表1 検討における解析条件

検討ケース		（1）フレームゴム支承部を固定 としてモデル化	（2）フレームゴム支承部を線形ばねモデル化
解析モデル		LS－DYNA による 3 次元 FEM モデル	
$\begin{aligned} & \text { 境 } \\ & \text { 界 } \\ & \text { 条 } \\ & \text { 件 } \end{aligned}$	ゴム支承	固定条件	線形ばねモデル＊1 水平剛性： $2.689 ~(\mathrm{kN} / \mathrm{mm})$ 鉛直方向 ：863（kN／mm）
	可動支承	可動方向は拘束なし非可動方向は固定条件	
衝突方向		ゴム支承の剛性が小さく，変形量が大きい水平方向（西から東）からの衝突	
衝突位置		フレーム中央	

＊1：耐震評価モデルと同様の水平剛性を設定

図 3 ゴム支承の影響検討における飛来物衝突位置及び解析モデル図

6 条（竜巻）－別添 1 －添付 3.7 －別紙 3－10
（3）検討結果
検討の結果，ゴム支承と可動支承へ伝達される衝撃荷重は，ゴム支承の境界条件を固定条件とした場合に大きな反力が発生する結果となることを確認した。特にゴム支承における衝撃荷重に大きな差が生じており，ゴム支承 のせん断剛性を固定条件とすると，ゴム支承自体に発生する衝撃荷重が非常 に大きくなることを確認した。検討結果を表2に示す。
なお，今回の検討は水平方向からの衝突に対する結果であるが，ばね剛性 を考慮することによる影響は鉛直方向についても同様であり，境界条件を固定とした場合，衝撃荷重は大きくなることが想定される。

表2 ゴム支承せん断剛性影響の検討結果

評価対象			衝撃荷重（ピーク値）（kN）	
			ゴム支承境界条件	
			固定	せん断剛性有
ゴム支承 （東側）	X 方向	＋側	456	2
		－側	－478	－4
	Y 方向	＋側	229	1
		－側	－265	－24
ゴム支承 （西側）	x 方向	＋側	429	4
		－側	－415	－2
	Y 方向	＋側	224	1
		－側	－260	－24
可動支承 （東側）	X 方向	＋側	0	0
		－側	0	0
	Y 方向	＋側	454	424
		－側	－508	－392
可動支承 （西側）	X 方向	＋側	0	0
		－側	0	0
	Y 方向	＋側	300	265
		－側	－375	－355

3．まとめ
衝突時と地震時においてゴム支承の変位速度について有意な差がないことか ら，衝突解析においても耐震評価と同等条件でゴム支承をモデル化した評価が適用可能と考えられる。
そこで，ゴム支承のせん断剛性を考慮したものと，考慮しない固定条件とし たものでそれぞれ衝突解析を実施し，衝突時におけるゴム支承のせん断剛性の影響を確認した。解析の結果から，ゴム支承を固定条件とすると特にゴム支承自体に発生する衝撃荷重が非常に大きくなることを確認した。この場合，ゴム支承の下部構造に伝達される荷重も大きくなるため，下部構造に対しても厳し い条件となることを確認した。

以上
6 条（竜巻）一別添 1 －添付 3.7 －別紙 3－11

支持部材の構造成立性について（EP まとめ資料抜粋）

別紙 3
竜巻防護ネットの構造成立性確認結果について（STEP1） （ゴム支承の剛性を耐震評価時に用いるせん断剛性とする場合）

1．解析条件
ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，図 1 にボすンローひとおり，ゴム文承（剛性を考慮した衝兟解析を奏施する。衝突解析け，ゴノ支飛による影響が最も太きくなると想定される条件（飛来物乲勢，衝突位置，飛来方向）で実施し，ゴム支承の影響を考慮した場合において，フ レームゴム支承，可動支承がフレームを支持する機能を維持可能な構造強度を有す ることを確認する。

評価対象は支持機能に大きな影響を与える部材であるフレームゴム支承と可動支承とする。解析条件とその考え方を表1，2及び図 2 に示す。

SItel

図1 STEP1 構造成立性確認フロー

表1 STEP1 の解析条件

設定項目	設定条件	考え方
ゴム支承 の剛性	耐震評価で用い るせ九断剛性 （表2参照）	設計飛来物がフレームに衝突した場合に想定されるゴム支承の変位速度 は，約 $0.1 \mathrm{~m} / \mathrm{s}$ と考えられる（別紙 3 （補足 1）参照）。 この変位速度は，地震時のゴム支承の動的特性を把握するために実施し た振動数依存性試験におけるゴム支承の変位速度（ $0.06 \sim 0.6 \mathrm{~m} / \mathrm{s}$ ）に包絡されることから，飛来物衝突においても，耐震訮価で用いるゴム支承のせん断剛性を適用する。
衝突方向	水平方向	配置及び形状から水平方向から衝突する可能性は極めて低いと考えられ るが，鉛直速度よりも最大速度が大きく，でム支承のせん断剛性への影響が大きい方向。
衝突位置	ゴム支承近傍	ゴム支承への影響が大きくなると考えられる位置。
飛来物姿勢	長辺全面で衝突	フレームには防護板や補強用のリブが設置されることから，平面となる面積が限られており，長辺全面が部材に垂直に衝突する可能性は極めて低いと考えるが，最もゴム支承に対し厳しい姿勢による挙動を確認する観点から，長辺全面が衝突すると設定。

表2 フレーー人ー゙人支承，可動支承の結合条件

方向	フレーノゴノ支承	可動支承
X	弾性	自由
Y	弾性	剛
Z	剛	剛

図 ？飛来物衝突位置乃で解析干デル図（STFP1）

6 条（竜巻）一別添 1 —添付 3.7 －別紙 3－2

2．解析結果

ンレームゴム文承（）衝尖解析結果を表3，可動文承（）衝先解析結果を表4にホす。 フレームゴム支承の訐価対象部材に発生する応力等は許容值を超衣ず，「4．1．2支持部材（4）」に定める構造強度上の評価方針を満足する。

可動支承については，評価対象部材のうち，「レール」「レール取付ボルト」「エンド ブレート接合ボルト」について許容値を超える結果となつた。

STEГ1 の評価結果かっ，フレ．ムゴム支承の剛性を考慮した場合において，フレ ムゴム支承によ万影響が最あ大きくなると想定される個所に飛来物が衝突した場合 でもフレームゴム支承は構造強度上の評価方針を満足し，フレームを支持する機能を維持可能な構造強度を有することを確認した。可動支承については一部部材が許容値 を超える結果となつたが，詳細設計段階では，可動支承のリイズアップやぶルトの仩様変更等の対応を行うことで，許容値を満足させる方針とする。

表3 STEP1 におけるフレームゴム支承の解析結果
（注）本評価結果は

評価対象		評価項目	発生值		許容値	
		西側	東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	（1）ゴム体		応力度（引張） せん断ひずみ	$\begin{gathered} 1.2 \mathrm{MPa} \\ 61 \% \end{gathered}$	0.7 MPa 60%	$\begin{aligned} & 2.0 \mathrm{MPa}^{* 1} \\ & 250 \%{ }^{* 1} \\ & \hline \end{aligned}$
		応力度（圧縮）	2． 3 MPa	2． 1 MPa	$29.8 \mathrm{MPa}^{* 1}$	
	（2）内部金岡极	心力度（引張）	¿2MPa	20MPa	$280 \mathrm{MPa}^{\text {\％}}$	
	（3）取付ボルト．	応力度（組合せ）	63MPa	56 MPa	$420 \mathrm{MPa}^{\text {\％2 }}$	
	$\begin{aligned} & \text { (4)アンカーボ } \\ & \text { ルト } \end{aligned}$	応ノ度（組合せせ）	86 MPa	68 MPa	$294 \mathrm{MPa}^{\text {\％}}$ ？	

$※ 2: ~ J E A G 4601$ に基づく許容応力状態IVS の許容応力
注）上記の評価項目については裕度が小さい項目を代表して記載している。

図3 ノレームゴム文承い）構造図

6 条（竜巻）一別添 1 —添付 3.7 —別紙 $3-3$

表4 STEP1 における可動支承の評価結果
（注）本評価結果は暫定値

評価対象			評価項目	発生値［MPa］		許容値［ MPa$]^{* 1}$	
			西側	東側			
可動 支承	（1）ソールプレ，			支圧応力	18	21	351
	（2）すべり材		支圧应力	22	25	60 （メーカー値）	
	（3）圧縮ゴム		支圧応力	18	21	50 （メーカー値）	
	（4）ピストン		曲げ応力	65	74	280	
	（5）座金		支圧応力	57	65	335	
			せん断応ノ	16	15	148	
	（6）ベースポット	突出部	曲げ応力	33	32	258	
	（6）゙ースホット		支圧応力	67	66	351	
		支圧部	支圧応力	110	110	351	
			曲げ応力	400	390	343	
	（7）レール		引張応力	8． 8	8． 7	343	
			サん断応力	54	54	198	
	（8）レール取付ボ		引張応力	600	600	525	
	（9）エンドプレー	接合ボルト	引張応力	450	450	420	
	（10）上部接合ボル		せん断応力	220	220	323	
	（11）下部接合ボル		組合せ	$\begin{gathered} 208 \\ (211) \\ \hline \end{gathered}$	$\begin{gathered} 206 \\ (212) \end{gathered}$	※2	
	（12ベーマプレ		せん断応力	11	11	198	
	（1）ヘースゴート		曲げ応力	180	170	343	

※1：メーカー値ぐないものは，JEAG4601 に基ーブく許容応ノ状態IV ${ }_{A} S$ の許容応ノ」
$※ 2$ ：組合せ応力の許容値については（ ）内に許容引張応力を記載
\square ：支持機能に係る部材
：支持機能に係る部材のうち許容值を超えるもの
注）上記の評価項目については裕度が小さい項目を代表して記載している。

A－A 断面

図4 可動支承の構造図

6 条（竜巻）一別添 1 —添付 3.7 —別紙 3－4

竜巻防護ネット構造成立性確認結果について（STEP2）
（支持部材全体の構造成立性）
1．評価力厸
飛来物衝突時の竜巻防護ネットを構成する支持部村全休の構造成立性を確認す るため，図1に示すフローで評価を実施する。

STEP2－1 の条件で，支持部材全体に対し評価を実施する。STEP2－1 の条件で評価 を奏施した結果，ソレームゴム文承が計容但を満足しない場合，詳細評侢として STEP2－2 でゴム支承のせん断剛性を考慮した解析条件にて評価を実施する。STEP2－ 2の結果を踏まえて，STEP2－3としてストッパーの評価を実施する。

図 1 STEP2詊価フロー

2．ゴム剛性の結合条件を 3 方向固定（STEP2－1）
（1）解析条件
評価はフレ…に飛束物が衝突した己きに，直接荷重を受けるつレ…及びそ の荷重が伝達されるフレームゴム支承，可動支承，大梁，大梁ゴム支承，ブラケ ツトに対して実施する。解析条件とその考え方を表1，2及び図 2 に示す。

