女川原子力発	工事計画審査資料
資料番号	02－他 F－19－0009＿改 2
提出年月日	2021年4月8日

地下水位低下設備に係る設置変更許可申請書の記載内容との比較表

2021年4月

東北電力株式会社

設置変更許可	工事計画認可	資料番号他
本文の記載内容 五．発電用原子炉及びその附属施設の位置，構造及び設備 口 発電用原子炉施設の一般構造 （1）耐震構造 （i）設計基準対象施設の耐震設計 g．設計基準対象施設は，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （ii）重大事故等対処施設の耐震設計 i．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設は，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するお それがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮 した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備 の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	2 耐震設計の基本方針 2.1 基本方針 （10）設計基準対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持 する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	$\mathrm{VI}-2-1-1$ 耐震設計の基本方針 －記載表現の相違 （実質的な相違なし）

工事計画認可

2．設計基準対象施設の耐震重要度分類

2． 1 耐震設計上の重要度分類
（3）C クラスの施設
S クラスに属する施設及びB クラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設

					第蒵				
cosx			c	－	－		${ }^{\text {c }}$		
			$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \end{aligned}$	－	－		c		$\begin{aligned} & \mathrm{S}_{80} \\ & \mathrm{sec}_{0} \\ & \mathrm{sec}_{0} \end{aligned}$
			$\begin{aligned} & \mathrm{c} \\ & \hline \end{aligned}$	－	－		${ }^{\text {c．}}$		$\begin{aligned} & \mathrm{sec}_{c} \\ & \mathrm{sec}_{0} \\ & \mathrm{sec}_{c} \\ & \mathrm{sec}^{2} \end{aligned}$
			$\begin{gathered} \mathrm{c} \\ \text { ini } \end{gathered}$		\bar{c}		\bar{c}		$\begin{aligned} & \text { ss } \\ & \text { si } \\ & \text { sis } \end{aligned}$

（注 1 1 ）Cクラスではあるが，基準地震動 S s に対し機能維持することを確認 する。

1．4．1．3 地震力の算定方法
（2）動的地震力
b ．地震応答解析
（a）動的解析法
i．建物•構築物
建物•構築物の動的解析において，地震時における地盤の有効応力の変化に伴う影響を考慮する場合には，有効応力解析等を実施する。有効応力解析に用いる液状化強度特性は，敷地の原地盤における代表性及び網羅性を踏まえた上で保守性 を考慮して設定する。

表 2－1 設計基準対象施設の耐震重要度分類表（6／6）

		F F9，							
				通澵目	霛霛				
くクラス			\bar{c}	－	－		c		
			$\begin{aligned} & c \\ & c \\ & c \\ & \hline \end{aligned}$				${ }^{\text {c }}$		
		 － 䦗 ．夕㐄bro －Hime $\cdot-$ ㄴont		${ }_{-}^{-}$	－		${ }^{\text {c }}$		$\begin{aligned} & \mathrm{s}_{c} \\ & \mathrm{~s}_{c} \\ & \mathrm{~s}_{c} \\ & \mathrm{~s}_{c} \end{aligned}$
		－ －	${ }^{\text {cm }}$		${ }^{\text {c］I }}$	－	${ }^{\text {ch }}$		$\begin{aligned} & \mathbf{S s}_{8} \\ & \mathrm{ss} \\ & \mathrm{~s} \end{aligned}$

＊11：Cクラスではあるが，基準地震動 S s に対し機能維持することを確認する。

3．地盤の解析用物性値

3.2 設置変更許可申請書に記載されていない解析用物性値

3．2．1 有効応力解析に用いる解析用物性値
建物•構築物及び土木構造物の評価においては，地下水位低下設備を考慮の上設定した地下水位及び液状化検討対象層の分布状況を踏まえて，液状化影響の検討の必要性を判断する。液状化影響の検討の結果，有効応力解析が保守的な結果となると判断された場合において，有効応力解析 を実施する。

地盤の液状化強度特性は，代表性及び網羅性を踏まえた上で保守性を考慮し，敷地全体の液状化強度試験から得られる液状化強度特性を保守的に下限値とする。

資料番号他
VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針
記載表現の相違
（実質的な相違なし）

VI－2－1－3 地盤の支持性能に係る基本方針

記載表現の相違

（設置変更許可段階で示した方針をより詳細に記述したも のであり，実質的な相違はな い。）
詳細設計を踏まえ具体化した事項
（設置変更許可段階で示した方針に基づき，詳細設計に用い る物性値を具体化）

設置変更許可	工事計画認可	資料番号他
1．4．2重大事故等対処施設の耐震設計 1．4．2．1 重大事故等対処施設の耐震設計の基本方針	2 耐震設計の基本方針 2.1 基本方針	VI－2－1－1 耐震設計の基本方針
（12）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，防潮堤下部 の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定 の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧 の影響を考慮する。地下水位低下設備の効果が及ばない範囲におい ては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （13）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が Sクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処 するために必要な機能が損なわれるおそれがないように設計する。	（10）設計基淮対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持 する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （11）耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置さ れる重大事故等対処施設は，液状化，揺すり込み沈下等の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれるおそれがないように設計する。	－記載表現の相違 （実質的な相違なし）
1．4．2．3 地震力の算定方法 （2）動的地震力 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S ク ラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設について，「1．4．1．3 地震力の算定方法」の「（2）動的地震力」に示す入力地震動を用いた地震応答解析による地震力を適用する。	4．設計用地震力 4． 1 地震力の算定法 （2）動的地震力 重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置 される重大事故等対処施設については，基準地震動 S s による地震力を適用す る。	VI－2－1－1 耐震設計の基本方針 －記載表現の相違 （設置変更許可段階で示した方針をより詳細に記述したも のであり，実質的な相違はな い。）

赤字：詳細設計を踏まえ具体化した事項緑字：記載表現の相違（実質的な相違なし）		
設置変更許可	工事計画認可	資料番号他
第三十九条（地震による損傷の防止） 適合のための設計方針 第1項について II．設計方針	2 耐震設計の基本方針 2.1 基本方針	VI－2－1－1 耐震設計の基本方針
常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲 に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲にお いては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定 し水圧の影響を考慮する。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するために必要な機能が損なわれるおそれがないように設計す る。	（10）設計基準対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準挔張）又は常設重大事故緩和設備（設計基準扩張）が設置される重大事故等対処施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持 する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。 （11）耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設は，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれるおそれがない ように設計する。	－記載表現の相違 （実質的な相違なし）

3.3 屋外アクセスルートの評価方法及び結果

3．3．3 液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴う浮上り

事故等対処設備が
使用される条件の下における健全性
（1）地中埋設構造物と埋戻部との境界部
b．地下水位の設定
評価に用いる地下水位を図3．3．3－3に示す。
添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，地下水位低下設備の機能を考慮した浸透流解析により算出した地下水位分布を用 いて評価に用いる地下水位を設定するエリア（0．P．14．8m 盤）については，地下水位分布を包絡するように保守的に設定することとし，地下水位を 0．P．5．0m，0．P．10．0m，0．P．14．8m の 3 エリアに分けて設定する。
防潮堤より海側（0．P． 3.5 m 盤）については，朔望平均満潮位である
0．P．2．43mとする。
上記以外の箇所については，保守的に地下水位を地表面に設定する。

図 3．3．3－3 評価に用いる地下水位

設置変更許可

第 I 編 地下水位低下設備の要求機能及び地下水位の設定方針

2．設計用地下水位の設定方針

2.1 基本的な考え方

施設の設計の前提が確保されるよう地下水位を一定の範囲に保持する地下水位低下設備の機能を考慮した設計用地下水位を設定し水圧の影響を考慮するととも に，耐震重要施設及び常設重大事故等対処施設は，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，当該施設の機能が損なわれるおそれがな いように設計する方針とする。

地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定 した水位又は地表面にて設計用地下水位を設定し同様に水圧の影響を考慮すると ともに，耐震重要施設及び常設重大事故等対処施設は，液状化，揺すり込み沈下等 の周辺地盤の変状を考慮した場合においても，当該施設の機能が損なわれるおそれ がないように設計する方針とする。

地下水位低下設備の機能を考慮し，施設の設計用地下水位を設定するに当たって は，地形等を適切にモデル化した浸透流解析を実施することとし，保守性を確保す る方針とする。
解析の保守性については，解析に用いるパラメータや境界条件の保守的な設定の他，地下水位低下設備を信頼性が確保された範囲 ${ }^{* 2}$ に限定し考慮することにより確保する。

工事計画認可
資料番号他

2 耐震設計の基本方針

2.1 基本方針
（10）設計基準対象施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備 （設計基準拡張）が設置される重大事故等対処施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲におい ては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的 に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮 する。
（11）耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置さ れる重大事故等対処施設は，液状化，揺すり込み沈下等の周辺地盤の変状 を考慮した場合においても，その安全機能が損なわれるおそれがないよう に設計する。

3．3． 2 耐震評価における設計用地下水位設定方針

（1）設計用地下水位の設定方釷

詳細設計段階においては，液状化検討対象施設を幅広く抽出する観点から，設

（3）モデル化方針の託宣

f．予測解析

予測解析においては揚圧力•地下水位が高めに算出されるよう，解析領域を対象施設近傍の 0．P．+14.8 m 盤周辺領域とし，山側を解析境界の地表面（法肩） に，海側をH．W．L．に水位固定した定常解析を行う。

造成形状や構造物は安全対策工事完了段階に対応したモデル化を行い，ドレ
ーンは既設•新設のうち信頼性が確保された範囲に限定する。
透水係数は，解析の再現性（観測水位への追従性）が確保される範囲で小さ （水位が高めに俩俉されるよら）設宣する

記載表現の相違
（実質的な相違なし）

補足－600－1 地盤の支持性能

 について記載表現の相違
（工事計画認可では，水位が高
い場合が必ずしも保守的と
ならない可能性も考慮し，水位を高く設定する目的を「保守性確保」から「液状化影響検討施設を幅広く抽出する ため」に修正）
－解析の保守性確保の考え方け設置変更許可より変更なく，記載を具体化

