```
本資料のうち，枠囲みの内容は商業機密の観点から公開できません。
```

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書

2021年4月
東北電力株式会社

まえがき
本書は，工事計画認可申請書に添付する波及的影響を及ぼすおそれのある下位クラス施設のうち中央制御室天井照明の耐震計算について，説明するものである。

本書は，以下により構成される。
（1）中央制御室天井照明の耐震性についての計算書
（2）排煙ダクトの耐震性についての計算書
目 次
（1）中央制御室天井照明の耐震性についての計算書 1
1．概要 2
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2.3 評価方針 4
2.4 適用基準 5
2.5 記号の説明 6
2.6 計算精度と数値の丸め方 8
3．評価部位 9
4．地震応答解析及び構造強度評価 10
4.1 地震応答解析及び構造強度評価方法． 10
4．2 荷重の組合せ及び許容応力 10
4．2．1 荷重の組合せ 10
4．2．2 許容応力 10
4．2．3 使用材料の許容応力評価条件－ 10
4.3 解析モデル及び諸元 13
4． 4 固有周期 16
4.5 設計用地震力 17
4． 6 計算方法 19
4.7 計算条件 21
4． 8 応力の評価 22
5．評価結果 23
5.1 設計基準対象施設としての評価結果 23
5.2 重大事故等対処設備としての評価結果• 23
（2）排煙ダクトの耐震性についての計算書 27
1．概要 28
2．一般事項 28
2.1 構造計画 28
2． 2 評価方針 30
2.3 適用基準 32
2.4 記号の説明 33
2.5 計算精度と数値の丸め方 34
3．評価部位 34
4．固有振動数 35
4． 1 固有振動数の計算方法 35
5．構造強度評価 36
5.1 構造強度評価方法 36
5.2 荷重の組合せ及び許容応力 37
5．2．1 荷重の組合せ及び許容応力状態 37
5．2．2 許容限界 37
5．2．3 使用材料の許容応力評価条件 37
5.3 設計用地震力 41
6．評価結果 41
6． 1 設計基準対象施設としての評価結果 41
6． 2 重大事故等対処設備としての評価結果 41
7．支持構造物設計の基本方針 42
7． 1 支持構造物の構造及び種類 42
7.2 支持構造物の耐震性確認 45
（1）中央制御室天井照明の耐震性についての計算書

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」にて設定している耐震評価方針に基づき，下位クラス設備である中央制御室天井照明が設計用地震力に対して十分な構造強度を有していることを確認することで，下部に設置された上位クラス施設である原子炉制御盤，原子炉補機制御盤等に対して，波及的影響を及ぼさないこと を説明するものである。

2．一般事項

2.1 配置概要

中央制御室天井照明は，図 2－1 の上位クラス配置図に示す上位クラス施設である原子炉制御盤及び原子炉補機制御盤等の上部に設置されており，落下時に原子炉制御盤，原子炉補機制御盤等に対して波及的影響を及ぼすおそれがある。

図 2－1 中央制御室内上位クラス施設配置図

2.2 構造計画

中央制御室天井照明の構造計画を表 2－1 に示す。

2.3 評価方針

中央制御室天井照明の応力評価は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」の「3．耐震評価方針」に従い実施する。
評価については，「2．2 構造計画」にて示す中央制御室天井照明の部位を踏まえ，「3．評価部位」にて設定する箇所において「4．4 固有周期」に示す固有周期に基づく設計用地震力に より応力等が許容限界内に収まることを，「4． 6 計算方法」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

天井照明下部は，取付位置における床応答曲線の最大応答加速度による応力計算を行う。
中央制御室天井照明の耐震評価フローを図 2－2 に示す。

（a）天井照明上部の耐震評価フロー

（ b ）天井照明下部の耐震評価フロー

図 2－2 中央制御室天井照明の耐震評価フロー

2.4 適用基準

適用基準を以下に示す。

- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
- 建築基準法（昭和 25 年 5 月 24 日法律第201号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－（以下，「S 規準」という。）
- 2013年 建築物における天井脱落対策に係る技術基準の解説（国土交通省）