表1 STEP2－1 解析条件

設定項目	設定条件	考え方
$\begin{gathered} \text { ゴム支承の } \\ \text { 剛性 } \end{gathered}$	3 方向固定 （表2参照）	下部構造物に伝達する衝撃荷重のピーク値が大きくなるため
衝突方向	水平及び鉛直	鉛直•水平方向からの衝突による部材への影響をそれぞれ確認するため （配置及び形状から水平方向から衝突する可能性は極めて低いと考えら れるが，鉛直速度よりも速度が大きいため，評価を行う）
衝突位置	7 パターン	＞衝突方向は衝突面積が大きい鉛直（1）～（3），障害物がないN S 方向南側からの水平（4））に加えて，障害物があり飛来物衝突の可能性が低いと考えられるEW方向からの水平（5）～（7））な考慮する ＞各部材に対する影響が大きいと考えられる箇所を抽出 －フレムの曲げモ・カントが最大になるフレムの中央部いの衝突 （2），（6） －可動支承，大梁ゴム支承，ブラケットが影響を受けるように，当該部材の近傍に衝突（1）（5）） －ゴム支承が大きな影響を受けるように，当該部材の近傍に衝突（3） （7） －可動支承のスライドによるフレームの変位によりゴム支承が大きな影響を受ける部位への衝突（4）
飛来物姿勢	短辺全面で衝突	竜巻防護ネットの形状，衝突時の影響，先行プラントの審查実績を踏ま えて設定

表2 フレ゙ムゴム支承，可動支承の結合条件

方向	フレームゴム支承	可動支承
X	剛	自由
Y	剛	剛
Z	剛	剛

図2 飛来物衝突位置及び解析モデル図（STEP2－1）

6 条（竜巻）一別添 1—添付 3．7－別紙 4－2
（2）解析結果
各部材い衝知解析結果を表3に示す。
全ての衝突ケースにおいて，フレーム，大梁，ブラケット，大梁ゴム支承は許容値を超えず，構造強度上の評価方針を満足することを確認した。

また，フレームゴム支泉は表 4 に示すとおり，（1）～（6）の衝突位惪の詊価条件にお いて，構造強度上の評価方針を満足することを確認した。（7）の衝突位置の場合には， 2 つのゴム支承が許容值を満足しないことから，詳細評価（STEP2－2）としてゴム剛性を考慮した衝突解析を行い，構造成立性の確認を行う。

可動支承については一部部材が許容値を超える結果さなったが，詳細設計段階で は，可動支承のサイズアップやボルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。

表3 STEP2－1 における解析結果
（注）本評侕結果は暫定値

評価対象部位		評価項目（単位）	飛来物衝突位置														許容値	
		（1）	（2）		（3）		（4）		（5）		（6）		（7）					
		鉛直－1	鉛直－2		鉛直－3		水平（NS）－1		水平（EW）－1		水平（EW）－2		水平（EW）－3					
	フレーム。		最大ひずみ，（\％）	0.23		0． 16		1.66		1.11		1.12		1.83		$0.05 \% 1$		7.0
	大梁		応力度（組合せ）（MPa）	$\begin{gathered} \hline 260 \\ (364) \\ \hline \end{gathered}$		$\begin{gathered} 160 \\ (364) \end{gathered}$		$\begin{gathered} 110 \\ (364) \end{gathered}$		$\begin{gathered} 120 \\ (364) \end{gathered}$		$\begin{gathered} 150 \\ (364) \end{gathered}$		$\begin{gathered} 130 \\ (364) \\ \hline \end{gathered}$		$\begin{gathered} 120 \\ (364) \\ \hline \end{gathered}$		$※ 2$
プラ	本体	応力度（組合せ）（ MPa ）	$\begin{gathered} 100 \\ (343) \end{gathered}$		$\begin{gathered} 64 \\ (343) \end{gathered}$		$\begin{gathered} 45 \\ (343) \end{gathered}$		$\begin{gathered} 47 \\ (343) \end{gathered}$		$\begin{gathered} 63 \\ (343) \end{gathered}$		$\begin{gathered} 53 \\ (343) \end{gathered}$		$\begin{gathered} 46 \\ (343) \end{gathered}$		$※ 2$	
	アンカボルト	応力度（引張）（MPa）	140		100		79		84		130		100		84		294	
	－		西側	東側	四側	東側	兆側	東側	西側	果側	四側	東側	西側	東側	西側	果側		
$\begin{gathered} \text { フレーム } \\ \text { ב゙ム } \\ \text { 支承 } \end{gathered}$	$コ$ ゴム体	応力度（引張）（MPa）	0	0	1． 4	0.9	14	0.6	0.3	0.2	0.1	0	1.2	0.9	23	3.2	2.0	
		せん断ひずみ（\％）	58	56	190	200	310	98	170	140	130	190	230	240	360	310	250	
		応力度（圧縮）（ MPa ）	1.2	1.2	3.4	2． 6	47.5	2.1	2.2	1.8	1.6	2.2	3.8	3.4	25	7.7	29.8	
	队部鋼板	心נ度（引張）（MPa）	11	11	32	24	450	20	21	17	15	21	36	32	240	72	280	
	取付ボル	応力度（組合せ）（MГa）	$\begin{gathered} 45 \\ (420) \end{gathered}$	$\begin{array}{\|c\|} \hline 44 \\ (420) \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline 160 \\ (420) \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 160 \\ (420) \end{array}\right)$	$\begin{array}{\|r\|} \hline 660 \\ (392) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 95 \\ (420) \end{array}$	$\left.\begin{array}{\|c\|} \hline 140 \\ (420) \end{array}\right)$	$\begin{array}{\|c\|} \hline 120 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 100 \\ (420) \end{array}$	$\begin{array}{\|c\|} \hline 160 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 200 \\ (420) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 210 \\ (420) \end{array}$	$\begin{array}{\|c\|} \hline 420 \\ (349) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 310 \\ (392) \\ \hline \end{array}$	※2	
	アカーボット	応力度（組合 ${ }^{-}$）（MPa）	$\begin{gathered} 40 \\ (294) \end{gathered}$	$\begin{array}{\|c\|} \hline 38 \\ (294) \\ \hline \end{array}$	$\begin{gathered} \hline 170 \\ (259) \end{gathered}$	$\begin{gathered} \hline 160 \\ (253) \end{gathered}$	$\begin{array}{\|c\|} \hline 370 \\ (163) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 93 \\ (294) \\ \hline \end{array}$	$\begin{gathered} 130 \\ (272) \end{gathered}$	$\begin{array}{\|c} \hline 110 \\ (294) \\ \hline \end{array}$	$\begin{gathered} 100 \\ (294) \end{gathered}$	$\begin{array}{\|c\|} \hline 130 \\ (255) \\ \hline \end{array}$	$\begin{gathered} 180 \\ (230) \end{gathered}$	$\begin{array}{\|c\|} \hline 180 \\ (220) \end{array}$	$\begin{gathered} 310 \\ (110) \end{gathered}$	$\begin{array}{\|c\|} \hline 210 \\ (163) \end{array}$	\％2	
$\begin{aligned} & \text { 大泉 } \\ & \text { ゴム } \\ & \text { 支㴍 } \end{aligned}$	ゴム体	応力度（引張）（MPa）	1.2		0.7		0.2		0.3		0.8		0.6		0.2		2.0	
		せん断ひずみ（\％）	110		96		89		95		170		120		91		250	
		応力度（圧縮）（ MPa ）	4.7		2.8		1.8		1.9		3.2		2.3		1.9		23.1	
	内部鋼板	応力度（引張）（MPa）	50		30		19		20		34		25		20		280	
	取付ボルト	応力度（組合せ）（MPa）	$\begin{gathered} 110 \\ (420) \end{gathered}$		$\begin{gathered} 130 \\ (420) \end{gathered}$		$\begin{gathered} 100 \\ (420) \end{gathered}$		$\begin{gathered} 110 \\ (420) \end{gathered}$		$\begin{gathered} 180 \\ (420) \end{gathered}$		$\begin{gathered} 140 \\ (420) \end{gathered}$		$\begin{gathered} 100 \\ (420) \end{gathered}$		$※ 2$	
$\begin{aligned} & \text { 可動 } \\ & \text { 支承 } \end{aligned}$	ソールブレート	心力（圧縮）（MPa）	82	23	33	22	13	13	15	14	22	24	19	18	15	14	351	
	すべり材	忈力（压縮）（MPa）	100	28	40	27	16	16	18	17	27	30	23	22	18	17	60	
	圧縮ゴム	応力（圧縮）（MPa）	$\underline{82}$	23	33	22	13	13	15	14	22	24	19	18	15	14	50	
	ビストン	心力（曲げ）（MPa）	$\underline{290}$	81	120	19	48	46	54	49	80	86	66	65	53	48	280	
	座金	応力（圧縮）（MPa）	260	70	100	69	41	40	47	43	70	75	58	57	46	40	335	
	ベースボット突出部	応力（せん断）（MPa）	43	20	21	12	3.5	0.1	3.8	3.3	20	10	14	11	2． 7	0.4	148	
		发力（曲げ）（MPa）	91	43	45	24	7.3	0.2	7.9	6.9	42	21	30	23	b． 5	0.8	258	
		応力（圧縮）（MPa）	190	89	92	50	15	0.3	16	14	85	44	61	47	11	1.5	351	
	ベースポット支圧部	応力（圧縮）（MPa）	93	82	62	68	51	52	61	63	160	230	95	110	54	56	351	
	V－N	応力（曲げ）（MPa）	430	320	260	250	170	160	200	210	550	740	340	390	180	180	343	
		応力（引張）（MPa）	25	12	12	6.6	2.0	0.1	2.2	1.9	11	5.8	8.1	6.2	1.5	0.2	343	
		応力（せん断）（MPa）	49	40	30	33	25	25	30	31	77	110	47	56	26	28	198	
	トール取付ボルト	応力（引張）（MPa）	500	110	340	360	270	280	330	310	810	1220	510	610	200	300	525	
	エンドブレート接合ボ小	応力（引張）（MPa）	520	380	310	280	190	170	220	230	620	810	390	430	190	190	420	
	上部接合ボルト	応力（せん断）（MPa）	190	160	120	140	100	100	120	130	310	460	190	230	110	110	323	
	下部接合ボルト	応力度（組合せ）（MPa）	$\left\|\begin{array}{c} 320 \\ (273) \end{array}\right\|$	$\begin{gathered} 200 \\ (309) \end{gathered}$	$\left.\begin{array}{c} 180 \\ (376) \end{array}\right)$	$\binom{140}{(358)}$	$\begin{gathered} 77 \\ (416) \end{gathered}$	$\begin{gathered} 62 \\ (412) \end{gathered}$	$\begin{gathered} 91 \\ (379) \end{gathered}$	$\begin{gathered} 91 \\ (374) \end{gathered}$	$\begin{aligned} & 280 \\ & (56) \end{aligned}$	$\left\|\begin{array}{c} 320 \\ (183) \end{array}\right\|$	$\begin{gathered} 180 \\ (264) \end{gathered}$	$\begin{gathered} 190 \\ (202) \end{gathered}$	$\begin{gathered} 76 \\ (405) \end{gathered}$	$\begin{gathered} 70 \\ (397) \end{gathered}$	$※ 2$	
	ベースブレート	応力（せん断）（MPa）	16	10	9． 1	7.0	4.0	3.2	4． 7	4.7	14	16	9.3	9.5	3.9	3.5	198	
		応力（曲げ）（MPa）	270	170	150	120	65	52	77	77	240	270	150	150	64	58	343	

