```
本資料のらち，朹囲みの内容 は商業機密の観点から公開で きません。
```

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－2－9－4－4－1－5 原子炉建屋ブローアウトパネル閉止装置の耐震性についての計算書

目 次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 4
2.3 適用規格•基準等 5
2．4 記号の説明 6
2.5 計算精度と数値の丸め方 8
3．評価部位 9
4．地震応答解析及び構造強度評価 9
4.1 地震応答解析及び構造強度評価方法 9
4．1．1 扉の構造強度評価方法 9
4．1．2 支持部材の構造強度評価方法． 9
4.2 荷重の組合せ及び許容応力 10
4．2．1 荷重の組合せ及び許容応力状態 10
4．2．2 許容応力 10
4．2．3 使用材料の許容応力評価条件 10
4.3 解析モデル及び諸元 14
4． 4 固有周期 15
4.5 設計用地震力 16
4.6 計算方法 17
4．6．1 応力の計算方法 17
4．7 計算条件 22
4.8 応力の評価 22
4．8．1 扉及び支持部材の応力評価 22
5．機能維持評価 23
5.1 機能維持評価用加速度 23
5.2 機能確認済加速度 23
6．評価結果 24
6.1 重大事故等対処設備としての評価結果 24
7．引用文献 24

1．概要
本計算書は，添付書類「VI－1－1－6－別添4 ブローアウトパネル関連設備の設計方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋ブローアウトパネル閉止装置 （以下「BOP 閉止装置」という。）が設計用地震力に対して十分な構造強度及び動的機能を有し ていることを説明するものである。
BOP 閉止装置は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

BOP 閉止装置は，装置取付架台を介して 1 式（ 24 台）設置しており，BOP 閉止装置 24 台と装置取付架台から構成される全体構造が剛構造であることを確認している。そのため，全体構造にお ける BOP 閉止装置の振動特性とBOP 閉止装置 1 台の振動特性に差異はないため，以下ではBOP 閉止装置1台に着目して，構造強度評価及び動的機能維持評価を実施する。

2．一般事項
2.1 構造計画

BOP 閉止装置の構造計画を表2－1に示す。

表 2－1 構造計画（1／2）

計画の概要		概略構造図
基礎•支持構造	主体構造	
BOP 閉止装置は，原子炉建屋原子炉棟に剛構造で ある装置取付架台を介し て 1 式（24 台）設置して おり，枠板は，据付ボル トにより装置取付架台に固定される。 扉開状態及び扉閉状態で は，閂部は閂ブラケット に閂ピンを挿入すること で拘束され，丁番部は丁番軸を支持する丁番ブロ ックによって拘束され る。扉はそれらの部材を介して枠板に支持され る。	BOP 閉止装置は，扉，問，丁番，枠板及び扉 を駆動する駆動部から構成される。	

表 2－1 構造計画（2／2）

概略構造図

枠囲みの内容は商業機密の観点から公開できません。

2． 2 評価方針

BOP 閉止装置の応力評価は，添付書類「VI－1－1－6－別添4 ブローアウトパネル関連設備の設計方針」に基づき，「2．1 構造計画」にて示す BOP 閉止装置の部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出 した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。また，BOP 閉止装置の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき，地震時の応答加速度が動的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示 す。

BOP 閉止装置の構造強度評価フローを図 2－1 に，機能維持評価フローを図 2－2 に示す。

図 2－1 BOP 閉止装置の構造強度評価フロー

図 2－2 BOP 閉止装置の機能維持評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補—1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

