	\bigcirc	＊ 1
0058	衛星通信装置	SA施設	－	\times	
0059	復水貯蔵タンク水位	Sクラス	－	\times	

＊1 地下に設置される又はコンクリート埋設施設のため机上検討のみ
第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（ $1 / 6$ ）

建屋外上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価結果	備
原子炉補機冷却海水ポンプ 原子炬補機冷却海水系配管 RSW ポンプ吐出逆止弁 RSW ポンプ吐出弁 RSW ポンプ吐出連絡管止め弁 高圧炉心スプレイ補機冷却海水 ポンプ 高圧炉心スプレイ補機冷却海水系配管 高圧炉心スプレイ補機冷却海水系ストレーナ HPSW ポンプ吐出逆止弁 HPSW ポンプ吐出弁 RSW ポンプ出口圧力計器架台 HPSW ポンプ出口圧力計器架台 防潮堤 防潮壁 浸水防止蓋 逆止弁付ファンネル 貫通部止水処置 取水ピット水位計 浸水防止壁	水ポンプ室門型クレ	基準地震動 S s に対する構造健全性評価により，海水ポンプ室門型クレーンが転倒及び落下しな いことを確認した。 また，海水ポンプ室門型クレーン及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを確認した。	「VI－2－11－2－1 海水ポン プ室門型クレーンの耐震性 についての計算書」及び「補足－600－27 海水ポンプ室門型クレーンの耐震性につ いての計算書に関する補足説明資料」参照

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（2／6）

| 建屋外上位クラス施設 | $\begin{array}{c}\text { 波及的影響を及ぼすおそれの } \\ \text { ある下位クラス施設 }\end{array}$ | | 評価結果 |
| :--- | :--- | :--- | :--- |$]$ 備考

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（ $3 / 6$ ）

建屋外上位クラス施設	波及的影響を及ぼすおそれのあ る下位クラス施設	評価結果	備考
防潮堤	第1号機取水路	基準地震動 S s に対する構造健全性評価により，第 1 号機取水路が損傷しないことを確認した。 なお，第 1 号機取水路（トンネル部）について は，C 級の硬質な岩盤に設置されたトンネルで あり，構造物上面から杭下端までの離隔が十分確保されていることから，損傷等による防潮堤への影響はない。	「VI－2－11－2－17 第1号機取水路の耐震性についての計算書」，添付資料 7 及び「補足 －600－33 第1号機取水路の耐震性についての計算書に関 する補足説明資料」参照
防潮堤 防潮壁（放水立坑）	放水路	C C_{H} 級の硬質な岩盤に設置されたトンネルであ り，構造物上面から杭下端までの離隔が十分確保 されていることから，損傷等による防潮堤及び防潮壁への影響はない。	添付資料7参照
防潮堤	第3号機取水路	基準地震動 S s に対する構造健全性評価により，第 3 号機取水路が損傷しないことを確認した。	VI－2－11－2－18「第3号機取水路の耐震性についての計算書」及び「補足－600－34 第3号機取水路の耐震性について の計算書に関する補足説明資 料」参照
防潮堤 防潮壁（第3号機放水立坑）	第3号機放水路	C C_{H} 級の硬質な岩盤に設置されたトンネルであ り，構造物上面から杭下端までの離隔が十分確保 されていることから，損傷等による防潮塇及び防潮壁への影響はない。	添付資料7参照

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（4／6）

建屋外上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価結果	備考
防潮堤	北側排水路	基準地震動S s に対する構造健全性評価により，北側排水路が損傷しないことを確認した。	「VI－2－11－2－19 北側排水路の耐震性についての計算書」及び「補足－600－35 北側排水路の耐震性について の計算書に関する補足説明資料」参照
防潮堤	南側排水路	CM1級の硬質な岩盤及びMMR内に設置された高密度ポリエチレン製波付管による排水路であり，南側排水路が損傷した場合でも周辺のMMRの応力状態には影響せず，防潮堤への影響はない。	－
防潮堤	アクセスルート（防潮塇（盛土堤防））	アクセスルート（防潮堤（盛土堤防））と上位ク ラス施設である防潮堤（盛土堤防）を一体とした構造での基準地震動S s に対する構造健全性評価により，アクセスルート（防潮堤（盛土堤防）） が損傷しないことを碓認した。	「VI－2－11－2－20 アクセス ルート（防潮堤（盛土堤防）） の耐震性についての計算書」及び「補足－600－36 ア クセスルート（防潮堤（盛土堤防））の耐震性について の計算書に関する補足説明資料」参照

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（5／6）

建屋外上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価結果	備考
防潮壁 逆流防止設備貫通部止水処置原子炉建屋制御建屋	タービン建屋	基準地震動S s に対する構造健全性評価により， タービン建屋が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 また，タービン建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持 していることを確認した。	VI－2－11－2－3「タービン建屋 の耐震性についての計算書」及び添付資料 3 参照
防潮壁	第3号機ガスボン心゙庫第 3 号機除塵装置電源室	下位クラス施設が地震により損傷，転倒し防潮壁 へ衝突した場合でも，防潮壁の構造健全性に影響 がないことを確認した。	添付資料 8 参照
制御建屋	補助ボイラー建屋	基準地震動S s に対する構造健全性評価により，補助ボイラー建屋が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 また，補助ボイラー建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを確認した。	「VI－2－11－2－4 補助ボイ ラー建屋の耐震性について の計算書」及び添付資料 3参照
制御建屋	第 1 号機制御建屋	基準地震動S s に対する構造健全性評価により，第 1 号機制御建屋が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 また，第1号機制御建屋及び上位クラス施設は周辺斜面からの影響を受けない十分な離隔距離を保持していることを確認した。	「VI－2－11－2－5 第1号機制御建屋の耐震性についての計算書」及び添付資料 3 参照

第6．4－2表 女川 2 号機 建屋外施設の損傷，転倒，落下等の影響に対する評価結果（6／6）

建屋外上位クラス施設	波及的影響を及ぼすおそれの ある下位クラス施設	評価結果	備考
排気筒	第1号機排気筒	基準地震動 S s に対する構造健全性評価により，第 1 号機排気筒が上位クラス施設に対して波及的影響を及ぼさないことを確認した。 また，基準地震動 S s に対する斜面の安定性評価 により，斜面が崩壊しないことを確認した。	「VI－2－11－2－15 第1号機排気筒の耐震性についての計算書」及び添付資料 3 参照
取水口貯留堰	前面護岸	取水口の側面（護岸背面）を地盤改良しているが，非改良部の土砂が流出しても取水口が閉塞しな いことを確認した。 地盤改良（高圧噴射攪拌工法）は根入れされてお り，地震時の安定性が確保されている。 地盤改良（置換工）の地震時の安定性について確認した。	VI－2－11－2－16「前面護岸の耐震性についての計算書」， 添付資料 6 及び「補足 －600－32 前面護岸の耐震性についての計算書に関す る補足説明資料」参照

波及的影響評価に係る現地調査の実施要領

波及的影響評価に係る現地調査を実施する際に策定した実施要領について，その内容 を抜粋して以下に示す。

1．目的
建屋内外の上位クラス施設への下位クラス施設の波及的影響の調査のため，現地調査を実施し，上位クラス施設周辺の下位クラス施設の位置，構造，影響防止措置等の状況を確認し，下位クラス施設による波及的影響の可能性について調査する。

2．実施方法

2.1 調査対象施設

以下に示す上位クラス施設を現地調査の対象とする。
（1）設計基準対象施設のうち，耐震 S クラス施設（津波防護施設，浸水防止設備及び津波監視設備を含む。）
（2）重大事故等対処施設のうち，常設耐震重要重大事故防止設備及び常設重大事故緩和設備

なお，狭暗部，内部構造物等機器の内部，コンクリート埋設，地下，高所，高線量区域及び水中については，現地調査が困難であるが，狭暗部（原子炉圧力容器支持構造物等）については，外部から閉ざされた区域にあり，元々Sクラス施設しか ないこと，内部構造物等機器の内部（原子炉圧力容器内部構造物等）は全体が上位 クラス施設であること，コンクリート埋設，地下については，周囲に波及的影響を及ぼすものはないことから，これらの箇所に設置されている上位クラス施設に対す る波及的影響はないと判断する。

高所については，施設下方から周辺機器の位置関係を俯瞰的に見ることで波及的影響の有無を確認する。

水中については，対象上位クラス施設として使用済燃料プール，使用済燃料貯蔵 ラック，制御棒•破損燃料貯蔵ラック等が該当するが，使用済燃料プール内に設置 されている下位クラス施設は設計図書類で網羅的に確認できることから，現地調査 では使用済燃料貯蔵プール等の上部を俯瞰的に見ることで波及的影響の有無を確認 する。

ケーブルについては，各階の天井付近等の高所に設置することで下位クラス施設 の損傷•転倒•落下による波及的影響を考慮した配置としていることから，高所の ケーブルについて波及的影響はないと判断する。

2.2 現地調査にて確認する検討事象

別記 2 に記載された事項に基づく検討事象と現地調査による確認項目との対応を添付1－1表に示す。

添付 1－1 表 検討事象と現地調査による確認項目

調査対象施設	建屋外施設		接続部 （建层内外）	建屋内施設
検討事象	別記 2 （1）	別記 2 （4）	別記 2 （2）	別記 2 （3）
現地調査による確認項目	$\times * 1$	\bigcirc	－${ }^{2}$	\bigcirc

＊1不等沈下又は相対変位の観点として，上位クラス施設の建物•構築物と下位クラ ス施設の位置関係が机上検討で確認したとおりであることを現地で確認する。
＊2 接続部については，系統図等により網羅的に確認可能であり，プラント建設時及 び改造工事の際は，施工に伴う確認，系統図作成時における現場確認，使用前検査，試運転等から接続部が設計図書どおりであることを確認していることから，接続部の波及的影響については，机上検討により評価対象の抽出を実施し，その後，机上検討で調査した情報が現場の状況と相違ないことを現地で確認する。

3．調査要員

調査要員の要件は，以下のとおりとする。
（1）女川原子力発電所の耐震設計，構造設計又は機械•電気計装設計等に関する専門的な知識•技能及び経験を有する者。
（2）女川原子力発電所の保修業務等に従事し，施設の構造，機能及び特性等に関す る専門的な知識•技能及び経験を有する者。
上記（1）または（2）の要件に該当する者の複数名でチームを編成し，現地調査を実施 する。

4．現地調査実施日
平成 26 年 2 月 18 日～平成 28 年 6 月 17 日

5．調査方法

5． 1 調査手順

調査対象施設についての，別紙に例示する「プラントウォークダウン・チェック シート」に従い，周辺の下位クラス施設の位置，構造及び影響防止措置（落下防止措置，固縛措置等）等の状況から，波及的影響を及ぼすおそれの有無を確認する。 なお，建屋内及び建屋外のチェックシートについては内容が同一であることから建屋内チェックシートを代表として例示している。

5．2 確認項目及び判断基準

各確認項目に対する波及的影響のおそれの有無の判断基準を添付1－2表に示す。 なお，対象となる上位クラス施設に対して，下位クラス施設が明らかに影響を及 ぼさない程度の大きさ，重量等である場合（小口径配管，照明器具等）は，影響な しと判断する。

添付 1－2 表 確認項目及び判断基準

確認項目	判断基準
B，Cクラス施設等との十分な離隔距離をとる等により，当該設備に与 える影響はない。	－周辺のB，Cクラス施設の転倒•落下を想定した場合にも，上位クラス施設に衝突し ないだけの離隔距離をとつて配置•保管さ れていること。 －影響の有無の判断にあたつては，上位クラ ス施設と B，Cクラス施設が 2 m の離隔を有 していることを目安とするが，B，Cクラ ス施設の設置高さや位置関係で状況が変化 することから，調査メンバー 2 人以上で協議 の上，判断すること。 －十分な離隔距離がとられていない下位クラ ス施設がある場合は，当該設備の設置状況 や設備種類，設備重量等を勘案し調査メン バー 2 人以上で協議の上，判断すること。ま た，本内容は所見に記録する。
○周辺に作業用ホイスト・レール，グ レーチング，手すりがある場合，落下防止措置等により，当該設備に与 える影響はない。	－作業用ホイスト・レール，グレーチング，手すり等については，離隔距離が十分でな い場合は，適切な落下防止措置等が講じら れていること。 －離隔距離をとっていても地震により移動す る可能性があるもの（チェーンブロック等） は，移動の影響を防止する措置が講じられ ていること。
○周辺に仮置き機器がある場合，固縛措置等により，当該設備に与える影響はない。	－仮置き機器について，離隔距離が十分でな い場合は，固縛等により落下防止又は移動防止措置が講じられていること。
○上部に照明器具がある場合，落下防止措置等により，当該設備に与える影響はない。	－照明器具について，離隔距離が十分ではな い場合は，適切な落下防止措置が講じられ ていること。

女川 2 号機 プラントウォークダウン・チェックシート＜建屋内 $>$

実施日：平成 年 月 旦
実施者 \qquad

【施設情㪕】

機器名称： \qquad
機器 ID： \qquad
建屋 \qquad
床EL
区画
\qquad
（記号の説明） $\mathrm{Y}: Y \mathrm{YES}, \mathrm{N}: N O, H:$ 持ち帰り検討，N／A：対象外

	波及的影嚮について	Y	N	H	N／A
1	建屋内における下位クラスの施設の損傷，転倒及び落下等によるSク ラス設備への影響はない。	\square	\square	\square	\square
1－1	B，Cクラス施設等との十分な離隔距離を取る等により，当該設備に影響を与えない。	\square	\square	\square	\square
1－2	周辺に影蓈を及ほし得る揚重機器，レール，グレーチング，手すり等 がある場合，転倒及び落下等により当該設備に影響を与えない。	\square	\square	\square	\square
1－3	より，当該設備に影賏を与えない。	\square	\square	\square	\square
1－4	上部に照明器具，天井•壁の䉍易建築材がある場合，落下防止措置等 により，当該設備に影響を与えない。	\square	\square	\square	\square
1－5	その他（	\square	\square	\square	\square

	Sクラス施設の健全性について	Y	N	H	N／A
1	対象機器と支持構造物との接合部付近に外見上の異常（ボルトの緩み，腐食・き裂等）はない。	\square	\square	\square	\square

所見（機器周㳄の状呮についての記載）

波及的影響評価に係る現地調査記録

女川 2 号機 プラントウォークダウン・チェックシート＜建屋内 $>$

実施日：平成 26年11月 5旦
実施者 ： \qquad
【施設情報】
機器名称：ほう酸水注入系ポンプ出口圧力
機器ID：C41－PTOO5
建屋 ：R／B
床EL
区画 \qquad
（記号の説明）$Y: Y E S, N: N O, H:$ 持ち帰り検討，N / A ：対象外

	波及的影響について	Y	N	H	N／A
1	建屋内における下位クラスの施設の損傷，転倒及び落下等によるSク ラス設備への影響はない。	\square	\square	\square	\square
1－1	B，Cクラス施設等との十分な離隔距離を取る等により，当該設備に影響を与えない。	\square	\square	\square	\square
1－2	周辺に影響を及ぼし得る揚重機器，レール，グレーチング，手すり等 がある場合，転倒及び落下等により当該設備に影響を与えない。	\square	\square	\square	\square
1－3	周辺に仮置き機器（点検用資機材を含む）がある場合，固縛措置等に より，当該設備に影響を与えない。	\square	\square	\square	\square
1－4	上部に照明器具，天井•壁の簡易建築村がある場合，落下防止措置等 により，当該設備に影響を与えない。		\square	\square	\square
1－5	その他（ ）	\square	\square	\square	

	Sクラス施設の健全性について	Y	N	H	N / A
1	対象機器と支持構造物との接合部付近に外見上の異常（ボルトの緩み， 腐食・き裂等）はない。	\square	\square	\square	\square

所見（機器周辺の状況についての記載）
（1）SLCテストタンク

現場状況写真 等

原子力発電所における地震被害事例の要因整理（1／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因 I				下線は要因 I 相当箇所	
1	宮城県沖 （女川）	$8 \cdot 16$ 宮城地震による女川原子力発電所全プラント停止について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & \text { 3号炉 } \end{aligned}$	地震の影響で以下の軽微な被害が発生した。 （a）女川1号炉 - 主変圧器，起動用変圧器の避圧弁動作 - サイトバンカ建屋プールに水銀灯落下 （b）女川2号炉 －主変圧器，起動用変圧器，補助ボイラ一変圧器（A）（B）の避圧弁動作 （c）女川3号炉 - 原子炉建屋内見学者用ギャラリー室のガラスのひび - 主変圧器の避圧弁動作 （d）その他構内 - 環境放射能測定センターの希硫酸（ 5% 濃度）貯蔵施設が漏えいおよび苛性ソーダの一部滴下 - 建屋エレベータ停止 - 排気筒航空障害灯レンズカバー破損 - 構内道路アスファルト亀裂•波うち・段差発生	I，III，VI
2	中越沖 （柏崎）	HTr3B火災発生	3号炉	地震の影響により基礎面の沈下量に差が発生したため，ダクトがブッシング碍管に接触し，その衝撃等で碍管が破損して変圧器内部の絶縁油が噴出した。絶縁油の噴出の後，約 $1,000^{\circ} \mathrm{C}$ 以上のア一ク放電が発生したため，漏油した絶縁油に引火したことによりニ次側接続母線部ダクト内で火災が発生した。	I
3	中越沖 （柏崎）	スタックへのダクト配管ズレ	1号炉	地震の影響によって主排気ダクト周辺及びダクト基礎部に地盤沈下が発生し，それに伴う相対変位によって，主排気ダクトにズレ （ベローズの変形）が生じた。	I
4		スタックへのダクト配管ズレ	2号炉		
5		スタックへのダクト配管ズレ	3号炉		
6		スタックへのダクト配管ズレ	4号炉		
7		スタックと主排気ダクトカバーのゆがみ確認	5号炉		
8	中越沖 （柏崎）	C／S B5F浸水及びMUWC全停	1号炉	地震による建屋周辺の地盤沈下等の要因により，地中埋設の消火配管に局所的に大きな変位が生じ機械式継手（ねじ込み式継手 やカップリング継手等）が損傷し漏水した。この漏水が原因で1号炉原子炉複合建屋（管理区域）地下5階（最地下階）全域にわたり深さ約 40 cm 浸水し，廃棄物処理系の電気品，計装品及びタンク類が水没した。水没が原因でMUWCが全停する他，制御盤において「制御電源喪失」 警報が発生した。	I
9	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	軽油タンクB前の消火配管破断し水漏れ	1号炉	不等沈下により消火配管が破断し，漏水及び消火系設備の機能喪失に至った。なお，当該不等沈下は液状化による影響を否定で きない。	I
10	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	1S／B北側屋外消火配管が破断L漏水	その他		
11	$\begin{aligned} & \text { 中中越沖 } \\ & \text { (柏崎) } \end{aligned}$	消火設備4箇所配管損傷：漏水	その他		
12	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	軽油タンク前他屋外消火配管が破断L漏水	その他		
13	中越沖 （柏崎）	K3励磁用変圧器基礎ボルト切断•相非分割母線沈下有り	3号炉	地震により主変圧器およびExTr基礎ボルトが切断した。また，NPB基礎が地震の影響により沈下した。	I，III
14	中越沖 （柏崎）	500 kV 新新潟線2LLゃ断器付近のエアリーク	その他	地震により当該回線の現場操作盤の基礎が地盤沈下で傾斜したため，空気配管に応力がかかりコネクタ部より空気漏れが発生し た。	I
15	中越沖 （柏崎）	取水設備スクリーン洗浄ポンプA吐出フランジ連続滴下•配管サポート変形	5号炉	地震の影響によって地盤が変形し，当該設備の配管及びサポートの変形が発生した。	I

