1,2号機及び3,4号機ベント配管の汚染に 関する解析等について

東京電力福島第一原子力発電所事故対策室 星 陽崇

耐圧強化ベントラインにおける汚染状況

1号機のベントラインは3号機のベントラインより線量が高い

※第8回会合資料からの抜粋

1号機と3号機のベントガスの線量の違いについて

- 1号機と3号機のベントガスに含まれたセシウム 量に相違が生じた主たる要因
 - -1号機の真空破壊弁でのバイパスの可能性
 - ベント直前におけるドライウェルの汚染状況の比較

ベントによる環境への放射性物質の放出

- ・ ウェットウェル気相部に 含まれるFP→直接放出
- ドライウェル気相部に含 まれるFP→プールでス クラビングされてから放 出
 - 第8回検討会では、真空 破壊弁でのバイパスによるD/W気相部→W/W気 相部への直接放出の可 能性が指摘された

真空破壊弁でのバイパスに関する確認項目

- 放射能
 - 環境(スタック)への放射性 物質放出量が妥当か
 - バイパス部分に痕跡はない
 - 圧力
 - 圧力挙動が実測値と整合
 するか
 - 実測値では、D/W圧力と
 W/W圧力には圧力差が生
 じている

赤色の枠は運転実績等

青色の枠は、解析及び 検討に用いた仮定

緑色の枠は、検討の結 果導かれた考察

グラフ下側の横軸は日時

ガスケットでの微小バイパスによるエアロゾルの捕集

Inlet of test piece (White powder is CsI aerosol)

Outlet of test piece (White powder is CsI aerosol)

Fig. 15 Relationship between Overall DF and equivalent leak

area

- 既往の研究では微小なバイパス部ではエアロゾルが捕集される
- フランジガスケット部では、0.1 cm²程度のバイパス面積の場合、約10の除染係数
- 真空破壊弁においても同様に、微小なバイパスが発生した場合には、エアロゾルが捕集され、ホットスポットになると推定される

A part of gasket (White powder is CsI aerosol)

Fig. 10 Photograph of test piece after the FP trapping test (Flange gasket; Semi-round gasket)

Ref: 渡部他、シビアアクシデント時の格納容器貫通部リークパスでのFP エアロゾル捕集効果(II) 貫通部での除染係数と実機への適用、日本原子力学会和文論 文誌、Vol. 8 (4)、332-343 (2009)

バイパス発生時のCs-137の放出量

Ref: United Nations Scientific Committee on the Effects of Atomic Radiation, "UNSCEAR 2013 Report to the General Assembly with Scientific Annexes," 2014

Ref: 東京電力株式会社、研究開発「格納容器漏えい箇所特定技術・補修技術の開発」にて開発中のS/C(圧力抑制室)上部調査装置の実証試験における1号機 S/C 上部調査結果(続報)およびトーラス室壁面調査結果について、2014年6月27日

9

Ref.: N. Bixler, et al., State-of-the-Art Reactor Consequence Analysis Project, Volume 1: Peach Bottom Integrated Analysis, NUREG/CR-7110, 2013

D/WとW/Wの圧力差(バイパスあり) 解析ではD/Wヘッドフランジからの漏洩が発生 1号機 真空破壊弁にバイパ ス(1 cm²)を仮定 D/WE>W/W圧力となる実測値 Elapsed time (h) RPV下部ヘッド破損(解析) D/WとW/Wの圧力差 0 10 15 20 25 30 20 AP D/W-W/W (Observed) 0 ΔP D/W-W/W 15 Differential pressure (kPa) ഷ 0 0 10 ത്ത 0 5 0 0 KKR 99 -5 S/RVガスケット部でのD/W への蒸気漏えい -10 0 D/WE=W/WE力 -15 (解析) 5 S/C Vent W/Wの水位 **w/w**の水位 4 nmmal PCV Waterl Level (m) 3 ベント管(ダウンカマー)内の水位 0 03/11 03/11 03/12 03/12 03/12 03/12 03/12 03/12 12 16:00 20:00 0:00 4:00 8:00 12:00 16:00 20:00

他号機との比較

- 福島第二原子力発電所1号機(2F1)では、真空破壊弁のシートガスケット外れが確認されている¹。
- 東京電力は、2号機では「真空破壊弁のうち一つ以上の破損がある可能性がある」²としている。
- 解析では、2号機はRPVの急速減圧までに約3000回真空破壊弁が作動しているのに対し、1号機ではベントまでの動作が約300回と少ない。
 - 2号機及び2F1では、S/Cを冷却できない状況で長時間RCIC及びS/RVに より水蒸気がS/Cに放出されており、真空破壊弁が動作する期間が長かっ た。
 - 2号機では約70時間、2F1では約60時間、繰り返し動作したと推定される。
 一方、1号機では、ベントまでに真空破壊弁が作動した期間は2時間程度と 推定される。
- また、2号機及び2F1ではS/RVによるRPVの急速な減圧が実施されているが、1号機では実施されていない。
- したがって、2号機及び2F1と比較すると、1号機では真空破壊弁への 負荷は低かったと考えられる。
- 1. 東京電力株式会社、福島第二原子力発電所 原子炉格納容器内の目視点検結果、平成24年3月2日、http://www.tepco.co.jp/nu/fukushimanp/images/handouts_120302_04-j.pdf#page=3
- 東京電力ホールディングス株式会社、福島第一原子力発電所1~3号機の炉心・格納容器の状態の推定と未解明問題に関する検討第5回進捗報告、平成29年12月25日