2.5 記号の説明

記 号	記 号の説明	単 位
A	断面積	mm ${ }^{2}$
As	せん断断面積	mm^{2}
$\mathrm{A}_{\text {sy }}$	y 軸方向のせん断断面積	mm^{2}
Asz	z 軸方向のせん断断面積	mm^{2}
E	縦弾性係数	$\mathrm{N} / \mathrm{mm}^{2}$
v	ポアソン比	－
$\mathrm{C}_{\mathrm{H} 1}$	天井照明上部の評価に用いる水平方向設計震度	－
$\mathrm{C}_{\mathrm{V} 1}$	天井照明上部の評価に用いる鉛直方向設計震度	－
$\mathrm{C}_{\mathrm{H} 2}$	天井照明下部の評価に用いる水平方向設計震度	－
$\mathrm{C}_{\mathrm{V} 2}$	天井照明下部の評価に用いる鉛直方向設計震度	－
f_{c}	許容圧縮応力度	$\mathrm{N} / \mathrm{mm}^{2}$
f_{t}	許容引張応力度	$\mathrm{N} / \mathrm{mm}^{2}$
f_{b}	許容曲げ応力度	$\mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\text {s }}$	許容せん断応力度	$\mathrm{N} / \mathrm{mm}^{2}$
g	重力加速度（＝9．80665）	$\mathrm{m} / \mathrm{s}^{2}$
M	曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
Q	せん断応力	N
T	引張応力	N
I y	水平方向の断面二次モーメント	mm^{4}
I_{3}	鉛直方向の断面二次モーメント	mm^{4}
J	ねじり剛性	mm^{4}
Z_{p}	極断面係数	mm^{3}
Z y	y 軸まわりの断面係数	mm^{3}
Z_{z}	z 軸まわりの断面係数	mm^{3}
$\sigma^{\circ} \mathrm{c}$	圧縮応力度	$\mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{\text {O }}{ }_{\text {t }}$	引張応力度	$\mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{\text {b }}$	曲げ応力度	$\mathrm{N} / \mathrm{mm}^{2}$
σ O bx	x 軸まわりの曲げ応力度	$\mathrm{N} / \mathrm{mm}^{2}$
σ^{σ} by	y 軸まわりの曲げ応力度	$\mathrm{N} / \mathrm{mm}^{2}$
τ	せん断応力度	$\mathrm{N} / \mathrm{mm}^{2}$
F	鋼材の基準強度	$\mathrm{N} / \mathrm{mm}^{2}$

記 号	記号の説明	単位
λ	細長比	－
Λ	限界細長比	－

2.6 計算精度と数値の丸め方

表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
質量	kg	-	-	整数位
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁
算出応力	$\mathrm{N} / \mathrm{mm}^{2}$	有効数字 4 桁目	切上げ	有効数字 3 桁
許容応力	$\mathrm{N} / \mathrm{mm}^{2}$	有効数字 4 桁目	切捨て	有効数字 3 桁
検定値	-	小数点以下第 3 位	切上げ	小数点以下第 2 位

3．評価部位
中央制御室天井照明は，吊りボルト，格子状鋼製フレーム，レースウェイ等を介して建屋躯体部から吊り下げる構造となっている。よって，中央制御室天井照明が落下することにより，波及的影響を及ぼさないことを確認する観点から，吊構造を構成する部材を評価箇所として選定する。中央制御室天井照明の耐震評価部位を図 3－1 に示す。
（1）天井照明上部の評価箇所
応力解析での評価対象部位は，図 3－1 の概略構造図に示す部材のうち格子状鋼製フレーム （上段及び下段），ブレース材（垂直補強及び斜め補強）及び吊りボルトとする。

図 3－1 概略構造図
（2）天井照明下部の評価箇所
天井照明下部の評価対象部位は，図 3－1 の概略構造図に示す部材のうち吊りボルト（照明支持材）及びレースウェイとする。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法

（1）中央制御室天井照明は，原子炉建屋躯体天井面に格子状鋼製フレーム及び吊りボルトを介 して設置されている。
（2）中央制御室天井照明の重量には，耐震評価部位である吊りボルト（照明支持材）及びレー スウェイに加えて，照明器具等を考慮する。
（3）地震力は，固有値解析結果を踏まえて設定するものとする。
（4）耐震計算に用いる寸法は，公称値を使用する。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ
中央制御室天井照明の荷重の組合せのらち設計基準対象施設の評価に用いるものを表 4－ 1 に，重大事故等対処設備の評価に用いるものを表4－2に示す。

4．2．2 許容応力
中央制御室天井照明の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
中央制御室天井照明の鋼材の許容応力度を表 4－4 に示す。

O 2 （3）VI－2－11－2－7 R 1

表 4－1 荷重の組合せ（設計基準対象施設）

施設区分		機器名称	耐震設計上の重要度分類	機器等の区分	荷重の組合せ
その他	その他	中央制御室天井照明	C	—＊1	$\mathrm{D}+\mathrm{K} \mathrm{s}$

