女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-20-0077_改 0
提出年月日	2021年4月1日

Ⅵ-3-3-3-3-1-4 弁の強度計算書(残留熱除去系)

2021年4月

東北電力株式会社

まえがき

本計算書は, 添付書類「VI-3-1-2 クラス1機器の強度計算の基本方針」及び「VI-3-2-3 ク ラス1弁の強度計算方法」並びに「VI-3-1-3 クラス2機器の強度計算の基本方針」及び「VI-3-2-5 クラス2弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

・評価条件整理表

		施設時の		クラスア	ップするか			条件7	ア ップする	カ						
機器名	既設 or	技術基準に対象と	クラス	施設時			条件	DB 🗐	条件	SA 🗐	条件	既工認に おける	施設時の	評価区分	同等性 評価 区分	評価
	新設	する施設 の規定が あるか	アップ の有無	旭 機器 クラス	DB クラス	SA クラス	*FF アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格	μτ μμ Ελλ		クラス
E11-F008A, B	既設	有	無	DB-2	DB-2	_	無	3. 73	186	_	_	兼	S55告示	設計・建設規格 又は告示	_	DB-2
E11-F016A, B	既設	有	無	DB-1	DB-1	_	無	8.62	302	_		兼	S55告示	設計・建設規格 又は告示	_	DB-1
E11-F018A, B	既設	有	無	DB-1	DB-1	_	無	10.40	302	_	_	兼	S55告示	設計・建設規格 又は告示	_	DB-1
E11-F021	既設	有	無	DB-1	DB-1	_	無	8.62	302	_	_	無	S55告示	設計・建設規格 又は告示	_	DB-1

1	. ク	ラス1弁 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
	1.1	没計仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	1.2	▲度計算書 ····································	3
2	. ク	ラス2弁・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
	2.1	没計仕様 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	2.2	街度計算書······	14

1. クラス1弁

1.1 設計仕様

系統:残留熱除去系

機器の	区分		クラス1弁						
弁番号	種類	毎短 呼び径 材料							
开留 万	化组织	(A)	弁箱	弁ふた	弁体	ボルト			
E11-F016A, B	止め弁	350	SCPH2	SCPH2	SCPH2				
E11-F018A, B	止め弁	300	SCPH2	SCPH2	S25C				
E11-F021	止め弁	100	SCPH2	SCPH2	S25C				

