| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料

VI－3－3－3－3－1－4 弁の強度計算書（残留熱除去系）

2021年4月
東北電力株式会社

まえがき

本計算書は，添付書類「VI－3－1－2 クラス 1 機器の強度計算の基本方針」及び「VI－3－2－3 ク ラス 1 弁の強度計算方法」並びに「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－ 3－2－5 クラス 2 弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

機器名	既設or新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB 条件		SA 条件						
								$\begin{aligned} & \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$					
E11－F008A，B	既設	有	無	DB－2	DB－2	－	無	3． 73	186	－	－	無	S55告示	設計•建設規格又は告示	－	DB－2
E11－F016A，B	既設	有	無	DB－1	DB－1	－	無	8.62	302	－	－	無	S55告示	設計•建設規格又は告示	－	DB－1
E11－F018A，B	既設	有	無	DB－1	DB－1	－	無	10． 40	302	－	－	無	S55告示	設計•建設規格又は告示	－	DB－1
E11－F021	既設	有	無	DB－1	DB－1	－	無	8.62	302	－	－	無	S55告示	設計•建設規格又は告示	－	DB－1

目次

1．クラス 1 弁 1
1.1 設計仕様 2
1．2 強度計算書 3
2．クラス 2 弁 12
2.1 設計仕様 13
2.2 強度計算書 14

$$
\text { 1. クラス } 1 \text { 弁 }
$$

O 2 （3）VI－3－3－3－3－1－4 R 0

1．1 設計仕様

系統：残留熱除去系

機器の区分		クラス 1 弁				
弁番号	種類	呼び径 （A）	材料			
			弁箱	弁ふた	弁体	ボルト
E11－F016A，B	止め弁	350	SCPH2	SCPH2	SCPH2	
E11－F018A，B	止め弁	300	SCPH2	SCPH2	S25C	
E11－F021	止め弁	100	SCPH2	SCPH2	S25C	