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 4－2 荷重の組合せ（重大事故等対処設備）

施設区分		機器名称	設備分類	機器等の区分	荷重の組合せ
その他	その他	中央制御室 天井照明	-		

注記 $* 2:$ その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 4－3 許容応力

要求機能	機能設計上の性能目標	外力の 状態	部位	機能維持のための考え方	許容限界 （評価基準値）
波及的影響防止	上位クラス施設に波及的な影響を及ぼさ ないこと	S s 地震時	天井照明上部天井照明下部	部材に生じる応力 が波及的影響を及 ぼさないための許容限界を超えない ことを確認	S 規準における短期許容応力度 に基づく許容値

表 4－4 鋼材の許容応力度
（単位： $\mathrm{N} / \mathrm{mm}^{2}$ ）

鋼材種類		F 値	短期		
		圧縮 引張 曲げ	せん断		
SSC400					
STKR400					
SWRM		205＊	205	－	
SGHC		205	205	118	

注記＊：F 値が規定されていないため，「2013 年 建築物における天井脱落対策に係る技術基準の解説（国土交通省）」に記載されている値を準用する。

4．3 解析モデル及び諸元

天井照明上部の解析モデルを図 4－1 に示す。天井照明下部のうちレースウェイの解析モデル を図4－2に示す。
（1）解析モデルの諸元及び部材の断面性能を表 4－5 及び表 4－6に示す。
（2）天井照明上部の解析モデルは，各部材を表 4－7に示す要素を用いてモデル化する。なお， モデル化は基本部材の軸心で行うものとする。
（3）レースウェイの解析モデルは，最大スパンを対象に 2 連梁にてモデル化する。
（4）天井照明上部の解析コードは「fappase」，天井照明下部の解析コードは「KANSAS2」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5－63 計算機プ ログラム（解析コード）の概要•fappase」及び「VI－5－63 計算機プログラム（解析コード） の概要•KANSAS2」に示す。

図 4－1 天井照明上部の解析モデル

図 4－2 天井照明下部レースウェイの解析モデル

表 4－5 解析モデルの諸元

項目	記号	単位	入力値
材質			STKR400
	-	-	SSC400
			SWRM
縦弾性係数	E	$\mathrm{N} / \mathrm{mm}^{2}$	205000
ポアソン比	v	-	0.3

表 4－6 断面性能

部位	$\begin{aligned} & \text { 断面積 } \\ & \text { A[mm²] } \end{aligned}$	せん断 断面積		$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \end{gathered}$		断面係数		
		$\mathrm{A}_{\text {sy }}\left[\mathrm{mm}^{2}\right]$	$\mathrm{A}_{\mathrm{sz}}\left[\mathrm{mm}^{2}\right]$	$\mathrm{I}_{\mathrm{y}}\left[\mathrm{mm}^{4}\right]$	$\mathrm{I}_{\mathrm{z}}\left[\mathrm{mm}^{4}\right]$	$\mathrm{Z}_{\mathrm{y}}\left[\mathrm{mm}^{3}\right]$	$\mathrm{Z}_{\mathrm{z}}\left[\mathrm{mm}^{3}\right]$	$\mathrm{Z}_{\mathrm{p}}\left[\mathrm{mm}^{3}\right]$
ブレース材 （垂直補強）	700.7	－	－	－	－	－	－	－
ブレース材 （斜め補強）	700.7	－	－	－	－	－	－	－
格子状鋼製 フレーム	517.2	276	276	283000	283000	9440	9440	－
吊りボルト	49.1	－	－	－	－	－	－	－
レースウェイ	343.7	187.2	93.6	93300	73800	4530	3240	－

表 4－7 使用要素

部位	使用要素	使用材料	使用断面	備 考		
ブレース材 （垂直補強）	トラス要素	SSC400	$\mathrm{C}-100 \times 50 \times 20 \times 3.2$			
ブレース材 （斜め補強）	トラス要素				$\mathrm{SSC400}$	$\mathrm{C}-100 \times 50 \times 20 \times 3.2$
:---:						

4． 4 固有周期

図 4－1 の解析モデルを用いた天井照明上部の固有値解析結果を表 4－8 に示す。固有周期は 0.05 s 以下であり剛であることを確認した。

天井照明下部は，取付位置における床応答曲線の最大応答加速度による応力計算を行う。

表 4－8	固有値解析結果（天井照明上部）	
次数	卓越方向	固有周期 (s)
1	水平	0.042
2	鉛直	0.042

4.5 設計用地震力

（1）天井照明上部
天井照明上部に用いる設計用地震力を表 4－9 及び表 4－10に示す。基準地震動 S s による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 4－9 設計用地震力（設計基準対象施設）