枠囲みの内容は商業機密の観点から公開できません。

1.2 強度計算書

系統:残留熱除去系

```
弁番号 E11-F016A,B シート 1
```

		設計・建設規格	告示第501号			設計・建設規格	<mark>告示第501号</mark>
設計条件							
最高使用圧力	ウア (MPa)	8.	62	弁箱の一次-	+二次応力評価		
最高使用温度	ĔT _m (℃)	302		t _e	(mm)		
弁箱材料		SCH	PH2	Т _{е1}	(mm)		
接続管材料				Т _{е2}	(mm)		
接続管外径	(mm)			r i	(mm)		
接続管内径	(mm)			θ	(°)		
	図 3-1	({	5)	K			
添付図番号	⊠ 3-2	(2	2)	P _e	(MPa)	91	<mark>89</mark>
	⊠ 3−3	1	(2)	$\alpha \times 10^{-6}$	(mm/mm°C)	12.69	12.63
		(-/)	(-/	E	(MPa)	187600	181619
内圧による弁	主箱の一次応力評価			C 2	(111-0)		. 47
P 1	(MPa)	6.64	<mark>6. 64</mark>	ΔΤ	(°C)	, in the second	
P ₂	(MPa)	9.95	9. 96	C 4	(0)		
	(MPa)	6.90	6. 89	ΔP _{fm}	(MPa)	1	
Р _{г1} Р _{г2}	(MPa)	10.34	10.35	Δ T f m	(°C)	1	
P _s	(MPa)	8.96	8. 96	S _n (1)	(MPa)	180	
d	(mm)	0.00	0.00	S _n (2)	(MPa)	119	
Ть	(mm)	1		$3 \cdot S_m$	(MPa)	399	
	(mm)	-			(MFa) : S _n (1) $\leq 3 \cdot$	I	
T _r	(mm)	1		i∓1Щ	$\begin{array}{c} S_n & (1) \leq 3 \\ S_n & (2) \leq 3 \end{array}$		
LA		1			$S_{n}(2) \ge 3$	Sm よって十分	ひである
L _N	(mm)	1				~) ()	$\int C \partial f \partial \sigma$
A f	(mm ²)	1					
A _m	(mm ²)	1		弁箱の局部-	一次応力評価		
r 1	(mm)	10			(10)	150	
S	(MPa)	48		S	(MPa)	153	
S _m	(MPa)	133		2.25 · S _m	(MPa)	299	
評価	: $S \leq S_m$	1	L 7	評価	: $S \leq 2.25 \cdot S_m$		1
		よって十分でる	ある。			よって十分	方である。
配管反力によ	よる弁箱の二次応力評	価		起動時及び何	亭止時の繰返しピ	ーク応力強さ	
A-A断面0	D弁外径 (mm)			С 3			
A_1	(mm^2)			Q _T	(MPa)		
A_2	(mm^2)			Sℓ (1)	(MPa)	114	<mark>112</mark>
Сь		1.0	<mark>1. 0</mark>	S l (2)	(MPa)	129	<mark>126</mark>
Ζ ₁	(mm^3)			E _m	(MPa)	184760	<mark>178324</mark>
Z 2	(mm^3)			N (1)		134683	122777
Z p	(mm^3)			N (2)		81450	<mark>74111</mark>
S y	(MPa)	200	<mark>194</mark>				
P _d	(MPa)	44	<mark>43</mark>	評価	: N (1) ≥ 2000		
Рь	(MPa)	91	<mark>89</mark>	1	N (2) ≥ 2000		
P _t	(MPa)	91	<mark>89</mark>	1		よって十分	分である。
	(MPa)	199		1			
	. /	1		1			
1.5 • S _m	: P _d ≦1.5 • S _m						
1.5 • S _m	: $P_d \leq 1.5 \cdot S_m$ $P_b \leq 1.5 \cdot S_m$						
1.5 • S _m	: $P_d \leq 1.5 \cdot S_m$ $P_b \leq 1.5 \cdot S_m$ $P_t \leq 1.5 \cdot S_m$						