原子力発電所における地震被害事例の要因整理（2／17）

No．	対象地震 （発電所）	件名	号機	地震被害事象および発生要因の概要	地震被害発生要因
16	中越沖 （柏崎）	RW ／ BR ／W 制御室制御盤各系制御電源喪失	RW設備	地震による建屋周辺の地盤沈下等の要因により，地中埋設の消火配管に局所的に大きな変位が生じ機械式継手（ねじ込み式継手 やカップリング継手等）が損傷し漏水した。この漏水が原因で1号機原子炉複合建屋（管理区域）地下5階（最地下階）全域にわたり深さ約 40 cm 浸水し，廃棄物処理系の電気品，計装品及びタンク類が水没した。水没が原因でMUWCが全停する他，制御盤において「制御電源喪失」警報が発生した。	I
17	中越沖 （柏崎）	1号機 変圧器防油堤の沈下•傾き，コンクリートの ひび割れ・はく離，目地部の開き	1号機	```変圧器防油堤に以下の損傷が確認された。 -1号機 変圧器防油堤の沈下•傾き, コンクリートのひび割れ・はく離, 目地部の開き - 2号機 変圧器防油堤の沈下, 横ずれ - 3 号機 変圧器防油堤のひび割れ, 段差発生 -4号機 変圧器防油堤の沈下, 大きな傾斜 (一部目地部の開き) -5号機 変圧器防油堤底版部のひび割れ, 目地部の開き, 陥没 -7号機 変圧器防油堤の沈下, 外側への開き, 目地部のずれ・開き・段差発生```	I
18	中越沖 （柏崎）	2号機 変圧器防油堤の沈下，横ズレ	2号機		I
19	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	3号機 変圧器防油堤のひび割れ，段差	3号機		I
20	中越沖 （柏崎）	4号機 変圧器防油堤の沈下，大きな傾斜（一部目地部の開き）	4号機		I
21	中越沖 （柏崎）	5号機 変圧器防油堤のひび割れ	5号機		I
22	中越沖 （柏崎）	7号機 変圧器防油堤の沈下，外側への開き，目地部のズレ，目地部の開き，目地部の段差	7号機		I
23	駿河湾 （浜岡）	取水槽まわりの地盤沈下等	1号機	取水槽まわりに地盤沈下（ $30 \mathrm{~m} \times 20 \mathrm{~m}$ ，最大 15 cm 程度），隆起（ $35 \mathrm{~m} \times 15 \mathrm{~m}$ ，最大 20 cm 程度）および法面波打（ $30 \mathrm{~m} \times 5 \mathrm{~m}$ ，最大 10 cm 程度）が発生した。	I．IV
24	駿河湾 （浜岡）	道路および法面のひび割れ	その他	地震の影響により以下の事象が発生した。 （1） 5 号見晴台道路き裂 （2）片平山周辺よう壁目開き，道路き裂 （3）平場ヤード舗装他き裂 （4）5号放水ロモニタ室東側よう壁（ブロック積み）き裂 （5）固体廃棄物貯蔵庫（第2棟）周辺よう壁（ブロック積み）および道路のき裂 （6）発電所東側点検ヤード舗装き裂 （7）発電所東側海岸道路き裂	I，IV
25	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	御前崎漁港の当社専用岸壁に段差（ $40 \mathrm{~cm} \times 2 \mathrm{~cm}$ ，最大 3 cm 程度の段差）	その他	地震の影響により，御前崎港の専用岸壁に段差（ $40 \mathrm{~m} \times 2 \mathrm{~cm}$ ，最大 3 cm 程度の段差）が発生した。	I
26	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	タービン建屋の東側屋外エリアの地盤沈下	5号機	地震の影響により，タービン建屋の東側屋外エリアに地盤沈下（ $15 \mathrm{~m} \times 15 \mathrm{~m}, 10 \mathrm{~cm}$ 程度）が発生した。	I
27	東北地方太平洋沖地震 （東海第二）	ランドリーボイラ重油タンク油漏れ	－	地震の影響により，ランドリーボイラ重油タンク基礎が沈下したことで接続配管ユニオン部から重油が漏えいした。	I
よる警報発生等，施設の損傷を伴わない $\mathrm{I} \sim \mathrm{V}$ 以外の要因等）					

L－Z 俫筫中沙

原子力発電所における地震被害事例の要因整理（3／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	$\begin{aligned} & \hline \text { 地震被害 } \\ & \text { 発生要因 } \end{aligned}$
地震被害発生要因 II				下線は要因I相当䉪所	
28	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	柏崎刈羽原子力発電所 1,3 号炉における排気筒 モニタサンプリングラインの損傷について	$\begin{aligned} & 1 \text { 号炉 } \\ & 3 \text { 号炉 } \end{aligned}$	－3号灲主排気筒放射線モ二タサンプリング配管において，塩害により配管が腐食し強度が低下していたところに，地震によるカが加 わり，吸这側配管に幅約 4 mm （最大），長さ約 5 cm の損傷が 1 覽所発生した。 －1号炬主排気筒放射䌊モ二タサンプリング配管において，地震の影響でも二处建屋と配管の相対位置がズレたことにより，放射能濃度を測定した後の気体を主排気筒に戻す配管の接続部にでレが発生した。	II．III
29	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	固体廃亲物貯蔵庫 地下1階管理棟－第1楝接続部通路部付近漏水	その他	地震により固体廃棄物貯蔵庫のエキスパンションとドレンピットが破損したため，固体廃棄物貯蔵庫の第1棟と管理棟の境界に湧水 （雨水）が発生した。	II．III
30	駿河湾 （浜岡）	補助建屋東側雨桶の亀裂	5号炉	地震による摇れ方の違いから，補助建屋と風除室屋上で固定されている補助建屋東側雨樋に亀裂（5䈏所）が生じた。	II
31	東北地方太平洋沖地震 （福島第二）	4号機主排気名クトからの漏えいについて	4号炉	地震発生時に3，4号炉コントロール建屋と3，4号炉サービス建屋間に一時的なズレが生じたため，建屋境界部に設置された主排気ダ外の支持脚溶接部へ局所的に大きな応力が発生しひびが生じた。	II

原子力発電所における地震被害事例の要因整理（4／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因III				下線は要因III相当箇所	
32	宮城県沖 （女川）	8•16宮城地震による女川原子力発電所全プラント停止について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & \text { 3号炉 } \end{aligned}$	地震の影響で以下の軽微な被害が発生した。 （a）女川1号炉 - 主変圧器，起動用変圧器の避圧弁動作 - サイトバンカ建屋プールに水銀灯落下 （b）女川2号炉 －主変圧器，起動用変圧器，補助ボイラー変圧器（A）（B）の避圧弁動作 （c）女川3号炉 - 原子炬建屋内見学者用ギャラリー室のガラスのひび - 主変圧器の避圧弁動作 （d）その他構内 - 環境放射能測定センターの希硫酸（5\％濃度）貯蔵施設が漏えいおよび苛性ソーダの一部滴下 - 建屋エレベータ停止 - 排気筒航空障害灯レンズカバー破損 - 構内道路アスファルト亀裂•波うち・段差発生	I，III，VI
33	能登半島沖 （志賀）	能登半島地震に伴う水銀灯の落下	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \end{aligned}$	1号炉タービン建屋運転階の水銀灯および2号炉原子炉建屋運転階の水銀灯が落下した。	III
34	能登半島沖 （志賀）	能登半島地震に伴う低圧タービン組み立て中の タービンロータの位置ずれ	2号炉	地震の影響で低圧タービンの動翼に微小な接触痕が複数発生した。	III
35	中越沖 （柏崎）	T／Bブローアウトパネル破損	2号炉		
36	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	R／Bブローアウトパネル破損	3号炉	地震の影響によりブローアウトパネルを固定する止め板が変形し外れたため，3号炉原子炉建屋のブローアウトパネルが外れた。ま た，3号炉および2号炉のタービン建屋についても，ブローアウトパネルが外れた。	III
37	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	T／B海側•山側ブローアウトパネル外れ・脱落	3号炉		
38	中越沖 （柏崎）	R ／ B 使用済燃料プール内ワーキングテーブル燃料上に落下	4号炉		
39	中越沖 （柏崎）	R／B 使用済燃料プール内ワーキングテーブルが ラック上（燃料あり）に落下	7号炉	地震の影響により，4号炉および7号炉の使用済み燃料貯蔵プール内に取り付けられている水中作業台が外れ，使用済み燃料上に落下する事象が発生した。また，6号炉水中作業台が固定位置から外れ，ワイヤーにより支持されている状態となった。	III
40	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	6号炉 使用済み燃料プール内の水中作業台の固定位置からのはずれ	6号炉		
41	中越沖 （柏崎）	C／S B1F D／G－A北側付近「RW固化エリア」扉S1－15Dから漏水	1号炉	不等沈下に伴う屋外消火配管の損傷により発生した水が，電線管貫通孔より流入したことで非常用ディーゼル発電機（A）電気品室 に漏水した。	III
42	中越沖 （柏崎）	各サービス建屋退域モ二タ故障について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & \text { 3号炉 } \\ & \text { 4号炉 } \\ & \text { 5号炉 } \\ & \text { 6号炉 } \\ & \text { 7号炉 } \end{aligned}$	地震の影響で，各サービス建屋退出モ二タで検出器のズレ（検出器の飛び出し），駆動部故障が発生した。	III
43	中越沖 （柏崎）	固体廃棄物貯蔵庫内のドラム缶数百本が転倒し，内数十本のドラム缶の蓋が開いてることを確認	その他	地震の影響により固体廃葉物貯蔵庫第二棟内において，ドラム缶100本程度が転倒し，内数本のドラム缶の蓋が開放する事象が発生した。	III

原子力発電所における地震被害事例の要因整理（5／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
44	中越沖 （柏崎）	R／Bオペフロ R／B 天井クレーンユニバーサル ジョイントに破損確認	6号炉	走行車輪にづレ—キが掛かった状態で，地震により強制的にクレーンの走行方向（東西方向）のカが発生したため，走行車輪と電動機の間に位置するユニバーサルジョイントに過大なトルクが発生し，クロスピンが破損する事象が発生した。	III
45	中越沖 （柏崎）	3号炉原子炉建屋地下2階SLC系注入ライン配管 （格納容器外側貫通部）板金保温へこみについて	3号炉	3号炉SLC系注入ライン配管（格納容器外側貫通部）の近傍に置いてあったISI用RPV模擬ノズルが，地震により移動し当該配管に接触したため，板金保温材にへこみが発生した。	III
46	中越沖 （柏崎）	7号原子炉ウェルライナーからの漏洩について	7号炉	7号炉の原子炉ウェルライナーにつながる配管のレベル計内に水が溜まる事象が発生した。当該のウェルライナーには，溶接の溶け込み不足と考えられる未溶着部があり，さらには建設時に溶接余盛り部を平滑化するためにグラインダで除去していたため，残存板厚が薄くなっていた。そこへ地震によりスロットプラグが接触したため，過大な荷重がかかり貫通，漏えいした。	III，VI
47	中越沖 （柏崎）	3 号炉原子炉圧力容器遮へい体の地震による移動 について	3号炉	（N12C】スライド式プラグが保温材に接触した事象 スライド式プラグが正規位置にある状態で取付けられておらず，ストッパー機能が働かなかった。その結果，スライド式プラグが地震 によってRPV側へ移動後，八の字状態に開いたことにより保温材に接触して保温村を変形させた。 （N12D）積上式プラグが水位計装配管に接触した事象 スライド式プラグのストッパーが取付けられておらず，N12Cと同様にストッパー機能が働いていなかったことによりスライド式プラグ が地震によりRPV側へ移動した。その結果，積上式プラグの押さえがなくなって，地震により積上式プラグが左側へ崩れ，水位計装配管への接触に至った。	III，VI
48	中越沖 （柏崎）	柏崎刈羽原子力発電所1，3号炉における排気筒 モニタサンプリングラインの損傷について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 3号炉 } \end{aligned}$	－3号炉主排気筒放射線モニタサンプリング配管において，塩害により配管が腐食し強度が低下していたところに，地震による力が加 わり，吸込側配管に幅約 4 mm （最大），長さ約 5 cm の損傷が 1 箇所発生した。 －1号炉主排気筒放射線モニタサンプリング配管において，地震の影響でモニタ建屋と配管の相対位置がズレたことにより，放射能濃度を測定した後の気体を主排気筒に戻す配管の接続部にズレが発生した。	II，III
49	中越沖 （柏崎）	所内変圧器 1 A と相分離母線のずれによる基礎ボ ルトの切断	1号炉	地震による振動により所内変圧器1Aが揺動したため基礎ボルトが破断した。	III
50	中越沖 （柏崎）	励磁変圧器からの油漏れ及び基礎ベースからのズ レ	1号炉	地震による振動により，一次ブッシング碍子が破損し絶縁油が漏えいした。また同様に地震による振動により，基礎ベースから変圧器本体がずれる事象が発生した。	III
51	中越沖 （柏崎）	主変圧器基礎ボルト折損及びクーラ一母管と本体間からの油リーク	2号炉	地震による振動により，主変圧器基礎ボルト折損およびク一ラ一母管と本体間が破損し油が流出した。	III
52	中越沖 （柏崎）	励磁用変圧器基礎部・バスダクト横ずれ	2号炉	地震による振動により，励磁用変圧器の基礎部およびバスダクトに横ずれが発生した。	III
53	中越沖 （柏崎）	K3励磁用変圧器基礎ボルト切断•相非分割母線沈下有り	3号炉	地震により，主変圧器およびExTr基礎ボルトが切断した。また，NPB基礎が地震の影響により沈下した。	I，III
54	中越沖 （柏崎）	No．43過水タンク配管破断	5号炉	地震の振動により，タンク配管の伸縮継手部が損傷し，No．43過水タンクより漏えいが発生した。	III
55	中越沖 （柏崎）	T / B 復水器水室 $B 1-B 2$ 連絡弁フランジ部漏え い・エキスパンション亀裂	4号炉	地震の振動により，復水器水室間に過大な変位が生じ，伸縮継手が損傷した。	III
56	中越沖 （柏崎）	500 kV 南新潟線2L黒相ブッシング油漏れによる南新潟線2L停止	その他	地震発生時に送電線引込架線が上下に振れたことで，ブッシング端子部に応力が発生し，フランジ面が変形したため漏油が発生し た。	III
57	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	Hx／B B1F FP－40ラインから漏水	2号炉	地震の振動により，熱交換器建屋の消火配管引き込み部ラバーブーツが損傷し，雨水の流入が発生した。	III
58	中越沖 （柏崎）	荒浜側避雷鉄塔の斜材が5本破断	その他	地震の振動により，避雷鉄塔の斜材が破断した。	III
也震被害発生要因：I ：地震の不等沈下による損傷 II：建物間の相対変位による損傷 III：地震の摇れによる施設の損偒•転倒•落下等 IV：周辺斜面の崩壊 V：使用济燃料ピットスロッシングによる溢水 VI：その よる警報発生等，施設の損傷を伴わない I～V 以外の要因等）					

I－て粓悬小沙
原子力発電所における地震被害事例の要因整理（6／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
59	中越沖 （柏崎）	事務本館常用電源断，緊急時対策室電源等は非常用電源より供給	その他	地震の影響により，常用系の高圧受変電盤とチャンネルベースを止めているボルトが切断し，高圧受変電盤が移動したため常用系電源が断となり非常用電源に切替わった。	III
60	中越沖 （柏崎）	ヤードT／BサブドレンNo． 8 流入水油混入およ びK1～4放水庭に微量の油膜確認について	1号炉	地震による振動で変圧器防油提が損傷したことにより，変圧器から漏洩した絶縁油が損傷部から土壌を経由してサブドレンに流入し た。	III
61	中越沖 （柏崎）	スクリーン起動不可	2号炉	地震により，ケーブルトレンチ内においてケーブルトレイが脱落した。この影響でケーブルが損傷し地絡したため，取水装置スクリーン洗浄ポンプが起動不可となった。	III
62	中越沖 （柏崎）	K1 S／B環境ミニコン県テレメータ等伝送不能	その他	地震時の振動により，中央処理装置とディスクアレイを繋ぐケーブルコネクタに接触不良が発生し，中央処理装置が停止（フリーズ）し たことから，県テレメータ，インターネットホームーページへのデータ伝送処理ができなくなった。また，インターネット伝送に関しては，地震時に当システムインターネットサーバ，所内LANがいずれも停止したことから，公開WEBサーバまでの連携がとれず伝送され なかった。	III
63	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	重油タンク防油堤での目地の開き（貫通）	その他	地震の影響により，重油タンク防油堤に目地の開き（貫通）が発生した。	III
64	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	重油タンク用泡消火設備の現場盤損傷	その他	地震の影響により，重油タンク泡消火設備の現場盤（盤BOX）と支柱との接合部分に破断が発生した。	III
65	中越沖 （柏崎）	Ax／B B1F 北西側壁面亀裂部より雨水漏えい	その他	地震の影響により，連絡通路が建屋と衝突したことでコンクリートが損傷し建屋の壁面に亀裂が生じた。また，この亀裂から雨水が流入した。	III
66	中越沖 （柏崎）	固体廃棄物貯蔵庫 地下1階管理棟－第1棟接続部通路部付近漏水	その他	地震により固体廃棄物貯蔵庫のエキスパンションとドレンピットが破損したため，固体廃棄物貯蔵庫の第1棟と管理棟の境界に湧水 （雨水）が発生した。	II，III
67	中越沖 （柏崎）	C／B $2 F$ 中操天井の地震による脱落・ひび割れ・非常灯ずれ・点検口開放を確認について	7号炉	地震の振動により，7号炉中操において飾り照明の落下，天井化粧板の脱落・ひび，非常灯ズレ，点検口開放が発生した。	III
68	中越沖 （柏崎）	R／B オペフロ スタッドテンショナー除染パン内油漏 れ・油圧制御ホース切断について	4号炉	RPVヘッド着脱機に配置されている4つのスタッドテンショナーが地震により振られ，そのうちの1つのスタッドテンショナーと構造フ レームとの間に油圧ホースが挟まれ切断されたため，約200リットルの油圧作動用の油漏れが発生した。	III
69	中越沖 （柏崎）	R／B2F南東壁（SFP側）よりの水漏れ	7号炉	－原子炉建屋管理区域内2階のエレベータ付近の壁面（厚さ約 2 m の鉄筋コンクリート）の継ぎ目部に生じた微細なひび（幅約 0.1 mm程度，長さ約 3.5 m 程度）から，水のにじみが発生し水たまりが生じた。 －原子炬建屋3階北側の床面コンクリート継ぎ目部（約 1 cm ）にわずかな水のしみ出しが発生した。	프またはV
70	中越沖 （柏崎）	R／B3FISI試験片室前壁からの水漏れ	7号炉	「No． 46 7号原子炉ウエルライナーからの漏洩について」によるものか，使用済燃料プール等からの地震時スロッシングを起因とする溢水であるのか原因は特定できなかった。	프またはV
71	中越沖 （柏崎）	平均出力領域モニタ制御盤の電源装置の位置ず れについて	4号炉	中央制御室内にある平均出力領域モニタおよび制御棒引抜監視装置の電源装置が，正規の位置から取り出し方向に数 cm ずれて いることを確認した。長期使用による板バネの経年変化により，板バネ押え力が低下したことに加え，地震により当該電源装置に加 わる地震水平力が，質量に比例して他の電源装置より大きく寄与したため，当該電源装置に位置ずれが生じた。	III
72	中越沖 （柏崎）	原子炉建屋 原子炉ウエルライニング面（ウエルカ バー着座面）のすり傷について	7号炉	地震の影響により，原子炉ウェルカバーが動いたためウエルカバー着座面のほぼ全周にすり傷が確認された。	III
73	駿河湾 （浜岡）	原子炉建屋1階（放射線管理区域外）の扉の閉不能	1号炉	地震の影響により，当該扉を開閉した際，扉枠が干渉して閉止不可能となった。	III
74	駿河湾 （浜岡）	タービン建屋1階（放射線管理区域内）の扉金具の落下（1箇所）	1号炉	地震の影響により，ドアクローザー付属の温度ヒューズが破損した。	III
75	駿河湾 （浜岡）	タービン建屋2階（放射線管理区域内）コンクリート片（親指大）確認	2号炉	地震の影響により，タービン建屋側躯体とタービン建屋ペデスタル躯体間の境界部表面のコンクリートが損傷し，コンクリート片（親指大）が落下した。	III
地震被害発生要因：I ：地震の不等沈下による損傷 II：建物間の相対変位による損傷 III：地震の摇れによる施設の損傷•転倒•落下等 IV：周辺斜面の崩壊 V：使用済燃料ピットスロッシングによる溢水 VI：その化 よる警報発生等，施設の損傷を伴わない $\mathrm{I} \sim \mathrm{V}$ 以外の要因等）					