浸透流解析を用いた設計用地下水位の設定フローを別紙 18－3 図に示す。

別紙 18－3 図の各プロセスにおける検討方針を以下に示す。なお，各審査段階に おける提示内容を添付資料3に示す。
（A）～（B）水位評価用モデル作成•再現解析による検証
－解析モデル・境界条件について建設時工認を参照し設定した上で，観測記録 との比較等によりモデル全体としての保守性の確認を行う。
（C）地下水位が上昇した場合の影響確認
－防潮堤沈下対策による地下水流動場の変化を考慮した水位評価用モデルにお いて地下水位低下設備による地下水位を一定の範囲に保持する機能が期待で きない場合の地下水位を算定する。
－この算定結果も踏まえ，耐震評価において地下水位の影響を受ける可能性の ある施設等を網羅的に抽出する。
－抽出した施設等について，地下水位の上昇により生じる影響の時系列的な変化を整理し，この影響を低減するための施設ごとの対応方針を定めた上で地下水位低下設備の信頼性を図る方針とする。

詳細設計を踏まえ具体化した事項
（工事計画認可では，標準的な フローを参考に構成を見直 し，（A）～（F）の要素を再構成。なお，工事計画認可では「水位が低い場合の影響検討」を追加しているが，基本的な解析プロセスに変更は ない。）

| （D）地下水位低下設備の考慮 |
| :---: | :---: |
| •浸透淔解析における変更許可 |
| 算定冬件として 地下水位低下設借は地設周辺における |

－浸透流解析における算定条件として，地下水位低下設備は施設周辺における地下水位の保持に寄与し信頼性が確保できる範囲を有効なものとして設定す る。
（E）設計用地下水位の設定
－工事計画認可段階で $(\mathrm{A}) \sim(\mathrm{D})$ に基づく予測解析を実施し，地下水位を一定の範囲に保持する地下水位低下設備の機能を考慮した設計用地下水位を設定す る。
（F）観測による検証
－防潮堤沈下対策前後の地下水位観測データを取得し，（E）にて定める設計用地下水位の検証を行う。

設計用地下水位の設定に当たつては，（1）③）に示すとおり，建設時工認段階の地
下水位設定（二次元浸透流解析）において適用した保守性確保方針（解析に用いる パラメータや境界条件の保守的な設定，（1）と（3）の他，さらに地下水位低下設備を信頼性が確保された範囲に限定し考慮する（2）ことにより保守性を確保する方針 とする。
（1）地盤の透水性
建設時工認の透水係数を基本とし地下水位を高めに評価するよう保守的に設定する。
（2）ドレーンの有效範囲
信頼性が確保されたドレーンのみ管路として考慮する。施設に対するドレー ンの配置から期待範囲を設定し，信頼性の確保に係る3つの観点（耐久性，耐震性，保守管理性）を満たす範囲を抽出した上で，地下水位低下設備の重要安全施設への影響に鑑み，安全機能の重要度分類を踏まえ講ずる設計上の配慮として，多重性及び独立性を確保できる範囲のみ有効範囲として設定す る。
（3）境界条件
解析境界の地表面に水位固定する（別紙 18－4 図，建設時工認と同様）。

2． 4 地下水位が上昇した場合の影響確認
（1）耐震評価において地下水位の影響を受ける可能性のある施設等の抽出

耐震評価において地下水位の影響を受ける可能性のある施設等の抽出結果を別紙 18－11 図及び別紙 18－3 表に示す。

3．3．2 耐震評価における設計用地下水位設定方針

（1）設計用地下水位の設定方金

詳細設計段階においては，液状化検討対象施設を幅広く抽出する観点から，岱

置変更許可段階と同様，高めの設計用地下水位を設定する方針とする。

（3）モデル化方針の設定

f．予測解析

予測解析においては揚圧力•地下水位が高めに算出されるよう，解析領域を対象施設近傍の 0. P．+14.8 m 盤周辺領域とし，山側を解析境界の地表面（法肩）

に，海側を H．W．L．に水位固定した定常解析を行う。

造成形状や構造物は安全対策工事完了段階に対応したモデル化を行し

```ドレ
```

ーンは既設•新設のうち信頼性が確保された範囲に限定する。
透水係数は，解析の再現性（観測水位への追従性）が確保される範囲で小さ ＜（水位が高めに評価されるよう）設定する。

補足－600－1 地盤の支持性能 について
－記載表現の相違
（工事計画認可では，水位が高 い場合が必ずしも保守的と ならない可能性も考慮し，水位を高く設定する目的を「保守性確保」から「液状化影響検討施設を幅広く抽出する ため」に修正）

別紙 18－3 表 耐震評価において地下水位の影響を受ける可能性のある施設等の抽出結果

施設等		備 考
基礎地盤•周辺斜面	基礎地盤	
	周辺斜面	対象となる周辺斜面はなし
建物•構築物 ${ }^{\text {\％}}$	原子炉建屋	
	制御建屋	
	3 号炬海水熱交換器建屋	
	排気筒	
	緊急時対策建屋	0．P．+62 m 盤に設置
	緊急用電気品建屋	0．P．+62 m 盤に設置
土木構造物•津波防護施設•浸水防止設備	防潮堤	
	防潮壁	
	海水ポンプ室	
	原子炉機器泠却海水配管ダクト	
	取水路	
	軽油タンク室	
	軽油タンク室（H）	
	復水貯蔵タンク基麾	
	軽油タンク連絡ダクト	
	排気筒連絡ダクト	
	3 号炉海水ポンプ室	
	取放水路流路縮小工	
	ガスタービン発電設備軽油タンク室	0．P．+62 m 盤に設置
	貫通部止水処置	
	3 号炬補機冷却海水系放水ピット	
	揚水井戸（ 3 号炬海水ポンプ室防潮壁区画内）	浸水防止䒸の間接支持構造物
$\begin{aligned} & \text { 保管場所• } \\ & \text { アクセスルート } \end{aligned}$	保管場所	0．P．+14.8 m 盤
	アクセスルート	0．P．+14.8 m 盤
	保管場所・アクセスルート	0．P．+62 m 盤に設置
	保管場所・アクセスルートにおいて評価する斜面	

表 3－2 耐震評価において地下水位の影響を受ける可能性のある施設等

施設等		備 考
基硠地盤•周辺斜面	基礎地盤	
	周辺斜面	対象となる周辺斜面なし
建物•構築物＊${ }^{\text {P }}$	原子炉建屋	
	制御建屋	
	第3号機海水熱交換器建屋	
	排気筒	
	緊急時対策建屋	0．P．+62 m 盤
	緊急用電気品建屋	0．P．+62 m 盤
土木構造物• 津波防護施設• 浸水防止設備	防潮堤	
	防潮壁	
	海水ポンプ室	
	原子炬機器冷却海水配管ダクト	
	取水路	
	軽油タンク室	
	軽油タンク室（H）	
	復水貯蔵タンク基䂾	
	軽油タンク連絡ダクト	
	排気筒連絡ダクト	
	第3号機海水ポンプ室	
	取放水路流路縮小工	
	ガスタービン発電設備軽油タンク室	0．P．+62 m 盤
	第3号機補機冷却海水系放水ピット	
	揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）	浸水防止蓋の間接支持構造物
$\begin{aligned} & \text { 保管場所• } \\ & \text { アクセスルート } \end{aligned}$	保管場所	0．P．+14.8 m 盤
	アクセスルート	0．P．+14.8 m 盤
	保管場所・アクセスルート	0．P．+62 m 盤
	保管場所・アクセスルートにおいて評価する斜面	

詳細設計を踏まえ具体化した事項
（工事計画認可では設計にお
いて地下水位の影響を受け
ない貫通部止水処置を記載削除）

別紙 18－12 図 地下水位上昇時に施設に段階的に生じる影響の概念図
b ．地下水位上昇の影響を低減するための対応方針
地下水位上昇の影響を低減するため地下水位を低下させる対策や施設の耐震補強の選択肢が考えられるが，地下水位の上昇による影響が段階的に進むこと を踏まえ，早期に影響が生じる建物•構築物の揚圧力影響の低減に着目し，地下水位を一定の範囲に保持する地下水位低下設備を検討の上，設置することとす る。

液状化影響は，地下水位を一定の範囲に保持する地下水位低下設備の機能を考慮した設計用地下水位を用い評価し，当該施設の機能が損なわれるおそれが ないことを確認する。また，当該施設の機能に影響が及ぶ場合は適切な対策（地盤改良等の耐震補強）を実施する。

工事計画認可	資料番号他
3．3．2 耐震評価における設計用地下水位設定方針 （3）モデル化方針の設定	補足－600－1 地盤の支持性能 について

g．地下水位の上昇による影響と着目する指標

（b）地下水位の上昇による影響が生じるまでの時間

二。着目する指標地下水位の上昇に伴う各影響は図 3．3－13 のようにステップ 1 より段階的に生じると整理される。この整理を踏まえ，ドレーン配置の検討にあた っては，建物•構築物へ作用する揚圧力の上昇影響に着目する。

ステップ 1 ：揚圧力［約 25 時間後～］

建物•構築物へ作用する揚圧力の上昇（基礎版の耐震性に影響）

ステップ 2 ：液状化［約 1 カ月後～］
周辺地盤の液状化に伴う施設へ作用する土圧等の変化（躯体の耐震性に影響）

ステップ 3：浮上り［約 2 カ月後～］
周辺地盤の液状化に伴う地下構造物の浮上り（躯体の安定性に影響）
図 3．3－13 地下水位上昇による耐震性への影響
－2．1基本方針（10）（11）～同様の方針を記載