弁番号E11-F016A, Bシート2

m	n .	A _o	C 5	S	S n	3 • S m		3 • m • S _m
				(М	Pa)	(MPa)		(MPa)
. 00	<mark>0. 20</mark> 0	<mark>. 66</mark>	1.02	: <mark>1</mark>	<mark>29</mark>	<mark>400</mark>		<mark>1200</mark>
Δ T $_{\rm f}$	S _p	ŀ	K _e	Sℓ		N i	N _{r i}	N $_{\rm i}$ / N $_{\rm r}$ $_{\rm i}$
(°C)	(MPa)			(MPa)				
	<mark>803</mark>	-	—	<mark>402</mark>				0.0052
	740	-	—	<mark>370</mark>				<mark>0. 0508</mark>
	<mark>235</mark>	-	—	<mark>118</mark>				<mark>0. 0011</mark>
	212	-	—	<mark>106</mark>				0. 0001
	<mark>182</mark>	-	_	<mark>91</mark>				<mark>0. 0004</mark>
評価	- : 疲労累積係数	I _t =	$= \sum \frac{N_{i}}{N_{r_{i}}}$	= <mark>0.0576</mark> ;	≦1		e	よって十分である。
				= <mark>0. 0576</mark> ;		の一次応力評価	。 西 <mark>設計・建設</mark>	
弁箱の形状				= <mark>0. 0576</mark> ;				
中箱の形状 r 1	規定 <mark>設計・愛</mark>			= <mark>0.0576</mark> ;	弁体			·規格
弁箱の形状 r 1 r 2	規定 <mark>設計・愛</mark> (mm)			= <mark>0.0576</mark> ;	弁体 材料			·規格 SCPH2
弁箱の形状 r 1 r 2 0.3・t	規定 <mark>設計・対</mark> (mm) (mm)			= <mark>0.0576</mark> ;	弁体 材料 形式 P		西 <mark>設計・建設</mark>	·規格 SCPH2 W2
弁箱の形状 r ₁ r ₂).3・t).05・t	規定 <mark>設計・残</mark> (mm) (mm) (mm)			= <mark>0.0576</mark> :	弁体 材料 形式 P		西 <mark>設計・建設</mark> (MPa)	·規格 SCPH2 W2
評価	規定 <mark>設計・領</mark> (mm) (mm) (mm) (mm)			= 0.0576	 弁体 材料 形式 P P 。 		西 <mark>設計・建設</mark> (MPa) (N)	·規格 SCPH2 W2
弁箱の形状 r 1 r 2).3・t).05・t).1・h d n∕d m	規定 <mark>設計・領</mark> (mm) (mm) (mm) (mm)			= 0.0576	弁体 材料 形式 P P。 h		m 設計・建設 (MPa) (N) (mm)	·規格 SCPH2 W2
弁箱の形状 r 1 r 2). 3・t). 05・t). 1・h d n∕d m 評価: r	規定 <mark>設計・る</mark> (mm) (mm) (mm) (mm) (mm)	建設規格		= 0.0576	弁体 材料 形式 P P。 h a		m 設計・建設 (MPa) (N) (nm) (nm)	·規格 SCPH2 W2

弁番号 E11-F016A, B シート 3

		設計•	告示	\searrow	
					設計・建設規格
		建設規格	第501号		
設計条件		1		ネック部の厚さ	<u> </u>
最高使用圧	力P	8.6	39	d _n (mm)	
(MPa)		0.0		u _n (iiiii)	
最高使用温	度Tm		0	1 / 1	
(°C)		30	Z	d n⁄d m	
弁箱又は弁	ふたの厚さ	<u>. </u>		t _m (mm)	21.0
弁箱材料		SCP	H2	t _{ma} (mm)	
弁ふた材	料	SCP	H2		
P 1	(MPa)	6.64	_	評価:t _{ma}	≧t m
P 2	(MPa)	9.95	_		よって十分である。
d m	(mm)		<u>.</u>		
t 1	(mm)	18.7	—		
t ₂	(mm)	22.5	_		
t	(mm)	21.0	—		
t _{a b}	(mm)				
t _{a f}	(mm)				
評価: t	$a b \ge t$				
t	$_{a\ f}\geqq t$				
		よって十分で	ある。		