記号	記号の説明	単位
A_{H}	丁番ブラケットの断面積	mm^{2}
A_{P}	閂ピンの断面積	mm^{2}
A	内梁の断面積	mm^{2}
E	扉の縦弾性係数	MPa
$\mathrm{C}_{\mathrm{H} 1}$	BOP閉止装置の面外方向設計震度	－
$\mathrm{CH}_{\mathrm{H} 2}$	BOP閉止装置の面内方向設計震度	－
C_{v}	BOP閉止装置の鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
F_{P}	閂ピンに作用する引張力	N
F_{x}	内梁に作用する力（ x 方向）	N
F y	内梁に作用する力（ y 方向）	N
F_{z}	内梁に作用する力（ z 方向）	N
F_{XH}	丁番ブラケットに作用する力（X方向）	N
F_{YH}	丁番ブラケットに作用する力（Y方向）	N
F_{ZH}	丁番ブラケットに作用する力（Z方向）	N
$f_{\text {s }}$	許容せん断応力	MPa
f_{t}	許容引張応力	MPa
L_{H}	丁番ブラケットの長さ	mm
$L_{\text {P }}$	閂ピンの長さ	mm
m	扉の質量	kg
M_{P}	閂ピンに作用するモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{x}	内梁に作用するモーメント（ x 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{y}	内梁に作用するモーメント（ y 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	内梁に作用するモーメント（ z 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {XH }}$	丁番ブラケットに作用するモーメント（X軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {Z }}$	丁番ブラケットに作用するモーメント（Z軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
N_{YH}	丁番ブラケットに作用する垂直力（Y方向）	N
P	原子炉建屋内外差圧条件	Pa
P_{w}	風圧力条件	Pa
Q P	閂ピンに作用するせん断力	N
Q_{XH}	丁番ブラケットに作用するせん断力（X方向）	N
Q_{ZH}	丁番ブラケットに作用するせん断力（Z方向）	N
S u	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa

記号	記号の説明	単位
S_{y}（RT）	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
Z_{P}	間ピンの断面係数	mm^{3}
Z ${ }_{\text {x }}$	内梁のねじり断面係数	mm^{3}
$\mathrm{Z}_{\text {y }}$	内梁の y 軸周り断面係数	mm^{3}
$\mathrm{Z}_{\text {z }}$	内梁の z 軸周り断面係数	mm^{3}
Z_{XH}	丁番ブラケットのX軸周り断面係数	mm^{3}
$Z_{\text {Z }}$	丁番ブラケットのZ軸周り断面係数	mm^{3}
v	ポアソン比	－
$\sigma \mathrm{cH}$	丁番ブラケットに生じる組合せ応力	MPa
σ t H	丁番ブラケットに生じる引張応力	MPa
$\sigma \mathrm{cP}$	閂ピンに生じる組合せ応力	MPa
$\sigma \mathrm{tP}$	閂ピンに生じる引張応力	MPa
σ c	内梁に生じる組合せ応力	MPa
σ t	内梁に生じる引張応力	MPa
σ x	内梁に生じる引張応力（ x 方向）	MPa
σ y	内梁に生じる引張応力（y 方向）	MPa
σ z	内梁に生じる引張応力（z 方向）	MPa
τ_{H}	丁番ブラケットに生じるせん断応力	MPa
τ P	閵ピンに生じるせん断応力	MPa
τ	内梁に生じるせん断応力	MPa
$\tau \mathrm{x}$	内梁に生じるせん断応力（ x 方向）	MPa
τ y	内梁に生じるせん断応力（y 方向）	MPa
τ z	内梁に生じるせん断応力（z 方向）	MPa

2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	—整数位 $* 1$	
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
断面係数	mm^{3}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 $* 3$

注記 $~ 1 ~: ~$ 設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2 ：絶対値が 1000 以上のときはべき数表示とする。
＊3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切捨て，整数位までの値とする。

3．評価部位
BOP 閉止装置の耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づ き，扉開状態及び扉閉状態それぞれの場合において，扉のうち耐震評価上厳しくなる内梁，支持部材のらち閂ピン及び丁番ブラケットについて実施する。
評価部位については，表2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価方法

「3．評価部位」にて設定した各評価部材の構造強度評価方法を以下に示す。なお，耐震計算に用いる寸法は，公称値を使用する。

4．1．1 扉の構造強度評価方法

（1）扉は間及び丁番により支持される構造であるため，その構造に応じた方向の変位を拘束 するものとする。
（2）地震力は扉に対して面外方向，面内方向及び鉛直方向の 3 方向から作用するものとし，強度評価において組み合わせるものとする。
（3）扉閉状態において原子炬建屋内外差圧及び風圧力は，扉に対して面外方向に等分布に作用するものとし，評価において 4 辺を面外方向に拘束するものとする。また，強度評価に おいて地震力と組み合わせるものとする。