VI－2－1－1 耐震設計の基本方針 －記載表現の相違
（実質的な相違なし）

設置変更許可	工事計画認可	資料番号他
一方，以下の施設は設計用地下水位の設定において地下水位低下設備の機能 に期待しない。 －緊急時対策建屋，緊急用電気品建屋及びガスタービン発電設備軽油タンク室 （いずれも $0 . P .+62 \mathrm{~m}$ 盤で，自然水位（地下水位低下設備の効果が及ばない範囲の地下水位）より保守的に設定した水位又は地表面にて設計用地下水位 を設定） －取放水路流路縮小工 （岩盤内に設置され，地下水位は設計に影響しない） －可搬型重大事故等対処設備保管場所及びアクセスルートにおいて評価する斜面 （自然水位（地下水位低下設備の効果が及ばない範囲の地下水位）より保守的に設定した水位又は地表面にて設計用地下水位を設定） また，アクセスルートについては，c．アクセスルートの機能維持の方針で述べ る。 なお，可搬型重大事故等対処設備保管場所については，支持力のみの要求であ り，岩盤•MMR 上に設置されるため，地下水位の影響は受けない。 以上の対応方針については，工事計画認可段階において浸透流解析の結果を踏 まえ，詳細を提示する。	－緊急時対策建屋，緊急用電気品建屋及びガスタービン発電設備軽油タンク室は，地下水位低下設備の機能に期待しない方針に変更なし（工事計画認可では地表面に設定し評価（表3．3－12 に設計用地下水位を「地表面」と記載）） －取放水路流路縮小工は，地下水位低下設備の機能に期待しない方針に変更なし （工事計画認可では地表面に設定し評価（表 3．3－13に設計用地下水位を「地表面」と記載）） －可搬型重大事故等対処設備保管場所及びアクセスルートにおいて評価する斜面 は，地下水位低下設備の機能に期待しない方針に変更なし（工事計画認可では自然水位より保守的に設定し評価） 参考資料3 地下水位の上昇により生じる施設等への影響評価結果 －表 3－3（3）へ，保管場所の影響評価結果として，設置変更許可と同様，「岩盤• MMR 上に設置されるため地下水位の影響は受けない」旨を記載。	補足－600－1 地盤の支持性能 について －詳細設計を踏まえ具体化した事項 （いずれも地下水位低下設備 の機能に期待しない方針に変更はない。なお，可搬型重大事故等対処設備保管場所及びアクセスルートにおけ る設計用地下水位は「VI－1－ 1－6－別添1 可搬型重大事故等対処設備の保管場所及び アクセスルート」に記載） 補足－600－1 地盤の支持性能 について －記載表現の相違 （実質的な相違なし）
c．アクセスルートの機能維持の方針	3．3．2 地下水位低下設備の機能を考慮しない状態が一定期間継続することを仮定 した評価 地盤の液状化による影響として，地中構造物の浮上りによるアクセスルートの通行性への影響が考えられる。 地盤の液状化によるアクセスルート～の影響については，設置変更許可の方針 （次頁参照）と同様に，通常の運転状態から地下水位低下設備の機能を考慮しな い状態に移行することを仮定し，一定の期間（2 カ月間。外部からの支援が可能 となるまでの一定期間（7 日間）を超え，長期に及ぶ場合を想定し設定）が経過 した後の地下水位を浸透流解析（非定常解析）により評価し，この水位を参照し て地中構造物の浮上りを評価の上，アクセスルートの通行性を確保する設計とし ている。 アクセスルートの評価において参照する予測解析結果を図 3-10 に示す。	補足－600－25－1 地下水位低下 設備の設計方針に係る補足説明資料 －記載表現の相違 （設置変更許可段階の整理を踏まえ，アクセスルートの設計用地下水位は地下水位低下設備の機能喪失が長期間 （約 2 カ月）継続した状態を考慮した浸透流解析に基づ き評価。）

設置変更許可	工事計画認可	資料番号他
	図 $3-10$ アクセスルートの評価において参照する地下水位分布（0．P．，m）	詳細設計を踏まえ具体化した事項（浸透流解析に基づくアウ トプット）
アクセスルートは，地震時の液状化に伴う地下構造物の浮き上がり＊1 の影響 を受けることなく通行性を確保する設計とする。アクセスルートの機能維持に係る配慮事項を別紙 18－4 表及び以下に示す。	＜参考＞設置変更許可におけるアクセスルートの機能維持の方針（まとめ資料） アクセスルートは，地震時の液状化に伴う地下構造物の浮き上がり＊1の影響を受け ることなく通行性を確保する設計とする。アクセスルートの機能維持に係る配慮事項 を下表及び以下に示す。	補足－600－25－1 地下水位低下設備の設計方針に係る補足説明資料
－地下水位低下設備の重要安全施設への影響に鑑み，安全機能の重要度分類を踏まえて講ずる設計上及び機能喪失時の配慮 ${ }^{*} 2$ により，地下水位は一定の範囲に保持される。このことから，地下水位低下設備の機能を考慮した設計用地下水位を設定する区間においては，地震時の液状化に伴う地下構造物の浮き上がりが発生せず，アクセスルートの通行性は確保される。 －また，地下水位低下設備の機能喪失を想定しても，地震時の液状化に伴う地下構造物の浮き上がりに対してアクセスルートの通行性を一定期間確保 する設計 $\begin{gathered} \\ 3\end{gathered}$ ※ 4 よる。 －地下水位低下設備が機能喪失した場合に復旧作業等を行うため，必要な資機材として，可搬型設備及び予備品を確保する。 －地下水位低下設備の機能喪失が外部からの支援が可能となるまでの一定期間を超え長期に及ぶ場合においては，予め整備する手順と体制に従い，外部支援等によりアクセスルートの通行性を確保する。	－地下水位低下設備の重要安全施設への影響に鑑み，安全機能の重要度分類 を踏まえて講ずる設計上及び機能喪失時の配慮＊2により，地下水位は一定 の範囲に保持される。このことから，地下水位低下設備の機能を考慮した設計用地下水位を設定する区間においては，地震時の液状化に伴う地下構造物の浮き上がりが発生せず，アクセスルートの通行性は確保される。 －また，地下水位低下設備の機能喪失を想定しても，地震時の液状化に伴う地下構造物の浮き上がりに対してアクセスルートの通行性を一定期間確保 する設計＊3，＊4とする。 －地下水位低下設備が機能喪失した場合に復旧作業等を行うため，必要な資機材として，可搬型設備及び予備品を確保する。 －地下水位低下設備の機能喪失が外部からの支援が可能となるまでの一定期間を超え長期に及ぶ場合においては，予め整備する手順と体制に従い，外部支援等によりアクセスルートの通行性を確保する。	
※ 1 ：アクセスルートの地下構造物の浮き上がり評価において用いる地下水位は，地下水位低下設備の機能を考慮した水位又は地表面とす る。 ※2：機能喪失時の配慮については，第II編で詳述する。	注記＊ 1 ：アクセスルートの地下構造物の浮き上がり評価において用いる地下水位は，地下水位低下設備の機能を考慮した水位又は地表面と する。 ＊ 2 ：機能喪失時の配慮については，第II編で詳述する。	

設置変更許可				工事計画認可				資料番号他
※ 3 ：地下水位低下設備が機能喪失した場合を想定して，工事計画認可段階で機能喪失に伴う地下水位の上昇程度を評価した上で，地震時の液状化に伴う地下構造物の浮き上がりによるアクセスルートへの影響について評価し，アクセスルートの通行性を一定期間確保する設計とする。この結果，アクセスルートの通行性が一定期間確保で きない場合は，地盤改良等の対策を講ずる。 ※ 4：概略評価で 150 日間程度はアクセスルートの通行性に影響がない見通しを得ているが，外部からの支援が可能となるまでの期間を踏ま え，一定期間として 2 か月程度を確保することを目安に，工認段階 における詳細評価も踏まえて地盤改良等の対策要否を判断する。 別紙 18－4 表 アクセスルートの機能維持に係る配慮事項				＊ 3 ：地下水位低下設備が機能喪失した場合を想定して，工事計画認可段階で機能喪失に伴う地下水位の上昇程度を評価した上で，地震時の液状化に伴う地下構造物の浮き上がりによるアクセスルートへの影響について評価し，アクセスルートの通行性を一定期間確保する設計とする。この結果，アクセスルートの通行性が一定期間確保で きない場合は，地盤改良等の対策を講ずる。 ＊4：外部からの支援が可能となるまでの期間を踏まえ，一定期間として 2 か月程度を確保することを目安に，工認段階における詳細評価も踏まえて地盤改良等の対策要否を判断する。 表 アクセスルートの機能維持に係る配慮事項				
配慮事項	通常運転状態	設計基淮事故等状態	重大事故等状態	配慮事項	通常運転状態	設計基準事故等状態	重大事故等状態	
地下水位低下設備に対する設計上の配慮	－安全機能の重要度分類におけるクラス 1 相当の配慮（外部事象等への配慮，非常用交流電源設備に接続等） - 耐震性の確保（ Ss 機能維持 $*$ ） - 常設代替交流電源設備（GTG）に接続			地下水位低下設備に対する設計上の配慮	－安全機能の重要度分類におけるクラス 1 相当の配慮（外部事象等への配慮，非常用交流電源設備に接続等） - 耐震性の確保（Ss 機能維持＊） - 常設代替交流電源設備（GTG）に接続			
地下水位低下設備に対する機能喪失時の配慮	－可搬型設備及び予備品による復旧			地下水位低下設備に対する機能霊失時の配慮	－可搬型設備及び予備品による復旧			
配慮 アクセスルートに 対する配慮	- アクセスルートの通行性が一定期間碓保できない場合は，地盤改良等の対策 - 外部支援等の活用による通行性の確保			アクセスルートに 対する配慮 注記＊：基準地震	- アクセスルートの通行 - 外部支援等の活用に Ss に対し機能維持する	定期間確保できない 性の碓保 認する。	地盤改良等の対第	
※基準地震動Ss に対し機能維持することを確認する。以下同様に記載				注記＊：基漼地震動Ssに対し機能維持することを確認する。				

設置変更許可
d．地下水位の影響を踏まえた評価と対応
耐震評価において地下水位の影響を受ける可能性のある施設等について，地下水位の影響を踏まえた評価と対応を別紙 18－5 表のとおり整理した。

別紙 18－5 表 地下水位の影響を踏まえた評価と対応（1／3）

	－勘碇地数	站的結果		悬警なし 定。
		姟策	地下水位低下䋁偄	－
				－
建物检業物	- 原子炬建屋 - 制御建屋 排気海水熱交撸器建屋 －排気筒	評住絞果		影響あり （揚圧力影響，液状化影響）
		对策	地下水位低下欴偳	［掦压力対策］ 状化效策1 Δ ：（譈計用地下水位の設定において前提とする。）
				$\triangle:$ 耐震評価の結果，当該施設の機能に影響が及ぶ場合は，適切な対策（地盤改良等の耐震神強）を講ずる。
	－緊急時対策建屋 －緊急用電気品建屋	評溉結果		影響なし （地下水位低下設備に期待せず設計用地下水位を設定）
		姟策	地下水位低下設胙	－
				－

