> 本資料のうち, 枠囲みの内
> 容は商業機密の観点から
> 公開できません。

| 女川原子力発電所第 2 号機 | |
| :---: | :---: | 工事計画審査資料 \(~\left(\begin{array}{c|c|}\hline 資料番号 \& 02 －工－B－17－0030＿改 0 \\

\hline 提出年月日 \& 2021 年 4 月 2 日 \\
\hline\end{array}\right.\)

VI－2－別添 1－3 火災受信機盤の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 解析方法 3
3.2 固有値解析結果 3
3.3 設計用地震力 3
4．構造強度評価 4
4． 1 構造強度評価方法 4
4．2 荷重の組合せ及び許容応力 4
5．機能維持評価 6
5.1 電気的機能維持評価方法 6

1．概要

本計算書は，添付書類「VI－2－別添1－1 火災防護設備の耐震計算の方針」（以下「別添1－1」という。）に示すとおり，火災受信機盤が設計用地震力に対して十分な構造強度及び電気的機能を有しており，火災を早期に感知する機能を維持することを確認する ものである。

2．一般事項
2.1 構造計画

火災受信機盤の構造計画を表2－1に示す。

表2－1 構造計画

3．固有周期
3.1 解析方法

火災受信機盤の水平方向の固有周期は，打振試験（プラスチックハンマ等）により当該盤に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピックアッ プ，振動計，分析器）により固有振動数（共振周波数）を記録解析する。鉛直方向の固有周期は，構造が同等であり，同様な振動特性を持つ盤に対する打振試験（自由振動試験）の結果確認された固有周期を使用する。

3．2 固有値解析結果
固有値解析結果を表 $3-1$ に示す。試験の結果，固有周期は 0.050 秒以下であり，剛 であることを確認した。

表 3－1 固有値解析結果（単位：s）

方向	固有周期
水平	0.050 以下
鉛直	0.050 以下

3.3 設計用地震力

火災受信機盤は，構造強度評価計算に用いる設計用地震力については，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」の最大応答加速度を用いる。

4．構造強度評価
4． 1 構造強度評価方法
添付書類「別添1－1 5.2 構造強度評価」に示す評価方針に従い，構造強度評価を実施 する。

4．2 荷重の組合せ及び許容応力
構造強度評価に用いる荷重及び荷重の組合せは，添付書類「別添1－1 3．1荷重及び荷重の組合せ」に示す荷重及び荷重の組合せを使用する。

4．2．1 荷重の組合せ及び許容応力状態
構造強度評価に用いる荷重の組合せ及び許容応力状態は，火災受信機盤の評価対象部位ごとに設定する。荷重の組合せ及び許容応力状態を表4－1に示す。

4．2．2 許容応力及び許容応力評価条件
基礎ボルト及び取付ボルトにおける許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表4－2に示す。

また，基礎ボルト及び取付ボルトの許容応力評価条件を表4－3に示す。
O 2 （3）VI－2—別添1－3 R 1
表4－1 荷重の組合せ及び許容応力状態（設計基準対象施訯）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
その他発電用原子炉の附属施設	火災防護設備	火災受信機盤	C	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}$ s	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
表4－2 許容応力（その他の支持構造物）

許容応力状態	許容限界（ボルト等）$* 1, * 2$	
	引張り	一次応力
	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$＊	せん断

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可
能である場合は評価を省略する。
表4－3 許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{S}_{\mathrm{y} \mathrm{i}}$ (MPa)	$\mathrm{S}_{\mathrm{u} \mathrm{i}}$ (MPa)	$\mathrm{Fi}_{\mathrm{i}}{ }^{*}$ (MPa)
基礎ボルト $(\mathrm{i}=1)$	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	40 $($ 周囲環境温度）	215	400	258
取付ボルト $(\mathrm{i}=2)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	40 （周囲環境温度）	235	400	280

5．機能維持評価
5.1 電気的機能維持評価方法

火災受信機盤は，添付書類「別添1－1 5．3 機能維持評価」に示す評価方法に従い，機能維持評価を実施する。

機能確認済加速度には，対象機器の加振試験において，電気的機能の健全性を確認し た最大加速度を適用する。

6．評価結果
火災受信機盤の構造強度評価結果及び機能維持評価結果を以下に示す。なお，発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有して いることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
【火災受信機盤の耐震性についての計算結果】

機器名称	耐震重要度分類	設置場所及び床面高さ（m）	固有周期（s）		弹性設計用地震動 S d又は設計震度		基準地震動 S s＊2		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	水平方向設計震度	水平方向設計震度	鉛直方向設計震度	
火災受信機盤	C	$\begin{gathered} \text { 制御建屋 } \\ \left(0 . \text { P. } 22.95^{* 1}\right) \end{gathered}$	0．050以下	0．050以下	－	－	$\mathrm{C}_{\mathrm{H} 1}=2.78$	$\mathrm{C}_{\mathrm{V} 1}=2.00$	40
							$\mathrm{C}_{\mathrm{H} 2}=2.89 * 3$	$\mathrm{C}_{\mathrm{V} 2}=2.03^{* 3}$	

注記＊1：基準床レベルを示す。
＊2：上段は基礎ボルトの設計震度を示し，下段は取付ボルトの設計震度を示す。
＊3：上下階の震度を用いた線形補完後の設計震度を示す。
O 2 （3）VI－2－別添1－3 R 1

部材	$\begin{aligned} & \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{h}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{1 \mathrm{i}} * \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2 \mathrm{i}}{ }^{*} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i \mathrm{i}} \\ & \left(\mathrm{~mm}^{2}\right. \end{aligned}$	n i	n_{fi}＊
基礎ボルト			150	1070	$\begin{gathered} 16 \\ (\mathrm{M} 16) \end{gathered}$	201.1	84	14
$(\mathrm{i}=1)$			87	3009				6
取付ボルト			0	920	$\begin{gathered} 16 \\ (\mathrm{M} 16) \end{gathered}$	201.1	12	4
$(\mathrm{i}=2)$			0	920				4

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}} \text { * } \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向	
				弾性設計用地震動 S d又は静的震度	基準地震動 S S
基礎ボルト $(\mathrm{i}=1)$	$\begin{gathered} 215 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	400	258	－	長辺方向
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} 235 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	400	280	－	長辺方向

[^0]下段は長辺方向転倒に対する評価時の要目を示す。

1．3．1 ボルトに作用する力			（単位：N）	
部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S S
基礎ボルト $(i=1)$	－	2． 010×10^{4}	－	9.217×10^{4}
取付ボルト $(i=2)$	－	1． 682×10^{4}	－	2.355×10^{4}

1．4 結論

ボルトの応力（単位： MPa ）						
部材	材料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S S	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=100$	$f_{\text {t s } 1}=193$＊
		せん断	－	－	$\tau_{\mathrm{b} 1}=6$	$f_{\text {s b } 1}=148$
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=84$	$f_{\text {ts } 2}=210$＊
		せん断	－	－	$\tau_{\mathrm{b} 2}=10$	$f_{\text {s b } 2}=161$

すべて許容応力以下である。 注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{bi}}, f_{\mathrm{toi}}\right]$ より算定
1.4 .2 電気的機能維持の評価結果

		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
火災受信機盤	水平方向	機能維持評価用加速度 $*$	機能維持確認済加速度
	鉛直方向	2.41	5.00

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

[^0]: 注記 $*: ~$ 各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，