4．1．2 支持部材の構造強度評価方法

（1）閂ピン
a．扉からの地震荷重は，面外方向に作用するものとする。
b．扉閉状態において扉からの原子炉建屋内外差圧及び風圧力は，面外方向に作用するも のとする。
c．間ピンの構造強度評価は，集中荷重が先端に作用する片持ち梁モデルを適用する。
（2）丁番ブラケット
a．扉からの地震荷重は，面外方向，面内方向及び鉛直方向に作用するものとする。
b．扉閉状態において扉からの原子炉建屋内外差圧及び風圧力は，面外方向に作用するも のとする。
c．丁番ブラケットの構造強度評価は，集中荷重による引張応力，せん断応力及び組合せ応力を評価する。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

BOP 閉止装置の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用い るものを表 4－1 に示す。

4．2．2 許容応力
BOP 閉止装置の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 4－2 に示す。

4．2．3 使用材料の許容応力評価条件
BOP 閉止装置の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いる ものを表 4－3（扉開状態）及び表 4－4（扉閉状態）に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
原子炉格納施設	その他	BOP 閉止装置	常設／緩和		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{III}_{A} S^{* 3}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として, } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）

＊2 ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3 ：閂ピンについては，基準地震動 S s により定まる地震力が作用した後においても，扉固定の機能を維持する設計とすることから許容応力状態を $\mathrm{III}_{A} \mathrm{~S}$ とする。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）		
	一次応力		
	引張り	せん断	組合せ
$\mathrm{III}_{A} S^{* 3}$	$1.5 \cdot \mathrm{f}_{\text {t }}$	$1.5 \cdot \mathrm{f}_{\text {s }}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$
$\mathrm{IV}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\text {s }}$＊	$1.5 \cdot \mathrm{ft}^{*}$
$\mathrm{V}_{A} \mathrm{~S}$ $\left(\mathrm{~V}_{\mathrm{A}} \mathrm{S}\right.$ として $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}^{*}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊

注記＊1 ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能 である場合は評価を省略する。
＊3 ：間ピンについては，基準地震動 S s により定まる地震力が作用した後においても，扉固定の機能を維持する設計とすることから許容応力状態をIII S とする。

表 4－3 扉開状態における使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
内梁		周囲環境温度	55			
閂ピン		周囲環境温度	55			
丁番ブラケット		周囲環境温度	55			

表 4－4 扉閉状態における使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
内梁		周囲環境温度	66			
間ピン		周囲環境温度	66			
丁番ブラケット		周囲環境温度	66			

4．3 解析モデル及び諸元

BOP 閉止装置の解析モデルを図 4－1 に，解析モデルの概要を以下に示す。また，機器の諸元 を本計算書の【BOP 閉止装置の耐震性についての計算結果】の機器要目に示す。
（1）BOP 閉止装置の外梁及び内梁を三次元のはり要素及び面板を三次元のシェル要素でモデル化した FEM モデルを用いる。
（2）解析モデルの質量は，扉を構成する内梁，外梁及び面板等の質量を考慮する。
（3）拘束条件として，閂は面外方向の並進拘束及び丁番は面外，面内及び鉛直方向の並進拘束 とする。
（4）解析コードは「MSC NASTRAN」を使用し，固有値と各要素に発生する荷重及びモーメント を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 4－1 解析モデル

4． 4 固有周期

扉開状態における固有値解析結果を表 4－5 に，扉閉状態における固有値解析結果を表 4－6に示す。扉開状態及び扉閉状態において，面外方向，面内方向及び鉛直方向の固有周期は 0.05秒以下であり，剛であることを確認した。

表 4－5 扉開状態の固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
		面外方向	面内方向	刺激係数	

表 4－6 扉閉状態の固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
		面外方向	面内方向	刺激係数	

4.5 設計用地震力

扉開状態における耐震評価に用いる設計用地震力を表 4－7 に，扉閉状態における耐震評価に用いる設計用地震力を表4－8に示す。

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 4－7 扉開状態の設計用地震力（重大事故等対処設備）

据付場所 及び	固有周期 （s）			弾性設計用地震動 S d又は静的震度			基準地震動S s		
床面高さ （m）	面外 方向	面内 方向	鉛直 方向	面外方向設計震度	面内方向設計震度	鉛直方向設計震度	面外方向設計震度	面内方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{*} \\ & \text { (0.P. } 38.25 \text {) } \end{aligned}$	0.027	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H} 1} \\ =3.15 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{H} 2} \\ =3.15 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}} \\ =1.85 \end{gathered}$