建物•構築物	据付場所及び 床面高さ（m）	減衰定数（\％）	基準地震動 S S	
			水平方向設計震度	鉛直方向設計震度
制御建屋	$\begin{gathered} \text { 0.P. 29. } 150 \\ (0 . \mathrm{P} .22 .950 * 1) \end{gathered}$	2． 0	$\mathrm{C}_{\mathrm{H} 1}=4.05$	$\mathrm{C}_{\mathrm{V} 1}=2.29$

注記 $~ 1 ~ 1 ~: ~ ⿱ ⿱ ⿴ ⿱ 卄 一 二 八 土 土 亍$ 準床レベルを示す。

表 4－10 設計用地震力（重大事故等対処設備）

建物•構築物	据付場所及び 床面高さ（m）	減衰定数（\％）	基準地震動 S S	
			水平方向設計震度	鉛直方向設計震度
制御建屋	$\begin{gathered} \text { 0.P. 29. } 150 \\ \left(0 . \text { P. } 22.950^{* 2}\right) \end{gathered}$	2.0	$\mathrm{C}_{\mathrm{H} 1}=4.05$	$\mathrm{C}_{\mathrm{V} 1}=2.29$

注記 $~ 2 ~: ~$ 基準床レベルを示す。
（2）天井照明下部
天井照明下部に用いる設計用地震力を表 4－11 及び表 4－12 に示す。格子状鋼製フレーム より下部の天井照明は取付位置における床応答曲線の最大応答加速度を評価用加速度とし て耐震評価を行う。

表 4－11 設計用地震力（設計基準対象施設）

建物•構築物	据付場所及び 床面高さ（m）	減衰定数（\％）	基準地震動 S S	
			水平方向設計震度	鉛直方向設計震度
制御建屋	$\begin{gathered} \text { 0.P.29.150 } \\ \left(0 . \text { P. } 22.950^{* 1}\right) \end{gathered}$	2.0	$\mathrm{C}_{\mathrm{H} 2}=26.12$	$\mathrm{C}_{\mathrm{V} 2}=14.87$

注記＊1：基準床レベルを示す。

表 4－12 設計用地震力（重大事故等対処設備）

建物•構築物	据付場所及び 床面高さ（m）	減衰定数（\％）	基準地震動 S S	
			水平方向設計震度	鉛直方向設計震度
制御建屋	$\begin{gathered} \text { 0.P. 29. } 150 \\ \left(0 . \text { P. } 22.950^{* 2}\right) \end{gathered}$	2.0	$\mathrm{C}_{\mathrm{H} 2}=26.12$	$\mathrm{C}_{\mathrm{V} 2}=14.87$

注記 2 2：基準床レベルを示す。
4.6 計算方法

S 規準に基づき，吊材及び下地鉄骨の断面に生じる軸力及び曲げモーメント並びにせん断応力が短期許容応力度に基づく許容値を超えないことを確認する。

[^0]（3）曲げモーメントに対する断面の評価方法
曲げモーメントが生じる部村は，座屈長を考慮し，部材に生じる最大曲げ応力度が終局強度に基づく曲げ応力度を超えないことを確認する。曲げ応力は，面内方向及び面外方向 ともに考慮する。
$$
\frac{\sigma_{\mathrm{bx}}}{\mathrm{f}_{\mathrm{bx}}}+\frac{\sigma_{\mathrm{by}}}{\mathrm{f}_{\mathrm{by}}} \leqq 1
$$

ここで，
$\sigma_{b X}, \sigma_{b Y}: ~ X ~$ 軸まわり及び Y 軸まわりの曲げ応力度（ $\left.=\mathrm{M} / \mathrm{Z}\right)\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Z：断面係数 $\left(\mathrm{mm}^{3}\right)$
$\mathrm{f}_{\mathrm{bx}}, \mathrm{f}_{\mathrm{br}}: \mathrm{X}$ 軸まわり及び Y 軸まわりの許容曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（4）曲げモーメント及びせん断応力の組合せ評価方法
曲げモーメント及びせん断応力が生じる部材は，部材に生じる組合せ応力度が許容引張
$\frac{\sqrt{\left(\sigma_{b x}+\sigma_{b r}\right)^{2}+3 \cdot \tau^{2}}}{\mathrm{f}_{\mathrm{t}}} \leqq 1$
ここで，
τ ：せん断応力度 $(=Q / \mathrm{As})\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：せん断応力（ N ）
As：せん断断面積（ mm^{2} ）
（5）引張応力，曲げモーメント及びせん断応力の組合せ評価方法
引張応力，曲げモーメント及びせん断応力が生じる部材は，座屈長を考慮し，部材に生 じる組合せ応力度が許容引張応力度を超えないことを確認する。曲げ応力は，面内方向及 び面外方向ともに考慮する。

$$
\frac{\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{bx}}+\sigma_{\mathrm{bY}}\right)^{2+3} \cdot \tau^{2}}}{\mathrm{f}_{\mathrm{t}}} \leqq 1
$$