※1：フレーム部材端部に生じる最大ひずみが破断ひずみを上回るが，全断面欠損に至らず部材は支
持されることを傕認
※2：組合せ応力の許容値については（ ）内に許容引張底力を記載
$\square:$ 支持機能に係る部材
＿：支持機能に係る部忖以外で許容値を超えるもの
：支持機能に係る部材のうち許容値を超えるもの
注）上記の評俩項目については裕度が小さい項目を代表して記載している。また，可動支承について は 部部材が許容值を超える結果となったが，詳細設訃段階では，可動文承のサイズアップやボ ルトの仕様変更等の対応を行うことで，許容値を満足させる方針とする。

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－4
表4 STEP2－1における支承部の評伍

＊1：フレームゴム支承は， 2 つのうち 1 つ以上の支承ぶ構造強度上の評価方針を満足することを確認する
$\begin{aligned} * 2 & \text { ：一部部材が許容値を超える結果となったが，詳細設計段階では，可動支承のサイズアップやボルトつ仕様変更等の対応を行う } \\ & \text { ことで，許容値を満足させる方針とする } \\ \square: & \text { STEP2－2 にて詳紐評伍を実施 }\end{aligned}$

6 条（竜巻）一別添 1—添付3．7—別紙4－5

3．詳細評価（ゴム支承のせん断剛性を考慮した解析）（STEP2－2）
（1）解析条件
STEP2－1における（7）の衝突位置の場合には，2つのゴム支承が許容値を満足し ないことを踏まえて，詳細評価としてゴム剛性を考慮した衝突解析を行い，構造成立性ひ碓認な行う。解析条件とそひ考え力童表5，6及び図3に示す。

表5 STEP2－2解析条件

設定項目	設定条件	考え方
$\begin{gathered} \text { ゴム支承の } \\ \text { 剛吽 } \end{gathered}$	耐震評価で用いるせ ん断剛性 （表6参照）	実現象に近いと考えられる条件で評価を行ら観点から，STEP1 で用いた耐震評俩で用いるゴム支承のサん断剛吽を適用する
衝突方向	水平	STEP2－1 の（7）の衝突位惪と同栐
衝栄位惪	ゴム支承近傍	
飛来物姿勢	短辺全面で衝突	

表6フレームーで人支承，可動支承の結合条件

方向	フレームゴム支承	可動支承
X	弾性	自由
Y	弾性	剛
Z	剛	剛

図3 飛来物衝突位置及び解析モデル図（STEP2－2）

6 条（竜巻）－別添 1 －添付 3.7 －別紙 4－6
（2）解析結果
ンレームゴム文承（衝栄解析結果を表りに小す。
フレームゴム支承の部材以発生する応力等は許容值を超えず，構浩強度上の評価方針を満足することを確認した。
（注）本評価結果は
表 7 STEP2－2 におけるフレームゴム支承の解析結果暫定値

評価対象		評価項目	発生値		許容値	
		西側	東側			
$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	（1）ゴム体		応力度（引張）	1.1 MPa	0.8 MPa	$2.0 \mathrm{MPa}^{* 1}$
		せん断ひずみ	62 \％	62 \％	250 \％${ }^{1}$	
		心力度（圧縮）	2.0 MPa	2． 0 MPa	$29.8 \mathrm{MPa}^{* / 1}$	
	（2）内部鋼板	応力度（引張）	19 MPa	19 MPa	$280 \mathrm{MPa}^{*}{ }^{\text {\％}}$	
	（3）取付ボルト	応力度（組合せ）	61 MPa	60 MPa	$420 \mathrm{MPa}^{* 2}$	
	（4）アンカーボルト	応力度（組合せ）	98 MPa	82 MPa	$294 \mathrm{MPa}{ }^{* 2}$	

※1：「道路橋示方書•同解説V耐震設訳編（H14．3）」に基－づく道路橋文承使覧による許容値 ※2：JEAG4601 に基づく許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ の許容応力

図4 飛来物衝突位置及で評価対象（STEP？－2）

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－7

3．ストッパーの評価（ゴム剛性の結合条件を自由とした解析）（STEP2－3）
（1）解析条件
今回実施した（1）～（7）の衝突ケースでは，フレームブム支承が許容値を満足しない場合は確認されなかったことから，ストッパーに支持機能が必要な状況ではないが， STEP2－2 の評価で許容値を満足しない場合を想定し，ストッパーの評価を実施する。

飛来物の衝撃荷重に対して，ゴム支承による荷重を負担せずに，ストッパにに全 ての荷重を伝達する条件で評価する。解析条件とその考え方を表8， 9 及び図 5 に示す。

表 8 STEP2－3解析条件

設定項目	設定条件	考え方
ゴム支承の剛性	自由 （表 9 参照）	飛束物がフレームに衝突した場合の荷重をすべて伝達し，ゴ ム支承による荷重の負担を期待せず，ストッパーへかかる衝撃荷重が大きくなる条件とするため
衝突方向	水平	フレームの水平移動によるストッパーへの影響が大きい方向
衝突位置	1パターン	可動支承の拘束が期待できない可動方向（NS 側）として，南側端部への衝突を考慮
飛来物姿勢	短辺全面で衝突	竜巻防護ネットの形状，衝突時の影響，先行プラントの審査実績を踏まえて設定

表 9 フレーノゴメ支承，可動支承の結合条件

方向	フレームゴム支承	可動支承
X	自由	自由
Y	自由	剛
Z	自由	剛

図5 可動支承の挙動確認における飛来物衝突位置及び解析モデル図（STEP2－3）

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－8
（2）解析結果
ストッパー（）評侕結果を図 6 及び表 10 にホす。発生する心力は計容値を満足す る。

図 6 設訳飛来物衝突洔のフレーム変位ケスージ

表10 ストッパー応力評価結果

	発生伯（MPa）	計容伯（MPa）
サん断応力	19	198
曲げ応力	228	343
組合せ応力	230	343

4．飛来物衝突後の竜巻風荷重に対する評価
飛米物衝尖後ひ）电巻による風何重に対して，竜巻队謢ネットは非常用海水ボンデ等に波及的影響を与えないことが要求される。

STEP2－1 及びSTEP2－2 の評価結果から，許容値を超えないゴム支承が少なくとも 1 つは残るため，フレーム全体が受ける竜巻による風荷重が，ت゙ム支承1つに対し て作用する条件で評価を実施した。評仙条件は以下のとおり。

- 風速 $100 \mathrm{~m} / \mathrm{s}$（設計竜巻風速）
- 風力係数Cは2．1とする
- 受圧面積は形状を考慮した投影面積
- フレームゴム支承（西側）のみが残存し風荷重を受ける場合を代表とした
- 評価モデル図は図 7 のとおり

図7 竜巻風荷重に対する評価モデル図
以上の条件で評佒を行つたとこら，ンレームゴム文承1つが残仔すれば，竜巻風荷重を受けても当該支承に生じる応力等は許容値帰下とない，竜巻風荷重に対する支持機能を維持することを確認した。評価結果を表11に示す。
（注）本評価結果は
表11 竜巻風荷重に刘するフレームゴム支承の評価結果暫走値

評価対象		評価項目	発生値	許容伯	
		東側			
$\begin{aligned} & \text { フレーム, } \\ & \text { ゴム支承 } \end{aligned}$	（1）ゴム体		応力度（引張）	0.4 MPa	$2.0 \mathrm{MPa}^{31}$
		せん断びずみ	130%	250 \％${ }^{\text {\％}}$	
		応力度（厈縮）	1． 2 MPa	$29.8 \mathrm{MPa}^{* 1}$	
	（2）内部鋼板	応力度（引張）	11 MPa	$280 \mathrm{MPa}^{\text {\％} 2}$	
	（3）取付ボルト	応力度（組合せ）	100 MPa	$420 \mathrm{MPa}^{\text {\％2 }}$	
	（4）アンカーボルト	応力度（組合せ）	73 MPa	$294 \mathrm{MPa}^{* 2}$	

※1：「道路橋示方書•同解説 V 耐震設計編（H14．3）」に基づく道路橋支承便覧による許容値 $※ 2: J E A G 4601$ に基づく許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容応力

6 条（竜巻）一別添 1 —添付 3.7 —別紙 4－10

5．STEP2 における構造成立性見通し

（1）～（7）の全ての衝焱位惪において，フレーム，大梁，ブラケット，大贸ゴム支承 は許容値を超えず，構造強度上の評価方針を満足することを確認した。

フレームゴム支承については，STEP2－1 においてフレームゴム支承近傍に設計飛来物が水平に衝突する場合のみ（7 の衝突位置），フレームゴム支承が2 つ許容値 を満足しない結果をなッたが，STE「22において詳細評価を実施し，フレ ムゴム支承が構造強度上の評価方針を満足することを確認した。

また，飛来物衝突後には，構造健全性を保つゴム支承が少なくとも 1 つ残存する ことから，1 つUコゴム文承にく竜巻による風何重及が常時作用する何重に対し，ノ レームの支持機能を維持することを確認した。

さらに，STEP2－1 及び STEP2－2 の評価において，許容値を超えないゴム支承が 1 つ残存するため，ストッパーに支持機能が必要な状況ではないが，STEP2－3 として飛求物の衝撃荷重に対してフレームムゴム支承による荷重を負担せずに，ストッパー に全ての荷重を伝達する条件で評価を実施し，構造強度上の評価方針を満足するこ とを確認した。

可動支承によいては一部部忯が許容値を超える結果となつたが，詳細設計段階で は，可動支承のサイズアップやボルトの什様変更等の対底を行うこりで，許容値を満足させる方針とする。

以上より，竜巻防護ネットの支持部材は構造強度上の詊価方針を満足する方針で ある。よって，飛来物衝突時页び衝突後において竜巻防護ネットの支持機能を維持 するため，構造成立性の見通しがあることを確認した。