弁番号 E11-F016A,B シート 4

设計条件			モーメントの		
FD	(MPa)	12.11	Η _D	(N)	1.373×10^{6}
D eq	(MPa)	3.49	h _D	(mm)	94.0
Γ _m	(°C)	302	$M_{\rm D}$	(N·mm)	1.290×10^{8}
Ие	(N·mm)		H _G	(N)	8.337×10^{5}
Г _е	(N)		h _G	(mm)	95.4
フランジの	形式	JIS B 8265 附属書3 図27)	M _G	(N·mm)	7.950×10^{7}
フランジ			Η _T	(N)	4. 450×10^5
树		SCPH2	h _T	(mm)	109.7
fa	(MPa)		M_{T}	(N·mm)	4. 881×10^{7}
	rット締付時)	160	M	(N•mm)	2.573×10^{8}
(20 °C)			M _o		
бfb	(MPa)	125	Mg		4. 657×10^8
	(使用状態)			つ厚さと係数	
A	(mm)		t	(mm)	
3	(mm)		K		1.87
2	(mm)		h o	(mm)	
5 0	(mm)		f		1.00
5 1	(mm)		F		0.834
1 3 a 1	(mm)		V	(-1)	0.309
ドルト	r		е	(mm ⁻¹)	0. 00656
材料	(15.)		d	(mm^3)	2669082
	(MPa)	242	L		1.60
ś温(カスケ (20 ℃)	ット締付時)	242	Т		1.56
ъ	(MPa)	197	U		3.60
し 高使用温度	(使用状態)	197	Υ		3.27
1			Z		1.80
ł _b	(mm)		応力の計算		
ガスケット	_		σ _{Ho}	(MPa)	127
树			σ _{Ro}	(MPa)	69
ガスケット	厚さ (mm)		σ _{To}	(MPa)	60
Ĵ	(mm)		σ _{Hg}	(MPa)	191
n			σ _{Rg}	(MPa)	124
7	(N/mm^2)		σ _{Tg}	(MPa)	109
) ₀	(mm)				
)	(mm)		応力の	評価 : σ _{Ho} ≦1.5	
1	(mm)			$\sigma_{\rm Ro} \leq 1.5$	
Ĵ _s	(mm)		1	σ _{To} ≦1.5 ·	• of f b
ドルトの計			4	<i></i> -	
I	(N)	1.818×10^{6}	4	$\sigma_{\mathrm{Hg}} \leq 1.5$	
I p	(N)	8.337×10^{5}	4	$\sigma_{Rg} \leq 1.5$	
V m 1	(N)	2.651×10^{6}	4	σ _{Tg} ≦1.5	U f a
V _{m 2}	(N)	7.911×10^{5}	4		よって十分である。
A _{m1}	(mm ²)	1.341×10^{4}	4		ようくてんてのる。
A _{m 2}	(mm ²)	3.269×10^{3}	_		
A _m	(mm ²)	1.341×10^{4}	4		
A b	(mm^2)		4		
V o	(N)	2.651×10^{6}	4		
V g	(N)	4.884×10^{6}	4		
評価:A _n	< 1				