－

別紙 18－5 表 地下水位の影響を踏まえた評価と対応（2／3）

土木構造物• 泳水防止設侕	- 防潮堤 - 防潮壁 - 海水ポンプ室 原子炉機器椧却海水配管ダクト - 取水路 - 軽油タンク室 軽油タンク室（H） •復水貯蔵タンク其 愎水貯蔵タンク基碄 •軽油タタク連絡ダクト - 排気筒連絡ダクト - 3号炉海水ボンプ室 - 貫通部止水処置 - 3 号炉補機椧却海水系放水ピット （3号快 （3号炬海水ポンプ室防䐻壁区画内）			影響あり
			地下水位低下設溉	$\triangle:$（猳さ用地下水位の設定におういて前提とする。）
		対策		切な対策（地整改良等つ耐震補数）を講ずる。
	- 取放水路流路縮小工 - ガスタービン発電設備軽油タンク室			影響なし （地下水位低下設備に期街せず設計用地下水位を設定）
		妨筑	地下水位低下設儲	－
				－
凡㑰 －：対策不要				

表 3－3（1）地下水位の影響を踏まえた評価と対応（ $1 / 3$ ）

		棓侕絡果		影装なし 定。）
		対策	地下水位任下詮作	－
				－
建软模荌物物				影響あり 掑厂力影等，波状化影期
		对旅	继下水位佳下媇侲	
	－排気简 菜急時封策建屋 －智急用菑気品品建屋	䛨侢洁果		
		妃筬		－
				－

工事計画認可
資料番号他

補足－600－1 地盤の支持性能 について

詳細設計を踏まえ具体化した事項
（排気筒，緊急時対策建屋他に おける設計用地下水位の設定方法を変更）

設置変更許可					工事計画認可				
別紙 18－5 表 地下水位の影響を踏まえた評価と対応（ $3 / 3$ ）					表 3－3（3）地下水位の影響を踏まえた評価と対応（3／3）				
$\begin{aligned} & \text { 保管䍚所••• } \end{aligned}$	$\begin{aligned} & \text { •保管垉所 } \\ & \text { (0.P. } \end{aligned}$	呼粚結果		埧薸なし 	保符其所•		棓䀘結果		影臨なし
		好策	地下水位低下没倞				妨策	地下水位低下放偳	－
				－					
		評啲綘果					評侕絾果		
			地下水位低下没健					地下水位低下歌絾	
		姟象					姟		
		謣的絡果							
								地下水位低下玟槅	－
							对策		－
		評偄絞果				－保管場所，アクセスルート において評価する斜面			
		对策	地下水位任下放俯	－			效策	地下水位低下放絾	－
				－					－
一:対策不要									

詳細設計を踏まえ具体化した事項
（保管場所（0．P．＋ 14.8 m 盤）は変更なし。アクセスルート （0．P．＋ 14.8 m 盤）は設置変更許可の方針を踏まえて地下水位低下設備の機能喪失を仮定し浮上り評価を実施。保管場所，アクセスルート （0．P．＋+62 m 盤）は設置変更許可の方針を踏まえ地表面に設定。保管場所，アクセスル ートにおいて評価する斜面 は設置変更許可の方針を踏 まえ自然水位より保守的に設定した水位）

VI－2－1－1－別添 1 地下水位低下設備の設計方針
－記載表現の相違
（実質的な相違なし）

VI－2－1－1 耐震設計の基本方針 －記載表現の相違
（実質的な相違なし）

詳細設計を踏まえ具体化した事項
（各施設の設計用地下水位の設定結果を参照した耐震設計結果については別途説明）

2． 5 観測による検証

設計用地下水位の設定に用いる予測解析は防潮堤沈下対策完了後の状態をモデ
ル化することから，予測解析結果の妥当性の検証として，防潮堤沈下対策の工事完了後に地下水位の観測を行い，解析にて想定した地下水位を観測水位が下回ること を確認する。

観測孔は，防潮堤の沈下対策による地下水位への影響範囲を考慮し設定する。地下水位観測計画位置を別紙 18－13図に示す
工事計画認可段階の予測解析の検証においては，防潮堤の沈下対策の影響を受け ない No．1～No． 4 孔の観測記録を参照する。また，防潮堤の沈下対策工事完了後の運転段階においては，防潮堤外も含めて No．5～No． 8 孔の観測記録を検証材料に加 える。
なお，今後の地下水位設定の信頼性確認等への活用を念頭に，別紙 18－13 図のう ち複数孔については防潮堤沈下対策影響の検証後も観測を継続し，基礎データとし て集積していく。

－ $5-7.5$

別紙 18－13 図 地下水位観測計画位置
（8）今後実施する浸透流解析の妥当性の検証
予測解析結果は，将来的な防潮堤の沈下対策や新設ドレーン等を考慮したも のであることから，今後，これらの施工が完了した運転段階において地下水位 の観測記録を取得し，設計用地下水位と比較することにより，予測解析の妥当性を確認する方針とする。

地下水位観測計画を図 3．3－54 に示す。

補足－600－1 地盤の支持性能 について

記載表現の相違
（工事計画認可では観測デー夕を追加し説明。防潮堤沈下対策完了後の観測計画は変更なし）

図 3．3－54 防潮堤沈下対策による影響範囲と今後の地下水位観測計画
設置変更許可

工事計画認可															
4．機能設計方針及び設計仕様 4.2 各機能の設計方針及び設計仕様 4．2．1 集水機能 表 4－2 集水機能の設計において考慮する事象															
		些－	${ }^{\text {雅 }}$	概		（諳）		$\begin{aligned} & \text { (10) } \\ & \text { (1) } \end{aligned}$			$\begin{aligned} & \text { 灿 } \\ & \text { (除) } \\ & \hline \end{aligned}$			(1uk	
$\begin{aligned} & \text { 集氺 } \\ & \text { 畿 } \end{aligned}$	トレーシ	－	－	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc
		－	－	0	\bigcirc										

4．2．2 支持•閉塞防止機能
表 4－8 支持•閉塞防止機能の設計において考慮する事象

4．2．3 排水機能
表 4－10 排水機能の設計において考慮する事象

䎜															
		践－	縟		成(気偪)	$\begin{aligned} & \text { 護 } \\ & \text { (7a) } \end{aligned}$	$\begin{aligned} & \text { 哴 } \end{aligned}$	$\begin{aligned} & \text { 际㲑 } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ku } \\ & \text { (1) } \end{aligned}$				（Hatick
$\begin{aligned} & \text { 㨾 } \end{aligned}$	$\begin{gathered} \text { 觬永 } \end{gathered}$	\bullet	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	縗	－	－	0	0	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

4．2．4 監視•制御機能
表 4－13 監視•制御機能の設計において考慮する事象

詳細設計を踏まえ具体化し た事項
（揚水井戸の蓋について，竜巻 による飛来物及び火山灰の侵入に対して排水機能及び監視•制御機能を維持可能な設計とするため，支持•閉塞防止機能の構成部位に追加 した。）

4．運用管理•保守管理上の方針
（1）置変更許可可管理及び保守管理に係る位置付け

原子炉施設保安規定及びこれに関連付けた社内規定類において，地下水位低下設備の運用管理，保守管理に係る事項を定める。具体的には，運用管理 については運転上の制限等を定めるとともに，必要な手順を整備した上で管理 していく。また，保守管理については予防保全対象として管理していく。

【運用管理の方針（案）】

＞原子炉施設保安規定において，地下水位低下設備に運転上の制限（以下，「LC O」と記載）を設定する。
＜具体的な対応＞
－LCO，LCOを満足していない場合に要求される措置及び要求される措置の完了時間（以下，「AOT」と記載）を設定し，逸脱した場合には，原子炉を停止することを定 める。
－地下水位低下設備が動作可能であることを定期的に確認することを定める。
＞原子炉施設保安規定に関連付けた社内規定類において地下水位低下設備の運転管理方法を定める。
$<$ 具体的な対応＞

- 地下水位低下設備の運用に係る体制，確認項目•対応等を整備する。
- 地下水位低下設備が機能喪失した場合に，可搬型設備による機動的な対応による復旧を行うための手順を定める。
（1） LCO の設定の考え方
LCOについては，対象エリア※ごとに地下水位低下設備の多重性確保の観点を踏まえた設定を行う。揚水ポンプ等の機器故障及び揚水井戸の水位の視点からの動作不能の判断基準を設定する。これにより，揚水ポンプが稼働している状態にお いて何らかの要因により排水機能に影響が生じ，揚水井戸の水位が上昇した場合 においても，水位による動作不能の判断を行うことが可能となる。なお，機能喪失の詳細な判定項目（揚水ポンプ故障の要因等）は詳細設計を踏まえ設定する。（別紙 18－25 図参照）
※ 対象エリアとは，2号炉原子炉建屋•制御建屋周辺，3号炉海水熱交換器建屋周辺及び 2 号炉排気筒周辺を指す

7．運用管理•保守管理

地下水位低下設備の運用管理については，原子炉施設保安規定（以下「保安規定」 という。）において運転上の制限（以下「LCO」という。）を設定するとともに，地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材を配備し，手順書及び必要な体制を整備し，教育及び訓練を実施することを保安規定及び社内規定に定める。
保守管理については，保全計画の策定において，他の運転上の制限を設定する設備と同様に「予防保全」の対象と位置付け管理する。

また，復旧措置に係る資機材は，社内規定に点検頻度等を定め，適切に維持管理 する。

7.1 運用管理の方針

地下水位低下設備は，保安規定において LCO，LCO を満足していない場合に要求
される措置及び要求される措置の完了時間（以下「AOT」という。）を設定する。工事計画認可段階における詳細設計で信頼性向上を図っているが，設計用揚圧力 に到達する前に排水措置を完了し，原子炉を冷温停止させることができるように LC0 を設定する。