原子力発電所における地震被害事例の要因整理（7／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
76	駿河湾 （浜岡）	非常用ディーゼル発電機（A）排気消音器の吸音材 カバー固定金具の外れ	2号炉	地震の影響により，原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れた。	III
77	駿河湾 （浜岡）	源水タンクまわりの構内配電線電柱の支線外れ（1箇所）	その他	構内配電線電柱の支線と支線アンカ一を接続するターンバックルに，地震による応力が加わったことでターンバックルが破損し，支線 が外れた。	III
78	駿河湾 （浜岡）	275kV開閉所壁面の鉄骨耐火被覆材のひび割れ	その他	275kV開閉所壁面の鉄骨耐火被覆材に，地震の影響によるひび割れを確認した。	III
79	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \\ & \hline \end{aligned}$	275 kV 開閉所内の構内放送用スピーカーの脱落	その他	275 kV 開閉所内に設置してある構内放送用スピーカーが，地震の影響により脱落した。	III
80	駿河湾 （浜岡）	非常用ディーゼル発電機の排気消音器の吸音材カ バー固定金具の外れおよび台座シール材の劣化	3号炉	地震の影響により，原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材力バー壊定金具の一部が外れた。また，非常用ディーゼル発電機（B）の排気消音器台座シール材に塩害環境腐食と地震の摇れによる影響での劣化を確認した。	III，VI
81	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	タービン系配管の保温材のずれ	4号炉	地震の影響でタービン系配管の保温材にずれが発生した。	III
82	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \\ & \hline \end{aligned}$	低圧タービン軸の接触痕	4号炉	地震の影響により，低圧タービン（A）～（C）軸の6箇所に軸受油切り部との接触痕を確認した。	III
83	駿河湾 （浜岡）	組合せ中間弁（C）室内の間仕切板の脱落	4号炉	地震の影響により，組合せ中間弁（C）室内に取り付けてあった金属製の仕切板の一部（約 $20 \mathrm{~cm} \times$ 約 20 cm ）が脱落した。	III
84	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	発電機励磁電源用バスダクト支持部材の接続板の亀裂	4号炉	地震の影響により，発電機励磁電源用バスダクトの支持部材とバスダクトをつなぐ接続板に亀裂（最大長さ約7mm）が発生した。	III
85	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	空調ダクトからの空気の微少な漏れ	4号炉	地震の影響により，空調ダクト（フランジ部）からの空気の微少な漏れが発生した。	III
86	駿河湾 （浜岡）	発電機ブラシホルダの接触痕について	4号炉	地震の影響により，発電機ブラシホルダの一部に軽微な接触痕およびコレクタリング表面に茶色の変色が発生した。	III
87	駿河湾 （浜岡）	非常用ディーゼル発電機（A）排気消音器の吸音材 カバー固定金具等の外れ	4号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の揺れによる影響が原因である。	III，VI
88	駿河湾 （浜岡）	主タービンスラスト軸受摩耗トリップ警報点灯	5号炉	地震の発生によりタービンがトリップレた。当該タービンの地震被害は以下のとおり。 - 中間軸受箱に過大な力が掛かり，中間軸受箱取付ボルトが損傷した。 - 中間軸受箱取付ボルトが損傷したことにより，中間軸受箱が上下に摇動し，中間軸受箱の軸方向固定キ一が傾くとともに，キ一溝 が変形した。 －中間軸受箱の摇動により，中間軸受箱内に設置されているスラスト軸受も摇動し，タービンロータの軸方向移動が発生したこと，お よび低圧内部車室のスラストキ一部の変形により，低圧内部車室がサポートライナー上を軸方向に移動し，動翼（回転体）とダイヤフラ ム（静止体）の接触およびロータと油切り等の接触が発生した。 －中間軸受箱の摇動およびタービンロータの軸方向移動により，スラスト保護装置が動作し，「主タービンスラスト軸受摩耗トリップ」信号によりタービントリップした。	III
89	駿河湾 （浜岡）	タービン建屋3階タービンスラスト装置まわりのデッ キプレート取り付け用ネジ折損	5号炉	地震の影響により，タービンスラスト保護装置まわりの作業床用デッキプレートの取り付け用ネジ（直径7mm） 24 本が折損した。	III
90	駿河湾 （浜岡）	発電機回転数検出装置の摺動痕	5号炉	地震の影響により，発電機回転数検出装置歯車と検出器が接触し検出器に接触痕が残った。	III

原子力発電所における地震被害事例の要因整理（8／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
91	駿河湾 （浜岡）	原子炉格納容器の機器搬入口遮へい扉の固定金具破損	5号炉	地震の影響により，原子炉格納容器の機器搬入口に設置している金属製遮へい扉の固定用金具アンカ一部（床面）が破損し，固定金具が $2 \sim 3 \mathrm{~cm}$ 程度の浮きが発生した。	III
92	$\begin{aligned} & \text { 駿河湾 } \\ & \text { (浜岡) } \end{aligned}$	No．3脱塩水タンク基礎部の防食テープの剥れ	5号炉	地震によりタンク端部が一時的に浮上り，一部の防食テ一プが剥離しタンク底板下部に潜り込む事象が発生した。	III
93	駿河湾 （浜岡）	タービン振動位相角計の損傷	5号炉	地震の揺れによりロータが振動位相角計の先端に接触したため，位相角計の先端が欠損した。	III
94	駿河湾 （浜岡）	原子炉建屋2階（放射線管理区域内）東側壁面の仕上げモルタルの剥がれと浮き（ $30 \mathrm{~cm} \times 5 \mathrm{~cm}$ 程度）	5号炉	原子炉建屋2階（放射線管理区域内）東側壁面の仕上げモルタルに地震の影響による剥がれと浮きが発生した。	III
95	駿河湾 （浜岡）	タービン建屋2階（放射線管理区域内）高圧第2ヒー タまわり床面に，配管貫通部に詰められていた仕上げモルタルの一部の剥がれ $(5 \mathrm{~cm} \times 5 \mathrm{~cm}$ 程度）	5号炉	地震の影響により，主タービン潤滑油配管とタービン建屋の貫通部の穴仕舞部の仕上げモルタルの表面に剥がれが発生した。	III
96	駿河湾 （浜岡）	化学分析室内の放射能測定装置の固定ボルトの浮き上がり	5号炉	地震の影響により，化学分析室内に設置している放射能測定装置（波高分析装置）の固定用アンカーボルトに浮き上がりが発生し た。	III
97	駿河湾 （浜岡）	発電機ブラシホルダ等の接触痕について	5号炉	地震の影響により，発電機ブラシホルダの一部に軽微な接触痕およびコレクタリング表面に茶色の変色が発生した。	III
98	駿河湾 （浜岡）	タービン建屋内の蛍光灯不点について	5号炉	地震によって，蛍光管とソケット部の接触不良が発生しタービン建屋（放射線管理区域内）の蛍光灯が約 30 灯不点となった。	III
99	駿河湾 （浜岡）	非常用ディーゼル発電機（B）排気消音器の吸音材 カバー固定金具等の外れ	5号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（B）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の摇れによる影響が原因である。	III，VI
100	駿河湾 （浜岡）	タービン建屋内でのビス（5個）の発見	5号炉	地震の影響により，照明器具用電線管つなぎ部固定用や配管保温材の外装板用のビスが落下した。	III
101	駿河湾 （浜岡）	変圧器消火配管建屋貫通部のシール材の一部損傷	5号炉	地震の影響により，屋外連絡ダクト貫通部付近の変圧器消火配管貫通部シール材の一部が損傷し，フランジ部からの微少なリーク （1滴／2滴）が発生した。	III
102	駿河湾 （浜岡）	原子炉格納容器内の点検結果	5号炉	地震の影響による以下の痕跡を確認した。 - 主蒸気逃し安全弁排気管のバネ式支持構造物の動作（摺動痕） - 作業用ターンテーブルの車輪位置ずれ - 空調ダクト接続部の位置ずれ	III
103	駿河湾 （浜岡）	発電機固定子固定キーの隙間の拡大	5号炉	発電機固定子に地震の影響による以下の痕跡を確認した。 - 固定子底部の中央に挿入されている固定キーの両サイドの隙間が拡大 - ベースボルトの一部の塗装が剥離 - 固定キーに軽微な傷 - 発電機本体脚部およびベースにへこみ，段差の発生	III

原子力発電所における地震被害事例の要因整理（9／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
104	駿河湾 （浜岡）	タービン開放点検の結果	5号炉	地震の発生によりタービンがトリップレた。当該タービンの地震被害は以下のとおり。 - 中間軸受箱に過大な力が掛かり，中間軸受箱取付ボルトが損傷した。 - 中間軸受箱取付ボルトが損傷したことにより，中間軸受箱が上下に摇動し，中間軸受箱の軸方向固定キーが傾くとともに，キ一溝 が変形した。 －中間軸受箱の摇動により，中間軸受箱内に設置されているスラスト軸受も摇動し，タービンロータの軸方向移動が発生したこと，お よび低圧内部車室のスラストキ一部の変形により，低圧内部車室がサポートライナー上を軸方向に移動し，動翼（回転体）とダイヤフラ ム（静止体）の接触およびロータと油切り等の接触が発生した。 －中間軸受箱の摇動およびタービンロータの軸方向移動により，スラスト保護装置が動作し，「主タービンスラスト軸受摩耗トリップ」信号によりタービントリップした。	III
105	駿河湾 （浜岡）	主要変圧器上部グレーチングと相分離母線箱との接触痕	5号炉	主要変圧器用の相分離母線箱（以下，「IPB」という）3箇所に，地震の影響によってIPB点検用グレーチングの手すりボルト部分と接触し接触痕が残った。	III
106	駿河湾 （浜岡）	原子炉格納容器内作業用ターンテーブルの点検結果	5号炉	作業用ターンテーブルに地震の影響による以下の状況を確認した。 - 車輪力バーの一部割れ - 回転角検出装置の歯車レールから歯車の外れ	III
107	駿河湾 （浜岡）	原子炉機器冷却水系の配管支持構造物の摺動痕	5号炉	原子炉機器冷却水系の配管および支持構造物に，地震の影響による摺動痕（塗装の剥離）を15箇所確認した。	III
108	駿河湾 （浜岡）	タービン駆動給水ポンプデータベース部のライナー シム変形	5号炉	地震の影響によって，タービン駆動給水ポンプ（A）（B）ポンプのベース部に取り付けられているライナーシムに変形が発生した。	III
109	駿河湾 （浜岡）	原子炉建屋内の主蒸気系配管，給水系配管およ び配管支持構造物の点検結果	5号炉	主蒸気系配管と給水系配管について地震の影響による以下の状況を確認。 - 配管支持構造物 4 箇所について，配管自重受け部にわずかに隙間が発生 - 給水配管の壁貫通部2箇所について，養生用のラバーブーツと保温外装板に一部ずれが発生 －主蒸気配管の配管ラグ2箇所に摺動痕を確認	III
110	駿河湾 （浜岡）	発電機シールリング油切りの摺動痕	5号炉	発電機軸の軸受部に地震の影響による以下の状況を確認した。 - 第10軸受のシールリング油切りと発電機ロータに，接触と推定される摺動痕を確認。 - 第 9 軸受についても，第 10 軸受と同様，シールリング油切りと発電機ロー夕に軽微な摺動痕を確認。	III
111	東北地方 太平洋沖地震 （東海第二）	原子炉格納容器機器ハッチ遮へい扉止め金具破損	－	原子炉格納容器機器ハッチ遮へい扉の止め金具（スライド固定）が地震の影響で破損した。	III
112	東北地方太平洋沖地震 （東海第二）	格納容器雰囲気計測系サンプル 昇圧ポンプB異音	－	地震の影響により，格納容器雰囲気計測系2系列のラち，サンプル昇圧ポンプBについてモータとサンプルポンプに芯ずれが起こり異音が発生した。	III
113	東北地方太平洋沖地震 （東海第二）	使用済燃料プール小ゲート取付けボルトの位置ズ レ	－	地震の影響により，使用斎燃料プール小ゲートの取付けボルトにずれが発生した。	III
114	東北地方太平洋沖地震 （東海第二）	地震による水処理建屋構造材の損傷	－	地震の影響により，建物のブレース（筋交い）の多くが切断した。	III

I－6粎筫中湦
原子力発電所における地震被害事例の要因整理（10／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
115	$\begin{gathered} \text { 東北地方 } \\ \text { 太平仹地地震 } \\ \text { (東海第二) } \end{gathered}$	津波による取水口電気室建屋の損傷	－	地震•津波により，取水口電気室の建具（窓，シャツター）に割れ・歪みが発生した。	III，VI
116	$\begin{gathered} \text { 東北地方 } \\ \text { 太平洋浊地震 } \\ \text { 福島第二) } \end{gathered}$	原子炉建屋天井クレーンの走行用車輪受部の一部損傷について	－	地震により，車輪軸受に亀裂等が発生し，その後，当該の天井クレーンを使用したことで，クレーンの自重により損傷に至った。	III

I－Z 粐筫十摆
原子力発電所における地震被害事例の要因整理（11／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	$\begin{aligned} & \text { 地震被害 } \\ & \text { 攵生要因 } \\ & \hline \end{aligned}$
地震被害発生要因IV				下線は要因IV相当䈏所	
117	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	土捨て場一部崩落（北側斜面）等	その他	地震の振動により，土捨て場北側斜面の一部に崩落が発生した。	IV
118	$\begin{aligned} & \text { 中越沖 } \\ & (\text { 柏崎 }) \\ & \hline \end{aligned}$	開閉所東側法面一部滑り出し	その他	地震の振動により，開閉所東側法面が一部滑り出し約 10 cm のひび割れが発生した。	Iv
119	駿河湾 （浜岡）	取水槽まわりの地盤沈下等	1号炉	取水槽まわりに地盤沈下（ $30 \mathrm{~m} \times 20 \mathrm{~m}$ ，最大 15 cm 程度），隆起（ $35 \mathrm{~m} \times 15 \mathrm{~m}$ ，最大 20 cm 程度）および法面波打（ $30 \mathrm{~m} \times 5 \mathrm{~m}$ ，最大 10 cm 程度）が発生した。	I，즌
120	駿河湾	道路および法面のひび割れ	その他	地震の影響により以下の事象が発生した。 （1）5号見晴台道路き裂 （2）片平山周辺よう壁目開き，道路き裂 （3）平場ヤード舗装他き裂 （4）5号放水ロモニタ室東側よう壁（ブロック積み）き裂 5 5固体廃亲物貯蔵庫（第2棟）周辺よう壁（ブロック積み）および道路のき裂 （6）発電所東側点検ヤード舗装き裂 （7）発電所東側海岸道路き裂	I，ㅈㅡㅢ

原子力発電所における地震被害事例の要因整理（12／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因V				下線は要因V相当䈯所	
121	$\begin{aligned} & \text { 中越 } \\ & \text { (柏崎) } \end{aligned}$	R／B3階，中3階の非管理区域への放射能含む水 の漏えい・海への放射能放出	6号炉	使用済燃料プールレ水が非管理区域へ流出した。事象のメカニズムは以下。 - 使用済然料プール水が地震によるスロッシシングによりR／B4Fフロア床面に溢れ出した。 - 溢れ出た水は床面に設置している燃料交換機給電ボックスヘ流入した。 - 密閉性が保たれているべきである給電ボックス内電線員通部のシール部に，設計上の考慮不足あるいは施工不良により生じたと考えられる隙間ができていたため，隙間を通り電線管の中へ流入した。 －当該電線管はR／B非管理区域へ通じていることから，電線管へ流入した水は非管理区域へと流出した。 $\cdot \mathrm{R} / \mathrm{B} 3$ 階（非管理区域）床面にたまった水は，同床面の排水口を通じて非放射性排水収集タンクに流入した後，排水ポンプにより， ポンプ出口配管の接続先である放水口を経由して海に放出された。	V．VI
122	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	R／B 3F才ペフロ全域水浸し	1号炉	地震によるスロッシングにより，放射性物質を含む使用斎燃料プール水がオペフロに溢水した。	v
123		R / B 使用济然料プール水飛散	2号炉		
124		R ／Bオペフロ床への使用斎然料プール水飛散	3号炉		
125		R / B 使用済然料プール水散选によるR／Bオペフ口水浸し・SFP混濁不可視	4号炉		
126		R / B オペフロほぼ全域への使用済み燃料プール水飛散	5号炉		
127		R / B（管理）オペフロほぼ全域への使用済燃料プー ル水飛散	6号炉		
128		R／B4F才ペフロ全域水たまり有り	7号炉		
129	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \\ & \hline \end{aligned}$	1号炉 使用済燃料プールの水位低による運転上制限の逸脱及び復帰	1号炉	地震によるスロッシングにより，使用済燃料プール水が原子炉建屋オペレーティングフロアへ溢れたため，使用済燃料プール水位が低下したことから，運転上の制限からの逸䂱を宣言した。	v
130	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	2号炉使用済燃料プールの水位低による運転上制限の涣脱及び復帰	2号炉		
131	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	3号炉 使用済燃料プールの水位低による運転上制限の逸脱及び復帰	3号炉		
132	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	R／B2F南東壁（SFP側）よりの水漏れ	7号炉	－原子炬建屋管理区域内2階のエレベータ付近の壁面（厚さ約 2 m の鉄筋コンクリート）の継ぎ目部に生じた微細なひび幅約0．1mm程度，長約 3.5 m 程度）から，水のにじみが発生し水たまりが生じた。 －原子炬建屋3階北側の床面コンクリート継ぎ目部（約 1 cm ）にわすすかな水のしみ出しが発生した。	IIFたはV
133	$\begin{aligned} & \text { 中越沖 } \\ & \text { (柏崎) } \end{aligned}$	R／B3FSI試験片室前壁からの水漏れ	7号炉	「No．467号原子炉うエルライナーからの漏実について」によるものか，使用済燃料プール等からの地震時スロッシングを起因とする益水であるのか原因は特定できなかった。	IİたはV
134	東北地方太平洋沖地震 （東海第二）	東海第二発電所 使用済燃料プール水飛散	－	使用済燃料貯蔵プールのスロッシングにより，プール水が使用斎燃料貯蔵プール壁面上部換気口ヘ浸入し，格納容器電気ペネト レーションボックスに浸入したことで絶縁低下を引き起こし，制御棒位置指示表示の不良を引き起こした。	v
135	東北地方太平洋沖地震 （福島第二）	使用斎燃料プール水のスロッシングによる溢水	－	地震によるスロッシングにより，放射性物質を含む使用斎燃料プール水が益水した。	v