弁番号	E11-F018A, B	シート	1

		設計・建設規格	<mark>告示第501号</mark>			<mark>設計・建設規格</mark>	<mark>告示第501号</mark>
設計条件						WART /SERVICE	
最高使用圧力	P (MPa)	10.	40	弁箱の一次-	+二次応力評価		
最高使用温度	€T _m (°C)	302		t _e	(mm)		
弁箱材料		SCF	PH2	Т _{е1}	(mm)		
接続管材料				Т _{е2}	(mm)		
接続管外径	(mm)			r _i	(mm)		
接続管内径	(mm)			θ	(°)		
	図 3-1	(4	1)	K		1	. 00
添付図番号	図 3-2	(4	1)	Ре	(MPa)	111	<mark>108</mark>
	図 3-3	(3),	(4)	$\alpha imes 10^{-6}$	(mm/mm℃)	12.69	<mark>12. 63</mark>
中国ションマイ	· 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你 你			Е	(MPa)	187600	<mark>181619</mark>
内圧による知	幹箱の一次応力評価			C 2		C	. 49
P 1	(MPa)	9.95	<mark>9. 96</mark>	ΔΤ	(°C)		
P ₂	(MPa)	14.95	<mark>14. 93</mark>	C 4			
P _{r1}	(MPa)	10.34	<mark>10. 35</mark>	ΔP _{fm}	(MPa)		
P _{r2}	(MPa)	15. 51	<mark>15. 51</mark>	Δ T $_{\rm f\ m}$	(°C)		
P _s	(MPa)	10.81	<mark>10. 81</mark>	S n (1)	(MPa)	228	
d	(mm)			S n (2)	(MPa)	96	5
Ть	(mm)			3 • S m	(MPa)	399)
T _r	(mm)			評価	: S $_{n}$ (1) $\leq 3 \cdot$	Sm	
L _A	(mm)				S_n (2) $\leq 3 \cdot$	S _m	
L _N	(mm)					よって十分	うである。
A f	(mm^2)						
A_{m}	(mm^2)			ム体の日朝	がらも並ん		
r 1	(mm)			升相の同部-	一次応力評価		
S	(MPa)	79		S	(MPa)	192) /
S _m	(MPa)	133		2.25 · S _m	(MPa)	299)
評価	: $S \leq S_m$			評価	: S \leqq 2.25 $\boldsymbol{\cdot}$ S $_{\rm m}$		
		よって十分でゐ	ある。			よって十分	うである。
配管反力によ	こる弁箱の二次応力評価	Б		起動時及び仰	亭止時の繰返しピ	ーク応力強さ	
A-A断面の)弁外径 (mm)			С 3			
A_1	(mm^2)			Q _T	(MPa)		
A_2	(mm^2)			Sℓ (1)	(MPa)	143	<mark>141</mark>
Сь		1.0	<mark>1. 0</mark>	Sℓ (2)	(MPa)	158	<mark>155</mark>
Ζ ₁	(mm^3)			E _m	(MPa)	184760	<mark>178324</mark>
Z ₂	(mm^3)			N (1)		49592	<mark>45361</mark>
Z _p	(mm^3)			N (2)		35859	<mark>33835</mark>
S _y	(MPa)	200	<mark>194</mark>				
P _d	(MPa)	57	<mark>55</mark>	評価	: N (1) ≥ 2000		
Рь	(MPa)	111	<mark>108</mark>		N (2) ≥ 2000		
P _t	(MPa)	111	<mark>108</mark>			よって十分	うである。