また，地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材の配備，手順書及び体制の整備並びに教育訓練の実施方針を保安規定及び社内規定に定める。

7．1．1 地下水位低下設備の LC0 設定方針

地下水位低下設備は，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアにそれぞれに機能が要求されることから，各エリアにそれぞ れ個別に設定する。

また，全ての原子炉の状態において機能が要求されることから，LCO も全 ての原子炉の状態に対して適用する。
次に，地下水位低下設備の各構成要素に対する LCO 設定上の考え方を表 7－ 1 に示す。

エリア内の地下水位を設計用揚圧力以下に保持するためには，揚水ポンプ 1 台と付随する主要配管が必要であるため，これらを保安規定における「1系列」とする。LCO は多重性確保の観点を踏まえて「各揚水井戸で 1 系列ず つ動作可能であること」とする。
水位計については，一つの揚水井戸に設置した水位計 3 台のうち 1 台が機能維持していれば監視•制御可能な設計としているが，水位計 1 台では水位計異常時の判断が出来ないため，監視•制御機能の信頼性を維持するために

記載表現の相違
（実質的な相違なし）

記載表現の相違 （実質的な相違なし）

記載表現の相違 （実質的な相違なし）

詳細設計を踏まえ具体化し た事項
（LC0 を適用する原子炉の状態及び各構成要素に対する LCO 設定の考え方を整理し，「 1 系列」
の定義を明確化。
記載表現の相違
（実質的な相違なし）
詳細設計を踏まえ具体化し た事項
（2号炉排気筒周辺は地下水位低下設備の設置エリアとし

設置変更許可	工事計画認可			資料番号他
	表 7－2 地下水位低下設備の LCO 設定例			－詳細設計を踏まえ具体化し た事項 （水位計および揚水井戸の水位に対してLC0を設定した。）
		項 目	運転上の制限	
	原子炉建屋 －制御建屋エリア	No． 1 及びNo． 2 揚水井戸の揚水ポンプ	1 系列ずつ動作可能であること	
		No． 1 及びNo． 2 揚水井戸の水位計	2 台ずつ動作可能であること	
		No． 1 及びNo． 2 揚水井戸の水位	水位高高警報設定値未満	
	第 3 号機海水熱交換器建屋エリア	No． 3 及び No． 4 揚水井戸の揚水ポンプ	1 系列ずつ動作可能であること	
		No． 3 及びNo． 4 揚水井戸の水位計	2 台ずつ動作可能であること	
（2）要求される措置の考え方 －地下水位低下設備1系列が動作可能であれば，揚水井戸の水位を一定の範囲で保持することが可能であることから，1系列が動作不能の場合は，残りの1系列について動作可能であることを確認するとともに，可搬型設備を設置し地下水位を低下させる措置を開始し，予備品への交換を行う。 －上記で要求される措置を完了時間内に達成できない場合，または，地下水位低下設備2系列が動作不能の場合には，原子炉を停止する。それに加えて，原子炉を停止し た後の原子炉の状態においても地下水位低下設備の機能が要求されることから，可搬型設備により地下水位を低下させる措置を開始し，予備品への交換を行い継続的 に常設機の復旧を図る。	7．1．2 地下水位低下設備の LC0 逸脱時に要求される措置の設定方針 （1）揚水ポンプの動作不能による LCO 逸脱時に要求される措置 揚水ポンプが 1 系列動作不能となつた場合，残りの 1 系列について動作可能 であることの確認及び可搬ポンプユニットによる排水準備を速やかに開始し，予備品への交換による当該系列の復旧を図る。残りの 1 系列が動作可能である場合，地下水位は設計用揚圧力以下に保たれることから，代替措置として可搬 ポンプユニットによる排水を開始するまでの AOT は可搬 SA 設備を参考に設定 し，復旧に係るAOT は非常用炉心冷却系等を参考に設定する。 上記で要求される措置をAOT 内で達成できない場合，または 2 系列動作不能 の場合には，原子炉の状態が運転，起動及び高温停止においては，原子炉を泠温停止させるとともに，泠温停止後も地下水位低下設備の機能が要求されるこ とから，可搬ポンプユニットにより α 時間＊以内に揚水井戸の水位を低下させ			－記載表現の相違 （実質的な相違なし） －詳細設計を踏まえ具体化し た事項 （1系列動作不能時のAOT を具体化。（表 7－3 に記載））
（3）AOT の設定の考え方 - 地下水位低下設備 1 系列が動作不能時の AOT はn日間 ${ }^{*}$ とする。 - 地下水位低下設備2系列が動作不能の場合には，24時間で高温停止，36時間で泠温停止する。 －可搬型設備により α 時間 ${ }^{*}$ 以 以内地下水位を低下させる措置を完了する。 ※1：nについては，地下水位低下設備はプラントの状態に関わらず高い頻度で稼働するといら性質を踏まえ，工事計画認可段階での浸透流解析結果に基づき，現実的な設備の復旧時間等を勘案して設定することとする。 ※ 2 ：体制構築時間及び可搬型設備設置後の起動時間を積み上げ，この時間が設計用地下水位到達までの時間 （X時間）に包絡されるものとする。また，α 時間は工認設計段階での浸透流解析結果により決定するが，設定する際，体制構築時間等に一定の保守性を碓保する。（別紙 18－26 図参照）	る措置を完了さ 原子炉の状態燃料に係る作業続している配管止する措置を講井戸の水位を低故障する揚水 を表 7－3に示す注記＊：浸透流 で，原 ぞれに	せる。 が泠温停止及び燃料交換におい の中止並びに有効燃料頂部以下 の原子炉圧力容器バウンダリを じるとともに，可搬ポンプユニ ささせる措置を完了させる。 ポンプの組み合わせに応じた LC0具体的な要求される措置は今解析から評価した地下水位低下炉建屋•制御建屋エリア，第3 そ定する。	は，炉心変更及び照射された の高さで原子炉圧力容器に接構成する隔離弁の開操作を禁 ットにより α 時間＊以内に揚水 逸脱時に要求される措置の例保安規定に定める。 設備機能喪失後の時間余裕内号機海水熱交換器エリアそれ	（原子炉の状態に応じた措置 を設定。） （揚水ポンプの多重化を踏ま え，LCO 逸脱の判断，要求され る措置及びAOTを具体化した。）

別紙 18－26 図 可搬型設備による水位を低下させる措置の概念

工事計画認可							
表 7－3 故障する揚水ポンプの組み合わせに応じた LCO 逸脱時に要求される措置の例							
（原子炉建屋•制御建屋エリアの場合＊）							
	Mo． 1.1 揚	水井戸	No．2㟫	水井戸	ITCO	要求むわる拱置	
	ポンブA	ボンプB	ボンプA	ポンプB	10		1
（1）	\times	\bigcirc	\bigcirc	\bigcirc			
（2）	\bigcirc	\bigcirc	\times	\bigcirc	满足		
（8）	\times	\bigcirc	\times	\bigcirc			
（4）	\times	\times	\bigcirc	\bigcirc		－他の1系列が䍉作可能であることを碓認する。	－連やかに
（5）	\bigcirc	\bigcirc	\times	\times	緐列	及 0 ：	－3日間
（6）	\times	\times	\times	\bigcirc	勒作不能		
0	\bigcirc	\times	\times	\times		－当詨系列を動作可能な状髹に復旧する。	－10日間
（8）	\times	\times	\times	\times	铚作列能	－可搬ポンプユニットによる排水を開始する。及で －高温停止とする。 及䘜 －浍温信止とする。	- 24 時間 - 24時間 - 36時間

注記＊：第 3 号機海水熱交換器建屋エリアも同様に設定する。ただし，2 系列動作不能時の「可搬ポンプユニットによる排水を開始する」措置のAOT は 56 時間とする。
（2）水位計の LCO 逸脱時に要求される措置
水位計は，揚水井戸 1 つに対して 1 台で監視•制御可能な設計としている。 そのため，LCO は1台が動作不能となっても監視•制御可能な状態を維持する
「各揚水井戸で 2 台ずつ動作可能であること」とする。
動作可能な水位計が揚水井戸内に 1 台となった場合，水位計を速やかに復旧 し，LC0 を満足する状態にする。

動作可能な水位計が揚水井戸内に 1 台もない場合は，監視•制御不能となる ため，保守的に当該揚水井戸の水位が水位高高警報設定値に到達し LC0 を満足 しない状態とみなし，可搬ポンプユニットによる排水などの該当する措置を実施する。
（3）揚水井戸の水位の LCO 逸脱時に要求される措置
1 つの揚水井戸の水位が運転上の制限を満足しない場合は，他の揚水井戸の水位が制限値を満足していることの確認及び可搬ポンプユニットによる排水準備を速やかに開始し，当該揚水井戸の水位を制限値以内に復旧する。他の揚水井戸の水位が制限値を満足している場合，地下水位は設計用揚圧力以下に保 たれることから，復旧に係るAOT は（1）と同様に設定する。

上記で要求される措置を AOT 内で達成できない場合又は 2 つの揚水井戸の水位が運転上の制限を満足しない場合の措置とAOT は，（1）と同様に設定する。揚水井戸の水位に応じた LCO 逸脱時に要求される措置の例を表 7－5 に示す。具体的な要求される措置は今後保安規定に定める。

資料番号他
詳細設計を踏まえ具体化し た事項
（1系列動作不能時のA0Tを具体化。（表 7－3 に記載））
（水位計に対してLCOを設定し た。）
（揚水井戸の水位に対して LCO を設定した。）

7.2 保守管理の方針

保全計画の策定では，原子炉施設保安規定において地下水位低下設備に LCO を設定することとから，他の LCO 設定設備と同様に，地下水位低下設備を「予防保全」の対象と位置付け管理するとともに，各エリアにおける全ての揚水井戸の機能喪失が発生しても，各エリアの排水機能の維持を可能とするため，「6．地下水位低下設備の復旧措置に必要な資機材の検討」を踏まえ，必要台数を配備する。