注記＊：基準床レベルを示す。

表 4－8 扉閉状態の設計用地震力（重大事故等対処設備）

据付場所 及び	固有周期 （s）			弾性設計用地震動 S d又は静的震度			基準地震動 S s		
床面高さ （m）	面外 方向	面内 方向	鉛直 方向	面外方向設計震度	面内方向設計震度	鉛直方向設計震度	面外方向設計震度	面内方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{*} \\ & \text { (0.P. } 38.25 \text {) } \end{aligned}$	0.027	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H} 1} \\ =3.15 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{H} 2} \\ =3.15 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}} \\ =1.85 \end{gathered}$

注記＊：基準床レベルを示す。

4．6．1 応力の計算方法
（1）扉の計算方法
a．内梁
内梁に加わる荷重は，解析による計算で得られる値を使用し，応力を図4－3を用いて計算する。負担力は，並進力 $\mathrm{F}_{\mathrm{x}}, ~ \mathrm{~F}_{\mathrm{y}}, ~ \mathrm{~F}_{\mathrm{z}}$ ，モーメント力 $\mathrm{M}_{\mathrm{x}}, ~ \mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ とする。た だし，添字 $x, ~ y, ~ z$ は要素に与えられた座標軸で，x軸は常に要素の長手方向にとる。応力は，「7．引用文献」より，下記の計算式にて求める。
（a）応力成分
上記荷重による応力成分は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{x}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}}, \quad \sigma_{\mathrm{y}}=\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{y}}}, \quad \sigma_{\mathrm{z}}=\frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{Z}_{\mathrm{z}}} \tag{4.6.1.1}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{\mathrm{x}}=\frac{M_{\mathrm{x}}}{Z_{\mathrm{x}}}, \quad \tau_{\mathrm{y}}=\frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{~A}}, \quad \tau_{\mathrm{z}}=\frac{\mathrm{F}_{\mathrm{z}}}{\mathrm{~A}} \tag{4.6.1.2}
\end{equation*}
$$

（b）引張応力
引張応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}+\sigma_{\mathrm{z}} \tag{4.6.1.3}
\end{equation*}
$$

（c）せん断応力
せん断応力は次式となる。

$$
\begin{equation*}
\left.\tau=\sqrt{\left(\tau_{\mathrm{x}}+\tau_{\mathrm{y}}\right)^{2}+\tau_{\mathrm{z}}^{2}}{ }^{\tau_{\mathrm{y}}{ }^{2}+\left(\tau_{\mathrm{x}}+\tau_{\mathrm{z}}\right)^{2}}\right\} \text { 大きい方 } \tag{4.6.1.4}
\end{equation*}
$$

（d）組合せ応力
組合せ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{c}}=\sqrt{\sigma_{\mathrm{t}}^{2}+3 \cdot \tau^{2}} \tag{4.6.1.5}
\end{equation*}
$$

内梁の最大応力発生部位を図 4－1 の（a）に示す。

図 4－2 扉内梁の部材断面
（2）支持部材の計算方法
a．間ピン
閂ピンに作用する荷重によるせん断力及び曲げモーメントを算出し，閂ピンに生じる応力を計算する。計算モデルは図 4－3 に示すとおり，集中荷重が先端に作用する片持ち梁モデルとする。
（a）引張応力
閂ピンに作用する曲げモーメントは次式により求める。

$$
\begin{equation*}
\mathrm{M}_{\mathrm{P}}=\mathrm{F}_{\mathrm{P}} \cdot \mathrm{~L}_{\mathrm{P}} \tag{4.6.1.6}
\end{equation*}
$$

閂ピンに生じる引張応力は次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{tP}}=\frac{\mathrm{M}_{\mathrm{P}}}{\mathrm{Z}_{\mathrm{P}}} \tag{4.6.1.7}
\end{equation*}
$$

（b）せん断応力
間ピンに作用するせん断力は次式により求める。

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{P}}=\mathrm{F}_{\mathrm{P}} \tag{4.6.1.8}
\end{equation*}
$$

閂ピンに生じるせん断応力は次式により求める。

$$
\begin{equation*}
\tau_{P}=\frac{Q_{P}}{A_{P}} \tag{4.6.1.9}
\end{equation*}
$$