4．7 計算条件

応力解析に用いる自重は，以下の表 4－13に示す。また，荷重条件は，常時と地震時増分を考慮した。常時は鉛直下方に重力加速度を作用させた状態とした。

項目	単位体積質量 及び 単位質量	設置数	重量 $[\mathrm{N}]$	備考

4．8 応力の評価

4． 6 項で求めた各応力度が下表に示す許容引張応力度 f_{t} ，許容曲げ応力度 f_{b} ，許容せん断応力度 $f s$ 又は許容圧縮応力度 f_{c} 以下であること。

	基準地震動 S s による荷重との組合せの場合
許容引張応力度 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$
許容曲げ応力度 f_{b}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$
許容せん断応力度 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容圧縮応力度 f_{c}	

5．評価結果
5.1 設計基準対象施設としての評価結果

中央制御室天井照明の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の【天井照明上部の耐震性についての計算結果】及び【天井照明下部の耐震性についての計算結果】に示す。
5.2 重大事故等対処設備としての評価結果

重大事故等対処設備としての荷重の組合せ及び許容応力は，設計基準対象施設としての荷重 の組合せ及び許容応力と同様であるため，記載を省略する。

$$
\mathrm{O} 2 \text { (3) VI-2-11-2-7 } \quad \text { R } 1
$$

【天井照明上部の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震設計上の重要度分類	据付場所及び 床面高さ（m）	固有周期（s）		基準地震動 S s	
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度
天井照明上部	C	$\begin{gathered} \text { 0. P. 29. } 150 \\ \left(0 . \mathrm{P} .22 .950^{*}\right) \end{gathered}$	0.042	0.042	$\mathrm{C}_{\mathrm{H} 1}=4.05$	$\mathrm{C}_{\mathrm{V} 1}=2.29$

注記 $~: ~$ 基準床レベルを示す。

O 2 （3）VI－2－11－2－7 R 1

1．2 評価結果

項目	断面の評価結果			備考
ブレース材 （垂直補強）	応力度	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	23.0	
	許容応力度	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	75.5	細長比を考慮
	検定値	$\sigma_{\mathrm{c}} / \mathrm{f} \mathrm{f}_{\mathrm{c}}$	0.31	
ブレース材 （斜め補強）	応力度	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	29.8	
	許容応力度	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	58.9	
	検定値	$\sigma_{\mathrm{c}} / \mathrm{f} \mathrm{f}_{\mathrm{c}}$	0.51	
格子状鋼製フレーム	応力度	$\sigma_{b x}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	10.1	
		$\sigma_{\text {br }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	84.4	
		$\sigma_{t}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	2． 36	
		$\tau \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	20.7	
	許容応力度	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	235	
	検定値	$\frac{\sqrt{\left(\sigma_{t}+\sigma_{b x}+\sigma_{b y}\right)^{2}+3 \cdot \tau^{2}}}{f_{\mathrm{t}}}$	0． 44	
吊りボルト	応力度	$\sigma_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	7.24	
	許容応力度	$\mathrm{f}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	19.5	細長比を考慮
	検定値	$\sigma_{c} / \mathrm{f}_{\mathrm{c}}$	0.38	

O 2 （3）VI－2－11－2－7 R 1

【天井照明下部の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震設計上の重要度分類	据付場所及び 床面高さ（m）	基準地震動 S s	
			水平方向設計震度	鉛直方向設計震度
天井照明下部	C	$\begin{gathered} \text { 0.P. 29. 150 } \\ \text { (0.P. 22. } 950^{*} \text {) } \end{gathered}$	$\mathrm{C}_{\mathrm{H} 2}=26.12$	$\mathrm{C}_{\mathrm{V} 2}=14.87$