詳細設計段階における説明事項（EP まとめ資料抜粋）

別紙 6
設置許可段階と詳細設計段階での説明事項
3 項の説明事項 No．に対応
設置許可段階ぐは，【STEP1】及び【STEP2】ひ評価ひとおり，竜巻防護ホットひ構造成六吽にかかわる代表的な評侕結果をあって，構造成文吽の見涌し，あ説明した。
詳細設計段階では現実に即した解析モデルとして，フレームゴム支承の特性を考慮 した解析モデルを適用し，詊価を実施する方針とする。

設置許可段階での構造成立性の見通し時に用いた評価フワーを組み替充，詳細設計段階の評価フロー（基本ケース）を以下のとおり設定する。

可動支承の評価対象部材について，設置許可段階における構造成立性の見通し確認 において，可動支承近傍～飛求物が衝突した場合，訳容値を超をる結果己なっている が，詳細設計段階では，可動支承のサイズアップやボルトの仕様変更等の対応を行う ことで，許容値を満足させる方針とする。
基本りースによる各部忖の設計を実施した後に，不確かさりースの確認として，ゴ ム支承の剛吽のばらつきを考慮した解析モデルの設定，衝突姿勢の影響を考慮した衝突解析（飛来物の長辺衝突）を実施し，評価を実施する方針とする。

評価フロー（不確かさケース）

図1 詳細設計段階における評価フロー
6 条（竜巻）一別添 1—添付 3．7－別紙6－1
表1 設置許可段階及び詳細設計段階での說明事項（ $1 / 3$ ）

6 条（竜巻）一別添 1—添付 3．7－別紙 6－2
表1 設置許可段階及び詳細設計段階での説明事項（2／3）

	0								
		产	1			0			
			$\frac{4}{4}$ π			$\frac{4}{4}$		六	管
						$\wedge \Delta-\checkmark \Pi \checkmark \mid x(* 1 * 2)$			

[^0]$\begin{array}{ll}\text { ※ } & \text { ：EP：段置許可段階 } \\ \text { PP：詳細設計设階 }\end{array}$

6 条（竜巻）－別添 1－添付 3．7－別紙 6－3
表1設置許可段階及び詳細設計段階での説明事項（ $3 / 3$ ）

注）可動支承については一部部村が許容値を斎える結果となったが，詳細設計段階では，可動支承のサイズアップやボルトの仕樣変更等の対応を行うことで，訐容值を満足させる方針とする。
6 条（竜巻）一別添 1—添付 3．7－別紙6－4

設置許可段階	詳細設計段階	備考
まとめ資料からの設言進捗点の抽出	詊細設計段階における対応	
（記載について） －設置許可段階（まとめ資料）から設計進捗があった内容を抽出し，詳細設計段階における対応 と対比した。 －抽出結果を踏まえ，以下の 3 点に分類し備考欄に記載した。 （1）海水ポンプ室の側壁及び隔壁の補強計画を踏まえた竜巻防護ネットの配置設計進捗 【例】フレーム基数の変更（ 5 基 $\Rightarrow 4$ 基） 大梁の支持位置変更（ブラケット廃止） （2）設置許可段階での説明事項を踏まえた耐震及び強度計算方針の設定並びに方針に基づく設計進抄 【例】 構造強度評価フロー図の設定 ゴム支承に係る特性試験を踏まえた剛性の設定 （3）記載適正化（内容に変更なし）		

【6 条（竜巻）一別添1—添付3．7－3】
海水ポンプ室補機ポンプエリアの隔壁（南側）は壁厚が薄くフレームを支持できないため，フレ ーム支持用の大梁を設置し，この大梁と隔壁（北側）天面にてネット及び防護板を取り付けたフレ ームを支持する。
また，
フレームは海水ポンプ室補機ポンプエリアの北側隔壁（高さ 1.5 m ）に対して約 1.2 m 重なる構造 とし，南側隔壁（厚さ 0.6 m ）に対しても約 0.55 m 重なる構造とし，海水ポンプ室補機ポンプエリア に落下しない構造とする。
竜巻防護ネットの構造概要を図 2 及び図 3 に示す。また，竜巻防護ネットの仕様を表 1 に示す。 なお，仕様は詳細設計により変更もあり得る。

図2 竜巻防護ネットの概要図

海水ポンプ室補機ポンプエリアの南側隔壁を補強し設置したコーベル上にフレーム支持用の大梁 を設置し，この大梁とコーベルを追加した隔壁（北側）天面にてネット及び防護板を取り付けたフ レームを支持する。

また，
フレームは海水ポンプ室補機ポンプエリアの北側隔壁（厚さ 4 m ）に対して約 1.65 m 重なる構造と し，南側隔壁（厚さ 0.5 m ）に対しても約 0.4 m 重なる構造とし，海水ポンプ室補機ポンプエリアに落下しない構造とする。

竜巻防護ネットの構造概要を図 2 及び図 3 に示す。また，竜巻防護ネットの仕様を表 1 に示す。

支持方式模式図（ $A-A$ 矢視）
図2 竜巻防護ネットの概要図

分類（1）

（ブラケットの廃止•支持壁変更）
海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

分類（1）

（フレーム基数の変更）
東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

図 3 竜巻防護ネットの概要図（北西側から見た場合）

海水ポンプ室

分類（1）

（フレーム基数の変更）
東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

分類（1）

（ブラケットの廃止•支持壁変更）
海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

詳細設計段階における対応状況（竜巻防護ネット）

図7 竜巻防護ネットの構造（イメージ）

【6 条（竜巻）一別添1—添付3．7－11】

ネットを取り付けるフレームは，主桁，横補強材，ブレースで構成され，主桁と横補強材で区切 られるセル毎にネットを支持する。1台のフレームに対いて，セルは4つとし，5 台のフレームで海水ポンプ室のほぼ全域を覆う構造とする。

【6 条（竜巻）一別添1—添付 3．7－13】

3．5．2 構造設計

ネット（金網部）及びフレームで発生した荷重は，海水ポンプ室補機ポンプエリアの壁面に伝達 する構造とする。
海水ポンプ室の壁面のうち，隔壁（南側）は厚さ 0.6 m であり，荷重に対して十分な強度を確保で きない可能性があるため，十分な厚み（厚さ 2 m ）がある側壁（東側）及び側壁（西側）にブラケッ トを取付け，大梁を設置することで，フレームを支持する。もう一方の指示は厚さ 1.5 m の隔壁（北側）にて実施する。
以上により，十分なん厚みがあり強度が確保できる隔壁（北側）と側壁（東側，西側）で荷重を受ける構造とする。

フレーム，大梁のクリアランス例
図 9 フレーム，大梁の設置状況

図 2－4 フレーム及び大梁の配置概要図

図 9 フレーム，大梁の設置状況

分類（1）

（フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

分類（1）
（ブラケットの廃止•支持壁変更）
海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

設置許可段階	詳細設計段階	備考
【6 条（竜巻）一別添1—添付3．7－15】 2．6．2 構造設計 ゴム支承はフレームと隔壁（北側）の接続部及び大梁とブラケットの接続部に設置する。 フレームと隔壁（北側）の接続部は，フレーム 1 基に対して，隔壁（北側）の天面に設置した 2 個 のゴム支承をとりつける構造とする。（隔壁（北側）には計 10 個のゴム支承を設置） 大梁の支持は，片側 1 か所あたり 2 基のブラケットを設置し，各ブラケットの上に 1 個のゴム支承を設置する。（ブラケットには計 4 個のゴム支承を設置） 大梁とフレームの接続部は可動支承を用いる。可動支承はフレーム 1 基に対して， 2 個の可動支承で支持する。（大梁には計 10 個の可動支承を設置）可動方向は南北方向のみである。	ゴム支承はフレームと北側隔壁の接続部及び大梁と南側隔壁の接続部に設置する。フレームと北側隔壁の接続部には，フレーム 1 基に対して，北側隔壁の天面に 2 個のゴム支承を取り付け，大梁 と南側隔壁の接続部は，片側 1 箇所あたり 2 個のゴム支承を取り付けることで，ゴム支承によりフ レーム及び大梁を支持する構造とする。 可動支承は大梁とフレームの接続部に設置する。可動支承は南北方向の水平変位に追従し，フレ ーム 1 基に対して， 2 個の可動支承を取り付けることで，温度変化によるフレームの伸縮を吸収し，変形による荷重発生を防ぐ構造とする。	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
【6 条（竜巻）－別添 1 －添付 3．7－15】 図 10 支持構造模式図	図 2－5 竜巻防護ネットの支持構造模式図	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映（フレーム幅を調整） 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

詳細設計段階における対応状況（竜巻防護ネット）

—
詳細設計段階における対応状況（竜巻防護ネット）

設置許可段階
【6 条（竜巻）－別添 1 －添付 $3.7-27$ 】
これらの影響を踏まえて，構造成立性の見通しを確認するために，竜巻防護ネットを構成する支
持部材に対し，代表的な飛来物衝突の解析評価を実施する。評価は以下の 2 ステップで実施する。

【STEP1】

ゴム支承に支持されるフレームに飛来物が衝突した際の挙動を確認するため，ゴム支承の剛性 を考慮した衝突解析を実施する。衝突解析は，フレームゴム支承による影響が最も大きくなると想定される条件（飛来物姿勢，衝突位置，飛来方向）で実施し，ゴム支承の影響を考慮した場合 において，フレームゴム支承，可動支承がフレームを支持する機能を維持可能な構造強度を有す ることを確認する。STEP1 の評価結果について別紙3に幣理する。