原子力発電所における地震被害事例の要因整理（13／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
地震被害発生要因VI				下線は要因VI相当箇所	
136	宮城県沖 （女川）	8－16宮城地震による女川原子力発電所全プラント停止について	$\begin{aligned} & \text { 1号炉 } \\ & \text { 2号炉 } \\ & \text { 3号炉 } \end{aligned}$	地震の影響で以下の軽微な被害が発生した。 （a）女川1号炉 - 主変圧器，起動用変圧器の避圧弁動作 - サイトバンカ建屋プールに水銀灯落下 （b）女川2号炉 －主変圧器，起動用変圧器，補助ボイラー変圧器（A）（B）の避圧弁動作 （c）女川3号炉 - 原子炉建屋内見学者用ギャラリー室のガラスのひび - 主変圧器の避圧弁動作 （d）その他構内 - 環境放射能測定センターの希硫酸（5\％濃度）貯蔵施設が漏えいおよび苛性ソーダの一部滴下 - 建屋エレベータ停止 - 排気筒航空障害灯レンズカバー破損 - 構内道路アスファルト亀裂•波うち・段差発生	I，III，VI
137	能登半島沖 （志賀）	能登半島地震観測データ波形記録の一部消失に ついて	1号炉	短時間に多くの余震を連続して収録したこと，収録装置内のICメモリーカード容量が少なかったことから，新たな余震記録によりデー タが上書きされたため，一部余震の記録が消失した。	VI
138	中越沖 （柏崎）	R／B3階，中3階の非管理区域への放射能含む水 の漏えい・海への放射能放出	6号炉	使用済燃料プール水が非管理区域へ流出した。事象のメカニズムは以下。 - 使用済燃料プール水が地震によるスロッシングによりR／B4Fフロア床面に溢れ出した。 - 溢れ出た水は床面に設置している燃料交換機給電ボックスヘ流入した。 - 密閉性が保たれているべきである給電ボックス内電線貫通部のシール部に，設計上の考慮不足あるいは施工不良により生じたと考えられる隙間ができていたため，隙間を通り電線管の中へ流入した。 - 当該電線管はR／B非管理区域へ通じていることから，電線管へ流入した水は非管理区域へと流出した。 - R／B3階（非管理区域）床面にたまった水は，同床面の排水口を通じて非放射性排水収集タンクに流入した後，排水ポンプにより， ポンプ出口配管の接続先である放水口を経由して海に放出された。	V，VI
139	中越沖 （柏崎）	地震記録装置データ上書き	その他	短時間に多くの余震が連続して発生したこと，地震時の通信回線が輻輳したため転送するのに時間がかかっていたことにより，新た な余震記録により本震記録が上書きされたため本震データが消失した。	VI
140	中越沖 （柏崎）	T／B RFP—T主油タンク（B）タンク室床に油たま り	2号炉	地震の影響により1号炉電源（M／C1SB－1）がトリップしたことで，同電源より受電している2号炉電源（M／C 2B－1）が喪失した。 そのため，負荷であるRFP－T（B）油ブースターポンプの電源が喪失し，油清净機への戻り油がなくなり，RFP－T（B）油タンクの油面 が上昇してオーバーフローした。	VI
141	中越沖 （柏崎）	6号炉R／Bより海に放出された放射線量の評価•通報連絡の遅延	6号炉	漏水の試料を分析室へ持ち込む際の識別が明確でなかったため，採取箇所と分析結果を分類することができず，放射能有の特定 が遅れ，加えて原子炉建屋非放射性ストームドレンサンプポンプの起動阻止が遅れたため，サンプに流入した放射能を含む水が発電所外に放出された。	VI
142	中越沖 （柏崎）	主排気筒の定期測定（1回／週）においてヨウ素及 び粒子状放射性物質（クロム51，コバルト60）の検出について	7号炉	原子炉の自動停止後の操作過程において，タービングランド蒸気排風機の手動停止操作が遅れたことで，復水器内に滞留していた放射性ヨウ素及び粒子状放射性物質が，タービングランド蒸気排風機により吸引され，排気筒を経て放出された。	VI
143	中越沖 （柏崎）	7号原子炉ウェルライナーからの漏洩について	7号炉	7号炉の原子炉ウェルライナーにつながる配管のレベル計内に水が溜まる事象が発生した。当該のウエルライナーには，溶接の溶け込み不足と考えられる未溶着部があり，さらには建設時に溶接余盛り部を平滑化するためにグラインダで除去していたため，残存板厚が薄くなっていた。そこへ地震によりスロットプラグが接触したため，過大な荷重がかかり貫通，漏えいした。	III，VI

[^2]I－Z粙圎小州等
原子力発電所における地震被害事例の要因整理（14／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
144	中越沖 （柏崎）	3 号炉原子炉圧力容器遮へい体の地震による移動 について	3号炉	【N12C】スライド式プラグが保温村に接触した事象 スライド式プラグが正規位置にある状態で取付けられておらず，ストッパー機能が働かなかった。その結果，スライド式プラグが地震 によってRPV側へ移動後，ハの字状態に開いたことにより保温材に接触して保温材を変形させた。 【N12D】積上式プラグが水位計装配管に接触した事象 スライド式プラグのストッパーが取付けられておらず，N12Cと同様にストッパー機能が働いていなかったことによりスライド式プラグ が地震によりRPV側へ移動した。その結果，積上式プラグの押さえがなくなって，地震により積上式プラグが左側へ崩れ，水位計装配管への接触に至った。	III，VI
145	中越沖 （柏崎）	低起動変圧器3SB「放圧装置動作」及び放圧装置油リーク	3号炉	地震により低起動変圧器3SB本体が揺れて，放圧装置が動作したため噴油した。	VI
146	中越沖 （柏崎）	低起動変圧器6SB放圧装置油リークによる低起動変圧器6SB停止	6号炉	地震により低起動変圧器6SB本体が摇れて，放圧弁が動作したため油がリークした。	VI
147	中越沖 （柏崎）	R／B1F北西側二重扉電源喪失のため内外開放中	1号炉	メカ式のリレーの誤動作によりM／C1SB－1が停止したこと，およびMCC1SA－1－1盤に建屋内に漏洩した水がかかり停止した ことにより二重扉電源が2系統停止したため，二重扉が動作不能となった。	VI
148	中越沖 （柏崎）	R／Bオペフロ 原子炉ウェル内バルクヘッド上に赤靴を確認	1号炉	原子炉ウエル内のバルクヘッド上においてC靴1個を発見した。ウェル開口部付近にあったC靴が，使用済燃料プール及び原子炉 ウェルから地震のスロッシングにより溢れた水が原子炉ウェルに戻る際に，その流れにさらわれ落下したものである。	V，VI
149	中越沖 （柏崎）	「6号炉の放射性物質の漏えいについて」における海に放出された放射能量の訂正について	6号炉	放水口を経由して海に放出された水の放射線量を算定する際の計算に誤りがあった。	VI
150	中越沖 （柏崎）	T／B B2F T／BHCWサクプ（B）•LPCP（A）～（C）室雨水流入	1号炉	1号タービン建屋～海水熱交換器建屋•補助ボイラ建屋等で発生した漏水が当該トレンチ近傍のファンネルヘ大量に流入し，目詰ま りを起こしたことにより，このファンネルより設置高の低い高電導度廃液サンプから溢水した。	VI
151	中越沖 （柏崎）	T／BT／BB1F（管）南側壁上部5m（ヤードHTr奥ノンセグ室）より雨水流入	3号炉	タービン建屋に隣接したピットに水がたまり，電線管貫通部を通ってタービン建屋内に水が流入した。	VI
152	中越沖 （柏崎）	5号炉燃料取替機荷重異常発生に伴う自動除外	5号炉	1体の燃料集合体が正しい装荷位置である燃料支持金具から外れていることを確認した。これは，燃料装荷時の燃料交換機の設定座標が適切ではなかったこと，燃料集合体の下降速度が十分減速されていなかったことから燃料集合体の下部先端が燃料支持金具の外側に乗り上げた状態で装荷され，その後，地震により燃料支持金具からさらに外れたものである。	VI
153	駿河湾 （浜岡）	廃棄物減容処理建屋「復水バッチタンク水位高高」警報点灯	2号炉	地震により廃棄物減容処理建屋に設置している復水バッチタンク水位が変動し，一時的にタンクへの補給が必要な水位を検出し，補給水系統からタンクへの自動補給が行われたことにより水位が上昇したため，水位高高警報が点灯した。	VI
154	駿河湾 （浜岡）	原子炉建屋3階（放射線管理区域内）燃料プール冷却浄化系ポンプ室の放射線モニタ指示の上昇	2号炉	地震の揺れにより，燃料集合体表面の放射性物質を含んだ鉄錆等がプール水に遊離したため，放射線モ二タの指示が上昇した。	VI
155	駿河湾 （浜岡）	非常用ディーゼル発電機の排気消音器の吸音材力 バー固定金具の外れおよび台座シール材の劣化	3号炉	地震の影響により，原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れた。また，非常用ディーゼル発電機（B）の排気消音器台座シール材に塩害環境腐食と地震の摇れによる影響での劣化を確認した。	III，VI
156	駿河湾 （浜岡）	非常用ディーゼル発電機（A）排気消音器の吸音材 カバー固定金具等の外れ	4号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（A）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の揺れによる影響が原因である。	III，VI

I－Z粎圎小斗等
原子力発電所における地震被害事例の要因整理（15／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
157	駿河湾 （浜岡）	補助変圧器過電流トリップ	5号炉	地震の振動でトリップ接点が接触したことにより，保護継電器が誤動作した。	VI
158	駿河湾 （浜岡）	制御棒駆動機構モ一タ制御ユニットの故障警報点灯について	5号炉	他事象の影響により，予備電源側供給となっていた計測制御系定電圧定周波数電源装置が，電源元である補助変圧器のトリップに より瞬時電圧低下となり，制御棒駆動機構モータ制御装置が一時停止したことで「RC\＆IS軽故障（モータ制御ユニット故障）」警報が点灯した。	VI
159	駿河湾 （浜岡）	原子炉建屋管理区域区分の変更	5号炉	燃料交換エリア床面の放射性物質の密度を測定したところ， $7 \mathrm{~Bq} / \mathrm{cm}^{2}$ であり，事業者管理値 $4 \mathrm{~Bq} / \mathrm{cm}^{2}$ を超過したため管理区分を変更した。原因は，原子炉建屋5階オペフロ高所に蓄積していた放射性物質が地震の揺れで落下し，原子炉建屋全体に拡散したため である。	VI
160	駿河湾 （浜岡）	計測制御系定電圧定周波数電源装置のインバー タ一過電流による電源切替（通常 \rightarrow 予備）	5号炉	地震時に所内電源電圧が上昇したことにより，装置への交流入力電圧上昇が発生したため予備電源へ切り替った。	VI
161	駿河湾 （浜岡）	原子炉建屋5階（放射線管理区域内）燃料交換エリ ア換気放射線モ二タ指示の一時的な上昇	5号炉	地震の揺れにより燃料集合体表面の放射性物質を含んだ鉄錆等が，プール水に遊離しプール表面からの放射線線量率が上昇した ため，燃料交換エリア換気放射線モニタの警報が点灯した。	VI
162	駿河湾 （浜岡）	燃料プール水の放射能の上昇	5号炉	燃料プール水の放射能が通常値の50倍程度に上昇した。原因は他事象（No．188）と同様。	VI
163	駿河湾 （浜岡）	原子炉建屋3階（放射線管理区域内）燃料プール冷却浄化系ポンプ室の放射線モニタ指示の上昇	5号炉	燃料プール冷却浄化系ポンプ室の放射線モ二タの指示が上昇した。原因は他事象（No．188）と同様。	VI
164	駿河湾 （浜岡）	非常用ガス処理系（B）放射線モ二タ下限点灯	5号炉	地震発生時に補助変圧器トリップに伴う電圧の一時的な低下により，モ二タ指示値が一時的に低下したため下限が点灯した。	VI
165	駿河湾 （浜岡）	非常用ディーゼル発電機（B）排気消音器の吸音材 カバー固定金具等の外れ	5号炉	原子炉建屋屋上（放射線管理区域外）に設置している非常用ディーゼル発電機（B）排気消音器の吸音材カバー固定金具の一部が外れ，一部のカバーにずれが発生した。塩害環境による固定金具の腐食と地震の揺れによる影響が原因である。	III，VI
166	東北地方太平洋沖地震 （東海第二）	非常用ディーゼル発電機2C用海水ポンプの自動停止について	－	取水口の南北に配置されている海水ポンプ槽のうち，北側のポンプ槽への津波による海水浸入のため，非常用ディーゼル発電機2 C用海水ポンプ電動機が水没し自動停止したことから，DG2Cが使用不能となった。	VI
167	東北地方太平洋沖地震 （東海第二）	$125 V$ 蓄電池2B室における溢水について	－	地震に伴う常用系電源の停電により開となった実験室サンプポンプシール水電磁弁から消火水が供給され続け当該サンプに流入し たこと，また，停電により当該サンプの制御電源が喪失したことからサンプフ水位高信号が発信されなかったこと，さらに，当該ファンネ ルを閉止していたゴム栓が外れたことで，当該サンプとの僅かな水頭差によりサンプ内を満たした水がファンネル側に逆流したため， ドレンファンネルから床面へ溢水した。	VI
168	東北地方太平洋沖地震 （東海第二）	東海第二発電所 固体廃棄物貯蔵用サイトバンカ プール水飛散	－	廃㭟物処理建屋固体廃棄物貯蔵用サイトバンカプール廻りにプール水が溢水した。	VI
169	東北地方太平洋沖地震 （東海第二）	D／W床及び機器ドレンサンプレベルスイツチの地絡	－	地震により原子炉自動停止および格納容器隔離をしている状況で，格納容器内の機器ドレンサンプおよび床ドレンサンプレベルス イッチが被水したため，当該サンプレベルスイッチ回路で地絡が発生した。	VI
170	東北地方太平洋沖地震 （東海第二）	T / B 機器ドレンサンプBからの水漏れ	－	タービン建屋機器ドレンサンプ（B）電源が喪失した状態で，電源給水ポンプシール水が流入したことから，水漏れが発生した。	VI
171	東北地方太平洋沖地震 （東海第二）	主変圧器，起動変圧器（2A，2B）放圧管からの絶縁油漏えい	－	地震により主変圧器および起動変圧器（2A，2B）内の絶縁油の油面が変動したことから，放圧管より絶縁油が漏えいした。	VI

原子力発電所における地震被害事例の要因整理（16／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
172	東北地方太平洋沖地震 （東海第二）	津波による屋外機器の被水（安重設備以外）	－	津波によりCWP潤滑水ポンプ等の，多数の屋外設備が被水した。	VI
173	東北地方太平洋沖地震 （東海第二）	津波による取水口電気室建屋の損傷	－	地震•津波により，取水口電気室の建具（窓，シャッター）に割れ・歪みが発生した。	III，VI
174	東北地方太平洋沖地震 （福島第二）	R／B LCWサンプのオーバーフロー	1号炉	LCWサンプからオーバーフローし，サンプピット内に漏えいした。	VI
175	東北地方太平洋沖地震 （福島第二）	R／B SDサンプのオーバーフロー	1号炉	SDサンプからオーバーフローし，原子炉建屋B2Fへ漏えいした。	VI
176	東北地方太平洋沖地震 （福島第二）	R／B LCWサンプのオーバーフロー	2号炉	LCWサンプからオーバーフローし，サンプピット内に漏えいした。	VI
177	東北地方太平洋沖地震 （福島第二）	T／B LCWサンプのオーバーフロー	2号炉	LCWサンプからオーバーフローし，サンプピット内に漏えいした。	VI
178	東北地方太平洋沖地震 （福島第二）	R／B SDサンプのオーバーフロー	3号炉	SDサンプからオーバーフローし，原子炉建屋B2Fへ漏えいした。	VI
179	東北地方太平洋沖地震 （福島第二）	T／B LCWサンプのオーバーフロー	4号炉	LCWサンプからオーバーフローし，サンプピット内に漏えいした。	VI
180	東北地方太平洋沖地震 （福島第二）	サイトバンカ貯蔵プールのスロッシングによる溢水	－	地震によるスロッシングにより，放射性物質を含む使用済燃料プール水が溢水した。	VI
181	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能喪失	1号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI
182	東北地方太平洋沖地震 （福島第二）	制御盤の浸水による機能喪失	1号炉	海水が制御盤の内部へ海水が浸水し機能喪失した。	VI
183	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	1号炉	各種ポンプのモーターの内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI
184	東北地方太平洋沖地震 （福島第二）	ディーゼル発電機の浸水による機能喪失	1号炉	ディーゼル発電機や機関付属機器の内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI
185	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能喪失	2号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI

I－6粎筫中沙
原子力発電所における地震被害事例の要因整理（17／17）

No．	対象地震 （発電所）	件名	号炉	地震被害事象および発生要因の概要	地震被害発生要因
186	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	2号炉	各種ポンプのモーターの内部へ海水が浸水し絶緑抵抗が低下したことにより使用不能となった。	VI
187	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能喪失	3号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI
188	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	3号炉	各種ポンプのモーターの内部へ海水が浸水し絶緑抵抗が低下したことにより使用不能となった。	VI
189	東北地方太平洋沖地震 （福島第二）	電源盤の浸水による機能喪失	4号炉	海水が電源盤の内部へ海水が浸水し絶縁抵抗が低下したことにより電源供給が不能となった。	VI
190	東北地方太平洋沖地震 （福島第二）	各種ポンプモーターの浸水による機能喪失	4号炉	各種ポンプのモーターの内部へ海水が浸水し絶縁抵抗が低下したことにより使用不能となった。	VI
よる警報発生等，施設の損傷を伴わない $\mathrm{I} \sim \mathrm{V}$ 以外の要因等）					

添付資料2－2

東北地方太平洋沖地震時の女川原子力発電所における地震被害事例の要因整理（ $1 / 4$ ）

添付資料2－2
東北地方太平洋沖地震時の女川原子力発電所における地震被害事例の要因整理（ $2 / 4$ ）

No．	件名	号炉	地震被害事象および発生要因の概要	$\begin{aligned} & \text { 地震被害 } \\ & \text { 発生要因 } \end{aligned}$
20	燃料交换機制御室内の地上操作装置落下	3号炬		III
21	燃料交换機の配䌊ケーブルの脫線	3号炉	燃料交換機ブリッジ給電装置のうち，ケーブル支持具が地震の摇れによってガイドレールから脱落した。	III
22	使用斎然料キャスクピットにおけるゲート押さえの一部脱落	3号炬	地震の影響により，キャスクビットゲートにおいて，ゲートを固定しているゲート押を王金具2個のスイングボルトが皧み外れた。	III
23	3 号機蒸気夕－ビン動翼の損傷	3号炉	動翼と静翼に接触により，軽微な損傷が発生した。	III
24	牡鹿1号紗避雷器の損傷	その他	地震の影響により，牡鹿1号䌊避雷器の一部に損傷が発生した。	III
25	当社モ二少ングステーション（4局）の停電および伝送回線停止に伴う欠測	その他		III．VI
26	モ二夘ングポスト（チャンネル6）信号変換器の故障こ伴う指示不良	その他	地震の影響でモ二タリングポストNo．6現地局舎内の測定装置から伝送装置間のケーブルコネクタのロック部分が破損し，ケーブルコネク タが緩んだため指示不良が発生した。	III
27	4土庇幹線2号線避雷器の一部椇傷	その他	地震の影響により牡鹿幹線2号線避雷器—部に損傷が発生した。	III
28	固体廃葉物貯蔵所コンクリート壁の剥離	その他	壁およよで天井と床に地震による摇れ方の違いが生じ損傷した。また，床の損傷は基碮部にも及んでおり，この損傷が波及的に拡大したこと で壁にも損傷が発生した。	III