注記＊：基準床レベルを示す。
1．2 評価結果

項目	断面の評価結果			備考
レースウェイ	応力度	$\sigma_{\text {bx }}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	46.3	
		σ by（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	124	
		$\tau \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	17.4	
	許容応力度	$\mathrm{f}_{\mathrm{bx}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	205	
		$\mathrm{f}_{\mathrm{by}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	192	
		$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	205	
	検定値	$\frac{\sigma_{b x}}{f_{b x}}+\frac{\sigma_{b y}}{f_{b y}}$	0.87	
		$\underline{\sqrt{\left(\sigma_{b x}+\sigma_{b r}\right)^{2}+3 \cdot \tau^{2}}}$	0． 85	
		f_{t}		
吊りボルト （照明支持材）	応力度	$\sigma_{t}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	12.9	
	許容応力度	$\mathrm{f}_{\mathrm{t}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	205	
	検定値	$\sigma_{\mathrm{t}} / \mathrm{f}_{\mathrm{t}}$	0.07	

（2）排煙ダクトの耐震性についての計算書

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」にて設定している耐震評価方針に基づき，下位クラス設備である排煙ダクトが設計用地震力に対して十分な構造強度を有していることを確認することで，下部に設置された上位クラス施設である原子炉制御盤，原子炉補機制御盤等に対して，波及的影響を及ぼさないことを説明す るものである。

2．一般事項
2.1 構造計画

排煙ダクトの構造計画を表 2－1 に示す。

2.2 評価方針

排煙ダクト及びその支持構造物は適切な剛性を有するとともに，許容座屈曲げモーメントを満足する支持間隔とすることにより耐震性を確保する。
支持間隔の算定は，ダクトの固有振動数（fd）が十分剛（ 20 Hz 以上）となるよう算定する手法とダクトの固有振動数に応じた地震力で算定する手法が有り，このらち前者を手法 1 ，後者 を手法 2 と呼び，この 2 つの手法を用いて支持間隔を決定する。以上 2 つの手法による支持点間隔設定手順を図 2－1 に示す。こうして定められた手法 1 の支持間隔以内で支持することによ り耐震性を確保する。配置状況により手法 1 の支持点間隔に収まらない場合は，手法 2 の支持間隔以内で支持することにより耐震性を確保する。直管部，曲管部，重量物の取付部の支持間隔に対する方針を以下に示す。
（1）直管部
直管部は，図 2－1 で求まる支持間隔以下で支持するものとする。また，直管部が長い箇所 には軸方向を拘束する支持構造物を設ける。
（2）曲管部
曲管部は，直管部に比べ剛性及び強度が低下するが，図 2－1 で求まる支持間隔は，曲管部 の縮小率を包絡する支持間隔としている。そのため，曲管部も，図 2－1 で求まる支持間隔以下で支持する。
（3）重量物の取付部
ダクトに自動ダンパ，弁等の重量物が取り付く場合は，重量物自体又は近傍を支持するも のとする。なお，近傍を支持する場合においては，図 2－1 で求まる支持間隔と，当該重量物 を考慮した支持間隔を用いて，支持点を設計する。

2.3 適用基準

適用基準を以下に示す。

- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
- J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）
- J I S G 3 3 0 2－2019 溶融亜鉛めつき鋼板及び鋼帯
- J I S G 3 3 2 1－2019 溶融 55 \％アルミニウム一亜鉛合金めつき鋼板及び鋼帯

2． 4 記号の説明

記 号	記 号 の 説 明	単 位
f	固有振動数	Hz
π	円周率	－
l	両端単純支持間隔	mm
E	縦弾性係数	$\mathrm{N} / \mathrm{mm}^{2}$
g	重力加速度	$\mathrm{mm} / \mathrm{s}^{2}$
I	断面二次モーメント	mm^{4}
W	ダクト単位長さ重量	N / mm
β	断面二次モーメントの安全係数＊ （	－
a	ダクト長辺寸法	mm
b	ダクト短辺寸法	mm
ae	ダクトフランジの有効幅	mm
be	ダクトウェブの有効幅	mm
t	ダクト板厚	mm
a／b	アスペクト比	－
M_{0}	発生曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
α	設計震度	－－－－－－－
M	許容座屈曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
S	座屈曲げモーメントの安全係数（＝$\square^{(1)}$	－
$\mathrm{M}_{\text {T }}$	座屈限界曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
λ	座屈限界曲げモーメントの補正係数＊	－
v	ポアソン比（＝0．3）	－－－－－－－－－
σ y	降伏点	$\mathrm{N} / \mathrm{mm}^{2}$
γ	座屈限界曲げモーメントの安全係数＊（＝	－

注記＊：出典 共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関する研究」より，理論値と実験値の比率から定まる近似曲線を用いる。
2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