【STEP2】

衝突時の竜巻防護ネットを構成する支持部材の構造成立性を確認するため，以下の評価を実施 する。STEP2 の評価結果については別紙 4 に幣理する。
STEP2－1：竜巻防護ネットを構成する支持部材（ストッパーを除く）はゴム剛性の結合条件を 3 方向固定（衝撃荷重のピーク値が大きくなると推測される条件）にて衝突解析を行い，構造成立性の確認を行う。
STEP2－2：STEP2－1 はフレームゴム支承に対し非常に厳しい条件であるため，STEP2－1 の条件で評価を実施した結果，許容値を満足しない場合には，詳細評価としてゴム支承のせん断剛性を考慮した解析条件にて評価を実施する。
STEP2－3：STEP2－2 のフレームゴム支承の評価結果を踏まえて，ストッパーの評価を実施する。ス トッパーの評価はゴム剛性の結合条件を自由（ゴム支承による荷重の負担は期待せずス トッパーに全ての荷重を伝達する条件）とし衝突解析を行い，構造成立性の確認を行う。
（1）詳細設計段階における検討経緯
「3．設置許可段階における主な説明事項」及び海水ポンプ室の耐震補強計画を踏まえて，竜巻防護ネットの詳細設計を実施した。検討の経緯及び概要について以下に示す。
＞海水ポンプ室の詳細設計における構造を，竜巻防護ネットの設計を反映した。具体的には，東西側壁上部への補強梁設置に伴い，海水ポンプ室東西方向開口幅が狭くなったことか ら，フレーム幅及びフレーム基数の見直しを実施することとした。また，南側隔壁補強を踏まえ，既設東西側壁にブラケットを設置し大梁を支持するとしていた構造から，補強す る南側隔壁にて大梁を支持する構造とした。
＞設置許可段階では保守的にゴム支承の拘束条件を 3 方向固定として支持部材の構造成立性を確認していたが，詳細設計段階では，ゴム支承剛性に係る特性試験を実施した上で， ゴム支承の拘束条件を 3 方向弹性とし，試験を踏まえた剛性のばらつきを不確かさケース として影響碓認することとした。このとき，竜巻防護ネットの機能維持の考え方として，設置許可段階では 2 つのフレームゴム支承のらち 1 つ以上の支承が構造強度上の評価方針を満足することを確認するとしていたが，詳細設計段階においては，いずれのゴム支承 も許容値を超えず構造強度上の評価方針を満足させる方針とした。
＞可動支承についても，詳細設計段階においてはサイズアップやボルトの仕様変更等の対応 を行い，許容値を満足させる方針とした。
＞いずれの支承部も許容値を満足させる方針としたことに伴い，構造強度評価において，ス トッパーに対して竜巻防護ネットの支持機能を期待しない方針とした。
＞飛来物の衝突姿勢（長辺衝突）による影響について，不確かさケースとして確認する方針 とした。
（4）詳細設計段階における設計フロー
詳細設計段階での説明事項を踏まえ，竜巻防護ネットの衝突解析において基本ケース及び不確か さケースを設定し評価を実施する。詳細設計段階における竜巻防護ネットの支持部材の評価フロー図を図4－1 に示す。
なお，詳細設計段階における説明事項に対する対応方針について，別紙5に示す。
衝突解析の実施に当たり，現実に即したゴム支承の特性を考慮し，適切な解析モデルを設定する よう，ゴム支承の剛性の設定方針及び特性試験の実施について次章に示す。

分類（2）

（強度評価フローの見直し）
設置許可段階における説明事項を踏まえ，構造成立性を確認 した評価フローを組み替え，基本ケース及び不確かさケース の評価を実施する評価フロー とした。詳細については「補足説明資料 710－1 4.1 竜巻防護 ネットの衝突解析について」に示す。

岡16ストッパーイメージ図

解析条件	ゴム支承	可動支承
大梁，フレームゴム支承，大梁ゴム支承，可動支承の評価	ゴム支承の結合条件を3方向弾性 （実現象に近いと考えられる条件で評価を行ら観点から適用する）	可動方向の結合条件 をフリー
ストッパーの評価＊1	ゴム支承の結合条件をフリー （ゴム支承による荷重の負担を期待せず， ストッパーへかかる衝撃荷重が大きくなる条件で評価を実施）	可動方向，鉛直方向 の結合条件を固定

 の支持機能を担う部材としてストッパーに期待しないこととした。ただし，道路橋示方書 における落橋防止構造を参考に，自主的にストッパーを設置することとし，ストッパー設置により外部事象防護対象施設に波及的影響を与えないことについて確認する。

分類（1）

（フレーム基数の変更）
東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。

分類（1）

（ブラケットの廃止•支持壁変更）
海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

分類（2）

（ゴム支承の結合条件の設計進捗）
設置許可段階における説明事項及びゴム支承の特性試験結果を踏まえ，衝突解析における ゴム支承の解析条件について， ばね支持による 3 方向弾性と した。
分類（2）
（ストッパーの位置付けの整理）
構造強度評価上は期待しない が，道路橋示方書における落橋防止装置を参考に，自主的にス トッパーを設置することとし た。

設置許可段階	詳細設計段階	備考
【6 条（竜巻）一別添1—添付3．7－38】 西側 図19 設計飛来物衝突時の荷重伝達例 （水平方向（南から北）から衝突した場合）	図19設計飛来物衝突時の荷重伝達例 （水平方向（南から北）から衝突した場合）	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
【6 条（竜巻）—別添1—添付3．7－38】 東側 図 20 設計飛来物衝突時の荷重伝達例 （水平方向（西から東）から衝突した場合）	図20 設計飛来物衝突時の荷重伝達例 （水平方向（西から東）から衝突した場合）	分類（1） （フレーム基数の変更）東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。

設置許可段階											詳細設計段階					備考
【6 北側 8． $\xrightarrow{8} \rightarrow$		添1—添付3．7－39		$\begin{array}{r} \text { フレーム } \\ \text { ムコムム支丞 } \end{array}$ 重伝達例場合）				図21 設計飛来物衝突時の荷重伝達例 （鉛直方向から衝突した場合）								分類（1） （フレーム基数の変更） 東西側壁補強に伴い東西方向開口幅が狭くなったことを詳細設計に反映した。 分類（1） （ブラケットの廃止•支持壁変更） 海水ポンプ室補強計画を踏ま え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
【6	（竜巻）一別表 1	添1—添付3．7－40 支持部材に対す	】	目標と評	価方針（2			表 17 支持部材に対する構造強度上の性能目標と評価方針（2／2）								分類（1） （ブラケットの廃止）
				唯淮言												海水ポンプ室補強計画を踏ま
	 た情成十る主要な格十るネット及ひ活涀を を齐持する港能を根れ 等に次度的野票を多 た格虎十 いる2はとな。			フレーム		（W）			 いてるさとする。			フレーム		 		え，既設東西側壁にブラケット を設置し大梁を支持するとし ていた構造から，補強する南側隔壁にて大梁を支持する構造 とした。
						1353t＊								${ }^{185} 5$		

詳細設計段階での説明事項及び申送り事項への対応方針

竜巻防護ネットの支持部材の評価フロー図に対して，詳細設計段階における説明事項及び申送り事項への対応方針を整理した結果について図1及び表1に示す。

注記 $* 1$ ：衝突解析において，以下を考慮し解析ケースを設定する。

考慮する事項	$\begin{gathered} \text { 基本ケース } \\ \text { における設定 } \\ \text { 【(2)】*2 } \end{gathered}$	不確かさケース における設定【（4】 】 ${ }^{2}$	
解析モデルにおける ゴム支承の剛性 【（1）${ }^{* 2}$	設計値を設定	不確かさ ケース（1）	剛性のばらつきを考慮 した値を設定【c】＊2
衝突解析における衝突姿勢【b】＊2	短辺衝突	不確かさ ケース（2）	長辺衝突による影響を確認

＊2：【】内は表1に示す各No．に対応

図1 竜巻防護ネットの支持部材の評価フロー図
表1 詳細設計段階における対応事項整理結果（1／2）

	\checkmark 解 IU xty to こ 怅 这 絺觜 x 6 瞂步 畐地地 6 ふ澚亜 ※十以 ㄹ． 行畐种 N 桠 x断絹男边 6 密㫱 6进议庶 违行 生		万尔社， 迷傫炻好 6 装淬以葉N，，リ H心NN賲别 ＂烺虾带 也 云米紫护號势絡 $156+1$ 6 睤 く 6人辟逝庰 1回䖑㣿人社庶血㞅瞄似回 －トN N 叫以（軳ポ	的护以边照账 宣おか颠火 6．建 十以种爮边以标白 边边。描出」先 6 込 6 䋂火监
$\begin{array}{\|c} k_{4}^{2} \\ K \end{array}$			む回蹜䋂\＆゙い両に一羂入一 	
$\stackrel{\circ}{2}$	Θ	（a）	（a）	\oplus
$\begin{array}{\|l\|} \hline \text { 棞 } \\ \text { 和 } \end{array}$				

表1 詳細設計段階における対応事項整理結果 $(2 / 2)$

分類	No．	内容	対応方針	資料等への反映
$\begin{gathered} \text { 申送り } \\ \text { 事項 } \end{gathered}$	a	飛来物衝突時の上向反力に対して，フレ ームが浮き上がらないことを詳細設計段階で説明する。	「6．評価ケースの設定方針及び構造成立性の確認」 にて，設置許可段階において厳しい評価結果となった フレームゴム支承近傍への飛来物衝突に対して，衝撃荷重による上向きの反力によりフレームゴム支承に生 じる引張応力度が許容値を満足し，フレームの浮き上 がりによる損傷が生じないことを示した。	「補足－710－14．16．評価 ケースの設定方針及び構造 成立性の確認」
	b	衝突方向に対する影響について，ガイド の考え方を踏まえて詳細設計段階で説明する。	「6．評価ケースの設定方針及び構造成立性の確認」 にて，「原子力発電所の竜巻影響評価ガイド」を踏まえ た衝突解析の評価ケースの設定の考え方について示し た。また，代表的な飛来物評価ケースに対して構造成立性が確保されることを示した。	「補足－710－1 $4.16 . \quad$ 評価 ケースの設定方針及び構造成立性の確認」
	c	ゴム支承の衝撃荷重に対する試験内容 について，詳細設計段階で説明する。	「5．衝突解析に係るゴム支承の剛性の設定」にて，衝突解析に資するゴム支承の鉛直剛性に係る特性試験を実施し，試験を踏まえたゴム支承の剛性の設定方針を示した。	「補足－710－1 4．15．衝突解析に係るゴム支承の剛性 の設定」

4． 3 金網の設計裕度の考え方

1．概要

本資料は，竜巻飛来物防護を目的とした高強度金網の設計裕度に関して，金網の耐衝撃性能評価に用いる機械的特性値の設定の考え方について説明するものである。

2．金網の機械的特性値
高強度金網の耐衝撃性能評価に用いる機械的特性値は，金網の交点引張試験から算定 している。金網（50 mm 目合い）の交点引張試験結果（全20 データ）を図2－1に示す。 また，図2－1より算出した金網の等価剛性，破断伸び量，破断荷重を表2－1 に示す。

図 2－1 金網の交点引張試験結果

表 2－1 金網の交点引張試験結果の平均値
$\left.\begin{array}{|c|c|c|c|}\hline \text { 等価剛性 } \\ (\mathrm{kN} / \mathrm{m})\end{array} \begin{array}{c}\text { 破断伸び量 } \\ (\mathrm{mm})\end{array} \begin{array}{c}\text { 破断荷重 } \\ (\mathrm{kN})\end{array}\right]$

3．ネットの強度評価における裕度の考慮
金網の等価剛性は表2－1に示す値を用いるが，交点引張試験結果のばらつきを考慮し た裕度を確保することとする。ここで，表2－1に示す等価剛性とは別に，図2－1 の金網 の交点引張試験結果から多直線近似剛性を求め，金網の吸収エネルギを算出した結果を図 3－1に示す。等価剛性にて吸収エネルギを評価した場合，多直線近似剛性より算出し た吸収エネルギよりも，最大で 5.6% 高くなることから，金網の許容吸収エネルギについ ては，等価剛性より算出した吸収エネルギを $1 / 1.056$ 倍することにより裕度を確保する。