1.2 強度計算書

系統：残留熱除去系

弁番号	E11－F016A，B	シート	1

系統：残留熱除去系

弁番号	E11－F016A，B	シート	4

	フランジ及びフランジボルトの応力解析			
	設計条件		モーメントの計算	
	$\mathrm{P}_{\mathrm{FD}} \quad$（MPa）	12． 11	H_{D}	1． 373×10^{6}
	$\mathrm{Peq}_{\mathrm{eq}} \quad$（MPa）	3． 49	$\mathrm{h}_{\mathrm{D}} \quad$（mm）	94.0
	$\mathrm{T}_{\mathrm{m}} \quad\left({ }^{\circ} \mathrm{C}\right)$	302	$\mathrm{M}_{\mathrm{D}} \quad(\mathrm{N} \cdot \mathrm{mm})$	1． 290×10^{8}
	$\mathrm{M}_{\mathrm{e}} \quad(\mathrm{N} \cdot \mathrm{mm})$		H_{G}	8． 337×10^{5}
	F_{e}（N）		$\mathrm{h}_{\mathrm{G}} \quad(\mathrm{mm})$	95.4
	フランジの形式	J I S B 8 265 附属書 3 図 2 7）	$\mathrm{M}_{\mathrm{G}} \quad(\mathrm{N} \cdot \mathrm{mm})$	7． 950×10^{7}
	フランジ		H_{T}	4． 450×10^{5}
	材料	SCPH2	$\mathrm{h}_{\mathrm{T}} \quad(\mathrm{mm})$	109.7
	σ_{fa}（MPa） 常温（ガスケット締付時） $\left(20{ }^{\circ} \mathrm{C}\right)$	160	$\mathrm{M}_{\mathrm{T}} \quad(\mathrm{N} \cdot \mathrm{mm})$	4． 881×10^{7}
			$\mathrm{M}_{\mathrm{o}} \quad(\mathrm{N} \cdot \mathrm{mm})$	2.573×10^{8}
	σ_{fb} 最高使用温度 (MPa) $($ 使用状態）	125	Mg_{g}（ $\left.\mathrm{N} \cdot \mathrm{mm}\right)$	4． 657×10^{8}
			フランジの厚さと係数	
	A （mm）		t （mm）	
	B （mm）		K	1.87
	C（mm）		$\mathrm{h}_{\text {o }}$（mm）	
$\begin{aligned} & 0 \\ & \sim \end{aligned}$	g_{0}		f	1.00
	$\mathrm{g}_{1} \quad(\mathrm{~mm})$		F	0． 834
	h （mm）		V	0． 309
	ボルト		$\mathrm{e} \quad\left(\mathrm{mm}^{-1}\right)$	0.00656
$\stackrel{1}{1}$	材料		$\mathrm{d} \quad\left(\mathrm{mm}^{3}\right)$	2669082
∞	$\begin{array}{lr} \sigma \text { a } & (\mathrm{MPa}) \\ \text { 常温 (ガスケット締付時) } \\ \left(20{ }^{\circ} \mathrm{C}\right) \end{array}$	242	L	1． 60
∞			T	1.56
	σ_{b}（ MPa ）	197	U	3.60
	最高使用温度（使用状態）		Y	3． 27
（6）	n		Z	1． 80
	d_{b}（mm）		応力の計算	
N	ガスケット		$\sigma_{\text {но }} \quad$（MPa）	127
	材料		$\sigma_{\mathrm{Ro}} \quad$（MPa）	69
	ガスケット厚さ（mm）		$\sigma_{\text {To }} \quad(\mathrm{MPa})$	60
	G （mm）		$\sigma_{\mathrm{Hg}} \quad$（MPa）	191
	m		$\sigma_{\mathrm{Rg}} \quad(\mathrm{MPa})$	124
	y （ $\left.\mathrm{N} / \mathrm{mm}^{2}\right)$			109
	b 。（mm）		$\begin{aligned} \text { 応力の評価 }: & \sigma_{\mathrm{Ho}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{~b}} \\ & \sigma_{\mathrm{Ro}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{~b}} \\ & \sigma_{\mathrm{To}} \leqq 1.5 \cdot \sigma_{\mathrm{fb}} \end{aligned}$	
	b （mm）			
	$\mathrm{N} \quad$（mm）			
	$\mathrm{G}_{\text {s }}$（mm）			
	ボルトの計算		$\begin{aligned} & \sigma_{\mathrm{Hg}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{a}} \\ & \sigma_{\mathrm{Rg}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{a}} \\ & \sigma_{\mathrm{Tg}} \leqq 1.5 \cdot \sigma_{\mathrm{fa}} \end{aligned}$よって十分である。	
	H（N）	1． 818×10^{6}		
	H_{p}	8． 337×10^{5}		
	$\mathrm{W}_{\mathrm{m} 1}$	2． 651×10^{6}		
	$\mathrm{W}_{\mathrm{m} 2}$	7． 911×10^{5}		
	$\mathrm{A}_{\mathrm{m} 1} \quad\left(\mathrm{~mm}^{2}\right)$	1． 341×10^{4}		
	$\mathrm{A}_{\mathrm{m} 2} \quad\left(\mathrm{~mm}^{2}\right)$	3． 269×10^{3}		
	$\mathrm{A}_{\mathrm{m}} \quad\left(\mathrm{mm}^{2}\right)$	1． 341×10^{4}		
	$\mathrm{A}_{\mathrm{b}} \quad\left(\mathrm{mm}^{2}\right)$			
	$\mathrm{W}_{\text {o }}$	2． 651×10^{6}		
	W_{g}	4． 884×10^{6}		
	評価： $\mathrm{A}_{\mathrm{m}}<\mathrm{A}_{\mathrm{b}}$ よって十分である。			

系統：残留熱除去系

弁番号	E11－F018A，B	シート	4

$$
\text { 2. クラス } 2 \text { 弁 }
$$

2.1 設計仕様

系統：残留熱除去系

機器の区分		クラス 2 弁			
弁番号	種類	呼び径 （A）	材料		
			弁箱	弁ふた	ボルト
E11－F008A，B	止め弁	350	SCPH2	SCPH2	

2.2 強度計算書

系統：残留熱除去系

弁番号	E11－F008A，B	シート	1

弁番号	E11－F008A，B	シート	2