注記＊ 1 ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ダクトの耐震評価は「5．1構造強度評価方法」に示す条件に基づき，ダクトについて評価を実施する。

4．固有振動数
4．1 固有振動数の計算方法
（1）計算モデル
ダクト系は，図 4－1 に示す両端を支持構造物で支持された両端単純支持はりにモデル化す る。

図 4－1 両端単純支持はり
（2）固有振動数
両端単純支持された矩形ダクトの固有振動数は，次式で与えられる。算出に用いる矩形ダク トの断面図を図 4－2 に示す。

$$
\begin{equation*}
\mathrm{f}=\frac{\pi}{2 \cdot \ell^{2}} \cdot \sqrt{\frac{\mathrm{E} \cdot \mathrm{I} \cdot \mathrm{~g}}{\mathrm{~W}}} \tag{4.1}
\end{equation*}
$$

（4．1）及び（4．2）式は共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関する研究」による。

図 4－2 矩形ダクトの断面図

5．構造強度評価

5.1 構造強度評価方法

矩形ダクトの座屈評価を示す。地震時，両端単純支持された矩形ダクトに生じる曲げモーメ ントは次式で与えられる。

$$
\begin{equation*}
\mathrm{M}_{0}=\frac{\alpha \cdot \mathrm{W} \cdot \ell^{2}}{8} \tag{5.1}
\end{equation*}
$$

ここで，矩形ダクトの座屈による大変形を防ぐために矩形ダクトに生じる曲げモーメントが許容座屈曲げモーメント以下となるようにする。
$\mathrm{M}_{0} \leqq \mathrm{M}$
（5．1），（5．2）式より許容座屈曲げモーメントから定まる支持間隔は次式で与えられる。
$1=\sqrt{\frac{8 \cdot \mathrm{M}}{\mathrm{W} \cdot \alpha}}$

ここで，
$\mathrm{M}=\mathrm{S} \cdot \mathrm{M}_{\mathrm{T}}$

（5．2）から（5．6）式は共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関す る研究」による。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
ダクトの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるもの を表 5－1 に，重大事故等対処設備の評価に用いるものを表5－2に示す。

5．2．2 許容限界
ダクトの許容限界を表 5－3 及び表 5－4に示す。

5．2．3 使用材料の許容応力評価条件
ダクトの許容応力のうち設計基準対象施設の評価に用いるものを表 5－5 に，重大事故等対処設備の評価に用いるものを表5－6に示す。
表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| 施設区分 | | 機器名称 | 耐震設計上の
 重要度分類 | 機器等の区分 | 荷重の組合せ |
| :---: | :---: | :---: | :---: | :---: | :---: | 許容応力状態

注記＊1：クラス4管の荷重の組合せ及び許容応力状態適用する。
表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
その他	その他	排煙ダクト	－	－	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}{ }^{* 2}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { とし } \\ \text { て } \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \text { の許 } \end{gathered}$ 容限界を用い る。)

注記 $* 2: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」は「 $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。
I \＆L－Z－II－Z－IA（8）\quad O
表 5－3 許容限界（クラス 4 管）

許容応力状態	許容限界
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	地震時の加速度に対し機能が保たれるようサポートのスパン長を最大許容ピッチ以下に確保すること。 （最大許容ピッチは式（5．3）から（5．6）に基づき座屈限界曲げモーメントより算出する。）

表 5－4 許容限界（重大事故等クラス 2 管（クラス 4 管））

許容応力状態	
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	許容限界
地震時の加速度に対し機能が保たれるようサポートのスパン長を最大許容ピッチ以下に確保すること。	
（最大許容ピッチは式（5．3）から（5．6）に基づき座屈限界曲げモーメントより算出する。）	

I y $L-Z-I I-Z-I \Lambda$（\＆）$Z O$

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
ダクト	SGCC	最高使用温度	50	－	184	－	－

注記 $~ 1 ~ 1 ~: ~$ 常温値から 10% 減した値とする。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 2} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
ダクト	SGCC	最高使用温度	50	－	184	－	－

注記 $~ 2 ~: ~$ 常温値から 10% 減した値とする。

5.3 設計用地震力

本計算書において評価に用いる静的震度及び基準地震動 S s による地震力は添付書類「VI－ 2－1－7 設計用床応答曲線の作成方針」に基づく。計算に考慮する設備評価用床応答曲線，及び添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を表5－7に示す。