図 3－1 等価剛性と多直線近似の差異
4.7 防護板の貫通評価について

1．はじめに
竜巻防護ネットの防護板は，鋼板により構成され，防護板に作用する荷重は支持部材 に伝達する構造としている。防護板の衝突評価においては，以下に示す BRL 式により，飛来物の貫通を生じない最小厚さ以上であることを確認している。

$$
\mathrm{T}^{\frac{3}{2}}=\frac{0.5 \cdot \mathrm{M} \cdot \mathrm{v}^{2}}{1.4396 \times 10^{9} \cdot \mathrm{~K}^{2} \cdot \mathrm{~d}^{\frac{3}{2}}}
$$

ここで，
d ：評価において考慮する飛来物が衝突する衝突断面の等価直径（m）
K：鋼板の材質に関する係数（－）
M：評価において考慮する飛来物の質量（kg）
T ：鋼板の貫通限界厚さ（m）
v ：評価において考慮する飛来物の飛来速度（ m / s ）

2．防護板の構造
防護板の取り付け概要を図2－1に示す。

図 2－1 防護板概要図 $(1 / 2)$

図 2－1 防護板概要図 $(2 / 2)$

3．BRL 式の適用性
BRL 式では飛来物の運動エネルギ，等価直径，及び鋼板（被衝突体）の材質に関する係数をパラメータとし，既往文献「竜巻飛来物を模擬した角管の落下衝突による鋼板の貫通評価，日本機械学会論文集，Vol．83，No．851，2017年」，「竜巻飛来物を模擬した重錘の鋼板上への自由落下衝突試験による鋼板貫通評価手法の提案 研究報告：N15004， 2015 年」及び「竜巻飛来物衝突を受ける鋼板の耐貫通性能に関する研究－BRL 式の適用性 に関する基礎研究－研究報告：019003，2019 年」（以下「既往文献」という。）におい ては，上記パラメータを変化させた試験による BRL 式の適用性の検討，また，竜巻飛来物を模擬した角管による鋼板貫通試験と BRL 式の比較による BRL 式のパラメータ設定方法の検討を実施している。

既往文献の報告内容と竜巻防護ネットの防護板の衝突評価内容の比較により，評価の妥当性及び保守性を確認した。確認結果を表3－1に示す。
表 3－1 確認結果（1／2）

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{BRL 式パラメータ} \& 既往文献 \& 女川 \& 備考

\hline \& 質量M \& 1300 kg

$16.5 \sim 17.1 \mathrm{~m} / \mathrm{s}$ \& 135 kg

$46.6 \mathrm{~m} / \mathrm{s}$ \& | ＜既往文献＞ |
| :--- |
| 「原子力発電所の竜巻影響評価ガイド」の飛来物例（鋼製材（質量 135kg，最大水平速度 $51 \mathrm{~m} / \mathrm{s}$ ））と運動エネルギを一致させるために質量，速度（落下高さ）を設定している。 |
| ＜女川＞ |
| 「原子力発電所の竜巻影響評価ガイド」の飛来物例を踏まえ，フジタモデ ルの風速場を適用した場合における飛散評価を実施し，飛来物条件（鋼製材（質量 135 kg ，最大水平速度 $46.6 \mathrm{~m} / \mathrm{s}$ ））を設定している。 |

\hline 飛来物 \& 等価直径 d \& 周長が等価とな るように設定 \& 接触面積が等価 となるように設定 \& | ＜既往文献＞ |
| :--- |
| BRL 式を角管飛来物の衝突•貫通に適用する場合，BRL式の等価直径dは，「周長」が等しい円柱の直径とすることが妥当であることを確認している。 |
| ＜女川＞ |
| 等価直径 dを，「周長」や「投影面積」 よりも更に大きい「接触面積」と等し い値としており，保守的な設定として いる。 \square |
| 衝突面 |
| 接触面積 |
| or |
| 等価円への |
| 飛来物 \square投影面積 or |
| 置換え |
| 図 飛来物直径の換算方法鋼板上への自由落下衝突試験によ る鋼板貫通評価手法の提案 研究報告：N15004」より抜粋） \square周長 （「竜巻飛来物を模擬した重錘の |

\hline
\end{tabular}

4． $7-3$
表 3－1 確認結果（2／2）

BRL 式パラメータ		既往文献	女川	備考
防護板	材料係数 K	$\begin{aligned} & \mathrm{K}=1 \\ & (\mathrm{SS} 400) \end{aligned}$	$\begin{aligned} & \mathrm{K}=1 \\ & (\mathrm{SM} 400) \end{aligned}$	＜既往文献＞ BRL 式でK＝1 とした限界板厚曲線は，SS400 の鋼板に対する試験結果の貫通／不貫通の間に入る（試験結果と一致する）ことを確認している。ま た，SM490 やSM520 においてもKは1．14 末満と推定している。 ＜女川＞ 竜巻防護ネットの防護板はSM400の鋼板を使用している。既往文献の結果 から，SM400でも材料定数 Kを 1 程度とすることは妥当と考えられる。
	その他 （支持条件）	四辺固定 （二辺固定につ いても実施）	二辺固定	＜既往文献＞ 四辺固定の試験を実施し，BRL 式により保守的に評価できることを確認し ている。また，二辺固定による試験も実施し，四辺固定の方が，飛来物衝突部に局所的な変形が卓越し，鋼板にとってより厳しい条件となることを確認している。 ＜女川＞ 竜巻防護ネットの防護板は二辺固定であるため，適用可能と判断してい る。
	貫通限界厚さT	9 mm （試験結果）	$\begin{aligned} & 29.60 \mathrm{~mm} \\ & \text { (BRL 式) } \end{aligned}$	＜既往文献＞ 上記の条件にて試験を実施した結果，鋼板の貫通限界厚さTは9mmである ことを確認している。 ＜女川＞ 上記女川の条件にてBRL式により評価した結果，鋼板の貫通限界厚さTは既往文献の試験値（ 9 mm ）を大きく上回っており，保守的な評価となって いる。

5．排気筒の強度計算に関する補足説明資料
5.1 設計飛来物による構造欠損の想定箇所について

1．概要

添付書類「VI－3－別添1－1－7 排気筒の強度計算書」で実施する第2号機及び第3号機排気筒（以下「排気筒」という。）の強度評価において，設計飛来物による影響は鉄塔部材を損傷させることで考慮することとしている。本資料は，添付書類「VI－3－別添1－1－7排気筒の強度計算書」において，「衝突を評価する部材としては，鉄塔基礎部に直接荷重 を伝達する最下層主柱材のらち，健全時において風圧力を作用させた際に，最も厳しい評価結果となる部材とする。」としていることに関し，その詳細について説明するもので ある。

2．構造

排気筒の構造を図 2－1 及び図 2－2 に示す。
－0．P． 174.8

図 2－1 排気筒の構造

A－A断面（第4支持点）

D－D断面

$\underline{G-G \text { 断面 }}$

オイルダンパ設置

B－B断面
C－C断面（第3支持点）

E－E断面

$$
\square
$$

H—H断面（第1支持点）

$\underline{F-F ⿰ ⿺ 𠃊 ⿻ 丷 木 斤 斤 斤}$ 面（第2支持点）

図 2－2 排気筒の構造（平面図）

3．健全時の主柱材の評価結果

健全時に，風圧力による荷重を受ける際の鉄塔最下層の主柱材の評価結果を表3－1に示す。

なお，評価対象は鉄塔基礎部に直接荷重を伝達している鉄塔最下層の主柱材とし，健全時に風圧力による荷重を受ける際に飛来物が衝突する可能性のある部材のうち，最も厳しい評価結果となる主柱材を選定し，飛来物を衝突させる部材として考慮するものと する。

主柱材の部材名称は図 3－1 に，飛来物が衝突する可能性のある部材は図 3－2 に示すと おりとする。

図 3－1 主柱材の部材名称

図 3－2（1）飛来物が衝突する可能性のある部材（ 0° 方向）

図 3－2（2）飛来物が衝突する可能性のある部材（ 45° 方向）
表 3－1（1）主柱材の評価結果（ 0° 方向）

部材名称	検討応力		使用部材 （STK400）(mm)	断面性能			座屈長さ ℓ_{k} （mm）	$\begin{aligned} & \text { 細長比 } \\ & \lambda=\ell_{\mathrm{k}} / \mathrm{i} \end{aligned}$	応力度		許容応力度		応力評価$\begin{gathered} \sigma \mathrm{c} / \mathrm{f} \mathrm{c} \\ +\sigma_{\mathrm{b}} / \mathrm{f}_{\mathrm{b}} \end{gathered}$
	軸力 N （kN）	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ \text { M } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$		$\begin{array}{\|c} \hline \text { 断面積 } \\ \text { A } \\ \left(\times 10^{2}\right. \\ \left.\mathrm{mm}^{2}\right) \\ \hline \end{array}$	$\begin{gathered} \text { 断面 } \\ \text { 係数 } \\ \text { Z } \\ \left(\times 10^{3}\right. \\ \left.\mathrm{mm}^{3}\right) \\ \hline \end{gathered}$	```断面 2 次 半径 i (mm)```			$\begin{gathered} \text { 圧縮 } \\ \sigma_{\mathrm{c}}=\mathrm{N} / \mathrm{A} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \sigma_{\mathrm{b}}=\mathrm{M} / \mathrm{Z} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 圧縮 } \\ \mathrm{f}_{\mathrm{c}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \mathrm{f}_{\mathrm{b}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	
（1）	4023．06	1429． 10	$\begin{gathered} 1100.0 \phi \times 20.0 \\ (\text { 補強材 } \mathrm{t}=12.0,22.0) \end{gathered}$	1082	28300	386	13350	34.6	37． 2	50.5	248.9	258.5	0． 35
（4）	12075.99	850.17	$\begin{gathered} 1100.0 \phi \times 20.0 \\ (\text { 補強材 } \mathrm{t}=12.0,22.0) \end{gathered}$	1082	28300	386	13350	34.6	111.6	30.0	248.9	258.5	0． 57