添付資料2－2
東北地方太平洋沖地震時の女川原子力発電所における地震被害事例の要因整理（3／4）

No．	件名	号炉	地震被害事象および発生要因の概要	地震被害 登生要因
地震被䓊発生要因VI			下線は要因VI相当䉪所	
29	屋外重油タンクの倒溒	1号炬	津波の影響により，1号炉補助ボイラー用の重油眝蔵タンクの倒賋，重油移送がンプの浸水，油の輸送管の損傷が発生した。	vi
30	非常用デイーゼル発電機（A）界磁回路の損傷	1号炬		vi
31	1，2，3号炉放水口モニターの津波による浸水および破損		津波により建屋内に設置の測定・データ伝送設備が，水没•破損した。	vi
32	母連しゃ断器の制御電源喪失	1号炬	火災が発生した高圧電源盤の制御電源回路の溶損による地絡や短絡の影響により，制御電源回路が接続されている当該しゃ断器用制御電源回路の電圧が変動したことで，リレーが動作し「制御電源喪失」警報が発生した。	v
33	変圧器避圧弁の油面変動に伴う動作	1号炉	3月11日の地震で1号主変圧器3箇所，1号起動変圧器2箇所の避圧弁が動作した。また，4月7日の余震により，1号主変圧器2箇所，1号所内変圧器1箇所の避圧弁が動作した。避圧弁が動作した原因は，地震の揺れにより変圧器内の絶縁油の油面が変動し，内部圧力が上昇したことによる。	vi
34	ほう酸水貯蔵夕ンク水位指示回路不良	1号炬	1 号炉高圧電源盤の火災に伴う地絡電流が，水位発信器内部の部品（基板）を経由して電源ヒユーズを断線させたため電源が無くなり，ほ う酸水貯蔵タンク水位指示計がダウンスケールした。	v
35	125V直流主母䌊盤の地絡（言2件発見）	1号炉	```以下の負荷において地絡が発生した。 1. BOPアナンシエータ盤 2. 所内補機補助盤 3. 原子炉アナンシエータ盤 4. CWPポンプ稼動翼制御 5. 発電機変圧器保謢 (共通) 上記負荷は, いずれも火災により焼損したM C C6-1Aと配線接続されているため, 火災により配線が地絡したもの。```	vi
36	1号機放水口モニター（試験運用機）の津波による浸水および破損	1号炉	津波により建屋内に設置の測定・データ伝送設備が，水没•破摃した。	vi
37	原子炉補機冷却水系熱交換器（B）室，高圧炉心スプレイ補機冷却水系熱交換器室および海水ポンプ室への浸水	2号炉	津波の影響により海水ポンフ室から海水が浸入L，RCW熱交換器（B）室，HPCW熱交換器室等が浸水した。その結果，RCWポンプ （B），（D）およよびHPCWポンプが浸水の影響で自動停止し，続して泠却水の供給がなくなつたD／G（B），D／G（H）が自動停止した。	v
38	125V直流主母線盤の地絡	2号炉	以下の負荷について地絡警報が発生した。 1．原子炉補機冷却水系／原子炉補機冷却海水系（B）制御回路 2．非放射性ドレン移送系故障表示回路 3．除塵装置制御回路 4．放射性ドレン移送系サンプレベルスイッチ故障検出回路 $1 ~ 3$ 項は津波により設備が水没したことが原因である。4項については，地震に関係のない一過性の事象である。	v
39	変圧器避圧弁の油面変動に伴う動作（計7件発見）	2号炉	3月11日の地震により主変圧器4箇所，起動変圧器1箇所，所内変圧器1箇所，補助ボイラー用変圧器2箇所の避圧弁が動作した。また， 4月7日の余震により主変圧器 3 箇所，起動変圧器 1 箇所，所内変圧器 1 箇所，補助ボイラー用変圧器2箇所，励磁電源変圧器 1 箇所の避圧弁が動作した。避圧弁が動作した原因は，地震の摇れにより変圧器内の絶縁油の油面が変動し，内部圧力が上昇したため。	vi
40	高圧炉心スゴイイ系圧力抑制室吸込弁 自動での全開動作不能	3号炬	地震の影響による圧力抑制室の一時的な水位変動により，「HPCS圧力抑制室水位高｣警報が発生したため，本来であれば，高圧炉心ス プレイ系圧力抑制室吸込弁（以下当該卉）が自動で全開となるが，開度 80% で動作が停止した。これは地震により当該弁の開閉指示を行 ラスイッチ等が誤動作したものである。	vi

東北地方太平洋沖地震時の女川原子力発電所における地震被害事例の要因整理（4／4）

周辺斜面の崩壊等による上位クラス施設への影響

1．周辺斜面からの離隔距離
「上位クラス施設」及び「上位クラス施設への波及的影響を及ぼすおそれのある下位クラス施設」について，周辺斜面の崩壊等による影響について検討した。なお，下位クラス施設については，「6．下位クラス施設の検討結果」に基づき抽出された施設 とする。

上位クラス施設と周辺斜面との離隔距離を考慮して，耐震評価の対象とすべき斜面 のスクリーニングを行う。離隔距離を考慮するに当たつては，「原子力発電所耐震設計技術指針 JEAG4601－1987」，「原子力発電所の基礎地盤及び周辺斜面の安定性評価技術」及び「宅地防災マニュアルの解説」を参考とし，上位クラス施設と周辺斜面と の離隔距離が，「斜面高さの 1.4 倍若しくは 50 m 」 又は「斜面高さの 2 倍（上限 50 m ）」 が確保されていれば，評価対象斜面ではないと評価する。

添付 3－1 図に示す敷地平面図のとおり，「上位クラス施設」及び「上位クラス施設 へ波及的影響を及ぼすおそれのある下位クラス施設」と周辺斜面には，十分な離隔が確保されており，敷地内には評価対象となる斜面はない。よって，周辺斜面の崩壊等 により，上位クラス施設の安全機能が損なわれることはない。

添付 3－1 図 敷地平面図

2．第 1 号機排気筒下斜面の安定性評価
第1号機排気筒下斜面の崩壊を仮定した場合，転倒時の影響範囲が排気筒まで到達 することから，基準地震動 S S に対する当該斜面の安定性を確認する。

評価対象とする斜面の断面位置を添付 3－2 図に，地質断面図を添付 3－3 図に示す。斜面の安定性については，基準地震動 S s に基づく二次元有限要素法解析を行い，算定されるすべり安全率が 1.2 を上回ることを確認する。

添付 3－2 図 評価断面位置

添付 3－3 図 地質断面図

評価結果を添付 3－4 図に示す。すべり安全率は1．2以上を確保しており，斜面の安定性を碓認した。

添付 3－4 図 すべり安定性評価結果

上位クラス施設に隣接する下位クラス施設の支持地盤について

本資料では，女川原子力発電所第 2 号機において，上位クラス施設に隣接する下位ク ラス施設の支持地盤の状況について確認を行う。

発電所敷地内における下位クラス施設の配置を添付 4－1 図に，各下位クラス施設の接地状況を添付 4－2 図～添付 4－4 図に示す。

タービン建屋については，添付 4－2 図及び添付 4－3 図より，MMRを介して原子炉建屋及び制御建屋と連続した岩盤に支持されていることを確認した。

補助ボイラー建屋については，添付 4－4 図により，MMRを介して制御建屋と連続し た岩盤に支持されていることを確認した。

第1号機制御建屋については，添付 4－3 図より，MMRを介して制御建屋と連続した岩盤に支持されていることを確認した。

添付 4－1 図 女川原子力発電所 建屋外下位クラス施設配置図

添付 4－2図タービン建屋の接地状況（第1図 断面（1）

添付 4－3 図 タービン建屋及び第1号機制御建屋の接地状況（第1図 断面（2））

添付 4－4 図 補助ボイラー建屋の接地状況（第1図 断面（3））

設置予定施設及び撤去予定施設に対する波及的影響評価の考え方について

施設を設置する際に，既設下位クラス施設から受ける波及的影響及び既設上位クラス施設に与える波及的影響評価については，以下のとおり実施するものとする。また，撤去予定の施設に対する波及的影響評価の考え方についても以下に示す。

1．設置予定施設に対する波及的影響評価について
1.1 設置予定施設が上位クラス施設の場合

設置予定施設が上位クラス施設の場合には，当該施設に対して波及的影響を及ぼ すおそれのある下位クラス施設を抽出した上で，影響評価を実施する。抽出された下位クラス施設については「5．下位クラス施設の抽出及び影響評価方法」に基づき，相対変位又は不等沈下による影響，接続部における影響，建屋内及び建屋外におけ る損傷，転倒，落下等による影響の観点から，設置予定施設が機能を損ならおそれ の有無を確認する。

その結果，設置予定施設が波及的影響により機能を損ならおそれがある場合には，設置予定施設に対しての配置の見直し，構造変更等の設計の見直しを行う。設置予定施設の設計にて波及的影響を回避できない場合には，波及的影響を及ぼすおそれ のある下位クラス施設に対して，配置の見直しや耐震性の確保もしくは上位クラス施設への影響確認を行う。

1.2 設置予定施設が下位クラス施設の場合

設置予定施設が下位クラス施設の場合には，1 項と同様の観点から当該施設が既設上位クラス施設に対して波及的影響を及ぼすおそれの有無を確認する。

その結果，波及的影響を及ぼすおそれのある施設については，配置の見直しや耐震性の確保もしくは上位クラス施設への影響確認を行う。
1.3 設置予定の個別設備の対応方針

設置予定施設として以下を例示するが，波及的影響の対応方針としては上記方針 に従って設計するものである。

1．3．1 高圧代替注水系設備

高圧代替注水系設備は，上位クラス施設（重要SA施設）として設置するもの であり，上記 1 項に基づき当該施設周辺に設置されている下位クラス施設が波及的影響を及ぼすおそれのない設計とする。

1．3．2 竜巻防護施設
竜巻防護施設は，下位クラス施設として設置する設備であり，周囲に上位ク ラス施設が設置されている場合には， 1.2 項に基づき評価を行った上で必要に応じて対策を実施する。

1．3．3 火災防護設備

火災防護設備は，下位クラス施設として設置する設備であり，周囲に上位ク ラス施設が設置されている場合においては 1.2 項に基づき評価を行った上で必要に応じて対策を実施する。

2．撤去予定施設に対する波及的影響評価について
今後，撤去する予定の施設については，撤去計画が女川 2 号機の再起動前までの場合には，撤去を前提として波及的影響評価を実施した。

2．1 第3号機海水ポンプ室門型クレーン
第 3 号機海水ポンプ室門型クレーンについては，防潮壁等に波及的影響を及ぼす おそれのある施設であることから再起動前までに撤去を行らこととした。したがっ て，第 3 号機海水ポンプ室門型クレーンは撤去を前提として波及的影響評価を実施 した。

原子炉補機冷却海水系通水機能への下位クラス施設の
波及的影響の検討について

1．評価方針

原子炉補機冷却海水系の通水機能が周辺の下位クラス施設の波及的影響によって損なわれることがないことについて，下位クラス施設の特徴や耐震性を考慮して検討 を実施する。

なお，通水機能への波及的影響については，地震力による下位クラス施設の崩壊や変形等により，通水断面を閉塞するような事象を想定する。

2．評価対象施設

原子炉補機泠却海水を通水する屋外重要土木構造物（取水口，取水路，海水ポンプ室，原子炉機器冷却海水配管ダクト）並びに海水ポンプ及び配管については，基準地震動 S s による耐震性を確認していることから，取水口よりも海側の施設について，通水機能に影響を及ぼす可能性のある施設を抽出する。

通水機能に影響を及ぼす可能性のある下位クラス施設の抽出及び評価フローを添付6－1 図に示す。

添付 6－1 図 通水機能に影響を及ぼす可能性のある下位クラス施設の抽出及び評価フロー

海側の下位クラス施設の配置図を添付6－2図に，評価対象施設のスクリーニング結果を添付 6－1 表に示す。

このうち，東防波堤及び北防波堤については，標準断面図を添付6－3 図及び添付6－4図にそれぞれ示すとおり，重量物から構成されており，取水口からの離隔も十分ある ことから，地震等により崩壊しても通水断面の閉塞は生じない。

カーテンウォールについては，取水口との位置関係を添付6－5 図に，構造図を添付 6－6 図に示すとおり，土圧の影響がなく地震力の影響を受けにくい構造であり，かつ取水口と十分な離隔を有すること，カーテンウォールの構成部材（PC 版，鋼材等）は重量物であることから，カーテンウォールの部材損壊による通水断面の閉塞は生じな い。

取水口周辺の前面護岸はタイロッド式矢板護岸であるが，取水口の側面（護岸背面） は地盤改良（高圧噴射攪抖工法及び置換工）している。前面護岸の平面図を添付 6－7図に，前面護岸の断面図を添付6－8 図及び添付6－9 図に示す。

護岸の崩壊による通水断面の閉塞の可能性について，地盤改良体と土砂部について， それぞれ検討する。まず，地盤改良体については，基準地震動 S s に対する安定性評価により，地震時の安定性を確認する。

土砂部については，添付 6－8 図に示すとおり，取水口側面土砂部（1）と取水口側面土砂部（2）の 2 か所に未固結の土砂部が存在する。このうち，取水口側面土砂部（2）につい ては，重量の大きな捨て石が主体であり，崩壊したとしても，取水口までは土砂の高 さ以上の水平離隔距離があるため，取水口まで土砂は到達せず，通水断面の閉塞は生 じない。

取水口側面土砂部①については，土砂が鋼矢板の隙間から流出し取水口前面に堆積 （約 $284 \mathrm{~m}^{3}$ ）すると仮定した場合，朔望平均干潮位（L．W．L．）0．P．－ 0.14 m に対して，堆積した土砂の天端は O．P．－2．19mとなり，添付 6－10 図に示すとおり通水断面は確保 できる。

添付6－2 図 海側の下位クラス施設配置図

添付6－1 表 評価対象施設のスクリーニング結果

施設	施設の特徴及び配置の観点からの評価	対象
東防波堤，北防波堤	－構成部材が重量物であり，かつ取水口とは十分な離隔を有する。	\times
第2， 3 号機取水口 カーテンウォール	－構成部材が重量物であり，かつ取水口とは十分な離隔を有する。	\times
前面護岸	－取水口の側面の土砂は，流出しても通水断面 は閉塞しない。 －地盤改良体は，基準地震動 S s に対する安定性評価により，地震時の安定性を確認する。	\bigcirc

添付 6－3 図 東防波堤標準断面図

添付 6－4 図 北防波堤標準断面図

添付6－5 図 カーテンウォールと取水口の位置関係図（縦断面図）

（断面図）

（正面図）

添付 6－6 図 カーテンウォール構造図

添付 6－7 図 前面護岸の平面図

添付 6－8 図 前面護岸の断面図（A－A 断面）

図 地盤改良（高圧噴射攪拌工法）
図 地盤改良（置換エ）

添付 6－9 図 前面護岸の断面図（B－B 断面）

添付 6－10 図 取水口側面土砂堆積図

防潮堤•防潮壁への下位クラス施設の波及的影響の検討について

1．評価方針
防潮堤及び防潮壁へ波及的影響を及ぼすおそれのある下位クラス施設のうち， 6.4項にて，損傷等による影響なし（スクリーニング）とした施設について，設置状況及 び建屋外上位クラスである防潮堤•防潮壁との離隔の確認を行う。

2．評価対象施設
評価対象となる下位クラス施設を添付 7－1 表に示す。

建屋外上位クラス	波及的影響を及ぼすおそれ のある下位クラス施設	下位クラス施設構造形式
防潮堤	第 1 号機取水路（トンネル 部）	岩盤トンネル （鉄筋コンクリート造）
防潮堤 防潮壁（放水立坑）	放水路	岩盤トンネル （鉄筋コンクリート造）
防潮堤 防潮壁（第 3 号機放水立坑）	第 3 号機放水路	岩盤トンネル $($ 鉄筋コンクリート造）

3．防潮堤及び防潮壁と下位クラス施設の離隔について
トンネル標準示方書（山岳工法編）•同解説（平成 8 年，土木学会）によると，添付 7－2 表のとおり道路トンネルの地山分類に応じた，掘削時の応力解放に伴ら緩み高 さが示されている。岩盤トンネルである第 1 号機取水路，第 $2 \cdot 3$ 号機放水路は，山岳工法（NATM）により施工されていることから，上記トンネル標準示方書（山岳工法編）•同解説の地山分類を適用し，女川原子力発電所における岩盤分類（添付 7－3 表，添付 7－4表）に照らし合わせると，C_{H} 級岩盤が地山分類「B」，C_{M} 級岩盤が地山分類「C」 に該当する。

添付 7－2 表によると，地山分類「B」では，緩み高さが $1.5 \sim 3.0 \mathrm{~m}$ ，地山分類「 C 」 では，緩み高さが $2.0 \sim 4.0 \mathrm{~m}$ である。下位クラス施設の損傷により掘削時の応力解放 と同様の事象が想定されるが，上記緩み高さ分の離隔を確保されている場合は，上方 に設置されている防潮堤•防潮壁への波及的影響を及ぼすおそれはない。

添付7－1表で示した下位クラス施設は，C_{H} 級及び C_{W} 級岩盤に設置されていること から，防潮堤及び防潮壁の離隔については，上記緩み高さを包絡して， 4.0 m 以上で あることを確認する。

添付 7－3 表 女川原子力発電所の岩盤分類（ボーリングコアの岩級区分）

■ コアの風化度区分基準

区分	特徴
1	新鮮
2	かなり新鮮
3	中程度風化
4	かなり風化
5	強風化粘土状

－コア形状区分基準

区分	特徴	
A	長柱状	20 cm 以上のコア
B	短柱状	$5 \sim 20 \mathrm{~cm}$ のコア
C	岩片状	$3 \sim 5 \mathrm{~cm}$ のコア
D	細片状	3 cm 以下のコア
E	土砂状，粘土状	

■ コアの岩級区分基準

		コアの風化度区分				
		1	2	3	4	5
$\begin{array}{\|l\|l} \hline コ \\ \text { ア } \\ \text { の } \\ \text { 形 } \\ \text { 状 } \end{array}$区分	A	B＇	$\mathrm{CH}^{\text {＇}}$	$\mathrm{Cm}_{\mathrm{m}}{ }^{\text {，}}$	$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	D＇
	B	CH^{\prime}	CH^{\prime}	$\mathrm{C}_{\mathrm{M}}{ }^{\text {，}}$	$\mathrm{C}_{\mathrm{L}}{ }^{\text {，}}$	D＇
	c	CH^{\prime}	$\mathrm{CH}^{\text {＇}}$	$\mathrm{C}_{\mathrm{M}}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}{ }^{\text {＇}}$	D＇
	D	$\mathrm{C}_{\mathrm{M}}{ }^{\text {，}}$	$\mathrm{Cm}_{\mathrm{M}}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	D＇
	E	－	－	－	$\mathrm{C}_{\mathrm{L}}{ }^{\text {＇}}$	D＇

添付 7－4 表 女川原子力発電所の岩盤分類（試掘坑内の岩級区分）

	砂岩 及び ひん岩	頁 岩
B＂級	- 全体的に新鮮で，暗灰色～暗青灰色を呈する。 - 割れ目間隔 20 cm 程度以上である。 - ハンマーの強打で割れ，澄んだ金属音を発する。	- 全体的に新鮮で，黒～暗灰色を呈する。 - 割れ目間隔 20 cm 程度以上である。 - ハンマーの強打で割れ，澄んだ金属音を発する。
C_{H}＂級	－全体的にわずかに風化をうけ，暗灰～黄灰褐色を呈する。 岩芯が新鮮な青灰色部を含む。長石類が黄褐色に風化汚染されている。 - 割れ目間隔は，主として $5 \sim 20 \mathrm{~cm}$ 程度である。 - ハンマーの強打で割れ，やや濁った金属音を発する。	－割れ目沿いにわずかに風化汚染をうけ，黒～暗灰色を呈する。砂質ラミナ にわずかに褐色汚染が認められることがある。岩片角はナイフで削れる。 - 割れ目間隔は主として $5 \sim 20 \mathrm{~cm}$ 程度である。 - ハンマーの強打～中打で割れ，やや濁った金属音を発する。
C_{M}＂級	－全体的に風化をうけ，淡黄褐～黄褐色を呈する。指先の摩擦で粒子 がほとんど分離しないものから，岩片を指圧で割れるものまである。 - 割れ目間隔は，主として $3 \sim 10 \mathrm{~cm}$ 程度である。 - ハンマーの中打で割れ，濁った音を発する。	－風化による脱色化が認められ，割れ目沿いは褐色に風化し暗灰～褐灰色を呈する。岩片はナイフで容易に削れる。 - 割れ目間隔は主として $3 \sim 10 \mathrm{~cm}$ 程度である。 - ハンマーの中～軽打で割れ目沿いに剥離する。濁った音を発する。
C_{L}＂級	－全体的に強く風化をうけ，黄褐色～褐色を呈する。強い指圧で岩片を すりつぶすことができる。 －割れ目間隔は，主として 3 cm 程度以下，又は破砕部沿いに認めら れる割れ目の密集部。 －ハンマーの軽打で容易に岩片上となり，低い濁った音を発する。	－全体的に強く風化をうけ，灰褐色，又は，脱色して灰白色を呈する。表面が爪で削れ，強い指圧で岩片状に割ることができる。 －割れ目間隔は主として3cm程度以下，又は，破砕部沿いに認めら れる割れ目の密集部。 －ハンマーの軽打で容易に細片状となり，低い濁った音を発する。
D＂級	－全体的に著しく風化し，黄灰色～黄褐色を呈する。指圧で容易に岩片を すりつぶすことができる。 - 割れ目は不鮮明なものが多い。 - ハンマーの軽打でくぼみを生じ，著しく低い濁った音を発する。	- 全体的に著しく風化し，脱色して灰白色を呈する。 - 指圧で岩片をすりつぶすことができる。 - ハンマーの軽打でくぼみを生じ，著しく低い濁った音を発する。