6．地下水位低下設備の復旧措置に必要な資機材の検討
6.2 復旧措置に係る資機材

6．2．2 可搬ポンプユニットの配備
可搬ポンプユニットは，揚水井戸内の機器が単一故障した際に速やかに機器を復旧するため，復旧作業が可能となる水位まで地下水を排水することに加え，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアに おける全ての揚水井戸の機能喪失も考慮し，各エリアの排水機能の維持を可能とするため， 2 個配備する。

6．2．1 予備品の配備
予備品については，原子炬建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアにおける全ての揚水井戸の機能喪失を考慮し，復旧措置にあた り機器の交換が必要な場合に備え，各エリアを 1 系統復旧できる個数を表 6－ 1 のとおり配備する。

詳細設計を踏まえ具体化し た事項
（各エリアそれぞれで排水機能，監視•制御機能に係る機器の故障が発生した場合に備え復旧できる個数を配備 する設計とした。）

資料番号他 VI－2－1－1－別添1地下水位低下設備の設計方針
記載表現の相違
（実質的な相違なし）

	項目	配備数	備 考
可搬型設備	- 揚水ポンプ - 発電機 等	－対象エリアごとに1セット	
予備品	- 掦水ポンプ - 制御盤の構成部品 - 水位計 等	－サイトとして一式	対象エリアで設置する ポンプ容量が異なる場 合は，容量ごとに一式

（2）要求される措置の具体的な例

地下水位低下設備 1 系列が動作可能であれば，揚水井戸の水位を一定の範囲 に保持することが可能であるが，1系列が動作不能の場合は，可搬型設備を設置 し地下水位を低下させる措置を開始するとともに，残りの 1 系列について動作可能であることを確認し，予備品の揚水ポンプとの交換（復旧）を行う。

上記により 2 系列動作可能な状態に復帰する。

表 6－1	各機器に必要となる予備品	
機能	機器	配備数
排水機能	揚水ポンプ	2 個
監視•制御機能	制御盤の構成部品	2 セット
	水位計	6 個

設置変更許可
地下水位低下設備 2 系列が動作不能の場合には，地震が発生すると施設に対し

地下水位低下設備 2 系列が動作不能の場合には，地震が発生すると施設に対し
揚圧力による影響があることから原子炉を停止する。それに加えて，原子炉を停止した後の原子炉の状態においても地下水位低下設備の機能が要求されることか ら，可搬型設備及び予備品により地下水位を低下させる措置を行う。
（3）地下水位低下設備の具体的な試験又は検査
設置許可基準規則第 12 条の解釈において，試験又は検査について以下の要求事項がある。
－運転中に定期的に試験又は検査（実用発電用原子炉及びその附属施設の技術基準に関する規則（平成 25 年原子力規制委員会規則第 6 号）に規定される試験又は検査を含む。）ができること。
－多重性又は多様性を備えた系統及び機器にあつては，各々が独立して試験又 は検査ができること。

これを踏まえて，地下水位低下設備は独立して試験又は検査ができる設計とす る。

地下水位低下設備に係る試験又は検査の例を別紙 18－24表に，地下水位低下設備の検査項目と範囲を別紙 18－29 図に示す。

別紙 18－24 表	地下水位低下設備に係る試験又は検査の例	
項目	内容	頻度
水位検出器性能（校正）検査	水位検出器の校正を行い，適切な値が伝送 されることを確認する。	定期検查ごと
水位計設定値確認検查及び インターロック確認検查	水位計設定値が適切な値であること，イン ターロックが作動することを確認する。	定期検查ごと
揚水ポンプ機能検査	インターロックの入力信号によりポンプが 起動•停止することを確認する。	定期検查ごと
揚水ポンプ起動試験	揚水ポンプが起動することを確認する。	1 回／月

項目	内容	頻度
水位検出器性能（校正）検査	水位検出器の校正を行い，適切な値が伝送されることを確認する。	定期事業者検査ごと
水位計設定値確認検査及び インターロック確認検査	水位計設定値が適切な値であること，イ ンターロックが作動することを確認す る。	定期事業者検査ごと
揚水ポンプ機能検査	インターロックの入力信号によりポン プが起動•停止することを確認する。	定期事業者検査ごと

VI－2－1－1－別添1地下水位低下設備の設計方針
7.2 保守管理の方針

7．2．1 地下水位低下設備の具体的な試験又は検査
地下水位低下設備は独立して試験又は検査ができる設計とする。
地下水位低下設備に係る試験又は検査の例を表 7－4に，地下水位低下設備 の検査項目と範囲を図 7－1 に示す。

表 7－4 地下水位低下設備に係る試験又は検査の例

記載表現の相違
（実質的な相違なし）

詳細設計を踏まえ具体化し た事項
（サーベイランスの実施方針 の中で電源系及び制御系に異常がないこと，揚水ポンフ の運転に伴い揚水井戸の水位が低下していることを，毎日 1 回，制御盤で確認するこ ととしており，揚水ポンプ起動試験（1回／月）の設定につ いて適正化した。）

設置変更許可	工事計画認可	資料番号他
添付資料 2 ドレーンの信頼性確保の検討 1．はじめに ドレーンの機能喪失要因と対応の考え方を添付 2－1 表に示す。 ドレーン構造（有孔管）に起因し経時的に状態が変化するモードとして土砂流入 が考えられるが，ドレーンは耐久性•耐震性を確保したものを使用すること，有孔部から流入する土砂は非常に緩速に堆積することから，管の閉塞に至るリスクはな い。さらに，今後予防保全対象として定期的な点検•土砂排除を行ら計画とする。	参考資料9 地下水位低下設備の保守管理について 2．ドレーンの保守管理について 2．1 ドレーンの機能喪失要因と対応方法 集水機能を担うドレーン・接続栁は，閉塞による機能喪失リスクを考慮する必要がある。設置状況や保守管理性を踏まえ，機能を喪失する可能性のある事象を網羅的に挙げ，それらに対する対応の考え方を整理した。ドレーンの機能喪失要因と対応の考え方を表 9－1 に示す。 ここに示すとおり，土砂流入をはじめとして，機能喪失への影響が想定され る全ての事象は，設計（耐久性•耐震性の確保）並びに保守管理により対処し，機能維持することが可能である。 なお，ドレーンは技術基準規則第 14 条の要求事項への配慮の観点から，部分閉塞を想定した設計を行っているが，ドレーンは耐久性•耐震性を確保したも のを使用すること，有孔部から流入する土砂は非常に緩速に堆積すること，今後予防保全対象として定期的な点検•土砂排除を行うことから，管の閉塞に至 るリスクはなく，有孔部からの流入土砂に起因するドレーン機能の喪失は保守的な想定である。	補足－600－1 地盤の支持性能に ついて －記載表現の相違 （記載を具体化。基本方針に変更なし）

設置変更許可	
添付 2－1 表 ドレーンの機能喪失要因と対応の考え方	
機能䙵失への影響が想定される事象	設計•保守管理における対応の考え方と取扱い
－経年劣化や地震により損壊し，断面形状を保持できなくなる。	－耐久性のある材料を採用するとともに，Ss機能維持設計とする。
－ドレーンの有効範囲以外等からの雨水流入，その他想定以上の雨水流入によりド レーンの集水能力が不足する。	－ドレーン・接続桝の集水機能の検討に当たつては，ドレーンの有效範囲以外等からの雨水流入の可能性を考慮，また，湧水量を大きく評価するように透水係数を設定したらえで流入量を碓認し，必要に応じて設計に反映する。（排水機能にも係る事項であり， ポンプ，配管設計にも反映する）
－土砂流入により閉塞又は通水断面が減少 し，集•排水機能を喪失する。	－堆砂実績を踏まえ，十分な余裕を有する断面を有する管径を設定するとともに，定期的な点検，土砂排除を実施する。 －有孔部（ヒューム管 $\phi 25 \mathrm{~mm}$ ，塩ど管 $\phi 7 \mathrm{~mm}$ ）から管内への士砂流入は微量であり，有孔部に対し管径が十分大きく，土砂堆積 による通水断面の減少は非常に緩慢 \mathbf{N}^{2} 兴2に進行することから，十分な余裕を有する断面を持つことで機能喪失には至らな い。 －また，設置状況や管径に応じて，既設ドレーンにアクセスする ことを目的とした保守管理用立坑を設置することにより保守管理性の向上を図る。
－地盤改良工事等による目詰まり等により集•排水機能を喪失する。	－施工時の規制を行う。（施工方法の検討）

※1有孔ヒューム管•有孔乚塩じ管は，岩盤を掘り下げて設置しておうり，透水層から管周囲に充填される構造のため，管内への土砂共給 $※ 2$ 有孔しヒーーム管の至近の目視碓認結果では，設置後 20 年以上が経過しているが底部に傼かに堆積が確認される程度。堆積土砂 はシルト相当。（添付資料1）

工事計画認可
表 9-1 ドレーンの機能喪失要因と対応の考え方

『年多化や洗買によりドレー ンが相㳟し，昕䤄㔙㧋を保持 できなくなる。	持）を碓保ける啟枯上ナる。	，	不要
トレーンの有袕範囲以外等か ちの䀦木流入，その他相宅以上の雨本流人によりトレーン の集水能力が不足十る。	 ンフ部力を改定する。	唯	不要
士破淯入に上り闌思又は通木 を效失する。	 による通本斯面の被少は非策に极侵＊＊2に進行する。） 保されるよう取神する。 	寞	樓
地裂改良工事等による目祜主 り等により集•挸水機能を政失する。	－勒工方法や效㬛等によりドレーン娍入を防止ける。 	管	不要
パクテリア影䡒によりドレー ンに目苇まりが生じ，基本榞能を铱失ける。	 \because（娄 $9-2$ ） 	不要	不要
 によりドレーンに目話まりが 生じ，真水櫛能を表失する。	－地下水は中性であること，また铁分合有䭪氷少ないことを地 くい（篗9－2）。 	不要	不要

 が非劳に少ない。

資料番号他

詳細設計を踏まえ具体化し た事項
（工事計画認可では，ドレーン の機能喪失要因を更に検討 し，バクテリア影響に対する考察を追加。）

設置変更許可

工事計画認可
2．ドレーン・接続桝の機能喪失事象への信頼性確保の考え方
ドレーンの敷設状況等を踏まえた保守管理方針を整理した。ドレーンの保守管理方針を添付 2－2 表に示す。
既設の接続桝又はドレーンに接続された保守管理用の立坑を新たに構築する
等，保守管理性の向上策もあわせて検討する。