表 3－1（2）主柱材の評価結果（ 45° 方向）													
	検討	灾力	使用部材 （STK400）(mm)	断面性能			座屈 長さ ℓ_{k} （mm）	細長比$\lambda=\ell_{\mathrm{k}} / \mathrm{i}$	応力度		許容応力度		応力評価
部材名称	軸力 N （kN）	$\begin{gathered} \hline ⿻ 口 卄 ⿱ ㇒ ⿻ 二 乚 力 八 ゙ け ゙ ~ \\ \text { モーメント } \\ \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$		$\begin{gathered} \text { 断面積 } \\ \text { A } \\ \left(\times 10^{2}\right. \\ \left.\mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { 断面 } \\ \text { 係数 } \\ \mathrm{Z} \\ \left(\times 10^{3}\right. \\ \left.\mathrm{mm}^{3}\right) \\ \hline \end{gathered}$	断面 2 次 半径 i （mm）			圧縮 $\begin{gathered} \sigma_{\mathrm{c}}=\mathrm{N} / \mathrm{A} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \sigma_{\mathrm{b}}=\mathrm{M} / \mathrm{Z} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 圧縮 } \\ \mathrm{f} \quad \mathrm{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \mathrm{f}_{\mathrm{b}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \sigma \mathrm{c} / \mathrm{f}_{\mathrm{c}} \\ +\sigma_{\mathrm{b}} / \mathrm{f}_{\mathrm{b}} \end{gathered}$
（1）	13235．99	433.22	$\begin{gathered} 1100.0 \phi \times 20.0 \\ (\text { 補強材 } \mathrm{t}=12.0,22.0) \end{gathered}$	1082	28300	386	13350	34.6	122． 3	15．3	248.9	258.5	0． 56
（2）	1488． 88	1564．24	$\begin{gathered} 1100.0 \phi \times 20.0 \\ (\text { 補強材 } \mathrm{t}=12.0,22.0) \end{gathered}$	1082	28300	386	13350	34.6	13． 8	55.3	248.9	258.5	0． 27
（4）	1489． 29	1564． 24	$\begin{gathered} 1100.0 \phi \times 20.0 \\ (\text { 補強材 } \mathrm{t}=12.0,22.0) \end{gathered}$	1082	28300	386	13350	34.6	13.8	55.3	248.9	258.5	0． 27

5．1－6

4．飛来物の衝突を考慮する部材の選定
「3．健全時の主柱材の評価結果」を踏まえ，飛来物の衝突を考慮する部材として，健全時に風圧力による荷重を受ける際に最も厳しい評価結果となる最下層の主柱材を選定 した。

表 4－1 飛来物の衝突を考慮する部材の選定結果

風圧力による 荷重の作用方向	飛来物の衝突を 考慮する部材
0°	（4）
45°	（1）

5.2 腐食代の考慮について

1．概要

添付書類「VI－3－別添1－1－7 排気筒の強度計算書」で実施する第2号機及び第3号機排気筒（以下「排気筒」という。）の強度評価において，腐食による影響はないとして いる。そのため，本資料は筒身及び筒身を支持している鉄塔には劣化がなく健全性が維持されていることを説明するものである。

2．排気筒の構造概要

排気筒は，地上からの高さ 160.0 m ，基部内径 3.7 m ，頂部内径 3.0 m の鋼板製筒身 2 本 を鋼管四角形鉄塔（制震装置付）で支えた四角鉄塔支持形鋼管構造であり，第2号機排気筒と第 3 号機排気筒で支持構造物を共有する集合方式である。

筒身と鉄塔は 4 箇所の支持点で接続される。 0. P． $41.8 \mathrm{~m}, ~ 0 . P .74 .8 \mathrm{~m}, ~ 0 . P .161 .8 \mathrm{~m}$ の 3箇所は，水平方向固定•鉛直方向フリーの支持点構造で接続され， $0 . P .134 .8 \mathrm{~m}$ の支持点 は制震装置（オイルダンパ）で接続されている。

排気筒の概要図を図 2－1に示す。

構造概要

- 構造形式 四角鉄塔支持形鋼管構造（制震装置付）
- 排気筒高さ

160．0m（0．P．174．8m）

- 鉄塔高さ 147.0 m （0．P．161．8m）
- 筒身内径

頂部 3．0m
基部 3.7 m
－鉄塔幅 頂部 11.0 m
根開き 30.0 m
－支持点位置
0．P．41．8m，0．P． $74.8 \mathrm{~m}, \quad 0$. P．134． $8 \mathrm{~m}, \quad 0$. P． 161.8 m
－基礎
鉄筋コンクリート造フーチング基礎
－0．P． 174.8

図 2－1 排気筒の概要図

3．排気筒の健全性
筒身及び鉄塔の性能に係る経年的な劣化として，鋼材の腐食が挙げられる。
そのため，表3－1のとおり防食性に優れたエポキシ樹脂系の塗装を施しており，保安規定及び個別文書に基づき，表3－2に示す点検•検査を定期的に実施し，異常が確認さ れた場合には速やかに補修することを定めている。また，筒身の内側については点検す ることが困難であることを踏まえ，腐食が進行しないように配慮した耐候性鋼材 （SMA400AP）を使用している。
以上のことから，筒身及び鉄塔の健全性は保たれ，腐食による排気筒の強度評価への影響はない。

表 3－1 排気筒の塗装仕様

名称		塗装工程	塗装系（膜厚）
筒身	内側	下塗	タールエポキシ樹脂系塗料（70 μ ）
		中塗	タールエポキシ樹脂系塗料（70 μ ）
		上塗	タールエポキシ樹脂系塗料（70 μ ）
	外側	下塗 1	厚膜形有機ジンクリッチペイント（ 75μ ）
		下塗2	エポキシ樹脂系MI0 塗料（ 50μ ）
		下塗3	弱溶剤系変性エポキシ樹脂塗料（ 50μ ）
		中 •上塗	弱溶剤系厚膜形シリコン変性エポキシ樹脂系下上塗兼用塗料（ 70μ ）
鉄塔	補強箇所	下塗1	弱溶剤系変性エポキシ樹脂塗料（ 50μ ）
		下塗2	弱溶剤系変性エポキシ樹脂塗料（ 50μ ）
		中 •上塗	弱溶剤系厚膜形シリコン変性エポキシ樹脂系下上塗兼用塗料（ 70μ ）
	補強箇所以外	下塗1	エポキシ樹脂系塗料（ 95μ ）
		下塗2	弱溶剤系変性エポキシ樹脂塗料（ 50μ ）
		中 •上塗	弱溶剤系厚膜形シリコン変性エポキシ樹脂系下上塗兼用塗料（ 70μ ）

表 3－2 排気筒の点検頻度および点検内容

分類		点検頻度	点検内容
点検＊	定期巡視	1 回／月	塗装の膨れ，剥れ，変退色，発錆状況を目視 で確認する。
	外部点検	1 回／年	専門性を有する技術員（社員以外）が塗装の 膨れ，剥れ，変退色，発錆状況を確認する。
非破壊検査		1 回／ 10 年	超音波板厚計による板厚測定により，所定の 板厚が確保されていることを確認する。

注記＊：筒身の内側については点検が困難であることを踏まえ，腐食が進行しないように配慮した耐候性鋼材（SMA400AP）を使用するとともに，非破壊検査による板厚測定で所定の板厚が確保されていることを確認することで健全性を把握する。

6．衝突評価に関する補足説明資料
6.1 衝突解析の解析手法の保守性について

1．概要

本資料は，添付書類「VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書」 のうち，「VI－3－別添 1－1－1 竜巻より防護すべき施設を内包する施設の強度計算書」，「VI －3－別添1－5 復水貯蔵タンクの強度計算書」，「VI－3－別添1－7 排気筒の強度計算書」及 び「VI－3－別添 1－2－1 防護対策施設の強度計算書」（以下「竜巻衝突解析の強度計算書」 という。）に関する補足説明資料である。

鋼製部材については，それぞれ竜巻衝突解析の強度計算書において3次元 F E Mモデ ルを用いた飛来物衝突評価を実施しており，これらの評価における鋼材の動的物性値の設定は，電力中央研究所報告「竜巻飛来物を模擬した重錘の鋼板上への自由落下衝突試験による鋼板貫通評価手法の提案（研究報告：N15004）」（以下，「電中研報告」という。） において実施している重錘の自由落下衝突試験のための事前解析の解析手法を参考に実施している。

本資料においては，上述の動的物性値の設定手法について示すとともに，参照した電中研報告における解析手法（以下「電中研解析手法」という。）が重錘の自由落下衝突試験結果と整合していること，及び当社の設定条件が電中研報告の試験結果に対し保守性 を有していることについて記載する。

なお，上記の比較検討は防護鋼板を対象にしたものであるが，衝突評価は部材の局部的影響に着目した解析であることから，形状が異なる部材についても適用可能である。設定条件の保守性に係る評価フローを図1－1に示す。

図 1－1 設定条件の保守性に係る評価フロー

2．動的物性値の選定手法
飛来物の衝突に対する解析は，変形速度が大きいためひずみ速度効果を考慮すること とし，以下に示すCowper－Symondsの式を適用している。

$$
\sigma_{\mathrm{eq}}=\mathrm{A}\left\{1+\left(\dot{\varepsilon}_{\mathrm{pl}} / \mathrm{D}\right)^{1 / \mathrm{q}}\right\}
$$

ここで，$\sigma_{\text {eq }}^{\text {こ }}$ はずみ速度を考慮した降伏応力， A は降伏応力，$\dot{\varepsilon}_{\mathrm{p}} \mathrm{l}$ は無次元相当塑性ひずみ速度，D及び q はひずみ速度係数を表す。これらのパラメータは，日本溶接協会の動的物性の推定式（以下「WES式」という。）にフィッティングする様に選定した。以下に，竜巻防護鋼板の防護鋼板を例として，選定したパラメータ（表 2－1 参照）と その選定方法を示す。

表 2－1 Cowper－Symonds 式へ入力するパラメータ（防護鋼板）

	防護鋼板
材料	SS 400
$\mathrm{D}\left(\mathrm{s}^{-1}\right)$	
q	

降伏応力及び引張強さに関するWES式は以下のとおり。

$$
\begin{aligned}
& \sigma_{\mathrm{Y}}=\sigma_{\mathrm{Y} 0}\left(\mathrm{~T}_{0}\right) \cdot \exp \left[8 \times 10^{-4} \cdot \mathrm{~T}_{0} \cdot\left(\frac{\sigma_{\mathrm{Y} 0}\left(\mathrm{~T}_{0}\right)}{\mathrm{E}}\right)^{-1.5} \cdot\left\{\frac{1}{\mathrm{~T} \cdot \ln \left(10^{8} / \dot{\varepsilon}\right)}-\frac{1}{\mathrm{~T}_{0} \cdot \ln \left(10^{8} / \dot{\varepsilon}_{0}\right)}\right\}\right] \\
& \sigma_{\mathrm{T}}=\sigma_{\mathrm{T} 0}\left(\mathrm{~T}_{0}\right) \cdot \exp \left[8 \times 10^{-4} \cdot \mathrm{~T}_{0} \cdot\left(\frac{\sigma_{\mathrm{T} 0}\left(\mathrm{~T}_{0}\right)}{\mathrm{E}}\right)^{-1.5} \cdot\left\{\frac{1}{\mathrm{~T} \cdot \ln \left(10^{9} / \dot{\varepsilon}\right)}-\frac{1}{\mathrm{~T}_{0} \cdot \ln \left(10^{9} / \dot{\varepsilon}_{0}\right)}\right\}\right]
\end{aligned}
$$