—：第 7－2 表地山分類「B」との対応
—：第 $7-2$ 表地山分類「C」との対応

4．下位クラス施設の配置及び防潮堤•防潮壁との離隔について
下位クラスの施設の配置を添付 $7-1$ 図，防潮堤•防潮壁と下位クラス施設の離隔を添付7－5表に示す。

添付 7－5 表より，防潮堤•防潮壁と下位クラス施設は， 4.0 m 以上の十分な離隔が確保されていることから，下位クラス施設の損傷に起因する岩盤の緩みによって，上位クラスである防潮堤•防潮壁への波及的影響を及ぼすおそれはない。

添付 7－1 図 評価対象下位クラス施設配置図

添付 7－5 表 防潮堤•防潮壁と下位クラス施設の離隔

番号 （添付 7－1 図）	建屋外上位クラス	波及的影響を及ぼすおそれ のある下位クラス施設	上位クラスと 下位クラスの離隔
（1）	防潮堤	第1号機取水路（トンネル部）	約 $4.4 \sim 4.7 \mathrm{~m}$
（2）	防潮堤	放水路	約 16.5 m
（3）	防潮壁（放水立坑）	放水路	約 20.6 m
（4）	防潮堤	第3号機放水路	約 28.5 m
（5）	防潮壁（第 3 号機放水立坑）	第3号機放水路	約 17.9 m

小規模建屋の上位クラス施設への波及的影響の検討について

1．概要

第 3 号機除塵装置電源室及び第 3 号機ガスボンベ庫（以下，「小規模建屋」という。） は，第 3 号機海水ポンプ室及び第 3 号機放水立坑の周囲に設置する防潮壁（上位クラ ス施設）に対して，地震時に波及的影響を及ぼす可能性があることから，建屋の転倒時に防潮壁の健全性が損なわれないことを確認する。

防潮壁と小規模建屋の全体位置図を添付 8－1 図に示す。

添付 8－1 図 全体位置図

2．小規模建屋の諸元
小規模建屋の諸元を添付 8－1 表に，各建屋と防潮壁の平面配置を添付 8－2 図，添付 8－3 図に示す。

添付 8－1 表 防潮壁に対して波及的影響を及ぼす可能性のある
小規模建屋の諸元

小規模建屋	近接する防潮壁	建屋諸元			単位幅当たりの建屋重量 （kN／m）
		重量 （kN）	高さ （m）	$\begin{aligned} & \text { 幅 } \\ & \text { (m) } \end{aligned}$	
第 3 号機除塵装置電源室	防潮壁 （第3号機海水ポンプ室）＊	1，582	4． 8	12.0	131.9
第 3 号機 ガスボンベ庫	防潮壁 （第3号機放水立坑）	1，500	4.4	16.4	91.5

注記＊：防潮壁（第 3 号機海水ポンプ室）と第 3 号機除塵装置電源室間は，建屋高さ以上の離隔が確保される計画だが，保守的に評価対象と する。

添付 8－2 図 小規模建屋（第3号機除塵装置電源室）及び防潮壁の平面図•断面図

（平面図）

（断面図）

添付 8－3 図 小規模建屋（第3号機ガスボンベ庫）及び防潮壁の平面図•断面図

3．評価方針

影響評価は，小規模建屋が地震によって健全性を失い，隣接する防潮壁へ転倒した場合の防潮壁への影響を確認する。

小規模建屋が隣接する防潮壁は鋼製遮水壁（鋼板）形式であり，その構造上，小規模建屋が転倒した際には鋼製支柱（津波作用方向の反対側）にもたれ掛かる状態とな るため，鋼製支柱を評価対象とする。また，鋼製支柱の変形に応じて，津波作用側に取りつく鋼板に対しても，変形が生じることから，鋼板についても評価対象とする。 よって，建屋による転倒荷重を受けた場合の鋼製支柱及び鋼板の曲げ・せん断変形 に対する健全性確認を行う。

なお，地震時応答のピークと建屋の転倒荷重の作用が同時に起こる可能性は低いと考えられるが，保守的に重畳した場合を想定して評価する。

4．評価対象部位

評価対象部位である鋼製支柱及び鋼板における，建屋衝突を想定した場合の変形モ ードは，地震時と同様な変形モードとなることから，影響評価は，添付書類「VI －2－10－2－3－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の耐震性についての計算書」 において，耐震評価の観点で選定した評価対象断面の中から，今回の建屋の衝突が想定される範囲と鋼製支柱他の上部工の仕様が同一となる断面を選定する。

第3号機除塵装置電源室に対しては，建屋が作用する断面と同仕様である鋼製遮水壁（鋼板）I 区間の評価対象断面のうち近接する断面（2）を，第3号機ガスボンベ庫に

対しては建屋が作用する断面と同仕様であるII区間の評価対象断面である断面（3）を影響評価断面とする。

各建屋と防潮壁の影響評価断面の位置関係を添付 8－4 図に示す。

＜各区間の諸元＞

区間	天端高さ （m）	鋼管杭 （SM570）		鋼製支柱 (SM570)	鋼製支柱$(\mathrm{H}-458)$
		杭径 （mm）	杭板厚 （mm）	板厚 （mm）	
－I 区間	O．P．＋20．0	¢1，500	$\begin{aligned} & 23 \\ & 30 \\ & 37 \\ & \hline \end{aligned}$	16	SM490
－II区間	O．P．＋19．0		30		
— III区間	O．P．＋19．0	¢ 1，500	25	20	SM570
— IV区間	O．P．＋19．0	¢1，200	20	16	SM570

添付 8－4 図 影響評価に用いる断面位置と各建屋の位置関係

5．評価条件

（1）解析条件
解析モデル及び諸元並びに許容限界等は，「VI－2－10－2－3－1 杭基礎構造防潮壁鋼製遮水壁（鋼板）の耐震性についての計算書」の「3．5 解析モデル及び諸元」，

「3．7 許容限界」と同様とする。
各断面の解析モデルを添付 8－5 図に示す。

添付 8－5（1）図 鋼製遮水壁（鋼板）の解析モデル（断面（2））

（2）照査方法
（1）に示す解析モデルを用い，建屋転倒荷重を用いた静的解析を行い，求めた応力と地震時の発生応力の合成応力に対して，評価対象部材が許容限界以下であるこ とを確認する。

地震時の発生応力は，添付書類「VI－2－10－2－3－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の耐震性についての計算書」における全地震波ケースの中の最大値とし て，以下に示す検討ケースの値を用いる。

（鋼製支柱）

曲げ軸力
－断面（2）「S s－N $1(++)$ ，解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（3）「S s－N 1（ -+ ），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
せん断力照査
－断面（2）「S s－N 1（＋＋），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（3）「S S－N $1(-+)$ ，解析ケース（1）：地盤物性のばらつきを考慮し
ないケース」

（鋼板）

曲げ軸力
－断面（2）「S s－N $1(++)$ ，解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（3）「S s－N $1(-+)$ ，解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
せん断力照査
－断面（2）「S s－N 1（＋＋），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
－断面（3）「S s－N 1（ -+ ），解析ケース（1）：地盤物性のばらつきを考慮し ないケース」
（3）作用荷重
影響確認は，基準地震動 S s 時における地表面の最大応答加速度応答値を参考に，保守的に加速度 $1 G$ かつ水平方向に建屋の高さ位置で，防潮壁に荷重が作用すると想定する。

添付 8－2 表に影響評価に用いる建屋の作用荷重を示す。

添付 8－2 表 影響評価に用いる建屋の作用荷重

評価対象建屋	評価断面	地表面最大応答加速度＊${ }^{1}$ （ $\mathrm{cm} / \mathrm{s}^{2}$ ）	単位幅当り の作用荷重＊2 （kN／m）	支柱スパン長＊3 （1本当たりの 荷重最大分担幅） （m）	最大作用 荷重 （ $\mathrm{kN} /$ 本）
第 3 号機除塵装置電源室	断面 （2）	572.9	131.9	2.675	352.9
第3号機ガス ボンベ庫	断面 （3）	590.5	91.5	2.550	233.4

注記 $* 1$ ：基準地震動 S s（全 7 波）における最大応答加速度
＊2：各建屋の単位幅あたりの重量（設計水平震度 $1 G\left(\times 980.665 \mathrm{~cm} / \mathrm{sec}^{2}\right)$ として算定）
＊3：実際の配置状況から想定される鋼製支柱の最大スパン長
（4）解析ケース
小規模建屋の衝突荷重については，建屋天端高さの鋼製支柱節点に添付 8－2 表に示す最大作用荷重を作用させる。載荷パターンは，配置状況を踏まえ鋼製支柱の全数に最大作用荷重を作用させるケース 1 と，端部の鋼製支柱のみに荷重が作用する ことによる鋼板の水平曲げの影響を確認することを目的に，端部の鋼製支柱 1 本の みに最大作用荷重を作用させるケース2の合計2ケースを実施する。

第 3 号機除塵装置電源室の荷重の作用イメージ図を添付8－6図に，第3号機ガス ボンベ庫の荷重の作用イメージ図を添付 8－7 図に示す。

（断面図：断面（2））

添付 8－6（1）図 第 3 号機除塵装置電源室による鋼製遮水壁（鋼板）の解析モデルへの載荷イメージ図

添付 8－6（2）図 第 3 号機除塵装置電源室による鋼製遮水壁（鋼板）の解析モデルへの載荷イメージ図
（ケース 1：鋼製支柱全数に荷重を作用）

（正面図：断面（2））

添付 8－6（3）図 第 3 号機除塵装置電源室による鋼製遮水壁（鋼板）の
解析モデルへの載荷イメージ図
（ケース $2:$ 端部の鋼製支柱のみに荷重を作用）

（断面図：断面（3）

添付 8－7（1）図 第 3 号機ガスボンベ庫による鋼製遮水壁（鋼板）の解析モデルへの載荷イメージ図

（正面図：断面（3）

添付 8－7（2）図 第 3 号機ガスボンベ庫による鋼製遮水壁（鋼板）の解析モデルへの載荷イメージ図
（ケース 1：鋼製支柱全数に荷重を作用）

（正面図：断面（3）

添付 8－7（3）図 第 3 号機ガスボンベ庫による鋼製遮水壁（鋼板）の解析モデルへの載荷イメージ図
（ケース 2：端部の鋼製支柱のみに荷重を作用）

8． 5 評価結果

建屋転倒荷重を鋼製支柱全数に考慮した場合（ケース1）及び端部の鋼製支柱 1 本 に考慮した場合（ケース2）における，各部位の照査結果として，第3号機除塵装置電源室による断面（2）への影響についての照査値を添付8－3表～添付8－4表に，第3号機が スボンべ庫による断面（3）への影響についての照査値を添付8－5表～添付8－6表に示す。 いずれの建屋においても，建屋が転倒し防潮壁側に荷重が作用した場合でも，防潮壁への影響が想定される部位が許容限界以下となり，防潮壁の健全性が損なわれな いことを確認した。

添付 8－3（1）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を鋼製支柱全数に考慮した場合（ケース1）の照査値
（曲げ・軸力系の破壊に対する照査値）

部位	項目	発生断面力		応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）(a)	許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （b）	照査値 （a／b）
		$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
鋼製 支柱	建屋転倒荷重作用時	1086	2195	175	277	0.64
	基準地震動 S s 時	447	940	73		0． 27
	上記荷重を合成	1533	3135	248		0． 90
鋼板	建屋転倒荷重作用時	$\begin{gathered} M y: 5 \\ M z: 30 \end{gathered}$	62	69	345	0． 20
	基準地震動 S s 時	$\begin{gathered} \mathrm{My}: 8 \\ \mathrm{Mz}: 13 \end{gathered}$	25	33		0． 10
	上記荷重を合成	$\begin{aligned} & M y: 13 \\ & M z: 43 \end{aligned}$	87	102		0． 30

添付 8－3（2）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を鋼製支柱全数に考慮した場合（ケース1）の照査値
（せん断破壊に対する照査値）

部位	項目	発生断面力	応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ （b）	照査値 （a／b）
		せん断力（kN）			
鋼製 支柱	建屋転倒荷重作用時	351	33	157	0.22
	基準地震動 S s 時	189	18		0.12
	上記荷重を合成	540	51		0.33
鋼板	建屋転倒荷重作用時	$\begin{gathered} \text { Sy: } 123 \\ \text { Sz: } \end{gathered}$	10	217	0.05
	基準地震動 S s 時	$\begin{aligned} & S y: 54 \\ & S_{z}: 15 \end{aligned}$	7		0.04
	上記荷重を合成	$\begin{gathered} \text { Sy: } 177 \\ \mathrm{Sz}_{\mathrm{z}}: 18 \end{gathered}$	17		0.08

添付8－4（1）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を端部の鋼製支柱 1 本に考慮した場合（ケース 2）の照査値
（曲げ・軸力系の破壊に対する照査値）

部位	項目	発生断面力		応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （b）	照査値 （a／b）
		$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
鋼製 支柱	建屋転倒荷重作用時	785	1652	128	277	0． 46
	基準地震動 S s 時	447	940	73		0． 27
	上記荷重を合成	1232	2592	201		0.73
鋼板	建屋転倒荷重作用時	$\begin{gathered} M y: 46 \\ M z: 2 \end{gathered}$	15	83	345	0． 25
	基準地震動 S s 時	$\begin{gathered} M y: 8 \\ M z: 13 \end{gathered}$	25	33		0.10
	上記荷重を合成	$\begin{aligned} & M y: 54 \\ & M z: 15 \end{aligned}$	40	116		0． 34

添付 8－4（2）表 断面（2）における建屋荷重（第3号機除塵装置電源室）を端部の鋼製支柱 1 本に考慮した場合（ケース 2）の照査値
（せん断破壊に対する照査値）

部位	項目	発生断面力	応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ （b）	照査値(a/b)
		せん断力（kN）			
鋼製 支柱	建屋転倒荷重作用時	282	27	157	0.18
	基準地震動 S s 時	189	18		0． 12
	上記荷重を合成	471	45		0.29
鋼板	建屋転倒荷重作用時	$\begin{aligned} & \mathrm{Sy}: 96 \\ & \mathrm{Sz}: 35 \end{aligned}$	12	217	0.06
	基準地震動 S s 時	$\begin{aligned} & \mathrm{Sy}: 54 \\ & \mathrm{~S}_{\mathrm{z}}: 15 \end{aligned}$	7		0.04
	上記荷重を合成	$\begin{gathered} \mathrm{Sy}: 150 \\ \mathrm{Sz}: 50 \end{gathered}$	19		0.09

添付 8－5（1）表 断面（3）における建屋荷重（第3号機ガスボンベ庫）を鋼製支柱全数に考慮した場合（ケース1）の照査値
（曲げ・軸力系の破壊に対する照査値）

部位	項目	発生断面力		応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （b）	照査値 （a／b）
		$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
鋼製 支柱	建屋転倒荷重作用時	663	1330	107	277	0． 39
	基準地震動 S s 時	271	559	44		0． 16
	上記荷重を合成	934	1889	151		0.55
鋼板	建屋転倒荷重作用時	$\begin{gathered} M y: 1 \\ M z: 16 \end{gathered}$	33	36	345	0.11
	基準地震動 S s 時	$\begin{aligned} & M y: 8 \\ & M z: 8 \end{aligned}$	14	22		0.07
	上記荷重を合成	$\begin{gathered} M y: 9 \\ M z: 24 \end{gathered}$	47	58		0． 17

添付 8－5（2）表 断面（3）における建屋荷重（第3号機ガスボンベ庫）を鋼製支柱全数に考慮した場合（ケース1）の照査値
（せん断破壊に対する照査値）

部位	項目	発生断面力	応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （b）	照査値(a/b)
		せん断力（kN）			
鋼製支柱	建屋転倒荷重作用時	233	22	157	0.15
	基準地震動 S s 時	137	13		0． 09
	上記荷重を合成	370	35		0.23
鋼板	建屋転倒荷重作用時	$\begin{gathered} \text { Sy:61 } \\ \text { Sz:2 } \end{gathered}$	5	217	0.03
	基準地震動 S s 時	$\begin{aligned} & \text { Sy }: 31 \\ & S z z: 12 \end{aligned}$	4		0.02
	上記荷重を合成	$\begin{aligned} & \text { Sy:92 } \\ & \text { Sz:14 } \end{aligned}$	9		0.05

添付 8－6（1）表 断面（3）における建屋荷重（第3号機ガスボンベ庫）を端部の鋼製支柱 1 本に考慮した場合（ケース 2）の照査値
（曲げ・軸力系の破壊に対する照査値）

部位	項目	発生断面力		応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （b）	照査値 （a／b）
		$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$	軸力 （kN）			
鋼製 支柱	建屋転倒荷重作用時	509	1070	83	277	0． 30
	基準地震動 S s 時	271	559	44		0． 16
	上記荷重を合成	780	1629	127		0.46
鋼板	建屋転倒荷重作用時	$\begin{gathered} M y: 33 \\ M z: 2 \end{gathered}$	15	60	345	0.18
	基準地震動 S s 時	$\begin{aligned} & \mathrm{My}: 8 \\ & \mathrm{Mz}: 8 \end{aligned}$	14	22		0.07
	上記荷重を合成	$\begin{aligned} & M y: 41 \\ & M z: 10 \end{aligned}$	29	82		0． 24

添付8－6（2）表 断面（3）における建屋荷重（第3号機ガスボンベ庫）を端部の鋼製支柱 1 本に考慮した場合（ケース 2）の照査値
（せん断破壊に対する照査値）

部位	項目	発生断面力	応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （b）	照査値(a/b)
		せん断力（kN）			
鋼製支柱	建屋転倒荷重作用時	208	20	157	0.13
	基準地震動 S s 時	137	13		0.09
	上記荷重を合成	345	33		0． 22
鋼板	建屋転倒荷重作用時	Sy：40 Sz：22	8	217	0.04
	基準地震動 S s 時	$\begin{aligned} & \mathrm{Sy}: 31 \\ & \mathrm{Sz}: 12 \end{aligned}$	4		0.02
	上記荷重を合成	$\begin{aligned} & \mathrm{Sy}: 71 \\ & \mathrm{Sz}: 34 \end{aligned}$	12		0.06

以上

下位クラス施設の損傷による機械的荷重等の影響について

1．はじめに
下位クラス機器が損傷した場合の上位クラス機器への波及的影響については，上位 クラス施設と下位クラス施設との接続部における相互影響がないこと及び建屋内外 における下位クラス施設の損傷，転倒及び落下等による上位クラス施設への影響がな いことを確認している。本資料では，下位クラス施設の損傷を想定する場合の機械的荷重及び破断時の環境に及ぼす影響について検討する。

2．機械的荷重の影響

2.1 検討方針

耐震評価においては，地震時に発生する機械的荷重を考慮した評価を実施してい る。耐震計算書における機械的荷重の設定よりも評価上保守的な条件として，下位 クラス配管の破損を仮定した場合においても，上位クラス配管と接続される下位ク ラス配管について，境界サポート及び境界弁が強度上問題ないことを確認する。

具体的には，上位クラスの機器•配管系に要求される支持機能，隔離機能への影響確認として，境界サポートに対して配管破損による反力（以下「配管破損反力」 という。）を踏まえた構造強度評価を実施するとともに，境界弁に対して配管破損時 に弁体前後に生じる圧力差による荷重を踏まえた構造強度評価を実施する。添付 9－1 図に検討方針の概念図を示す。