表 5－7 計算に考慮する設備評価用床応答曲線

建物•構築物	据付場所及び 床面高さ（m）	減衰定数（\％）	基準地震動 S s	
			水平方向	鉛直方向
			設計震度	設計震度
制御建屋	$\begin{gathered} \text { 0.P. 29. } 150 \\ (0 . \text { P. } 22.950 * 1) \end{gathered}$	2.5	4.05	2． 29

注記 $~ 1 ~ 1 ~: ~$ 基準床レベルを示す。

6．評価結果
6.1 設計基準対象施設としての評価結果

中央制御室換気系ダクトの耐震支持間隔は，「2．2 評価方針」に示す手法1又は手法2から定めており，設計基準対象施設としての各手法による支持間隔を表 6－1 に示す。この支持間隔以内で支持することにより，耐震性を確保する。

表 6－1 中央制御室換気系ダクトの耐震支持間隔（設計基準対象施設としての評価結果）

$\begin{aligned} & \text { ダクト } \\ & \text { 種別*² } \end{aligned}$	ダクト		板厚	手法1 より定まる支持間隔	手法2 より定まる支持間隔＊${ }^{3}$
	長辺	短辺		（fd $\geqq 20 \mathrm{~Hz}$ ）	$(\mathrm{fd}<20 \mathrm{~Hz}$ ）
亜鉛鉄板 はぜ折り型角ダクト	400	300	0.8		
	700	450	1.0		
	750	500	1.0		
	1000	500	1． 0		
	1100	700	1.0		

注記＊2：すべて保温材有り。
＊3：算定した支持間隔が 20 Hz 以上の場合は，＂一＂とする。

6．2 重大事故等対処設備としての評価結果
重大事故等対処設備としての各手法による支持間隔は，設計基準対象施設としての支持間隔 と同様であるため，記載を省略する。

7．支持構造物設計の基本方針

7.1 支持構造物の構造及び種類

支持構造物は，形鋼を組み合わせた溶接構造を原則とし，その用途に応じて以下に大別する。
（1）ダクト軸直角の 2 方向を拘束するもの
（2）ダクト軸方向及び軸直角の 3 方向を拘束するもの
図 7－1～図7－3に支持構造物の代表例を示す。
$\leqslant a$

図 7－1 2 方向（軸直角方向）拘束の代表例

$b-b$ 矢視
$\leqslant b$
$\leqslant c$

$\underline{C-c \text { 矢視 }}$
$k<c$
星

図 7－2 3 方向（軸方向及び軸直角方向）拘束の代表例

$$
e-e \text { 矢視 }
$$

図 7－3 垂直ダクトの支持の代表例

7.2 支持構造物の耐震性確認

各支持構造物を，型式（R2，R 3 ）ごとに分類し，そのうち型式ごとに最大の発生応力と なる支持構造物を代表として，その耐震性の確認結果を表 7－1 に示す。

耐震性の確認には，解析コード「MSC NASTRAN」を使用する。なお，評価に用いる解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5－40 計算機プログラム（解析コ ード）の概要•MSC NASTRAN」に示す。

表 7－1 ダクト支持構造物の耐震性確認結果

構造物	型式＊	許容応力 状態	設計 温度	発生応力 (MPa)	許容応力 (MPa)
支持架構	R 2	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$50^{\circ} \mathrm{C}$	235	275
	R 3	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$50^{\circ} \mathrm{C}$	50	275

注記＊：「 R 2 」はダクト軸直角の 2 方向を拘束するもの，「R 3」はダクト軸方向及び軸直角の 3 方向を拘束するものを示す。

[^0]: （1）圧縮応力に対する断面の評価方法
 圧縮応力が生じる部材は，座屈を考慮し，部材に生じる圧縮応力度が許容圧縮応力度を超えないことを確認する。
 $\frac{\sigma_{c}}{f_{c}} \leqq 1$
 ここで，
 σ_{c} ：圧縮応力度 $(=\mathrm{N} / \mathrm{A})\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
 N ：圧縮応力（ N ）
 A ：全断面積 $\left(\mathrm{mm}^{2}\right)$
 f_{c} ：許容圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
 （2）引張応力に対する断面の評価方法
 引張応力が生じる部材は，部材に生じる引張応力度が許容引張応力度を超えないことを確認する。

 $$
 \frac{\sigma_{\mathrm{t}}}{\mathrm{f}_{\mathrm{t}}} \leqq 1
 $$

 ここで，
 σ_{t} ：引張応力度 $(=\mathrm{T} / \mathrm{A})\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
 T ：引張応力（ N ）
 A：断面積 $\left(\mathrm{mm}^{2}\right)$
 f_{t} ：許容引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