（c）組合せ応力
間ピンに生じる組合せ応力は次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{cP}}=\sqrt{\sigma_{\mathrm{tP}}{ }^{2}+3 \cdot \tau_{\mathrm{P}}^{2}} \tag{4.6.1.10}
\end{equation*}
$$

b．丁番ブラケット
丁番ブラケットに作用する荷重による垂直力，せん断力及び曲げモーメントを算出 し，丁番ブラケットに生じる応力を計算する。計算モデルは図 4－4 に示すとおりとす る。

図 4－4 丁番ブラケット計算モデル
（a）引張応力
丁番ブラケットに作用する垂直力は次式により求める。

$$
\begin{equation*}
\mathrm{N}_{\mathrm{YH}}=\mathrm{F}_{\mathrm{YH}} \tag{4.6.1.11}
\end{equation*}
$$

丁番ブラケットに作用する曲げモーメントは次式により求める。

$$
\begin{align*}
& \mathrm{M}_{\mathrm{XH}}=\mathrm{F}_{\mathrm{ZH}} \cdot \mathrm{~L}_{\mathrm{H}} \\
& \mathrm{M}_{\mathrm{ZH}}=\mathrm{F}_{\mathrm{XH}} \cdot \mathrm{~L}_{\mathrm{H}} \tag{4.6.1.13}
\end{align*}
$$

$$
(4.6 .1 .12)
$$

丁番ブラケットに生じる引張応力は次式により求める。

$$
\begin{equation*}
\sigma_{t H}=\frac{N_{Y H}}{A_{H}}+\frac{M_{X H}}{Z_{X H}}+\frac{M_{Z H}}{Z_{Z H}} \tag{4.6.1.14}
\end{equation*}
$$

（b）せん断応力
丁番ブラケットに作用するせん断力は次式により求める。

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{XH}}=\mathrm{F}_{\mathrm{XH}} \\
& \text { (4.6.1.15) } \\
& Q_{Z_{H}}=F_{Z H} \tag{4.6.1.16}
\end{align*}
$$

丁番ブラケットに生じるせん断応力は次式により求める。

$$
\begin{equation*}
\tau_{\mathrm{H}}=\sqrt{\left(\frac{\mathrm{Q}_{\mathrm{XH}}}{\mathrm{~A}_{\mathrm{H}}}\right)^{2}+\left(\frac{\mathrm{Q}_{\mathrm{ZH}}}{\mathrm{~A}_{\mathrm{H}}}\right)^{2}} \tag{4.6.1.17}
\end{equation*}
$$

（c）組合せ応力
丁番ブラケットに生じる組合せ応力は次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{cH}}=\sqrt{\sigma_{\mathrm{tH}}^{2}+3 \cdot \tau_{\mathrm{H}}^{2}} \tag{4.6.1.18}
\end{equation*}
$$

4．7 計算条件
応力計算に用いる自重（扉）及び荷重（地震荷重，原子炉建屋内外差圧及び風圧力）は，本計算書の【BOP 閉止装置の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価
4．8．1 扉及び支持部材の応力評価
4．6．1 項で求めた各応力が下表で定めた許容応力以下であること。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合＊
許容引張応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5} \cdot 1.5$
許容せん断応力 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F} *}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容組合せ応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{~F} *}{1.5} \cdot 1.5$

注記＊：閂ピンについては，基準地震動S s により定まる地震力が作用した後に おいても，扉固定の機能を維持する設計とすることから許容応力状態を III ${ }_{A}$ S とする。

5．機能維持評価
BOP 閉止装置の動的機能維持評価について，以下に示す。
5.1 機能維持評価用加速度

BOP 閉止装置は原子炉建屋原子炉棟に取り付けられることから，機能維持評価用加速度は，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す原子炉建屋の地震応答解析で評価 した，BOP 閉止装置の重心位置に生じる加速度とする。機能維持評価用加速度を表 5－1 に示 す。

表 5－1 機能維持評価用加速度（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

評価部位	対象機器設置箇所 （m）	方向	機能維持 評価用加速度
BOP 閉止装置	原子炉建屋 0．P．38．25	面外	2.62
		面内	2.62
	鉛直	1.54	