1.5 • S _m	(MPa)	199					
評価	: P _d ≦1.5 • S _m						
	$P_{b} \leq 1.5 \cdot S_{m}$						
	$P_t \leq 1.5 \cdot S_m$						
		よって十分でる	あろ				

シート 2

m	n	A _o	C 5	S	n	3 • S m		$3 \cdot m \cdot S_m$
_				(MP	'a)	(MPa)		(MPa)
<mark>. 00</mark>	<mark>0. 20</mark>	<mark>0. 66</mark>	0.94	<mark>98</mark>	<mark>8</mark>	<mark>400</mark>		<mark>1200</mark>
Δ T $_{\rm f}$	S _p		K _e	Sl	1	N i	N _{r i}	N $_{\rm i}$ / N $_{\rm r}$ $_{\rm i}$
(°C)	(MPa)	_		(MPa)				
	<mark>559</mark>		_	280				0.0017
	<mark>503</mark>		_	252				0.0153
	231	_	-	116				0.0010
	211	_	-	106				0.0001
	<mark>184</mark>			<mark>92</mark>				<mark>0. 0005</mark>
		∞ • t	$=\sum \frac{N_{i}}{N_{r_{i}}} =$		≦1 I			よって十分である。
	大規定設計・					一次応力評価	。 fī <mark>設計・建設</mark>	
产箱の形状						一次応力評価		
ř箱の形ង - 1	大規定 <mark>設計・</mark>				弁体の	一次応力評価		<mark>2規格</mark>
ド箱の形む ・ ₁ ・ ₂	犬規定 <mark>設計・</mark> (mm)				弁体の 材料	一次応力評価		<mark>2規格</mark> S25C
千箱の形状 - 1 - 2 .3・t	犬規定 <mark>設計・</mark> (mm) (mm)				 弁体の 材料 形式 P 	一次応力評価 P ₁ , P ₂)	近 <mark>設計・建</mark> 設	^{比規格} S25C G1
	犬規定 <mark>設計・</mark> (mm) (mm)				 弁体の 材料 形式 P 		fī 設計・建設 (MPa)	^{比規格} S25C G1
子箱の形れ 「1 「2 .3・t .05・t	大規定 <mark>設計・</mark> (mm) (mm) (mm) (mm) (mm)				 弁体の 材料 形式 P P。(1) 		5 <mark>設計・建設</mark> (MPa) (N)	^{比規格} S25C G1
注箱の形状 1 2 .3・t .05・t .1・h 1 n/dm	大規定 <mark>設計・</mark> (mm) (mm) (mm) (mm) (mm)				 弁体の 材料 形式 P P。(1) h 		fi 設計・建設 (MPa) (N) (nm)	^{比規格} S25C G1
←箱の形北 ・1 ・2 ・3・t ・05・t ・1・h は _n /d _m 評価:	大規定 <mark>設計・</mark> (mm) (mm) (mm) (mm) (mm)	建設規 	å.		 弁体の 材料 形式 P P_c(1) h a 		fi 設計・建設 (MPa) (N) (nm) (nm)	^{比規格} S25C G1
↑箱の形北 1 2 .3・t .05・t .1・h 1 n/dm 評価:	大規定 <mark>設計・</mark> (mm) (mm) (mm) (mm) (mm) (mm)	建設規 	å.		 弁体の 材料 形式 P P_c(1) h a b 	P ₁ , P ₂)	f 設計・建設 (MPa) (N) (mm) (mm) (mm)	2規格 S25C G1 10.40