添付 9－1 図 概念図

添付 9－2 図に下位クラス施設の損傷に伴ら機械的荷重の影響検討フローを示す。上位クラス配管の境界サポート及び境界弁に対しては，下記（1）～（3）の評価により下位クラス配管破損時の荷重に対する検討を実施する。
（1）下位クラス配管及びサポートが基準地震動 S s により破損しないことを確認す ることで，破損時の荷重が発生しないことを確認する。
（2）基準地震動 S s による地震荷重＋配管破損反力が作用した場合でも境界サポ ートが健全であることを確認する。
（3）基準地震動 S s による地震荷重＋圧力差が作用した場合でも境界弁が健全であ ることを確認する。
（2）の評価において，地震による下位クラス配管の破損を想定する箇所は，下位ク ラス配管の耐震重要度分類に応じた耐震性評価における最小裕度部位とする。

既往知見＊において，許容応力の 4 倍以上となる条件の加振試験を実施した場合 であっても配管の崩壊現象やき裂貫通は生じず，配管本体に過大応答が発生するよ らな試験体を用いた場合にのみ，振動台加振限界相当の条件による繰返し加振によ ってき裂貫通が生じたことが確認されている。また，影響検討対象（2．2 項にて後述）の下位側の耐震重要度分類は全てBクラスであり，基準地震動S s の $1 / 4$ 程度 である $1 / 2 \mathrm{~S} \mathrm{~d}$ に対して設計されている。以上より，Bクラス配管において基準地震動 S s 地震発生時に崩壊現象やき裂貫通は生じないと考えられるが，貫通クラック を仮定した評価を実施する。

貫通クラックの面積は「原子力発電所の内部溢水影響評価ガイド（原子力規制委員会，令和 2 年 3 月 31 日改訂）」（以下「溢水ガイド」という。）を参考に $1 / 2 \mathrm{D}$（配管内径）$\times 1 / 2 \mathrm{t}$（配管肉厚）として算定する。

なお，基準地震動 S s による地震力が作用した場合，規格•基準に基づく許容値 を下回る下位クラスサポートや，許容値を上回るもののある程度の拘束効果が期待 できる下位クラスサポートがあると想定されるが，配管破損反力を算定する際は，下位クラスサポートによる拘束が無い状態を仮定する。
＊：「平成 14 年度 原子力発電施設耐震信頼性実証に関する報告書 その 1 配管系終局強度（（財）原子力発電技術機構，平成 15 年 3 月）」の実規模配管系試験

③の検討を実施する系統の境界弁に対して，地震時における弁の隔離機能に対す る健全性評価を行う。具体的には，配管破損時に弁体前後に生じる圧力差による荷重を考慮して，地震力と組み合わせた強度評価を実施し，地震時に下位クラス配管

破損を想定した場合でも境界弁の構造強度に問題がないことを確認する。
弁体の構造強度評価は，添付書類「VI－3－2－3 クラス1弁の強度計算方法」に記載されるとおり，発電用原子力設備規格（J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格）VVB－3380の解説式を適用しているが，VVB－3380 の解説式は強度＋地震を同時に評価する規格式ではないことから，VVB－3380の解説式を準用し，最高使用圧力（P）の項を評価用圧力（ $\mathrm{P}^{\prime}=\mathrm{P}$（最高使用圧力）$+W$（地震荷重により弁体に加わる圧力））として評価を実施する。

添付 9－2 図 下位クラス施設損傷に伴う機械的荷重の影響検討フロー

2．2 影響検討対象

影響検討対象の抽出は添付 9－3 図に示すフローに基づき行い，具体的には本文「4．上位クラス施設の確認」第 4－1表，第4－2表にて抽出した上位クラス施設を対象と して以下のとおり行っている。
－電気設備及び計測制御設備は，その破損により有意な機械的荷重が発生しない と考えられることから，影響検討の対象外とする。

- 下位クラス施設との接続部がある機器•配管系を抽出する。
- 上位クラスに接続される下位クラス配管部について，破損により生じる荷重と相関関係がある圧力が大きいものかつ配管径が大きいものを抽出する。ここで，圧力及び配管径は，溢水ガイドの高エネルギー配管の分類を参考に1．9MPa を超える且つ 25 A を超えるものとする。
－添付書類「VI－2－別添 2－2 溢水源としない耐震 B，C クラス機器の耐震性につ いての計算書」において，下位クラス配管の基準地震動 S s に対する健全性が確認されているものは影響検討対象から除外する。

影響検討対象の抽出結果を添付9－1 表に示す。影響検討対象として，添付 9－2 図 の検討フローにおける①の対象は抽出されず，（2）（3）を適用する主蒸気系配管のみ が選定されている。

添付 9－3 図 影響検討対象の抽出フロー

添付 9－1 表 影響検討対象

No	系統	境界弁	圧力（MPa）	口径（A）	検討内容
1	主蒸気系	B21－F003A，B，C，D	8.62	600	（2）（3）

注：主配管を代表して示す。

2． 3 評価結果

添付 9－1 表で検討内容（2）（3）にて示した主蒸気系配管の評価結果を示す。
配管モデルを添付 9－4 図に示す。 4 つの境界弁は同一モデル上に存在し，境界サ ポートはそれぞれ 4 つの境界弁から耐震Bクラス側で，最も境界弁に近いアンカサ ポートである。なお，境界弁である原子炉格納容器外側主蒸気隔離弁から主蒸気止 め弁までは，耐震 B クラスではあるが，弾性設計用地震動 S d に対し破損しない設計としている。
（1）境界サポートの評価
a．破損を想定する箇所の特定
配管解析に用いた設計条件を添付 9－2 表に，設計用地震力の算出に用いる設計用床応答曲線を添付 9－3 表に示す。なお，設計用床応答曲線は添付書類「VI －2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数 を用いる。

添付 9－2 表 設計条件

最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ （mm）
8． 62	302	762.0	60.0
		711.2	34.6
		609.6	31.0
		590.0	44． 2
		558.8	28.6
		530.0	37.2
		508.0	28.6
		508.0	26.2
		480.0	58.2
		406.4	21.4
		350.0	33.15
		318.5	17.4

添付 9－3 表 設計用床応答曲線

建物•構築物	標高（m）	減衰定数（\％）
原子炉建屋	0．P．＋22．50	3.0
	0．P．＋15．00	
	0．P．＋6． 00	
タービン建屋	0．P．＋24． 80	
	0．P．＋15． 00	
	0．P．＋7．60	
T／Gペデスタル	0．P．＋22．75	
	0．P．＋13． 75	

注：上記設計用床応答曲線を包絡している

1／2S dに対する評価結果を添付 9－4 表に示す。地震時に破損を想定する箇所 として，評価範囲の疲労累積係数が最大となっている評価点 R04（蒸気加減弁
（3）出口と配管との溶接線，添付9－4図参照）とした。

> 添付 9-4 表 1/2S d に対する評価結果

評価点	一次応力			一次＋二次応力			疲労評価
	計算応力 （MPa）	許容応力 (MPa)	裕度	$\begin{gathered} \text { 計算応力 } \\ \text { (MPa) } \end{gathered}$	許容応力 （MPa）	裕度	疲労累積係数
R04	116	198	1． 70	189	396	2.09	0.7357

注：疲労累積係数が最も大きい評価部位を記載

b．貫通クラックの面積の算定
貫通クラックの面積 A は溢水ガイドを参考に下記のとおり算定した。

```
A=1/2D\times1/2t
    =1/2\times(609.6-31.0 < 2) × 1/2 < 31.0\doteqdot4244(mm}
    D:配管内径 (mm)
    t : 配管肉厚 (mm)
```

 注: 破損を想定した箇所の値を使用
 c．貫通クラックによる荷重の算定
貫通クラックによる荷重 F は「design basis for protection of light water nuclear power plants against the effects of postulated pipe rupture ANSI／ANS－58．2－1988」を参考に下記のとおり算定した。

$$
\begin{align*}
\mathrm{F} & =\mathrm{DLF} \times \mathrm{C}_{\mathrm{T}} \times \mathrm{P} \times \mathrm{A} \\
& =2 \times 1.26 \times 8.62 \times 4244 \fallingdotseq 93 \times 10^{3} \tag{N}
\end{align*}
$$

DLF：ダイナミックロードファクタ（ $=2^{*}$ ）
C_{T} ：定常スラスト係数 $\left(=1.26^{*}\right)$
P：最高使用圧力（MPa）
注記 $*$ ：「design basis for protection of light water nuclear power plants against the effects of postulated pipe rupture ANSI／ANS－58．2－1988」より

d．配管破損反力の算定

配管破損反力を算定するために使用した配管モデルを添付 9－5 図に示す。下位 クラスサポートについては，保守的に拘束が無い状態を仮定するため，配管モデ ルから削除している。破損を想定する箇所に貫通クラックによる荷重FをX方向， Y方向，Z 方向にそれぞれ載荷し，境界サポート及び配管貫通部の配管破損反力を算定した。添付 9－5 表に基準地震動S s による地震荷重等と配管破損反力を合計 した最大値を示す。

添 9－11

添付 9－5 表 境界サポートの荷重

支持構造物番号	反力 (kN)			モーメント $(\mathrm{kN} \cdot \mathrm{m})$		
	F_{X}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}
MS－001－43	133	70	463	1251	1135	302
MS－002－43	121	64	423	1202	1107	384
MS－003－49	115	63	427	1164	1128	400
MS－004－46	145	68	476	1158	1243	254

注：座標軸は添付 9－5 図に示す。
e．配管破損反力を踏まえた評価
境界サポート及び配管貫通部について，地震荷重＋配管破損反力に対する評価結果を添付 9－6 表に示す。全て計算値が許容値以下であり，地震荷重＋配管破損反力に対して健全であることを確認した。なお，既往知見より，B クラス配管において基準地震動S s地震発生時に崩壊現象やき裂貫通は生じないと考えられるが，保守的に貫通クラック を仮定した評価を実施していることから境界サポートの許容応力には Su 値を採用した。

添付 9－6 表 境界サポートの評価結果

種類	型式	応力分類	計算応力 (MPa)	許容応力 (MPa)	裕度
アンカ	架構	組合せ	155	391	2.52

注：最も裕度が小さい評価部位を記載
（2）境界弁の評価
主蒸気系配管の境界弁（B21－F003A，B，C，D）の評価結果を添付 9－7 表に示す。弁体の評価 は添付書類「VI－3－2－3 クラス 1 弁の強度計算方法」を準用する。最高使用圧力の項［P］ は，強度＋地震を同時に評価する式ではないことから，評価用圧力 $\left[\mathrm{P}^{\prime}=\mathrm{P}\right.$（最高使用圧力） ＋W（地震荷重により弁体に加わる圧力）〕として評価を実施した。
$\sigma_{\mathrm{D}} \leqq 1.5 \cdot \mathrm{~S}_{\mathrm{m}}$ であり弁体強度は十分である。

添付 9－7表 弁体の評価結果

材料	SFVC2B
形式	G2
P（MPa）	8． 62
P^{\prime}（ MPa ）	
P_{1}（N）	2． 641×10^{5}
P_{2}（N）	－
h_{1}（mm）	
h_{2}（mm）	
a（mm）	
a_{1}（mm）	
b（mm）	
M（kg）	470
r（mm）	
α_{1}（G）	15.0
計算応力 σ_{D}（MPa）	107
許容応力 $1.5 \cdot \mathrm{~S}_{\mathrm{m}}$（MPa）	188

（「VI－3－2－3 クラス 1 弁の強度計算方法」より抜粑）

評価用圧力 P＇は以下のとおり

$$
\begin{aligned}
\mathrm{P}^{\prime} & =\mathrm{P}+\mathrm{W} \\
& =\mathrm{P}+\frac{\mathrm{M} \times g \times \alpha_{1}}{\pi \times \mathrm{r}^{2}} \\
& =8.62+\frac{470 \times 9.80665 \times 15.0}{\pi \times \square} \fallingdotseq \square
\end{aligned}
$$

ここで，添付書類「VI－3－2－3 クラス 1 弁の強度計算方法」に記載のない記号の説明を下記に示す。

> M : 弁体の質量 (kg)
$r:$ 弁体の半径（mm）
α_{1} ：評価用応答加速度（G）

枠囲みの内容は商業機密の観点から公開できません。

構造図を添付 9－6 図に示す。弁体は 45° の角度で設置されていることから，評価用応答加速度は水平方向と鉛直方向を合成した値とする。弁体に考慮する評価用応答加速度は，添付 9－8 表のとおり，基準地震動 S s による応答加速度を上回る値として機能確認済加速度を用いた。

なお，女川原子力発電所第 2 号機において主蒸気隔離弁に適用する機能確認済加速度は合成加速度で 15Gとしており，詳細は補足説明資料「補足－600－14－1 動的機能維持の詳細評価について（新たな検討又は詳細検討が必要な設備の機能維持評価について）」に示す。

添付9－6図 主蒸気系境界弁構造図

添付 9－8 表 各弁に対する応答加速度と機能確認済加速度

弁番号	水平•鉛直合成値	
	応答加速度（G）	機能確認済加速度（G）
B21－F003A	13.7	15.0
B21－F003B	13.7	15.0
B21－F003C	14.6	15.0
B21－F003D	14.9	15.0

3．環境に及ぼす影響

下位クラス設備が損傷した場合に環境に及ぼす影響として内部流体の流出に伴う環境温度へ の影響が考えられることから，2 項での検討内容を参考に環境温度の変化が上位クラス設備へ及ぼす影響について検討する。

配管破断発生時に環境温度に影響を及ぼす高エネルギー配管のうち，地震時に損傷の可能性 がある配管については 2 項で検討されている境界弁「B21－F003A，B，C，D」より下流の「主蒸気系配管」となる。損傷可能性がある主蒸気系配管ラインが設置されている範囲のらち，上位クラ ス設備（機器配管系は主蒸気系の最高使用温度で設計されているため除外）が設置されている エリアはMS トンネル室となる。

MS トンネル室に設置されている上位クラス設備は漏えい検出系の温度計となるが，本温度計 は主蒸気系配管の破断又は漏えいを検知し，MS ラインの隔離信号を発することを目的とした設備であるため，高温蒸気環境（ $171^{\circ} \mathrm{C}$ ）への耐性を有する計器を使用しており，配管破断によっ て機能に影響を及ぼすおそれはない。

4．まとめ
地震により下位クラス配管の破損を仮定した場合における，上位クラス配管と下位クラス配管の境界サポート及び境界弁の影響及び上位クラス設備への環境温度変化の影響について検討 した結果，上位クラス施設へ影響がないことを確認した。

下位クラス配管の損傷形態の検討について

1．概要

上位クラス施設と下位クラス施設の接続部における波及的影響の検討においては，下位クラス配管の損傷形態である破損と閉塞のうち，破損に対して検討することとし ている。

そこで，接続部の影響検討において，閉塞事象を検討対象外と判断するに至った検討内容について以下に示すものである。

2．閉塞事象に対する検討
2.1 閉塞事象の発生要因について

地震時の閉塞事象発生要因として以下の 2 ケースが考えられる。
（1）地震時慣性力によって，上位クラス施設と接続している下位クラス配管（以下「対象下位クラス配管」という。）が軸直交方向に大きな荷重を受けるこ とによって大きく折れ曲がり流路を完全に遮断するケース
（2）地震時に対象下位クラス配管の周辺にある他の下位クラス施設が，損傷，転倒及び落下することによって，対象下位クラス配管に衝突し，対象下位 クラス配管の流路を完全に遮断するケース
地震発生時に，これら 2 つの発生要因によって，閉塞が発生する可能性について検討した結果を 2.2 項に示す。

2.2 閉塞事象発生有無の検討について

2．1項の発生要因 2 ケースに対して，地震時に実際に発生する可能性を以下のと おり検討した。
（1）地震時慣性力による閉塞
地震荷重は一定の方向に大きな荷重が負荷し続けるものではなく，荷重が負荷 する方向を交互に変えながら発生する交番荷重であることから，弾性応答範囲を超えた場合，鋼製材料の履歴減衰による応答低減が期待できる。また，材料のシ エイクダウン＊により地震時はおおむね弾性的な挙動となることを踏まえると，配管が折れ曲がり完全閉塞するような状況は考え難い。

また，既往研究 ${ }^{1)}$ において配管が有する安全余裕の検証として，配管の各種試験が実施されている。この中で配管の損傷形態として，塑性崩壊，座屈及び疲労破壊について検討がなされた結果，応力が集中する箇所に発生する疲労き裂（ラ チェット変形を伴ら低サイクル疲労）が主たる損傷形態であり，閉塞による損傷 は確認されていない。
＊：鋼製材料は降伏応力を超過する応力を受けた場合，塑性変形が発生するものの，その後は再び弾性的な挙動を繰り返す。この特性のことをシェイクダウンという。以下に設計建設規格に記載されているシェイクダウンの解説を引用する。

解説図 3112－1 降伏点を超える場合のひずみ履歴
（a）において，降伏点を超えるひずみ $\varepsilon_{1}\left(>\varepsilon_{y}\right)$ を生じる荷重をかけた後 $(0 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B})$ この荷重を減じていくと $\mathrm{B} \rightarrow \mathrm{C}$ に沿って変わる。このとき計算上の弾性応力は $S_{1}=E_{1}$ である。

ここでは二次応力について考えているので，荷重のかかり方としては，応力が 0 から S_{1} へ，そして S_{1} から 0 へと繰り返すのでなく，びずみが 0 から ε_{1} そして ε_{1} から 0 へと繰返す。ひずみが ε_{1} から 0 へ戻った時，材料には $S_{1}-S_{y}$ の大きさの残留圧縮応力 が発生すことになる（ C 点）。 2 回目以上の荷重に対しては，応力が引張りになる前に この残留圧縮応力を取り除くことになり，$S_{1}-S_{y}$ だけ弾性領域が増大したようになる。 もし，$S_{1}=2 S_{y}$ であるならば，弾性領域は $2 S_{y}$ となるが，それを超えると（b）における EF に示すように圧縮側に降伏してしまい，それ以降の全てのサイクルにおいては塑性 ひずみを生じる。従って， $2 S_{y}$ が弾性的挙動にシェイクダウンする二次応力の計算上の最大値となる。

この応力強さの限界を供用状態Aおよび供用状態 Bについてのみに限定する理由は，疲労解析が必要であり，その前提条件として，一次応力と二次応力を加えて求めた応力強さの評価を行うためである。
供用状態Cおよび供用状態Dについては，発電設備の寿命中において，発生する回数 が非常に少なく，疲労破壊には顕著な影響を与えないため，あらかじめ疲労解析は不要 とされており，従って，一次応力と二次応力を加えて求めた応力強さの評価も必要なく なる。
（出典）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）
（2）周辺の下位クラス施設の影響による閉塞
机上検討で抽出した，上位クラス施設と隔離されずに接続されている下位クラ ス配管について参考 1－1 表に示す。机上検討においては，参考 $1-1$ 表に示す対象配管の周辺に設置された他の下位クラス施設の損傷，転倒及び落下の影響による閉塞事象が否定できないことから，施設の設置状況を調査し閉塞事象の可能性の有無を確認するため，現場調査を実施した。

参考1－1表 上位クラス施設と隔離されずに接続する下位クラス施設

対象設備	設置場所
$\begin{array}{l}\text { 非常用ディーゼル発電設備非常用ディーゼル機関ミスト } \\ \text { 管＊}\end{array}$	原子炉建屋
高圧炉心スプレイ系ディーゼル発電設備高圧炉心スプレ	
イ系ディーゼル機関ミスト管	

\hline 潤滑油サンプタンクミスト管＊ \& 原子炉建屋

\hline\end{array}\right.\)
＊現地工事養生等があったことから，今後，詳細調査を追加実施する

現場調査の結果，調査対象の下位クラス配管に対して，周辺の下位クラス施設の損傷，転倒，落下等によって波及的影響（閉塞）を及ぼすおそれがないこと を確認した。調査時の写真記録について参考1－1図に一例を示す。