5．2 機能確認済加速度

BOP 閉止装置について，実機の据付状態を模擬し，加振台上に架台を設置し，架台に BOP 閉止装置を取り付けた上で，設置される床における設備評価用床応答曲線を包絡する模擬地震波 により加振試験を行う。BOP 閉止装置の機能確認済加速度には，水平 2 方向と鉛直方向の 3 方向同時加振試験において，BOP 閉止装置の作動性及び気密性を保持できることを確認した最大加速度を適用する。機能確認済加速度を表 5－2 に示す。

表 5－2 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
BOP 閉止装置	面外	\square
	面内	\square
	鉛直	\square

枠囲みの内容は商業機密の観点から公開できません。

6．評価結果
6． 1 重大事故等対処設備としての評価結果
BOP 閉止装置の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

7．引用文献
引用文献を以下に示す。
－機械工学便覧（改訂第 6 版）（日本機械学会編 1987年4月）（（社）日本機械学会）

$$
\mathrm{O} 2 \text { (3) VI-2-9-4-4-1-5 R } 2
$$

〔BOP 閉止装置の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）			弾性設計用地震動 Sd 又は静的震度			基準地震動S s			周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			面外方向	面内方向	鉛直方向	面外方向設計震度	面内方向 設計震度	鉛直方向設計震度	面外方向設計震度	面内方向設計震度	鉛直方向設計震度	
BOP 閉止装置	常設／緩和	$\left.\begin{array}{c} \text { 原子炬建屋 } \\ 0 . \text { P. } \\ 33.20^{*} \\ \text { (0.P. } \end{array} 38.25\right)$	0． 027	0.05 以下	0.05 以下	－	－	－	$\mathrm{C}_{\mathrm{H} 1}=3.15$	$\mathrm{C}_{\mathrm{H} 2}=3.15$	$\mathrm{C}_{\mathrm{v}}=1.85$	55

注記＊：基準床レベルを示す。
1．1．2 扉閉状態の設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）			弾性設計用地震動 Sd 又は静的震度			基準地震動S s			周囲睘境温度$\left({ }^{\circ} \mathrm{C}\right)$
			面外方向	面内方向	鉛直方向	面外方向設計震度	面内方向設計震度	鉛直方向設計震度	面外方向設計震度	面内方向設計震度	鉛直方向設計震度	
BOP 閉止装置	常設／緩和	$\begin{aligned} & \text { 原子炬建屋 } \\ & \text { 0.P. } 33.20^{*} \\ & \text { (0.P. } 38.25 \text {) } \end{aligned}$	0． 027	0． 05 以下	0． 05 以下	－	－	－	$\mathrm{C}_{\mathrm{H} 1}=3.15$	$\mathrm{C}_{\mathrm{H} 2}=3.15$	$\mathrm{C}_{\mathrm{v}}=1.85$	66

注記＊：基準床レベルを示す。

枠囲みの内容は商業機密の観点から公開できません。

1．2．3 丁番ブラケット

材料	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{RT})$ (MPa)	F (MPa)	F^{*} (MPa)
	\square	\square	\square	-	\square

枠囲みの内容は商業機密の観点から公開できません。

1．3 計算数値
1．3．1 内梁の荷重
（1）扉開状態
（単位：N）

F_{x}		F_{y}		F_{z}	
弹性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
－	28.31	－	8.994×10^{-2}	－	8． 923

注：添字 x ，y ，z は要素に与えられた座標軸で，x 軸は常に要素の長手方向にとる。
（2）扉閉状態
（単位：N）

F_{x}		F_{y}		F_{z}	
弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
－	28.31	－	8． 994×10^{-2}	－	11． 67

注：添字x，y，zは要素に与えられた座標軸で，x軸は常に要素の長手方向にとる。

1．3．2 内梁のモーメント
（1）扉開状態
（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）

M ${ }_{\text {x }}$		M_{y}		M_{2}	
弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
－	3.055	－	1.944×10^{5}	－	95.38

注：添字 x, y, z は要素に与えられた座標軸で，x 軸は常に要素の長手方向にとる。
（2）扉閉状態

M_{x}		M y		M ${ }_{\text {z }}$	
弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
－	3.886	－	2． 577×10^{5}	－	95.38

注：添字x，y，zは要素に与えられた座標軸で，x軸は常に要素の長手方向にとる。

1．3．3 閒ピンの荷重
（1）扉開状態
（単位：N）

F_{p}		Q_{P}	
弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基淮地震動S s
－	1． 158×10^{3}	－	1． 158×10^{3}