弁番号 E11-F018A, B シート 3

		設計•	告示			
		建設規格	第501号			設計・建設規格
		建议规俗	- − − − − − − − − − − − − − − − − − − −			
設計条件		r		ネック音	心厚さ	
最高使用圧	力P	10.	40	d n	(mm)	
(MPa)		10.	u n	(IIIII)		
最高使用温	度Tm	20	0	1	´ 1	
(°C)		30	2	d n/	a m	
弁箱又は弁	ふたの厚さ			t m	(mm)	25.8
弁箱材料		SCP	H2	t _{ma}	(mm)	
弁ふた材	料	SCP	H2			
P 1	(MPa)	9.95	_	評価:	: t _{ma} ≧	t m
P 2	(MPa)	14.95	_			よって十分である。
d m	(mm)					
t 1	(mm)	20.5	_			
t ₂	(mm)	30.2	—			
t	(mm)	21.4	—]		
t _{ab}	(mm)					
t _{a f}	(mm)					
評価: t	$a b \ge t$					
t	$_{a\ f}\geqq t$					
		よって十分で	ある。			

弁番号 E11-F018A,B シート 4

計条件	I		モーメントの	計算	
P _{FD}	(MPa)	19.23	Η _D	(N)	1.489×10^{6}
) eq	(MPa)	8.83	h _D	(mm)	94.0
m	(°C)	302	$M_{\rm D}$	$(N \cdot mm)$	1.400×10^{8}
I e	$(N \cdot mm)$		Η _G	(N)	9. 616×10^{5}
e e	(N)		h _G	(mm)	119.6
アランジの	形式	JIS B 8265 附属書3 図27)	M_{G}	$(N \cdot mm)$	1.150×10^{8}
7ランジ			Η _T	(N)	3.704×10^{5}
树		SCPH2	h _T	(mm)	128.8
fa			M_{T}	$(N \cdot mm)$	4. 769×10^{7}
	~ット締付時)	160	М	(N. emm)	3.026×10^8
(20 °C)			M _o	(N•mm)	
fb		125	Mg	(N•mm)	5. 656×10^8
	(使用状態))厚さと係数	
1	(mm)		t	(mm)	
3	(mm)		K		2.16
2	(mm)		h o	(mm)	1 00
5 0	(mm)		f		1.00
5 1	(mm)		F		0.744
n ドルト	(mm)		V	(mm^{-1})	0.154
	r		e		0.00637 4225825
栁	(MPa)		d	(mm ³)	
「a や泪(ガフケ	(MPA) ット締付時)	242	L		1.54
(20 ℃)	ツ 「神山」中子)	242	Т		1.45
Ъ	(MPa)	197	U		2.94
上高使用温度	(使用状態)	197	Y		2.68
1			Z		1.55
l _b	(mm)		応力の計算	É	
ブスケット			σ _{Ho}	(MPa)	93
树			σ _{Ro}	(MPa)	95
ゴスケット	厚さ (mm)		σ _{To}	(MPa)	53
÷	(mm)		σ _{Hg}	(MPa)	133
1			σ _{Rg}	(MPa)	177
7	(N/mm^2)		σ _{Tg}	(MPa)	98
) ₀	(mm)		1		
)	(mm)		応力の詞	評価: σ _{Но} ≦1.5・	
1	(mm)		1	$\sigma_{\rm Ro} \leq 1.5$ ·	
j _s	(mm)		4	σ _{To} ≦1.5 •	σ f b
「ルトの計算			-	~ <1 F -	<i>a</i>
I	(N)	1.860×10^{6}	-	$\sigma_{\mathrm{Hg}} \leq 1.5 \cdot \sigma_{\mathrm{Rg}} \leq 1.5 \cdot $	
I _p	(N)	9.616×10 ⁵	-	$\sigma_{\rm Rg} \leq 1.5 \cdot \sigma_{\rm Tg} \leq 1.5 \cdot 1.5 \cdot 10^{-1}$	
V _{m 1}	(N)	2.821×10^{6}	-	0 ig≓1.0 i	v í a
V m 2	(N)	5.742×10^{5}	-		よって十分である。
A m 1	(mm ²)	1.427×10^4	-		
A m 2	(mm ²)	2.373×10^{3}	-		
A m	(mm ²)	1.427×10^4	-		
ь	(mm ²)		4		
7	(N)	2.821×10^{6}	-		
/ g	(N)	4. 731×10^{6}	4		

| 弁番号 | E11-F021 | シート | 1

設計条件			ネック部の厚さ			
最高使用圧 (MPa)	力P	8.62	d n	(mm)		
最高使用温 (℃)	度Tm	302	d n/	d m		
弁箱又は弁	ふたの厚さ		t m	(mm)	12.7	
弁箱材料		SCPH2	t ma	(mm)		
弁ふた材	料	SCPH2				
P 1	(MPa)	6.64	評価:t _{ma} ≧t _m よって十分である。			
P 2	(MPa)	9.95				
d m	(mm)		7			
t 1	(mm)	9.4				
t ₂	(mm)	9.5				
t	(mm)	9.5				
t _{ab}	(mm)		7			
t a f	(mm)					
評価: t	$_{a\ b}\geqq t$					
t	$_{a\ f}\geqq t$					
		よって十分である。				

枠囲みの内容は商業機密の観点から公開できません。

2. クラス2弁

2.1 設計仕様

系統:残留熱除去系

機器の	つ区分	クラス2弁					
- 今 平 日	種類	呼び径	材料				
弁番号	作里为只	(A)	弁箱	弁ふた	ボルト		
E11-F008A, B	止め弁	350	SCPH2	SCPH2			

枠囲みの内容は商業機密の観点から公開できません。

2.2 強度計算書

系統:残留熱除去系

弁番号 E11-F008A,B シ

シート 1

設計条件			ネック部の厚さ		
最高使用圧	力P(MPa)	3.73	d n	(mm)	
最高使用温度T _m (℃)		186	d n/d	m	
弁箱又は弁	弁箱又は弁ふたの厚さ			(mm)	
弁箱材料		SCPH2	t m 1	(mm)	13.8
弁ふた材	料	SCPH2	t _{m2}	(mm)	11. 3
P 1	(MPa)	2.00	t _{ma1}	(mm)	
P 2	(MPa)	5.17	t _{ma2}	(mm)	
d m	(mm)				
t 1	(mm)	10.6	評価:	$t_{mal} \ge t_{s}$	m 1
t ₂	(mm)	16.3		$t_{ma2} \ge t$	m 2
t	(mm)	13.8		ł	、って十分である。
t _{a b}	(mm)				
t a f	(mm)]			
評価: t	_{a b} ≧ t				
t	$_{a\ f} \geqq t$				
		よって十分である。			