まとめ(真空破壊弁でのバイパスの可能性)

- 真空破壊弁に小さな面積のバイパスを仮定した場合、 環境での測定結果を参考にすると、多量のFPが真
 空破壊弁に沈着すると推定されるが、付近の線量測
 定値とは整合しない。
- また、実測された1号機のD/W圧力及びW/W圧力の挙動から、真空破壊弁でD/WとW/Wを均圧させるほどのバイパスが生じた可能性は低い。
- したがって、真空破壊弁でのバイパスを、1号機のベントガスの線量が高かった主たる要因とは考え難い。
- ただし、極めて微小なバイパス発生を完全には否定 できない。

- 現場周辺での線量調査等が必要

1号機と3号機のベント時のプラント状態(推定)

		1号機	3号機※	
炉心損傷からベントまでの 時間		約20時間	約5時間(1回目)~約9時間(2回目)	
ベント時の炉心損傷割合		ほぼ全量	約30%(1回目)~90%(2回目)	
RPV下部ヘッド		破損	健全	
燃料からのCs放出割合		約90%	約30%(1回目)~80%(2回目)	7
Csの分布(RPV沈着)		約30%	約20%(1回目)~約30%(2回目)	
"	(D/W)	約20%	<1%(1回目)~<1%(2回目)	
//	(W/W気相部)	<1%	<1%(1回目)~<1%(2回目)	
			原子炉スクラム時に燃 まれる Cs 総量に対す	- 太料に含 る割合

※前提条件:3号機のベントは1回目(3月13日9:20)と2回目(3月13日12:30)のみ成功

3号機の原子炉圧力及び格納容器圧力

3号機の炉心損傷開始時間について

- 3号機のベントによって4号機へ水素が流入し、
 水素爆発を生じた
- 3号機のベントは1回目(3月13日9:20)と2回目 (3月13日12:30)のみ成功と仮定
 - 炉心損傷開始時刻は3月13日12:30以前
 - 4号機建屋爆発に相当する量以上の水素発生
 - 発生した非凝縮性ガスの水素によってPCV圧力が上 昇する(金属一水反応の速度は速いため、短時間で)
- ・ 炉心損傷開始時間は、HPCIによる炉心への注 水量に依存する

PCV圧力とスプレイの関係

単純な系でのスプレイ効果の確認

※RCIC、HPCI及びスプレイによる注水量の合計

HPCI注水による原子炉水位の変化

金属-水反応による水素発生開始時間

23

PCV圧力とスプレイの関係

HPCI停止後の圧力挙動

HPCI停止後のRPV圧力

3号機での炉心損傷開始

- ・3月13日4時頃に炉心損傷したと考えられる
- 3月13日9時頃までに炉心で発生した水素量は
 500 kg程度と推定される
 - 初回のベントまでの炉心損傷割合は3割程度

3号機の1回目と2回目のベント間の圧力挙動

スクラビング効果の比較

電力共同研究「放射能放出低減装置に関する研究(Phase-II)」のデータを加工し、独自の解釈を加えた Ref.1: D. H. Cook, "Pressure Suppression Pool Thermal Mixing," NUREG/CR-34 71,1984

まとめ

- 炉心損傷度
 - 1号機は、ベント開始時点までに炉心損傷の度合いが高い。
 - 3号機は1回目のベント開始時点では、炉心損傷の度合いが 低いが、2回目のベント開始までには炉心の損傷がかなり進む。
- D/Wに存在するFP量
 - 1号機は、ベント開始までにRPV下部ヘッドが破損しており、 D/Wに存在するFP量が極めて多い。
 - 3号機は、一度スクラビングされるため存在するFP量は少ない。
- ベント時のスクラビング効果
 - RPV下部ヘッド破損後はベント管出口での除染となる。
 - RPV下部ヘッド破損前は主としてクエンチャー出口でプールス クラビングされており、除染効果が高い。

格納容器圧力の測定値

電力共同研究「放射能放出低減装置に関する研究(Phase-II)」のデータを加工し、独自の解釈を加えた

日付	時間	操作
3月11日	15:36	RCIC起動
	21:53	RCICの水源切り替え(CST→S/C)
3月12日	4:56	RPVの減圧終了及びMUWCによる注水への切り替え
	4:58	RCIC停止
	7:10	D/Wスプレイ開始
	7:37	S/Cスプレイ開始
3月14日	1:24	RHR-B系を起動させ、S/C冷却モードによる運転を開始