 み速度，Eはヤング係数を示す。

鋼製部材の動的物性値を選定するにあたり，以下の項目を考慮した。
（1）被衝突物について，貫通評価における許容値は破断ひずみとしていることから， Cowper－Symonds 式により算出した引張強さが WES 式で算出した値にフィッティ ングする様，パラメータを適切に設定した。
（2）飛来物については，Cowper－Symonds 式により算出した降伏応力が WES 式で算出 した値にフィッティングする様，パラメータを適切に設定した。

[^1]（3）（1）及び（2）と併せて，電中研報告書では，ひずみ速度 $10\left(\mathrm{~s}^{-1}\right)$ 近傍において， Cowper－Symonds 式で算出した引張強さが WES 式で算出したものよりも小さくな るように設定し，貫通評価に対して保守的になるように配慮していることを参考に，ここではひずみ速度 $0.01 ~ 100\left(\mathrm{~s}^{-1}\right)$ の範囲においてWES 式で算出した値よ りも小さくなるように設定した。

表 2－1 に示すパラメータを適用したときの動的物性値について，WES 式による値と合 わせ図 2－1 に示す。

図 2－1 防護鋼板におけるひずみ速度－真応力曲線

3．電中研解析手法と自由落下衝突試験結果との整合性について
上記の動的物性値設定手法の設定に際し参照した，電中研解析手法の妥当性について以下に示す。
3.1 事前解析における塑性ひずみ及び試験結果における貫通有無について

電中研報告においては，事前解析にて得られた衝突エネルギーと鋼板に発生する相当塑性ひずみの関係を求め，試験の重錘落下高さに反映を行っている。その際に得ら れた事前解析結果による相当塑性ひずみと自由落下衝突試験における貫通有無の関係 を表3－1に示す。

表 3－1 事前解析結果による相当塑性ひずみと自由落下衝突試験における貫通有無

試験（解析）ケース	試験条件			試験結果によ る貫通有無	事前解析で得 られた相当塑性ひずみ（\％）
	飛来物	被衝突体＊	落下高さ （m）		
SS－1	剛パイプ重錘	SS400	17.0	有	17.4
SS－2	剛パイプ重錘	SS400	12.5	有	14.9
SS－4	剛パイプ重錘	SS400	11	無	14.1
SS－3	剛パイプ重錘	SS400	9.5	無	13.0

注記 $*$ ：有効開口部サイズ $1.4 \mathrm{~m} \times 1.4 \mathrm{~m} \times \mathrm{t} 9 \mathrm{~mm}$ ，接続部 2 辺固定

上記の試験結果及び事前解析結果より，試験ケース SS－2 においては，貫通が発生し ており，事前解析により得られた相当塑性ひずみは 14.9% である。また，試験ケース SS－4においては，貫通が発生しておらず，事前解析により得られた相当塑性ひずみは 14．1\％である。したがって，試験結果及び事前解析結果より，SS400 鋼板については，相当塑性ひずみが $14.1 \% \sim 14.9 \%$ の間で貫通が発生することが考えられる。

3．2 SS400 鋼板の引張試験における塑性ひずみについて
表3－2に自由落下衝突試験に用いた SS400 鋼板の引張試験で得られた材料特性値を示す。ここで，試験に使用した被衝突体であるSS400 鋼板の材料試験値から得られた引張ひずみに相当する塑性ひずみが 14.9% であることから，被衝突体であるSS400鋼板の塑性ひずみが 14.9% 付近に達した場合に飛来物が貫通することが考えられる。

表3－2 自由落下衝突試験に用いた SS400鋼板の材料試験値他

部材	材料試験結果（平均値）				引張ひずみを真ひずみに換算した値（－）	塑性ひずみ （左記から弾性ひずみを差 し引いた値）
	降伏 応力 （MPa）	引張 強さ （MPa）	$\begin{gathered} \hline \text { 引張 } \\ \text { ひずみ } \\ (-) \end{gathered}$	ヤング 率 (GPa)		
$\begin{gathered} \text { 鋼板 } \\ (\mathrm{SS} 400) \end{gathered}$	322.3	474.4	0． 1624	209.7	0.150	0.148

3.3 電中研解析手法及び自由落下衝突試験結果と材料試験値の整合性
3.1 の事前解析における相当塑性ひずみと自由落下衝突試験における貫通有無より，飛来物衝突により発生するSS400 鋼板の相当塑性ひずみが $14.1 ~ 14.9 \%$ に達した場合 に貫通することが考えられること，3．2のSS400 鋼板の引張試験における材料試験値 よりSS400鋼板の塑性ひずみが 14.8% であることから，電中研報告における事前解析及び自由落下衝突試験結果は材料試験結果とよく整合していることが確認できる。

したがって，電中研解析手法は自由落下衝突試験結果とよく整合している解析手法 であるといえる。表3－3に，電中研報告における事前解析及び自由落下衝突試験から得られた結果並びに材料試験から得られた結果を示す。

表 3－3 電中研報告書における事前解析，自由落下衝突試験及び材料試験から得られた結果

事前解析及び自由落下 衝突試験から得られた結果	材料試験から得られた結果	結論
SS400 鋼板については，飛来	自由落下衝突試験に使用し	左記より電中研解析手法は
物衝突により相当塑性ひず	たSS400 鋼板の引張ひずみ	自由落下衝突試験結果とよ
みが $14.1 \% ~ 14.9 \%$ に達した	に相当する塑性ひずみが	く整合しているといえる。
場合に貫通する。	14.8%	

4．電中研解析手法と当社の解析手法の比較について
電中研解析手法と当社の解析手法の比較を表4－1に示す。本比較表より，当社の解析手法については，「静的な物性値の出典」及び「破断ひずみ（破断条件）」において保守性を有しており，その他については差異がないことから，当社の解析手法は電中研解析手法に比べ保守性を有しているといえる。

表 4－1 電中研解析方法と当社の解析手法の差異

比較項目		電中研解析手法	当社の解析手法	俑考
解析コード		AUTODYN	LS－DYNA	「原子力安全基盤機構：原子力発電施設等に係る構造物の爆発衝撃荷重挙動解析 （JNES／SSD08－014，平成 20 年 11 月）」にお いて，AUTODYN と LS－DYNA との間でコード に依存する特性は少ないことが確認され ていることから，解析コードに有意な差 はないといえる。
材料 物性値	静的な物性値 の出典	材料試験値	JIS 及び JSME 規格値	電中研解析手法については，引張試験に おいて得られた材料試験値を使用してお り，JIS 及び JSME 規格値を使用している当社の解析手法に保守性有 （例．SS400 鋼板の材料試験値の降伏応力 322 MPa に対してJIS 値は 245 MPa ）
	動的な物性値 の出典	WES 式＊ 1	同左	＊1：（社）日本溶接協会「動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808：2003」による推定式
	応力ーひずみ関係	Cowper Symonds $\text { モデル * } 2$	同左	＊2：「原子力安全基盤機構：原子力発電施設等に係る構造物の爆発衝撃荷重挙動解析 （JNES／SSD08－014，平成 20 年 11 月）」にお いて使用しているひずみ速度を考慮した モデル
	破断ひずみ （破断条件）	相当塑性ひずみ が JSME 規格＊3 の限界 3 軸ひず み ε L における $\mathrm{TF}=2$ の値に達し た場合を提案 （例．SS400の場合： 12.8% ）		破断ひずみについて電中研提案の値に対 し，小さな値を採用していることから破断しやすい設定となっており，保守性を有している。 ＊ $3: 「$ 日本機械学会：発電用原子力設備規格シビアアクシデント時の構造健全性評価ガイドライン $\langle B W R$ 鋼製格納容器編 ＞（2014 年 7 月）」

枠囲みの内容は商業機密の観点から公開できません。

6．1－6

5．当社の解析手法と自由落下衝突試験結果との比較について
当社の解析手法の保守性を確認することを目的として，表4－1に記載している当社の解析手法における設定値を用いて，電中研報告における重錘の鋼板上への自由落下衝突試験（以下，電中研試験という）の追解析を行った。その結果を表 5－1 に，解析モデル を図 5－1 に示す。解析モデルは電中研試験と同様 2 辺固定とし，重錘部については，密度を大きくした要素を採用することで重錘の重量を模擬している。また，本検討におい ては，解析ソフトとしてLS－DYNAを用いた。

表 5－1 の追解析結果より，自由落下衝突試験において貫通が発生しなかったケースに おいても，当社の解析手法による解析結果においては貫通が発生していること，また貫通が発生したケースにおける残留速度が自由落下衝突試験結果の残留速度よりも大きい ことから，当社の解析手法は保守性を有しているといえる。

表 5－1 当社の解析手法による自由落下衝突試験の追解析

試験ケース	試験条件			試験結果によ る貫通有無（残留速度（m／s））	当社の解析手法を用いた追解析によ る貫通有無（残留速度（m／s））
	飛来物	被衝突体	落下高さ （m）		
SS－1	剛パイプ重錘	SS400	17． 0	有（8． $5 \mathrm{~m} / \mathrm{s}$ ）	
SS－2	剛パイプ重錘	SS400	12.5	有（ $2.9 \mathrm{~m} / \mathrm{s}$ ）	
SS－4	剛パイプ重錘	SS400	11	無	
SS－3	剛パイプ重錘	SS400	9.5	無	

図 5－1 解析モデル

ひずみ評価に用いる多軸性係数の考え方について

電中研報告より，ひずみ制限による破壊基準に関する既往知見として，入力エネルギ の大きい竜巻による飛来物と，局所的な大変形を伴う鋼製構造物との衝突問題を解析に より評価する場合の評価基準については，一般にひずみ制限を考慮した破壊基準が採用 されている。ひずみ制限を適用した破壊基準として，NEI07－13 の原子力発電所に対する航空機衝突評価手法が知られている。鋼板衝突部に局所的に発生する相当塑性ひずみの上限値として，局所延性相当ひずみを被衝突体に生じる多軸性係数で除した値が与えら れている。なお，TF は次式で表される。
$\mathrm{TF}=\frac{\sigma_{1}+\sigma_{2}+\sigma_{3}}{\sigma_{\mathrm{e}}}$
ここで，
$\sigma_{1}, \sigma_{2}, \sigma_{3}$ ：主応力
σ_{e} ：ミーゼス相当応力
また，TFの物理的意味合いを表1に示す。TFは多軸応力場での延性低下の影響を示す係数であり，等二軸引張では 2 ，平面ひずみ引張では $\sqrt{3}$ ，単軸引張では 1 となる。

表1 TF の物理的意味合い

変形 モード	単軸 引張	単軸引張側面拘束 （平面ひすみ張）	等二軸 引張
応力比 σ_{2} / σ_{1}	0	0.5	1
ひずみ比 $\varepsilon_{2} / \varepsilon_{1}$	-0.5	0	1
$T F$	1	$\sqrt{3}$	2

[^0]:

[^1]: 枠囲みの内容は商業機密の観点から公開できません。