なお，既設の 2 号炉原子炉建屋及び 3 号炉海水熱交換器建屋基礎版下部にある ような径が $\phi 100 \mathrm{~mm}$ の有孔塩ビ管の保守管理に当たっては，添付 2－2表のとおりカ メラ等で状況の確認ができ機能喪失時の対応も可能と考えられるものの，機能喪失時の検知及び修復に不確実性があるものと考えられることから，耐震性及び耐久性を有していたとしても保守管理に期待せずドレーンの機能喪失を前提とした設計（管路ではなく透水層）とする方針とする。

添付 2－2 表						
区分		横成部位（例）		ドレーンの点検内容		異常時の対応
		$\begin{gathered} \text { 有孔しューム管 } \\ \substack{\text { 接続株 }} \\ \hline \end{gathered}$		于段	点検対象と碓謥内容	
I	全域立入可能	$\phi 800 \mathrm{~mm}$（全戳囲）， $\phi 1,050 \mathrm{~mm}$（全範囲）	－	－目視	－損伤等の有無，士砂堆積状況等から，通水断面恧保持されていることを確験 する。	- 詳細譋查を行い, 必要 な対策を実施する。
II				－カメラ等	－損傷等の有無，士砂堆積状況等から，通水断面加保持されていることを碓認 する。	
III	流末部 ${ }^{*} 1$ の断面の確 認及びトレーサー試験 等により確認可能	$\begin{aligned} & \phi 500 \mathrm{~mm} \\ & (\text { (流杪部以外) } \end{aligned}$	－	－流末部の断面を IIにより確認 ※2 －トレーサー試験等		－IIの篗囲と同粎の状能 にあるものとも考え，詳組

参考資料 9 地下水位低下設備の保守管理について
2.2 ドレーンの保守管理性の確保方法

ドレーンの機能喪失事象を踏まえ，保守管理性を有することについては，経路の連続性に関する確認，通水断面の確保の可否により判断する。ドレーンの構造•形状別の部位に応じた保守管理性の確保方法について，表 9－3 のとおり整理した。

ここで，表 9－3 における「流末部」とは同径の管の最下流部を表す。ヒュー ム管 $(\phi 500 \mathrm{~mm})$ は立入りできないが，立入り可能な $\phi 800 \mathrm{~mm}, \phi 1050 \mathrm{~mm}$ のヒュ ーム管については，最下流部の接続桝や近傍の保守管理立坑からアクセスでき，目視・カメラ等による確認が可能である。

表 9－3 保守管理性の確保方法

部位	設置状況と調査項目＊			保守管理性の確保方法	
	立入	カメラ	トレーサー試験 + 流 末部確認	経路の連続性確認方法	通水断面の確保方法
$\begin{aligned} & \text { 鋼管 } \\ & (\phi 142.5 \mathrm{~mm}) \\ & \hline \end{aligned}$	\times	\bigcirc	\times	－カメラ	－設計 （ Ss 機能維持） －維持管理 （定期的な点検•土砂排除）
$\begin{aligned} & \text { ヒューム管 } \\ & (\phi 500 \mathrm{~mm}) \end{aligned}$	\times	\triangle	\bigcirc		
$\begin{gathered} \text { ヒューム管 } \\ (\phi 800 \mathrm{~mm}) \\ \hline \text { ヒューム管 } \\ (\phi 1050 \mathrm{~mm}) \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	- 目視（人の立入） - トレーサー試験 - 流末部の確認 （カメラ・目視）	

 7

図 9－1 保守管理範囲の概要図

補足－600－1 地般の支持性能に ついて

詳細設計を踏まえ具体化し た事項
（工事計画認可ではドレーン各部位へのアクセス性を踏 まえた保守管理方法等の情報を追加）

設置変更許可

す。

添付 2－3 図 ドレーンの状態に対応したパターンと浸透流解析上の取扱い

安全施設の要求事項についての検討においては，ドレーンの設置状況等に応じ て，多重性及び独立性を確保する揚水ポンプ，揚水井戸の配置を検討する。
これらを踏まえて設定した集水機能の信頼性の詳細検討フローを添付 2－4 図に示す。

図 3．3－24 ドレーンの状態に対応した分類と浸透流解析上の取扱い

記載表現の相違
（基本方針に変更なし）

【安全設備の要求事項を考虑した㭲討】

マインフローに戻る

記載表現の相違
（基本方針に変更なし）

添付 2－4 図 集水機能の信頼性の詳細検討フロー
設置変更許可 を示す。ここでは早期に影響が現れる施設の揚圧力影響の低減に着目し，地下水位を一定の範囲に保持する地下水位低下設備を設置することし，集水及び排水機能に係る設備構成の検討を行った。

まず，「①既設ドレーンの期待範囲の設定」として，2号炉申請時において，施設の揚圧力影響低減への寄与が大きいと考えられる既設ドレーン範囲を抽出し た。既設ドレーンの期待範囲を添付 2－5 図に示す。

添付 2－5 図 既設ドレーンの期待範囲の設定（Step（1）

	工事計画認可
参考資料5 浸透流解析におけるドレーンの有効範囲の設定結果	

補足－600－1 地盤の支持性能に ついて

詳細設計を踏まえ具体化し た事項
（3号機エリアの一部は，山側 から下流側へ流れる地下水 を効果的に集水可能である ため，期待範囲に含めるもの とした。また，詳細設計段階 における検討を踏まえ，排気筒周辺にはドレーンを新設 せず，安全性を確保する方針 とした。）

以下，各ステップの図は工事計画認可において上下反転

記載表現の相違
（Step（1）で期待した全範囲が耐久性有りと判断）

「（3）•⑤耐震性•透水層の連続性」の観点からは，盛土荷重が直接作用する—部の塩ビ管を除き，現状構造で $\mathrm{S} s$ 機能維持を確保できる見通しである。
なお，耐震性の確認結果は工事計画認可段階で提示する。
管の耐震性•透水層の連続性の観点からの整理結果を添付 2－7 図に示す。

記載表現の相違

（最終的に管路として扱うド
レーンの耐震性の確認結果
は，別途耐震計算書にて説
明）

添付2－7図 管の耐震性•透水層の連続性の観点からの整理結果（Step（3）•⑤）

添付 2－8 図 管の保守管理の観点からの整理結果（Step（4））

署 5－7 管の保守管理の観点からの整理結果（Step（4））
要と整理される。安全施設の要求の観点からの整理結果を添付 2－9 図に示す。

添付 2－9 図 安全施設の要求の観点からの整理結果（Step（9）•（10）

詳細設計を踏まえ具体化し た事項
（周辺施設との干渉等を考慮
し揚水井戸の配置位置を設
定。また，既設の揚水ポンプ
の取扱いを踏まえ記載適正
化（2号機海水ポンプ室周
辺））
設置変更許可

「7）有効範囲の再検討」において，施設の設計値を満足できない範囲につい て，保守管理立坑等の追加により保守管理範囲を拡大し，ドレーンの有効範囲の再検討を行う。添付 2－10 図に示す有効範囲の再検討での整理結果は， 3 号炬海水熱交換器建屋及び 2 号炉制御建屋について，有効範囲の拡大を目的として，保守管理立坑等を追加した例であり，今後の点検実績の反映等により変更の可能性が

図 5－9 有効範囲の再検討での整理結果（Step（7）

詳細設計を踏まえ具体化し
た事項
（保守管理性を確保するため の保守管理立坑・トレーサー投入孔の配置検討結果を反映）

[^0]
（

図 5－10 新設ドレーン要否の観点からの整理結果（Step8）
\qquad
添付 2－11 図までで整理したドレーン範囲のうち，安全施設の要求性能確保の見通しの観点での整理結果を添付 2－12 図に示す。
安全施設の要求性能の確保に当たっては，「2．安全施設への要求事項を参照し た設備構成の検討」に示すとおり短期•長期の単一故障を想定し多重性及び独立性を確保するため，揚水ポンプの多重化やドレーン・揚水井戸の配置上の配慮が必要となる。

詳細設計を踏まえ具体化し た事項
（設置変更許可同様，揚水井戸・ポンプの多重化（各エリ ア 2 系統設置）等を行う。な お，詳細設計段階の検討を踏 まえ，各揚水井戸へ揚水ポン プを2台設置する設計とし た旨を記載。

設置変更許可

集水機能の信頼性の詳細検討フローに基づく有効範囲の設定例のまとめを添付 2－13 図に示す。本図はこれまでに整理したドレーンの有効範囲をまとめたもので あり，設置許可基準規則第 3 条第 2 項，同第 4 条及び同第 12 条の要求を考慮した設備構成例である。

建物•構築物の揚圧力影響（設置許可基準規則第 4 条）の低減に着目した施設 （原子炉建屋，制御建屋，排気筒， 3 号炉海水熱交換器建屋）に対し，条文適合上必要な集水及び排水機能の範囲は，設計值保持のため必要な範囲（■）と，設置許可基準規則第 12 条の要求事項への配慮による範囲（■）にて構成される。

なお，ドレーンとしての集水機能が期待できるものの，設置許可基準規則第 12条適合の観点から管路より除外した範囲（■）については透水層として取扱う。

添付 2－13 図 地下水位低下設備の設定例

参考資料 5 浸透流解析におけるドレーンの有効範囲の設定結果

集水機能の信頼性の詳細検討フローに基づく有効範囲の設定結果を図 5－12 に示す。本図は，「集水機能の信頼性に係る詳細検討フロー」（図 5－3）に基づく整理であり，技術基準規則第5条•同第 14 条並びに設置許可基準規則第 3 条第 2項の要求に対応した設備構成である。
ここに示すとおり，建物•構築物（原子炬建屋，制御建屋， 3 号機海水熱交換器建屋）の揚圧力影響（技術基準規則第 5 条）を考慮し，先に挙げた各条文へ適合 させるため，地下水位低下設備を設計値保持のため必要な範囲（■）と，技術基準規則第 14 条の要求事項への配慮による範囲（■）にて構成するものとした。 なお，ドレーンのらち，耐久性•耐震性を有するが保守管理性を満たせない範囲，耐久性•耐震性及び保守管理性を満たすものの，技術基準規則第 14 条の要求事項への配慮の観点から管路より除外した範囲（■）については透水層として取扱う。連続した透水層としての機能に期待できない場合は，周辺の地盤相当と して取扱う。