弁番号 E11-F008A, B

シート 2

計条件		モーメント	の計算			
P _{FD} (MPa)	6.77	H _D	(N)	9. 192×10^{5}		
P _{eq} (MPa)	3.04	h _D	(mm)	48.5		
Т _т (°С)	186	M _D	$(N \cdot mm)$	4. 458×10^{7}		
M _e (N·mm)		H _G	(N)	3.390×10^{5}		
F _e (N)		h _G	(mm)	36.4		
フランジの形式	JIS B 8265 附属書3 図27)	M_{G}	$(N \cdot mm)$	1.233×10^{7}		
フランジ		H _T	(N)	2.908×10^{5}		
材料	SCPH2	h _T	(mm)	51.7		
σ _{fa} (MPa) 常温 (ガスケット締付時)		M _T	$(N \cdot mm)$	1.503×10^{7}		
吊温 (カスクット柿竹時) (20 ℃)	120	M _o	(N·mm)	7.193×10^{7}		
σ _{fb} (MPa)		Mg	(N•mm)	6. 286×10^7		
最高使用温度(使用状態)	120	バg 0.200×10 フランジの厚さと係数 0.200×10				
A (mm)		t (mm)				
B (mm)		K		1.45		
C (mm)		h 。	(mm)			
g ₀ (mm)		f		1.00		
g ₁ (mm)		F		0.838		
h (mm)		V		0.302		
ボルト		e	(mm^{-1})	0.00822		
材料		d	(mm ³)	1247165		
σ _a (MPa)		L	()	0.85		
常温(ガスケット締付時) (20 ℃)	173	Т		1.73		
σ _b (MPa)	173	U		5.91		
σ _b (MPa) 最高使用温度(使用状態)	115	Y		5.38		
n		Z		2.80		
d _b (mm)		応力の計算				
ガスケット		σ _{Ho}	(MPa)	156		
材料		σ _{Ro}	(MPa)	155		
ガスケット厚さ (mm)		σ _{To}	(MPa)	46		
G (mm)		σ _{Hg}	(MPa)	122		
m		σ _{Rg}	(MPa)	136		
y (N/mm ²)		σ _{Tg}	(MPa)	41		
b _o (mm)						
b (mm)		応力の	評価:σ _{Ho} ≦1.5・			
N (mm)		1	$\sigma_{\rm Ro} \leq 1.5 \cdot \sigma_{\rm fb}$			
G _s (mm)		1	σ _{T o} \leq 1.5 ·	σ _{fb}		
ボルトの計算		_		<i>G</i>		
H (N)	1.210×10^{6}	_	$\sigma_{\mathrm{Hg}} \leq 1.5 \cdot \sigma_{\mathrm{Rg}} \leq 1.5 \cdot $			
H _p (N)	3.390×10^{5}	_	$\sigma_{\rm Tg} \leq 1.5$ $\sigma_{\rm Tg} \leq 1.5$ \cdot			
W _{m1} (N)	1.549×10^{6}	_	5 ₁ g = 1:0	よって十分である		
W _{m 2} (N)	3.070×10^{5}	_				
A _{m1} (mm ²)	8.953×10^{3}	_				
A _{m 2} (mm ²)	1.775×10^{3}	_				
A_m (mm ²)	8.953×10^{3}	-				
A _b (mm ²)		4				
W _o (N)	1.549×10^{6}					
W _g (N)	1.729×10^{6}					
評価:A_m <a_b< td=""><td></td><td></td><td></td><td></td></a_b<>						