（2）扉閉状態
（単位：N）

F_{p}		Q_{P}	
弾性設計用地震動 $\mathrm{Sd} \text { 又は静的震度 }$	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
－	1.546×10^{3}	－	1.546×10^{3}

1．3．4 聞ピンのモーメント
（1）扉開状態

（2）扉閉状態
（単位：$N \cdot m m$ ）

O 2
 （3）VI－2－9－4－4－1－5 R 2

1．3．5 丁番ブラケットの荷重
（1）扉開状態
（単位：N）

F_{XH}		F_{YH}		$\mathrm{F}_{\text {ZH }}$	
弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
－	1． 158×10^{3}	－	2． 317×10^{3}	－	4． 192×10^{3}

（2）扉閉状態
（単位：N）

F_{XH}		F_{YH}		$\mathrm{F}_{\text {ZH }}$	
弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又 静的震度	基準地震動S s	弾性設計用地震動 Sd 又 又は静的震度	基準地震動S s
－	1.546×10^{3}	－	2.317×10^{3}	－	4． 192×10^{3}

$$
\text { O } 2 \text { (3) VI-2-9-4-4-1-5 R } 2
$$

1．3．6 丁番ブラケットに作用する力
（1）扉開状態
（単位：N）

N_{YH}		Q_{XH}		$Q_{\text {Z }}$	
弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
－	2． 317×10^{3}	－	1． 158×10^{3}	－	4． 192×10^{3}

M_{XH}		$\mathrm{M}_{\text {ZH }}$	
弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
－	5． 660×10^{5}	－	1． 564×10^{5}

（2）扉閉状態

N_{YH}		Q_{XH}		$\mathrm{Q}_{\text {ZH }}$	
弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
－	2． 317×10^{3}	－	1.546×10^{3}	－	4． 192×10^{3}

M_{XH}		$\mathrm{M}_{\text {ZH }}$	
弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
－	5． 660×10^{5}	－	2． 087×10^{5}

1． 4 結論
1．4．1 固有周期
（1）扉開状態

	（単位：s ）	
モード	卓越方向	固有周期
1 次	面外	0.027

（2）扉閉状態

	（単位：s ）	
モード	卓越方向	固有周期
1 次	面外	0.027

$$
\mathrm{O} 2 \text { (3) VI-2-9-4-4-1-5 R } 2
$$

1．4．2 応力
（1）扉開状態

部材	材料	応力	弾性設計用地震動S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
内梁	－	引張り	－	－	$\sigma_{\mathrm{t}}=29$	
		せん断	－	－	$\tau=0$	
		組合せ	－	－	$\sigma_{\mathrm{c}}=29$	
間ピン		引張り	－	－	$\sigma_{\mathrm{tP}}=38$	
		せん断	－	－	$\tau_{\mathrm{P}}=2$	
		組合せ	－	－	$\sigma_{\mathrm{cP}}=38$	
丁番ブラケット		引張り	－	－	$\sigma_{\mathrm{tH}}=22$	
		せん断	－	－	$\tau_{\mathrm{H}}=2$	
		組合せ	－	－	$\sigma_{\mathrm{cH}}=22$	

枠囲みの内容は商業機密の観点から公開できません。

$$
\text { O } 2 \text { (3) VI-2-9-4-4-1-5 R } 2 \mathrm{E}
$$

（2）扉閉状態

部材	材料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
内梁		引張り	－	－	$\sigma_{t}=38$	
		せん断	－	－	$\tau=0$	
		組合せ	－	－	$\sigma_{\mathrm{c}}=38$	
間ピン		引張り	－	－	$\sigma_{\mathrm{tP}}=51$	
		せん断	－	－	$\tau_{\mathrm{P}}=3$	
		組合せ	－	－	$\sigma_{\text {c }} \mathrm{P}=51$	
丁番ブラケット		引張り	－	－	$\sigma_{\mathrm{tH}}=24$	
		せん断	－	－	$\tau_{\mathrm{H}}=2$	
		組合せ	－	－	$\sigma_{\mathrm{cH}}=25$	］

すべて許容応力以下である。
1．4．3 動的機能の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

BOP 閉止装置	面外方向	機能維持評価用加速度＊	機能碓認済加速度
	面内方向	2.62	\square

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