（a）燃料デイタンク（A）ミスト管
（b）高圧炉心スプレイ系ディーゼル機関 ミスト
参考 1－1 図 現場調査記録

3．まとめ
対象下位クラス配管について，地震時慣性力による閉塞と周辺の下位クラス施設の影響による閉塞が発生する可能性を検討した結果，いずれの閉塞事象も発生しないこ とが確認できた。したがって，上位クラス施設と接続する下位クラス配管の損傷形態 としては破損に対して検討する。

4．参考文献
1）平成 15 年度 原子力発電施設耐震信頼性実証に関する報告書 配管系終局強度 （平成16年6月（独）原子力安全基盤機構）

設置変更許可時からの相違点について

1．概 要

本補足説明資料では，上位クラス施設に対して波及的影響を及ぼすおそれのある下位クラス施設の抽出及びその影響評価内容について整理しているが，発電用原子炉設置変更申請（東北電原技第 3 号）に係る審査資料「02－NP－0272 設計基準対象施設に ついて」の「第4条 地震による損傷の防止」の「別紙－2 上位クラス施設の安全機能 への下位クラス施設の波及的影響の検討」（以下「設置変更許可」という。）から設計進捗により変更となった箇所があるため，設置変更許可との相違点を整理した。

2．設置変更許可時からの変更箇所
波及的影響に係る概略検討フローを図1に示す。フローの（1）～（4）に基づき設置変更許可との相違点があるかを確認した。

（1）～（8）の数字は補足説明資料本文の第2．1－1図中の（1）～⑧に対応する。
図1 波及的影響に係る概略検討フロー
（1）上位クラス施設の抽出
抽出結果に係る相違点を表1に示す。
（2）波及的影響を及ぼすおそれのある下位クラス施設の抽出のための調查•検討抽出のための調査•検討方法については変更無し。
（3）波及的影響を及ぼすおそれのある下位クラス施設の抽出抽出結果に係る相違点を表2－1，2－2 に示す。
（4）詳細評価
評価結果については耐震計算書及び補足説明資料の添付資料4～11にて説 明す る。

なお，下位クラス施設の抽出及びその影響評価に係わらない施設名称の変更や記載 する施設の統合等に伴ら相違点については参考として表3に示す。

3．先行プラントとの相違点
波及的影響を及ぼすおそれがある下位クラス施設として，耐震計算書の対象となる設備について先行プラント（柏崎刈羽 7 号機）と女川 2 号機を比較した結果を表 4 に示す。先行プラントと女川で設備の設計方針や配置等が類似している，原子炉建屋ク レーンや燃料交換機などが共通的に対象として選定されていることを確認した。一方 で，竜巻防護対策などはプラント特有な設備が多く，プラントごとに対象設備が異な ることを確認した。

整理番号＊1	上位クラス施設		変更理由	$\begin{gathered} \text { 該当 } \\ \text { ページ*2 } \end{gathered}$
	変更前（設置変更許可時）	変更後		
0015	－	可搬型窒素がス供給系配管	設計進捗（設計及び配置の確定）に伴ら追加	P12
0016	－	燃料プール代替注水系配管	同上	P12
0058	－	衛星通信装置	同上	P13
0059	－	復水貯蔵タンク水位	同上	P13
E168	－	ガスタービン発電設備燃料小出槽	同上	P15
E176	－	緊急時対策所換気空調系ダクト	同上	P16
E187	－	燃料プール代替注水系配管	同上	P16
E188	－	燃料プールスプレイ系配管	同上	P16
E189	－	原子炬補機代替冷却水系配管	同上	P16
E190	－	原子炉格納容器下部注水系配管	同上	P16
E191	－	原子炉格納容器代替スプレイ冷却系配管	同上	P16
E192	－	代替循環冷却系配管	同上	P16
V137	PSA 窒素供給ライン元弁	－	設計進捗（設計及び配置の確定）に伴ら削除	P18
V151	RHR ヘッドスプレイライン洗浄流量調節弁	－	同上	P18
V154	－	代替制御棒挿入機能用電磁升	設計進捗（設計及び配置の確定）に伴ら追加	P18
V155	－	HPAC 蒸気供給ライン分離弁	同上	P18
V156	－	代替 HPIN 室素排気出口弁	同上	P18
V157	－	代替 HPIN 第一隔離弁	同上	P18

表1 上位クラス施設の抽出結果に係る相違点（2／4）

整理 番号＊＊	上位クラス施設		変更理由	$\begin{aligned} & \text { 該当 } \\ & \text { ページ*2 } \end{aligned}$
	変更前（設置変更許可時）	変更後		
V158	－	DCLI ポンプ吸込弁	設計進捗（設計及び配置の確定）に伴ら追加	P18
V159	－	DCLI 注入流量調整弁	同上	P18
V160	－	R／B B1F 緊急時隔離弁	同上	P18
V161	－	RCW 代替冷却水不要負荷分離弁	同上	P18
V162	－	RHR 格納容器代替スプレイ注入元弁	同上	P18
V163	－	代替循環冷却ポンプ吸込弁	同上	P18
V164	－	代替循環冷却ポンプ流量調整弁	同上	P18
V165	－	代替循環冷却ポンプバイパス弁	同上	P18
V166	－	RHR MUWC 連絡第一弁	同上	P18
V167	－	RHR MUWC 連絡第二弁	同上	P18
V167	－	RHR MUWC 連絡第二弁	同上	P18
B011	重要計器監視用 125 V 直流分電盤2	－	撤去に伴い削除	P18
B083	－	代替原子炉再循環ポンプトリップ遮断器	設計進捗（設計及び配置の確定）に伴ら追加	P19
B084	－	HPAC 制御盤	同上	P19
B085	－	代替注水制御盤	同上	P19
B086	－	DCLI 制御盤	同上	P19
B087	－	フィルタベント系制御盤	同上	P19
B088	－	250V 充電器盤	同上	P19

整理番号＊1	上位クラス施設		変更理由	$\begin{gathered} \text { 該当 } \\ \text { ページ*2 } \end{gathered}$
	変更前（設置変更許可時）	変更後		
B089	－	125 V 直流電源切替盤	設計進捗（設計及び配置の確定）に伴ら追加	P19
B090	－	460 V 原子炉建屋交流電源切替盤	同上	P19
B091	－	250 V 直流主母線盤	同上	P19
B092	－	緊急用電源切替操作盤	同上	P19
B093	－	ガスタービン発電設備制御盤	同上	P19
B094	－	ガスタービン発電設備燃料移送ポンプ接続盤	同上	P19
B095	－	モータコントロールセンタ（緊急時対策所用）	同上	P19
B096	－	105V 交流電源切替盤（緊急時対策所用）	同上	P19
B097	－	105 V 交流分電盤（緊急時対策所用）	同上	P19
B098	－	120 V 交流分電盤（緊急時対策所用）	同上	P19
B099	－	210 V 交流分電盤（緊急時対策所用）	同上	P19
B100	－	125 V 直流主母線盤（緊急時対策所用）	同上	P19
B101	－	250 V 直流受電パワーセンタ	同上	P19
B102	－	120 V 原子炬建屋交流電源切替盤	同上	P20
1002	原子炉冷却材浄化系計装ラック	－	設計進捗（設計及び配置の確定）に伴ら削除	P20
I021	－	原子炉圧力（SA）	設計進捗（設計及び配置の確定）に伴ら追加	P20
I022	－	原子炬水位（SA 広帯域）	同上	P20
1023	－	原子炬水位（SA 燃料域）	同上	P20

表1 上位クラス施設の抽出結果に係る相違点（4／4）

整理 番号＊1	上位クラス施設		変更理由	$\begin{gathered} \text { 該当 } \\ \text { ページ*2 } \end{gathered}$
	変更前（設置変更許可時）	変更後		
1090	－	高圧代替注水系ポンプ出口圧力	設計進捗（設計及び配置の確定）に伴ら追加	P20
I092	－	残留熱除去系熱交換器入口温度	同上	P21
1093	－	残留熱除去系熱交換器出口温度	同上	P21
1099	－	圧力抑制室圧力	同上	P21
I123	－	代替循環冷却ポンプ出口圧力	同上	P21
I126	－	直流駆動低圧注水系ポンプ出口圧力	同上	P21
I130	－	復水移送ポンプ出口圧力	同上	P21

注記 $* 1$ ：整理番号は基本的に変更後の番号（「補足－600－4 下位クラス施設の波及的影響の検討について」で定義された番号）を記載する。変更前しかない場合は変更前の番
号（設置変更許可で定義された番号）を記載する。
＊2：「補足－600－4 下位クラス施設の波及的影響の検討について」の該当ページを示す。
表2－1 波及的影響を及ぼすおそれのある下位クラス施設の抽出結果に係る相違点
（建屋内及び建屋外における下位クラス施設の損傷，転倒，落下等による影響）

整理	上位クラス施設	波及的影響を及ぼすおそれのある下位クラス施設		変更理由	$\begin{aligned} & \text { 該当 } \\ & \text { ページ* } \end{aligned}$
番号		変更前（設置変更許可時）	変更後		
$\begin{aligned} & \mathrm{I} 100 \\ & \mathrm{I} 127 \end{aligned}$	原子炉格納容器下部水位原子炉格納容器下部温度	－	CRD 自動交換機	上位クラス施設の設計進捗（設計及 び配置の確定）に伴う追加	P118
$\begin{aligned} & \hline 0027 \\ & 0030 \\ & 0032 \\ & 0048 \\ & 0055 \end{aligned}$	防潮壁 浸水防止蓋 貫通部止水処置 3 号機海水熱交換器建屋 3 号機補機冷却海水系放水 ピット	3 号機海水ポンプ室門型クレー	－	下位クラス施設の撤去に伴い削除	P127
0027	防潮壁	－	第 3 号機ガスボンベ庫第 3 号機除塵装置電源室	下位クラス施設の設計進捗（設計及 び配置の確定）に伴う追加	P13

注記＊：ページ番号は，対象の下位クラス施設が変更前の場合は変更前の番号（設置変更許可で定義された番号）を，対象の下位クラス施設が変更後の場合は変更後の番号 （「補足－600－4 下位クラス施設の波及的影響の検討について」で定義された番号）を記載する。

参考資料 2
表 2－2 波及的影響を及ぼすおそれのある下位クラス施設の抽出結果に係る相違点

整理 番号	変更前		変更後		変更理由	$\begin{gathered} \text { 該当 } \\ \text { ページ* } \end{gathered}$
	上位クラス施設	接続する下位クラス施設	上位クラス施設	接続する下位クラス施設		
E043	制御棒駆動機構	制御棒引抜配管	－	－	制御棒引抜配管の耐震クラス見直し （ B クラス \rightarrow S クラス）に伴い削除	P51
E176	－	－	緊急時対策所軽油タ ンク	ミスト管	上位クラス施設の設計進捗（系統設計 の確定）に伴う追加	P56
E179	－	－	代替循環冷却ポンプ	$\begin{aligned} & \text { ブラケットドレンラ } \\ & \text { イン } \\ & \hline \text { メカニカルシールリ } \\ & \text { ークドレンライン } \end{aligned}$	同上	P56
E182	－	－	直流駆動低圧注水系 ポンプ	$\begin{aligned} & \text { メカニカルシールリ } \\ & \text { ークドレンライン } \end{aligned}$	同上	P56

注記＊：ページ番号は，「補足－600－4 下位クラス施設の波及的影響の検討について」で定義された番号を記載する。
表3 施設名称の変更や記載する施設の統合等に伴う相違点 $(1 / 3)$

上位クラス施設				変更理由	$\begin{aligned} & \text { 該当 } \\ & \text { ページ*3 } \end{aligned}$
整理 番号＊	変更前（設置変更許可時）	整理 番号＊2	変更後		
0012	復水補給水系配管	0012	原子炉格納容器下部注水系配管	工事計画認可申請名称への変更	P12
0013	原子炬補機冷却水系配管	0013	原子炉補機代替冷却水系配管	同上	P12
0014	残留熱除去系配管	0014	原子炉格納容器代替スプレイ泠却系配管	同上	P12
0047	トランシーバ屋外アンテナ	0049	無線連絡設備（屋外アンテナ）	同上	P12
0048	衛星電話屋外アンテナ	0050	衛星電話設備（屋外アンテナ）	同上	P12
I040	RCIC タービン蒸気加減弁電油変換器	$\begin{aligned} & \text { E028 } \\ & \text { E029 } \\ & \text { E030 } \end{aligned}$	原子炉隔離時冷却系ポンプ 原子炉隔離時冷却系ポンプ駆動用タービ 原子炉隔離時冷却系配管	機器付きの計装品であることから設置して いる機器と統合	P14
I041	RCIC タービン蒸気加減弁開度				
1042	RCIC タービン回転数				
1043	$\begin{aligned} & \text { RCIC タービンメカニカルトリップ } \\ & \text { 用 } \end{aligned}$				
1044	RCIC タービン主蒸気止め弁全閉表示用				
1045	RCIC 非常トリップ装置\＆非常調速機作動表示用				
－	－	E097	非常用ディーゼル発電設備清水泠却器	記載追加	P15
－	－	E113	高圧灯心スプレイ系ディーゼル発電設備清水冷却器	同上	P15
E155	高圧代替注水系ポンプ	E157	高圧代替注水系タービンポンプ	工事計画認可申請名称への変更	P15
E163	ガスタービン発電機	E165	ガスタービン発電設備機関•発電機	同上	P15

上位クラス施設				変更理由	$\begin{aligned} & \text { 該当 } \\ & \text { ページ*3 } \end{aligned}$
整理 番号＊	変更前（設置変更許可時）	整理番号＊	変更後		
E167	中央制御室遮蔽壁	E169	中央制御室しやへい壁	工事計画認可申請名称への変更	P15
1097	LPCS ポンプ出口流量	1001	低圧炬心スプレイ系計装ラック	当該計器を設置している計装ラックに変更	P20
1096	HPCS ポンプ出口流量	I006	高圧炬心スプレイ系計装ラック	同上	P20
1010	原子炉隔離時冷却系ポンプ計装ラッ ク	I009	RCIC ポンプ計器架台	設計図書に記載の名称に変更	P20
1098	RHR ポンプ出口流量	I012	RHR C 系計器架台	当該計器を設置している架台名称に変更	P20
I030	格納容器内雰囲気モニタ電磁升	$\begin{aligned} & \text { I034 } \\ & \text { I035 } \end{aligned}$	格納容器内雰囲気放射線モニタ（D／W） 格納容器内雰囲気放射線モニタ（S／C）	対象施設名称を統合	P20
I031	CAMS S／C サンプルガス温度				
1032	CAMS D／Wサンプルガス温度				
1033	CAMS γ 線検出器 D / W				
1034	CAMS γ 線検出器 S / C				
I058	機関付清水ポンプ出口圧力	$\begin{gathered} \text { I047 } \\ \text { I048 } \\ \text { I049 } \end{gathered}$	非常用 D／G 計装ラック 非常用 D／G 二次泠却水差圧計器架台 HPCS D／G 計装ラック	当該計器を設置している計装ラック等の名称に変更	P20
1059	機関出口ディーゼル泠却水温度				
1060	機関入口潤滑油圧力				
I061	泪滑油プライミングポンプ入口温度				
1065	RCW 差压				
I066	HPCW 差圧				
－	－	I068	R／B 主蒸気管漏えい検出（周囲温度）	記載追加	P20
－	－	I069	R / B 主蒸気管漏えい検出（給気温度）	同上	P20

上位クラス施設				変更理由	$\begin{aligned} & \text { 該当 } \\ & \text { ページ*3 } \end{aligned}$
整理番号＊	変更前（設置変更許可時）	整理番号＊2	変更後		
－	－	I070	R／B 主蒸気管漏えい検出（排気温度）	記載追加	P20
－	－	I080	CUW 非再生熱交室漏えい検出（周囲温度）	同上	P20
－	－	I081	CUW 再生熱交室漏えい検出（周囲温度）	同上	P20
－	－	1082	CUW 非再生熱交室漏えい検出（給気温度）	同上	P20
－	－	1083	CUW 再生熱交室漏えい検出（給気温度）	同上	P20
－	－	I084	CUW 非再生熱交室漏えい検出（排気温度）	同上	P20
－	－	I085	CUW 再生熱交室漏えい検出（排気温度）	同上	P20
1093	プリアンプ収納箱	I088	格納容器内雰囲気モニタプリアンプ収納箱	設計図書に記載の名称に変更	P20
I109	局部出力領域モニタ	I105	出力領域モニタ	工事計画認可申請名称への変更	P21
I129	高圧窒素がス供給系 ADS 入口圧力	I124	HPIN ADS 入口圧力	設計図書に記載の名称に変更	P21
I131	代替高圧窒素ガス供給系窒素ガス供給止め弁入口圧力	I129	代替 HPIN 窒素がス供給止め卉入口圧力	同上	P21
I122	トランシーバ				
I134	無線連絡設備	I131	無線連絡設備（固定型）	対象施設名称を統合	P21
I136	無線連絡設備（屋外アンテナ）				
I123	衛星電話				
1135	衛星電話設備	I132	衛星電話設備（固定型）	同上	P21
I137	衛星電話設備（屋外アンテナ）				

注記 $* 1$ ：変更前の番号（設置変更許可で定義された番号）を記載する。
＊2：変更後の番号（「補足－600－4 下位クラス施設の波及的影響の検討について」で定義された番号）を記載する。 ＊3：「補足－600－4 下位クラス施設の波及的影響の検討について」の該当ページを示す。
表4 先行プラント（柏崎刈羽 7 号機）との波及的影響評価対象設備の相違点（ $1 / 2$ ）

波及的影響を及ぼすおそれがある施設として耐震計算書の対象となる施設		差異理由
先行プラント（柏崎刈羽 7 号機）	女川 2 号機	
サービス建屋	－	女川 2 号機にサービス建屋はないため
－	タービン建屋	女川 2 号機特有の対象施設のため
－	補助ボイラー建屋	同上
－	第1号機制御建屋	同上
－	第1号機排気筒	同上
非常用ディーゼル発電設備 燃料移送ポン プ防護板	－	柏崎刈羽 7 号機特有の対象施設のため
非常用ディーゼル発電設備 燃料移送配管防護板	－	同上
竜巻防護鋼製フード	－	同上
－	海水ポンプ室門型クレーン	女川 2 号機特有の対象施設のため
－	竜巻防護ネット	同上
－	第1号機取水路	同上
－	第3号機取水路	同上
－	北側排水路	同上
－	アクセスルート（防潮堤（盛土堤防））	同上
－	前面護岸	同上
原子炉遮蔽壁	原子炉しやへい壁	－
原子炬建屋クレーン	原子炉建屋クレーン	－
燃料取替機	燃料交換機	－

表4 先行プラント（柏崎刈羽 7 号機）との波及的影響評価対象設備の相違点（2／2）

波及的影響を及ぼすおそれがある施設として耐震計算書の対象となる施設		差異理由
先行プラント（柏崎刈羽 7 号機）	女川 2 号機	
原子炉ウェル遮蔽プラグ	原子炉ウェルカバー	－
中央制御室天井照明	中央制御室天井照明	－
耐火隔壁	耐火隔壁	－
原子炉補機冷却海水系配管防護壁	－	柏崎刈羽 7 号機特有の対象施設のため
換気空調系ダクト防護壁	－	同上
－	制御棒貯蔵ハンガ	女川 2 号機特有の対象施設のため
－	制御棒貯蔵ラック	同上
－	ほう酸水注入系テストタンク	同上
－	CRD 自動交換機	同上

[^0]: ＊フロー中の（1），（2），（5）～（8）の数字は第2．1－1図中の（1），（2），（5）～⑧に対応する。

[^1]: 注記 $* 1$ ：当該建屋は上位クラス施設であるが，原子炉建屋に近接していることを踏まえ相対変位の影響を確認する。
 ＊2：制御建屋に対する原子炉建屋の影響は，原子炉建屋に対する制御建屋の影響確認内容と相違ないため記載を省略する。

[^2]: 地震被害発生要因：\quad 警報発生等，施設の損傷を伴わない I～V以外の要因等）