図 5－12 地下水位低下設備の設定結果（まとめ）

補足－600－1 地盤の支持性能に ついて
記載表現の相違
（実質的な相違なし）

詳細設計を踏まえ具体化し た事項
（設置変更許可と同様のフロ ーに基づき工事計画認可に おける詳細設計（工事計画認可で実施した浸透流解析を含む）も踏まえ検討した結果，設置変更許可よりドレー ン配置•構成が変更となって いる。）

設置変更許可
添付資料3 設置変更許可段階及び工事計画認可以降の提示内容

1．設置許可基準規則における対応条文への適合の考え方

添付 3－1 表 設置許可基準規則に対する基準適合の考え方と工事計画認可段階における提示内容 第 3 条（設計基準対象施設の地盤）

						詳細設計段階になける提示内容内容	
		姣方					
$\begin{aligned} & \text { 第三条 } \\ & \text { (設計基準対象 } \\ & \text { 施設の地盤) } \end{aligned}$				耐震重要施設の基碽地艦基碇地䑾の安定性評偳の条件 	－	添付書類六 －地船 －地震力に対する 基礁地船の安定性 評価（地下水位）	
	$\frac{2 \text { 耐震重要施設及び }}{\text { 兼用きャスクは，変 }}$				添付書類 －周辺地䑾の変状に よる施設への影響 評価 開連 添付書類八 女全設計／耐震設計 －耐震重要施設 －		
		（3）	（地下水位設定とは関連しない）	－	－	－	

－変更なし
（本整理を踏まえ，設置変更許可申請書の記載へ反映済。なお，工事計画認可 で示す耐震計算書は，設置許可基準規則第 3 条第 1 項に対応する支持性能に係る確認結果を含め記載。設置許可基準規則第3条第2項に対する適合性は，耐震計算書にて説明。）

可搬型設備及び予備品につい ては「VI－2－1－1－別添1 地下水位低下設備の設計方針」に て説明。

添付 3－4 表 設置許可基準規則に対する基準適合の考え方と工事計画認可段階における提示内容

第 39 条（重大事故等対処施設／地震による損傷の防止）

		考交方	必要灰没絾等				
	重大事故等対処旅設 は，次に揭げる施設の次に定める要件を満た すものでなければなら $\frac{\underbrace{}_{0}}{\text { 常設重大事故緩和 }}$設備が設置される重 大事故等対処施設 （特定重大事故等対処施設を除く。）基 カに対して重大事故 に対処するために必 \qquad であること 四 特定重大事故等対処䊞設 第四条第二 項の規定により算定 する地场力に十分に 耐えることができ， かつ，基洲地震動に よる地需力に対して 重大事故等に対処す るために必要な機能 が損なわれるおそれ と。					本支 ${ }^{\text {\％}}$ 添付書類八 - 設置許可基準規則への適合 - 第三十九条 閏連 付書類八 女全設計 耐震設計／基本方針一耐震重要度分類 その他発電用原子炬の 附属施設 地下水位低下設備 添付書類六 一地盤 辺地盤の変状による 施設への影響評価 ※1 耐震評価において地下水位低下設備の機能に期待 の事項であることかっち，設當目的や役割を本文に記載。	
	 て生があおそれかなぁ するためどと必築な機 ればならなった		（対象斜面なし）	－	－	－	

－変更なし

（本整理を踏まえ，設置変更許可申請書の記載へ反映済。基準適合性を示す耐震性の確認結果は，工事計画認可において設計用地下水位の設定結果と併せ耐震計算書にて説明。）

可搬型設備及び予備品につい ては「VI－2－1－1－別添1地下水位低下設備の設計方針」に て説明。

設置変更許可							工事計画認可 －変更なし （地下水位設定とは関連しない）	
	添付 3－5 表 工 第43		規則に対する基階における提示內等対处施設）	啇合の考 2）				
		शewatan			設䕕変更許可申	詳細設計段		
			考元方					
$\begin{gathered} \text { 第四十三条 } \\ \text { (重大事故 } \\ \text { 等対処設偳 } \end{gathered}$			地下水位設定とは関連しない）	－	－	－		
		4 第 2 項第 3 号及 ひ第 3 項第 7 号に規 定する「適切な措㯰 を講じたあの」と は，共通要因の特性 を踏まえ，可能な限 り多様性を考慮した あのをいう	（地下水位設定とは関連しない）	－	－	－		

添付 3－6 表 設置許可基準規則に対する基準適合の考え方と工事計画認可段階における提示内容
第 43 条（重大事故等対処施設）（ $2 / 2$ ）•変更なし

					設置変更許可申請書への反映简所	 おけち覆示	
		交方					
$\begin{aligned} & \text { 第四十 } \\ & \text { 三条 } \\ & \text { (重大 } \\ & \text { 事故等 } \\ & \text { 対処設 } \\ & \text { 備 } \end{aligned}$				（地下水位設定と は関連しない）	－	－	－
	想定される重大事故等が発生した場合におし て，可搬型重大事故等対処設備を運俱他の設備の被害状況を把握するため，工場等内 			 備 ${ }^{(1)}$		 	
	重大事故防止設備のうち可艆型のものは，共通要因によって，設計基湢事故対処設備の安全機能，使用済燃料眝蔵槽の冷却機能若しくは注水機能又は常設重大事故防止設備の重大事故に至るお それがある事故に対处するために必要な機能と同切な措置を講じたものであること。		（地下水位設定と は䦎連しない）	－	－	－	
施さる。 							

設置許可基準規則第 6 項への
適合性を示すため，アクセス ルート機能維持に係る詳細検討結果を「VI－1－1－6－別添 1可搬型重大事故等対処設備の保管場所及びアクセスルー ト」にて示す。

| 設置変更許可 |
| :---: | :---: |
| 補足説明資料4 三次元浸透流解析による防潮堤沈下対策の影響確認結果 |
| 2．地下水位低下設備が機能しない場合の地下水位分布 |
| 地下水位低下設備の機能喪失後，地下水位が上昇し施設等の安全性に影響を与 |
| えるレベルに達するまでの期間を「時間余裕」として定義する。この時間余裕 | は，地下水位に係る対策の妥当性を検証する場合等 必要に応じて参昭する

3．地下水位低下設備が機能しない場合の影響
地下水位低下設備の機能停止後の水位上昇範囲は，初期段階では建屋近傍に限定されることから（補足説明資料 6 参照），揚圧力影響と液状化影響は段階的に生 じるものと想定される。
アクセスルート（0．P．＋ 14.8 m 盤）については地下水位が上昇した場合に，地震時の液状化に伴う地下構造物の浮き上がりの影響を受ける可能性がある。これに対して，「第I編 2．4（3）c．アクセスルート機能維持の方針」に示す配慮事項 により，地震時の液状化に伴う地下構造物の浮き上がりの影響を受けることなく通行性を確保する設計とする方針としている。

液状化影響の評価については，「別紙 17 液状化影響の検討方針」に基づき評価 を行う方針とし，その概要は以下のとおりである。
－液状化等の周辺地盤の変状による施設への影響評価においては，施設周辺 の地下水位や地盤等の状況を踏まえて，液状化検討対象施設を抽出する。
－抽出した液状化検討対象施設に対し，液状化等による影響が及ぶおそれがあ る場合は，有効応力解析または全応力解析を行い，保守的な解析手法を選定 する。
－液状化を考慮する場合の評価は，地盤の有効応力の変化に伴う影響を考慮し た評価（有効応力解析等）によるものとし，有効応力解析に用いる液状化強度特性は，敷地の原地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定する。

工事計画認可

6． 3 復旧措置に係る可搬ポンプユニットの配備数の妥当性確認
可搬ポンプユニットの配備数の妥当性として，各エリアの全ての揚水井戸が同時に機能喪失した場合においても，各建屋に作用する平均揚圧力が設計揚圧力に到達するまでの時間（以下「時間余裕」という。）内に，計画している可搬 ポンプユニットの配備数により各エリアの水位低下措置を完了できることを確認する。

－変更なし

（設置変更許可の整理を踏まえ，工事計画認可では影響が早期に生じる揚圧力影響に着目し時間余裕を評価。また，設置変更許可の整理を踏まえたアクセ スルートの評価を実施。）
－変更なし
（工事計画認可では，液状化検討対象施設を幅広く抽出する観点から設計用地下水位を高めに設定。）
－変更なし
（保守的な解析手法を選定する方針に変更なし。工事計画認可では，「有効応力解析または全応力解析」の判断がしがたい場合は，双方を実施し耐震評価を行うこととした。）
－変更なし
（［2 耐震設計の基本方針］ 2.1 基本方針（10）（11）へ同様の方針を記載）

VI－2－1－1－別添 1 地下水位低下設備の設計方針記載表現の相違 （実質的な相違なし）

VI－2－1－1－別添 1 地下水位低下設備 の設計方針
各影響が生じるまでの時間軸は「補足600－25－1 地下水位低下設備の設計方針に係 る補足説明資料」参照
0

設置変更許可

資料番号他

補足説明資料 8 新設揚水井戸・ドレーンの構造•配置及び施工例
揚水井戸の位置及び構造並びに施工方法については工認段階で詳細検討を行い決定する。

補足 8－1 図 新設揚水井戸の構造•配置例

工事計画認可
工事計画認可
（参考資料6）地下水位低下設備の概要
$1 . \quad$ 地下水位低下設備の概要
$1.1 \quad$ 全体構成
\quad 地下水位低下設備のうちドレーン及び揚水井戸の平面配置を図 6－3 に示す。

補足－600－1 地盤の支持性能について

詳細設計を踏まえ具体化し た事項
（揚水井戸の位置について詳細検討を行い決定した。）

図 8－1（2）ドレーン（鋼管）及び揚水井戸の施工手順（No． 1 揚水井戸の例）

[^0]: 添付 2－11 図 新設ドレーン要否の観点からの整理結果（Step8））

